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ABSTRACT
Moving objects databases (MODs) have been extensively studied
due to their wide variety of applications including traffic manage-
ment, tourist service and mobile commerce. However, queries in
natural languages are still not supported in MODs. Since most users
are not familiar with structured query languages, it is essentially
important to bridge the gap between natural languages and the
underlying MODs system commands. Motivated by this, we design
a natural language interface for moving objects, named NALMO.
In general, we use semantic parsing in combination with a location
knowledge base and domain-specific rules to interpret natural lan-
guage queries. We design a corpus of moving objects queries for
model training, which is later used to determine the query type.
Extracted entities from parsing are mapped through deterministic
rules to perform query composition. NALMO is able to well trans-
late moving objects queries into structured (executable) languages.
We support four kinds of queries including time interval queries,
range queries, nearest neighbor queries and trajectory similarity
queries. We develop the system in a prototype system SECONDO
and evaluate our approach using 240 natural language queries ex-
tracted from popular conference and journal papers in the domain of
moving objects. Experimental results show that (i) NALMO achieves
accuracy and precision 98.1% and 88.1%, respectively, and (ii) the
average time cost of translating a query is 1.47s.
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1 INTRODUCTION
Mobile computing devices such as PDAs and mobile phones have
been widely used in real life. As a result, a large amount of mobile
data is collected and stored in the system. Such data represents
objects continuously changing locations over time. The system
managing such data is called moving objects databases, MOD for
short [11]. In the domain of moving objects databases, a number of
queries and analysis tasks have been extensively studied including
range queries [4], nearest neighbor queries [10] and trajectory
similarity queries. Several prototype systems are developed such
as HERMES [23], SECONDO [9], PLACE∗ [35] and TMOM [15].

Despite extensive research having been studied in this area,
there is lack of a query interface for non-expert users sending their
requests in natural languages. It is a non-trivial task for most users
to write structured languages such as SQL. Developing a natural
language interface for databases (NLIDBs) has become an urgent
task as databases support an increasing number of applications.
NLIDBs will significantly benefit users as they can use natural
languages to request a variety of queries instead of mastering the
structured language as well as the underlying structure such as the
database schema. Figure 1 depicts the task that we would like to
achieve to empower MODs. That is, a natural language query is
precisely and correctly translated into a structured and executable
expression in MODs.

Figure 1: Example of translating

NLIDB is a challenging task mainly due to two difficulties: (i)
semantic understanding and analysis, and (ii) query translation. The
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questions asked by users are usually ambiguous or in-complete in
terms of semantic. In the domain of moving objects databases a va-
riety of queries have different key entities including time, location
and moving objects identification. Constructing an effective seman-
tic parser for identifying and extracting entities is a crucial task.
Although MODs are already equipped with a rich set of operators
and access methods, effectively and accurately combining entities
and operators into structured languages is a non-trivial task due to
the query diversity.

NLIDB systems have achieved satisfactory results in specific
domains. Rule-based and machine learning-based methods are usu-
ally used to perform the translation from natural language to SQL.
Some NLIDB systems use machine learning [30] to understand and
translate natural language queries such as NL2CM [1] and Spa-
tialNLI [18]. Although there are training datasets and corpora for
relational databases, there is lack of datasets and corpora in many
specific domains. Corpora that can be used for query classifica-
tion of MODs are rare or even not available. PRECISE [26], NaLIR
[17] and ATHENA [27] use rule-based semantic analysis and query
construction methods. These methods limit expressive power and
can only be applied to specific domains. Natural language queries
often contain ambiguities and grammatical errors which make mis-
takes and produce erroneous output. However, a purely rule-based
method will greatly restrict the expression of queries that users can
put forward. Some NLIDBs ask users for intervention to perform
query reformulation because natural language is inherently am-
biguous. Sometimes when the system gives users an answer, users
usually do not know whether the answer is correct. Verifying the
correctness of the answer is hard for users. Helping NLIDB systems
understand query semantics is challenging and all users can do is to
modify the query and re-query. The state-of-the-art systems based
on methods above have been able to translate natural language
queries relatively well in different domains. However, there is no
NLIDB that supports MODs. Besides, most of the existing bench-
marks are used for testing natural language queries of relational
databases. There is no dataset for moving objects queries, and non-
moving object queries cannot be used as test cases to determine
the effect of the translation queries to MODs. Most current tradi-
tional database management systems including relational databases
cannot handle continuously changing data, such as the location
information of moving objects. This is because the data remains
unchanged in a traditional database unless the data is modified.
However, if we want to represent a moving object and answer a
query about its location, the location of the moving object needs to
be updated continuously. For relational databases, frequent updates
of location information are impractical. Compared with relational
databases, MODs provide users with many basic operators (e.g.,
filter(•)) and special operators (e.g., deftime(•)) for different queries.
Without these operators, natural language queries for moving ob-
jects are difficult to be effectively translated into corresponding
relational database queries.

