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Abstract— Visual place recognition has been challenging
and crucial in real-world applications such as autonomous
navigation and vision-based robot missions. The introduction
of foundation models has greatly enhanced the accuracy of
vision-based algorithms and visual place recognition, expanding
to the methods that utilize semantic information from images.
In this workshop paper, we revisit the features of semantic
classification in the visual place recognition process to discuss
how to deal with outcomes of semantic segmentation during
visual place recognition. By showing that the semantic labels are
not uniformly distributed, we propose to handle the uncertainty
of semantic classes as a bivariate distribution that depends
on the class and the assigned localization clusters instead of
commonly used class-level confidences. Utilizing a powerful
foundation model capable of language-image similarity evalua-
tion, we evaluate and show the distributions of semantic class
activations in the public datasets.

I. INTRODUCTION

Visual Place Recognition (VPR) is essential for vision-
based robotic systems and is widely applied in the industry
for autonomous navigation, mission planning, map building,
digital twin, and augmented reality. While VPR has made
significant progress, achieving the ability to work flawlessly
over real-world variances remains a challenge. With the
introduction of foundation models [1] [2] [3] in computer
vision, the accuracy and potential of vision-based algorithms
have been largely boosted, and also VPR benefited from
the generalization ability of them [4]. Because foundation
models were mostly trained by the gigantic size of training
data and an efficient representation of them, they show
a high-end generalization ability. Technically, VPR is a
procedure of retrieving the closest image of query image
from database images, which can be reformulated as a N -
class classification problem when the database is size of N .
A key factor of VPR is building a reliable representation of
images to properly encode scene information into un-varying
place representation while neglecting the non-place specific
and non-distinctive variables.

This image-to-feature-transformation can be interpreted
in two stages: image encoding and transformation for lo-
calization purposes. Even if the image encoding perfectly
represents every object and context in the image, directly
matching all the descriptors will not always result in correct
matches due to the differences between the database and
query. This difference derives from various origins in the real
world, such as illumination, seasonal changes, disappearing,
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Fig. 1. Activation distribution of the token [car], visualized using
t-SNE on VLAD [5] descriptors from the pitts30k dataset’s training
sequence. Here, a higher similarity score corresponds to a smaller
cosine distance between the CLIP image encoder’s image embed-
dings and the CLIP text encoder’s text embeddings. As displayed
on the left, token [car] activation concentrates primarily within a
few clusters. However, as indicated from the right, the variance
within their clusters varies, suggesting that activation is meaningful
in specific clusters but not others.

and appearing objects over time. Therefore, a proper method
of transforming the encoded images into localization descrip-
tors is required to achieve robust localization. Researchers
have covered various strategies both on image encoding and
clustering [5] [6] [7]. NetVLAD [7] has been widely used
since its release. Recently, approaches have been suggested
to utilize additional information, such as semantics [8] [9].
Semantic segmentation is one of the most efficient strategies
for transforming image descriptors into localization descrip-
tors because variable components are usually produced by
the changing objects in the scene (e.g., parked cars in
the parking lot and pedestrians on the road). However, the
uncertainties of the semantic labels have not been extensively
covered. In the conventional approaches, the uncertainty is
handled by ignoring some of the “dynamic” labels, such as
pedestrians or vehicles. However, the distribution of those
dynamic labels is not completely uniform. Still, it is rather a
conditional probability that relies on the characteristics of the
places, as shown in Fig. 1. For example, a class [car] will
be highly variable in the parking lot but will not be seen
indoors if it is not a car exhibition. In this workshop paper,
we concentrate on the conditional probability of semantic
classes appearing in different places and further suggest how
to handle the uncertainty of each semantic class using the
suggested similarity score and intra-cluster variance.



II. EXPERIMENTS

To calculate the similarity score and intra-cluster variance
of suggested semantic classes, we first need to acquire the
appearance rate of each text label upon places. For this, we
can use datasets such as Cityscapes [10]; however, we can
also benefit from the language-image model such as Con-
trastive Language-Image Pre-Training (CLIP) [3]. As CLIP
is capable of calculating the similarity between suggested
text labels and images, we utilize the module to evaluate
the similarity between suggested text classes and the image.
Using this module makes our method applicable to datasets
without semantic labels.

We first extract text embedding from the selected class
labels from Cityscapes and transform them into text em-
bedding using a CLIP text encoder. Also, the images from
the database are transformed into image embedding using an
image encoder from CLIP. Then, we calculate the similarity
between the descriptors to show the relevance between the
suggested keyword class and database image. An image
containing contexts related to the suggested test label will
show a higher similarity.

With obtained similarity values, we aim to discover the
similarity distribution upon the localization vectors. There-
fore, we build localization descriptors based on the image
embeddings and NetVLAD pipeline, using the CLIP image
encoder as the encoding layer and NetVLAD as the pooling
layer. After all, we clusterize the training database into 64
clusters using the K-means algorithm as in Fig. 2.

Assuming the database is acquired sufficiently multiple
times for places in the training set, we can calculate the
mean and variance as in Fig. 3. To visualize the similarity
distribution in the vector space, we plotted the similarity
over the t-SNE plot as in Fig. 4 and Fig. 5. As observed
from the figures, the activation occurs in different clusters
depending on the class labels, and the intra-cluster variance
also differs. From the higher similarity, we can assume that
the class labels will likely be present in the clusters and that
the class is relevant to such clusters. However, if the intra-
cluster variance is high, the class is often not informative.
Therefore, we can trust the class relevance only when the
similarity is high and the variance is low.

Fig. 2. K-means Clusterization results on VLAD descriptors from
the pitts30k dataset’s training sequence. VLAD descriptors that are
assigned to different clusters are colored in different colors.

Mean of Similarity Variance of Similarity

Fig. 3. (left) mean values of similarity and (right) variances of
similarity from selected text classes on the pitts30k dataset. In
contrast to our intuitions, the higher variance means the text class
is more place-specific because the higher value results from the
clearly distinguished distribution of places.

III. CONCLUSION

In this workshop paper, we suggest modeling the reliability
of semantic classes for VPR not by class uncertainty but
by conditional probability distribution depending on the
places and classes. We have shown that the distribution is
nonuniform, and classes could provide additional information
in some circumstances, even if it varies in most places. In
future works, we expect to enhance the performance of VPR
by applying adaptation based on this suggested conditional
probability.
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Fig. 4. Activation distribution of selected classes text from CityScapes [10] class definitions, visualized using t-SNE on VLAD descriptors
from the pitts30k dataset’s training sequence. Depending on the classes, we may observe the distributions as expectations, as classes like
”traffic” and ”bridge” are cluster-specific, and classes like ”building” are non-cluster-specific.
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Fig. 5. Activation distribution of selected classes text from CityScapes [10] class definitions, visualized using t-SNE on VLAD descriptors
from the pitts250k dataset’s training sequence.