In this paper, we design and develop a natural language interface
for MODs including (i) semantic parsing and analysis, (ii) structured
language composition, and (iii) selection of suitable datasets. At the
moment, the system supports four kinds of queries including time
interval queries, range queries, nearest neighbor queries and tra-
jectory similarity queries, but not limited to the four types. This

is because the corresponding operators and functions are imple-
mented. If the operators and functions of other queries and analysis
are well handled in the system, those queries and analysis can be
well supported. To support natural language queries, the first issue
is semantic understanding. We preprocess user-specified spatio-
temporal queries in which there may exist punctuation that can
affect the processing result or be unnecessary. These punctuations
should be replaced with spaces, before subsequent work can be
carried out. After preprocessing, word segmentation and entity
recognition are performed by appropriate natural language pro-
cessing tools. The extraction of key semantic information is one
of the most important parts of natural language translation. We
propose a location knowledge base and a domain methodology for
entity analysis such that a word like “Nanjing” can be parsed as a
location.

We collect more than 60 conference and journal papers to extract
query examples, and manually generate moving objects queries for
knowledge enhancement to build a moving objects query corpus.
The model trained through the corpus can accurately determine
the query type. After the type determination, query interpretations
are mapped into query fragments based on inference rules, before
finally being assembled into complete queries. We implement our
proposal in the system SECONDO that provides users with many
basic operators and special operators. According to different query
types, the parsed entities are mapped to corresponding query frag-
ments and these fragments are combined with operators to obtain
the final structured query. Efficiency is also a significant part of
the user experience. In order to improve the translation efficiency
of the system, we use a location-based prefix index in the process
of extracting location entities. It is worth noting that most of the
query objects in our examples are public transportation, because
one of our test datasets is moving underground trains. However,
we can still query moving objects excluding public transportation
as long as there are corresponding datasets.

The main contributions of this paper are summarized as follows.

• We design an algorithm for spatio-temporal data parsing in
which a location knowledge base is utilized to extract loca-
tion information. A location-based prefix index is developed
to improve the extraction efficiency.
• We propose a corpus for query type determination and de-
velop methods for constructing structured query languages
which combine the parsed key entities and system operators.
• We develop NALMO in an extensible database system SEC-
ONDOand conduct experimental evaluation using two datasets.
The experiment results demonstrate that ourmethod achieves
accuracy and precision of 98.1% and 88.1%, respectively. The
average time cost of translating a query is 1.47s.

The rest of the paper is organized as follows. We review the
related work in Section 2 and provide the framework of NALMO
in Section 3. We introduce natural language understanding and the
query translation in Sections 4 and 5, respectively. The experimental
evaluation is presented in Section 6, followed by the conclusion in
Section 7.
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Table 1: Query examples and types

Id Natural Language Query Example Type
Q1 Where were the trains at a certain time t1? Time Interval Query
Q2 Where did the trains go during the time period [t2, t3]? Time Interval Query
Q3 When did the train 123 pass underground Nanjing Station? Range Query
Q4 What trains pass the station Nantong during the time interval [t4, t5]? Range Query
Q5 Show me five nearest neighbors to the train 3 from 8am to 10am. Nearest Neighbor Query
Q6 Find k nearest neighbors to the train O1 at any time instance of the time period [t6, t7]. Nearest Neighbor Query
Q7 Find trains which are similar to the train 7 at any time instance of the time period [t8, t9]. Trajectory Similarity Query

2 RELATEDWORK
MODs have been extensively studied in a range of applications
including transportation systems, express delivery services and
mobile commerce. In the literature, a number of techniques are
proposed such as data models [8] [13] [36], index structures [33]
[31] [24] [3] and query algorithms [4] [10]. However, there is still
lack of a natural language interface in moving objects databases
which supports transforming natural language expressions into
executable languages.

To have good NLIDBs, we need to understand natural language
problems well. A number of systems use rule-based methods to
understand natural language in a specific domain. These systems
are usually restricted in natural language support such as grammar
and vocabulary to improve the accuracy of semantic understanding
[37]. PRECISE [26] defines the notion of semantic tractability and
identifies a subset of natural language queries that can be precisely
translated into SQL. NaLIX [20] limits natural language queries to a
controlled subset based on a predefined grammar. An ideal NLIDB
enables users to make arbitrarily complex temporary queries on the
underlying database and obtain accurate information with the least
effort. Therefore, in the process of semantic understanding, NALIX
and DiaSQL [7] modify the query in subsequent user interactions
to reformulate the parse tree, but the reformulation usually needs
excessive user interactions. NaLIR [17] detects the parse tree so that
users can directly modify the parse tree instead of the questions
raised by the user. ATHENA [27] constructs a translation index
through specific entity extraction, and uses ontology-based domain
knowledge to bridge the semantic gaps caused by leaky abstrac-
tion [19]. ATHENA++ [28] further translates complex nested SQL
queries. NL2TRANQUYL [2] stores and models relevant information
by employing ontology which contains different concepts. QUERIX
[38] analyzes the syntax of natural language by a syntactic ana-
lyzer, which requires that the natural language components must
be complete. Otherwise, the results obtained by the syntax analyzer
are not accurate enough, which may decrease the accuracy of final
results. Neural networks [12] are increasingly used to train models
of parsing natural language sentences, encoding and decoding for
natural language semantic understanding.

On the basis of a positive understanding of natural language,
how to translate natural language is also of crucial importance.
The common method of query construction is to use a unique algo-
rithm to construct a structured query from the meaning of natural
language query and the domain knowledge corresponding to the
underlying database [19]. ATHENA proposes a unique two-stage

approach that first translates an input natural language query into
an ontology query language (OQL) query defined over the ontol-
ogy, and then translates the OQL query into its corresponding
SQL query. NLPQC [29] accepts queries based on specific domain
templates. QUERIX extracts specific components from the syntax
tree to match knowledge with the knowledge base to obtain the fi-
nal result. State-of-the-art machine learning technologies [16] [32]
are gradually applied to natural language translation. NL2CM [1]
mines the crowd for individual by translating questions of the audi-
ence into OASSIS-QL which is defined as an extension of SPARQL.
SpatialNLI [18] uses seq2seq translation to enhance its translation
model. A number of systems combine deterministic algorithm ap-
proaches and machine learning methods to construct structured
languages [21]. A parser generates corresponding SQL clauses, then
further constructs SQL query candidates according to the corre-
sponding templates and rules, and finally ranks the candidates of
the constructed languages through the SVM ranker [6].

NLIDB for spatio-temporal databases has also received attention
in recent years [5]. TEQUILA [14] proposes a knowledge graph to
deal with temporal questions, where cues for temporal relations
need to be discovered and handled. Wang et al. propose a spatial
understanding model SpatialNLI based on contextual semantics
[18], which can recognize the meaning of spatial entities. Spatial
terms are extracted from natural language descriptions through
symbolic expressions to represent spatial features and relations
between them [25]. NL2TRANQUYL [2] is a system primarily for
trip-planning requests in a large multimodal transportation system
with different constraints such as taking the least time, travelling
the shortest distance and choosing the least expensive route.

Some NLIDBs [2] [17] use different parsers to obtain dependency
parser tree for a given query, and the quality of parser tree depends
largely on the parser. For MODs, the location and time information
is very critical, so we do not rely much on natural language pro-
cessing tools and will further process natural language queries to
extract key entities. The majority of the existing NLIDBs, such as
NL2CM [1], NaLIR [17] and ATHENA++ [28] construct queries via
query composition. These NLIDBs all map the processed key infor-
mation to the corresponding structured components, but for various
queries, different DBMS and structured languages provide diverse
operators and clauses. So the required mapping values are differ-
ent. NALMO is designed for the moving objects query. NALMO
considers multiple query types in moving objects and designs dif-
ferent mapping templates for each query type, while others mainly
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Figure 2: The NALMO architecture in SECONDO

Table 2: Frequently used notations

Name Abbreviation
A natural language interface for moving objects NALMO
Natural language interfaces to database NLIDB
Moving objects database MOD
Moving objects queries MOQ
Berlin trains BT

use parse tree nodes and ontology elements for mapping informa-
tion. At present, most natural language interfaces of semantic web
rely on the use of general dictionaries for resource matching, and
WordNet [22] is also used for dictionary expansion. However, gen-
eral dictionaries are far from meeting the needs of users in certain
domains, and thus, specific domain dictionaries should be added.
What is more, the lack of benchmark and datasets of NLIDBs also
catches much attention. There are already a few datasets such as
MAS [17] in NaLIR which is suitable for academic papers, authors,
conferences and universities. GEO [26] in PRECISE is for spatial
queries but without time information. None of those works deal
with natural language queries in moving objects databases. NALMO
proposes a dataset containing multiple moving object queries.

3 THE FRAMEWORK
We provide an overview of NALMO in Figure 2. Key components
are (i) a semantic parser, (ii) a location knowledge base, (iii) a location-
based prefix index, (iv) a corpus for query type determination and
(v) a rule-based algorithm for structured language generation. At
first, the module of natural language processing performs semantic
analysis and extracts key entities from the query expression. Next,
the query type is determined by amachine learningmodel and there
are four kinds of queries in total, summarized in Table 1. Finally,
NALMO maps the entities to queries and combines moving objects
operators with entities to produce structured queries. Frequently
used notations are summarized in Table 2. Using the query Q5 in
Table 1, we illustrate the workflow as follows.

Semantic interpreter. We use a semantic parser to identify
and extract key entities. We preprocess the punctuation of natural
language and leverage the tool spaCy for word segmentation and
entity recognition. The spaCy parser enables NALMO to realize
that token numbers (e.g., five and 3) and time (e.g., 8am and 10am)
are attached to labels CARDINAL and TIME, respectively. Then,

we develop a rule-based algorithm to further extract the location,
time (e.g., 8am and 10am), the number of nearest neighbors (e.g.,
five) and the moving objects identifier (e.g., 3) from parsed entities.

Location knowledge base and location-based prefix index.
In addition to moving objects, the database also stores relevant
point and region objects representing interesting places, e.g., POIs.
We find out those objects and put them into the location knowledge
base that serves as the dictionary. If the query location does not
exist in the dictionary, the location information misses and users
will not get the expected results. As location descriptions usually
contain a large number of prefixes, we use prefix indices to increase
the efficiency of matching between natural language queries and
the location knowledge base.

Query type determination. We build a corpus for moving ob-
ject queries in natural languages and utilize an LSTM neural net-
work to train a model for predicting the query type. For example,
in Table 1 the expression Q5 “Show me five nearest neighbors to the
train 3 during [8am, 10am]” will be reported as a nearest neighbor
query.

Structured language generation.NALMOmaps the identified
key information to the corresponding module in moving objects
queries and combines them with defined operators to construct
structured queries. The expression Q5 is a nearest neighbor query,
and thus corresponding operators (e.g., nearestneighbor(•)) are used
to form the expression.

4 NATURAL LANGUAGE UNDERSTANDING
The task is to precisely capture the meaning of a natural language
expression and accurately translate the expression into the query
language. Database queries have domain specific features or key
attributes, which help analyze the semantics. Effectively extracting
those information is essential in understanding natural languages.
The procedure is as follows. We retain or delete the punctuations,
and utilize the tool spaCy to perform word segmentation and do
entity recognition.

4.1 Natural Language Processing
NALMO deletes character interference items such as double quota-
tion marks (“ ”), single quotation marks (‘ ’), exclamation (!) and the
right square bracket (]). The left square bracket ([) should be kept
because the symbol guarantees the correct identification of time.

4
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Algorithm 1: SemanticParsing
Input: Q: query expression,

KDB: location knowledge base,
DB: database,
N_list:number list

Output: Q’: the parsing result
1 LKB← {l1, l2, ..., ln };
2 if tokeni .label = TIME then
3 Q′.time←tokeni ;
4 end
5 foreach L in LKB do
6 if L.li = KDB.li then
7 Q′.location← the location L.li in LKB;
8 end
9 end

10 if tokeni .attribute = mpoint ∧ objecti ∈ tokenj then
11 Q′.relation← the relation in DB;
12 end
13 foreach tokeni in NLQ do
14 if tokeni = find(“neighbor”) then
15 Q′.number NN← tokeni−1;
16 end
17 end
18 if Q.relation = TRUE ∧ tokeni ∈N list then
19 Q′.object id = tokeni ;
20 end
21 return Q′

After the deletion, we use the industrial-grade spaCy parser for
word segmentation and entity recognition. Time symbols are la-
belled TIME, and number symbols are labelled CARDINAL. These
time and number symbols are stored for further identification. Num-
bers may be in the form of English and must be converted to Arabic
numbers. If a number is combined with a connector, we replace
the connector with a space. For numbers with space such as “one
hundred”, we use the following regular expression to cut the space
and identify each word.

re = re .split(′[]′,n) (1)
After removing the conjunction word “and” in numbers, we

traverse the remaining English digits in reverse order to obtain
the digits such as ten, hundred and thousand. These numbers are
eventually converted to Arabic numbers.

4.2 Identifying Key Semantic Information
Since entities are approximately processed by spaCy, key informa-
tion for moving objects queries is not accurate and the results are
not sufficient for structured language construction. To increase the
translation quality, we propose an algorithm to further parse the
spatio-temporal data (Algorithm 1), and l1 represents the location
in the query.

Given a time word with colon such as “8:00 o’clock”, we use the
following expression for matching and extraction.

r ′\d + [: :]\d+′ (2)

The content in “[]” are optional characters. We take both Chinese
and English colons into account as users may type them in a mixed
way. A Chinese colon may appear in an English sentence, causing
the time extraction error. If the time in the query includes a Chinese
colon, the colon is replaced by an English one. For the hour without
a colon such as “8am”, we use the following expression for matching
and extraction.

r ′\d+′ (3)
Using a regular expression for matching a full hour is simple,

but the result cannot be used in the database. The full hour needs
to be attached with “:00”. That is, “8am” will be rewritten as “8:00”
and the terms “am” and “pm” will be converted to 24-hour for-
mat. We traverse the word segmentation results and evaluate each
segmented word using the location knowledge base to determine
whether the query location exists or not. Query relations are ex-
tracted from the database. We analyze the objects in the database
and find the relation containing an attribute mpoint. The data type
mpoint is for representing moving objects. This relation has target
moving objects. There may be an atomic flow containing only one
object with the attributempoint or a relation that may havemultiple
moving objects, and the latter is required. An example is provided
in Figure 3 in which there is a relation with the schema Trains(Id:int,
Trip:mpoint). Trains() is suitable for time interval query and range
query. Based on the extracted relation, we can extend the existing
relation for different query types. UnitTrains() adds a new unit at-
tribute UTrip on the basis of Trains(). UTordered() is sorted by start
time on the basis of UnitTrains(). The two relations are applied to
nearest neighbor query and similarity query. We use the relations in
Berlin Trains dataset as examples, but not limited to these relations.

Figure 3: Example of extracted relations in Berlin Trains
dataset

The semantics of numbers may be ambiguous in some cases
as the number could be the identification of a query object or
the number of neighbors. For example, in Q5, the moving objects
relation in the database is train, and the number 5 exists in the
number list. Thus, 5 will be an object identifier. In an English query,
the number of neighbors must appear before the word “neighbor”, or
the user may only query the nearest neighbor without the number
of neighbors in the sentence.We utilize this knowledge to determine
the semantics.

4.3 Location Knowledge Base and Index
Spatial information needs to be captured in moving objects queries.
In order to determine the locations, we generate a location knowl-
edge base for each database which contains all the locations in-
cluded in the database. The location knowledge base extracts ob-
jects whose attribute is point or region, because in SECONDO only
objects whose attribute is point or region can be locations. If the
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Figure 4: Example of location-based prefix tree

location does not exist in the location knowledge base, we gener-
ate corresponding structured languages, but users will not get the
expected results.

In order to improve the query efficiency, we construct a location-
based prefix index for matching the location knowledge base. A
large number of locations often contain the same prefix. There-
fore, the index can effectively improve the extraction efficiency of
location information. For example, “Nanjing” (Q3) and “Nantong”
(Q4) have the same prefix “Nan”. The root node of the prefix tree is
empty, and every child node contains an English character. From
the root node to a certain leaf node, the characters passing on the
path are connected, which is the location corresponding to the
nodes. The characters contained in all child nodes of each node are
different from each other. Characters that repeat continuously from
the first character occupy only one node. Besides, we merge some
nodes with only one child node as the leaf nodes to reduce memory
consumption. In the process of prefix tree construction, whenever
there is a location, we will start matching from the root node. If
there is no matching node for the character, we will create a new
node and continue to match the next character. If the node already
exists, we follow the path to continue matching. An example of a
location-based prefix tree is shown in Figure 4. With such prefix
trees, locations can be determined efficiently.

5 QUERY TRANSLATION
The translation consists of two steps: (i) determining the query type
and (ii) constructing the structured language. Semantic understand-
ing and parsing of natural languages produce key entities and map
them to structured query languages. There are different types of
queries and a corpus is built to determine the query type. The cor-
pus makes use of an LSTM neural network to train a model for
identifying the query type. The natural language query needs to be
proposed according to a certain grammar, and the moving objects
query must contain the key information. Therefore, the corpus is
more important for the result of query type determination, and the
choices of neural network classifiers have less influence. NALMO
selects the mapping method and combines the affluent operators
to form structured queries.

5.1 Corpus: Determining Query Type
Providing a common entitymapping and query combinationmethod
is a challenging task because moving object queries contain specific
key information which require different operators. One solution of
determining the query type is to use defined rules, but the strategy
will produce a set of fixed outputs. When the natural language
expression changes, the method probably produces incorrect re-
sults. The determination effect primarily depends on the quality of
natural language processing tools.

To have high quality processing, we build a moving object corpus.
The corpus contains 1200 moving objects queries classified into
four categories including (1) time interval query, (2) range query (3)
nearest neighbor query, (4) trajectory similarity query. It is worth
noting that time interval query includes time point query. Range
query includes spatial query and spatio-temporal range query. In
the process of classification and training, we also consider the spe-
cial cases of time interval query and range query.We initially collect
300 moving objects query examples from more than 60 published
conference and journal papers, and then use experts’ knowledge, en-
tity information replacement and sentence expression replacement
to enhance the knowledge. Experts utilize various key information
with different semantic expressions according to the query type.
These queries satisfy the diversity of semantic expression properly,
and the corpus is extended up to 1200 moving objects queries. The
experts participating in our work specialize in database, specifically
MODs. We manually mark each query and utilize the LSTM neural
network to train the model.

Data extraction is guided by two criteria: (i) knowledge of moving
objects experts and (ii) citation-based impact factors from the Institute
for Scientific Information (ISI). We use popular academic conferences
and journals as references, including 34 journal papers and 28
conference papers. Experts judge the quality of natural language
queries in articles and rank these queries. ISI calculates the impact
factor of the journal based on its citation index. The assumption is
that articles in higher-quality journals and conferences are likely
to provide comprehensive queries. Each journal and conference
receives a ranking score. The highest ranking journal or conference
receives a score 1, and the next highest ranking receives a score
1/2. The ranking score is used as a reference, and the final score is
given by the expert. Articles published in the same journal have
the same scores. Domain experts rank query examples according
to the query robustness, and the maximum score is 1. Then, the
article score and the expert score are summarized as the total score,
and moving objects queries ranking from high to low will be added
in the corpus. Journal and conference scores are given in Table 3.

We can support other kinds of queries such as join, as long as
the underlying related functions or operations are implemented.

5.2 Constructing Structured Languages
After the semantic understanding, we get the query type and map
the entities to the corresponding positions according to defined
rules. Finally, we combine the suitable operators to form the final
structured sentence. The steps are reported in Figure 5. The template
of the query expression is as follows:

query<data relation> feed filter [<special operators> <values>]
extend <special operators> [<values>] consume;

6
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Table 3: Scores of journals and conferences

Journal and Conference Proceeding Score
ACM Conference on Management of Data 1
IEEE Transactions on Knowledge and Data Engineering 1
Proceedings of the VLDB Endowment 1
IEEE International Conference on Data Engineering 1
The VLDB Journal 1
GeoInformatica 1/2
International Conference on Extending DB Technology 1/2
ACM SIGSPATIAL 1/2
Journal of Computer Science and Technology 1/2
Journal of Database Management 1/3
International Symposium on Spatial and Temporal Databases 1/3
International Conference on Mobile Data Management 1/3

Figure 5: Building structured language queries

Extracted entities are mapped to the data relation and corre-
sponding values according to the query type. At the same time, op-
erators are selected to constitute the query structure. Some queries
with specific objects need to add filter [.<Id> = <number>] or the
id of the object to fill in special operators. We support four types of
queries: (i) time interval queries, (ii) range queries, (iii) nearest neigh-
bor queries and (iv) trajectory similarity queries. To help explain the
procedure, we use an example relation storing underground trains
as moving objects. The schema is Trains(Id: int, Trip: mpoint). Table
4 summarizes kernel operators for processing moving objects.

Definition 1. Time interval queries
Given an interval [t1, t2], the query looks for objects whose time

intervals intersect [t1, t2].

In order to compare the query time with a trajectory’s time, the
operator deftime is utilized to extract the defined time interval of
a trajectory. The operator filter evaluates a query predicate and
returns objects fulfilling the condition. For this query, an intersect-
ing between two time intervals is evaluated. The template of the
query expression is as follows in which the content in <> will be
extracted from natural language expressions.

query <data relation> feed filter[deftime(.Trip) intersects
<query time>] consume;

Table 4: Operators for moving objects

Operator Signature
trajectory mpoint −→ line
atperiods mpoint × periods −→ mpoint
present mpoint × periods (instant) −→ bool
deftime mpoint −→ periods
at mpoint × region −→ mpoint
passes mpoint × region (point) −→ bool
atinstant mpoint × instant −→ ipoint
inst ipoint −→ instant
val ipoint −→ point
intersects xrectangle × xrectangle −→ bool

Assuming the query time is “[7:00, 8:00] on November 20, 2020”,
we get the following structured language:

query Trains feed filter[deftime(.Trip) intersects [const periods
value (("2020-11-20-7:00" "2020-11-20-8:00" TRUE TRUE))]] consume;

There is another approach to accomplish the task by evaluating
whether an object is defined at the query time. The operator atperiod
restricts the movement to a time interval and the operator present
determines whether an object is valid in a certain time interval. The
template is:

query <data relation> feed filter[ present(.Trip intersects
<query time>)] consume;

Definition 2. Spatio-temporal range queries
Given a spatio-temporal window Q and a set of trajectories O, the

query returns a set of trajectory O’, and for ∀ O’ ⊂ O, O’ intersects
Q(t,r).

The special operator intersect finds objects that satisfy both time
and space conditions. The operator intersect can be used to check
whether two rectangles cross each other. The operator deftime
can get the time interval when the moving object is limited in
the specific space condition. We use the operation intersects to get
the intersection between the limited space and the limited time to
construct the query. Assuming that the location is “Tiergarten” and
the time interval is November 20, 2020 from 8:00 to 10:00, we query
trains that meet two conditions above:

query Trains feed filter [(deftime(.Trip at Tiergarten) intersects
[const periods value (("2020-11-20-8:00" "2020-11-20-10:00" TRUE
TRUE))])]consume;

When the query does not specify the specific query object iden-
tifier, the structured expression is as follows:

query <relation> feed filter [(deftime(.<Trip> at <region>)
intersects <period>)]consume;

Definition 3. Nearest Neighbor Queries
Given a querymq, a distance set D and a relation Ewith an attribute

MO of type mpoint, the query which holds all the distances between
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the queried moving objects returns a subset E′ ⊂ E, where each tuple
meets the condition that for the tuple e ∈ E′, there exists an instance
of time t. The distance d(e.MO(t), mq(t)) ∈ D is among the k smallest
distances.

We use the operator knearest for nearest neighbor query. Before
querying, we need to create a unit representation of the moving
object. The relation Trains(Id:int, Trip:mpoint) is used as an example:

let UnitTrains = Trains feed projectextendstream[Id, Line, Up;
UTrip: units(.Trip)] consume;

The operator projectextendstream creates a unit stream from the
Trip attribute of each input tuple, and outputs a copy of the original
tuple for each unit, which is limited to attributes Id, Line, Up and
the new unit attribute UTrip. Parameters of the operator knearest
are ordered stream of unit tuples, the name of the attribute a, the
queried moving object and the number of neighbors k.

The operator knearest returns a stream of tuples with the same
structure as the input stream. However, the output units in attribute
belong to the k nearest moving points represented in the input
stream and are limited by the time when objects arrive between the
k nearest moving points, and requires the first parameter stream
to arrive in the order of units’ start time. We create a version of
UnitTrains, where units are sorted by start time:

let UTOrdered = UnitTrains feed extend[Mintime:
minimum(deftime(.UTrip))] sortby[Mintime asc] consume;

We can get the final structured language by using UTOrdered:
query UTOrdered feed filter [(deftime(.UTrip) intersects
<period>)] knearest[UTrip, <object>, <k>] consume;

Definition 4. Trajectory similarity queries
Given a set of trajectories denoted by O, the query returns the

trajectory oi ∈ O, of which the similarity distance measure mi is the
smallest during the same point t or time interval [t1, t2].

If we can find the closest moving object to the query object
within a period of time, we can judge that the trajectories of the
two moving objects are similar. The operator knearest looks for
the nearest neighbors in a trajectory segment, but multiple trajec-
tory segments may have appeared in the time interval of a query.
We count each nearest neighbor, and the object that has the most
frequent occurrence in the time interval is judged to be similar. If
the number of occurrences is the same, the longest trajectory has
priority. Using UTOrdered sorted by start time, we get the final
structured language:

query UTOrdered feed filter [(deftime(.UTrip) intersects
<period>)] knearest[UTrip, <object>, 1] consume;

6 EXPERIMENTAL EVALUATION
The evaluation is conducted in a desktop PC (Intel(R) Core(TM)
i7-8700CPU, 3.6 GHz, 8 GB memory, 1 TB disk) running Ubuntu
14.04 (64 bits, kernel version 4.8.2-19). We develop the proposal in
C/C++ and integrate the implementation into an extensible database
system SECONDO. Our system has been developed in a prototype
system for translating natural language queries into structured
query languages [34].

6.1 Datasets
To the best of our knowledge, there is no benchmark of moving
objects queries in natural languages. Therefore, we generate two
datasets named Moving Objects Queries (MOQ) and Berlin Trains
(BT), respectively.

MOQ contains 240 moving objects queries divided into four
categories: (1) time interval queries, (2) range queries, (3) nearest
neighbor queries and (4) trajectory similarity queries. These queries
are extracted from more than 60 conference and journal papers
in the domain of moving objects and then manually processed by
experts. Specifically, we select high-quality queries from the corpus
to construct MOQ. MOQ is used to test whether different kinds of
moving object queries can get correct structured languages. BT con-
tains moving underground trains and is used to evaluate whether
the converted structured sentences can provide expected results for
users. Some queries can be seen in the appendix, and these queries
satisfy the diversity of expressions as much as possible.

6.2 Measurement
NALMO is designed for users who are not experts in writing query
expressions for moving objects. Two criteria are defined to evaluate
the translation quality: (i) effectiveness and (ii) time cost. Effective-
ness mainly contains two measurements: accuracy and precision.

Effectiveness. NALMO is designed for users to conveniently
query and obtain query results, so whether executable languages
can be generated and whether users can get expected results are
important factors. The way to verify the effectiveness is to check
whether natural language expressions are correctly and precisely
translated into structured query languages, that is, accuracy. Such
a value is defined as the ratio of the number of correctly translated
sentences to the overall number of sentences. MOQ is used for
test. In the evaluation, domain experts’ judgement is considered
to determine whether the produced structured query correctly
corresponds to the natural language query. However, only using
the accuracy is not sufficient to verify the effectiveness of NLIDB
systems. This is because users may be not concerned about the
generation of structured sentences but pay attention to whether
the outputs are the expected results. Motivated by this, we use the
precision to further evaluate the translation effect. The precision is
defined as the ratio of the number of queries producing the expected
results in the system to the overall number of queries. BT is used
for test. In some cases, the natural language expression is unclear
or the key information is missing. Therefore, NALMO generates a
structured query, but the query fails to output the expected results.

Time Cost.We do the evaluation by considering (i) the overall
time cost and (ii) the time cost in each module, including parsing,
analyzing and constructing the structured languages. We take the
average value over three runnings as the final result.

6.3 Results
Figure 6 shows the effectiveness. The overall accuracy of NALMO
is 98.1%. Among 7 wrong queries, there are 2 time point queries,
2 time interval queries, 1 spatio-temporal range query, and 2 tra-
jectory similarity queries. The time format of 3 expressions cannot
be recognized by spaCy, and NALMO terminates the constructing
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Table 5: Accuracy, precision and time cost between template matching and model

Query Types Accuracy1a (%) Accuracy2b (%) Precision1 (%) Precision2 (%) Time Cost1 (s) Time Cost2 (s)
Time Point Query 96.7 96.7 86.7 86.7 1.33 1.26
Time Interval Query 96.7 96.7 86.7 86.7 1.34 1.36
Spatial Query 100 90 86.7 86.7 1.39 1.28
Spatio-temporal Query 98.3 88.3 88.3 88.3 1.4 1.36
Nearest Neighbor Query 100 86.7 96.7 88.3 1.66 1.41
Trajectory Similarity Query 96.7 85 88.3 76.7 1.68 1.49

aUsing the trained model to determine the query type. bUsing template matching to determine the query type.

procedure. There are 2 queries vaguely expressing the time infor-
mation. Specifically, the word “right now” in “Where are the trains
right now?” cannot be recognized by NALMO as moving objects
queries require accurate time information. In trajectory similarity
queries, we only support returning the most similar trajectory at
the moment but not k (> 2) similar trajectories.

Figure 6: Accuracy and precision

The overall precision is 88.1%. The value is lower than accu-
racy. This is because some queries are translated into executable
structured languages but did not report expected results. Among
34 wrong queries, the time point query contains 6 wrong sentences.
The reason is that the relation in the structured sentence is Planes
which does not exist in the dataset. The time interval query con-
tains 6 wrong sentences among which 4 are spatio-temporal range
queries and 2 queries do not find required relations. The spatial
query contains 8 wrong sentences. There are 6 queries without
locations in the knowledge base such that structured languages
are not executable in the database. There are 2 queries looking for
non-existent objects. For example, “train G55” in “Where was the
train G55 at 12:00 o’clock?” is an object that cannot be queried. The
spatio-temporal range query contains 10 wrong sentences among
which 6 queries have locations not in the knowledge base and 4
queries do not have required relations. The trajectory similarity
query contains 5 wrong sentences. The queries are answered by
using algorithms of nearest neighbor queries. The nearest neighbor
query contains 2 wrong sentences both of which are identified as
similarity queries. The dataset size has a significant impact on the
precision of users’ expected query results.

The time costs are reported in Figure 7. Nearest neighbor queries
and trajectory similarity queries take more time than other queries,
the average time of which are 1.66s and 1.68s, respectively. The
two queries consider the time, location, query object identifier,
and the number of nearest neighbors, requiring more entities than
other queries. The time cost includes two parts: (i) semantic pars-
ing and analysis, and (ii) the determination of query types and the
combination of structured languages. The average cost of natural
understanding is 1.17s, and the average time cost of query trans-
lation is 0.3s. The main part of time is spent on semantic parsing
and analysis. The parsing time is affected by the speed of natural
language processing tools to a certain extent.

Figure 7: Time cost

When we use template matching instead of the trained model to
determine the query type, accuracy and precision decrease. Time
cost is almost the same as before. Table 5 shows that the overall
accuracy and precision are 90.6% and 83.9%, respectively, which
are significantly lower than using the trained model. In terms of
accuracy, there is no change in time point query and time period
query. Spatial query and spatio-temporal range query all add 6
new wrong queries. Although the location is not included in the
location knowledge base, the model can still determine the query
type and structured queries can be generated. However, template
matching lacks location information to directly generate structured
queries. The nearest neighbor query and trajectory similarity query
add 8 and 7 wrong sentences, respectively. This is because nearest
neighbor query and trajectory similarity query are matched by
keywords such as “neighbor” and “similar”. Due to the limitations
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of template matching, when the keywords do not appear in the
sentence, the query cannot be recognized. In terms of precision,
there is no change in time point query and time interval query.
Spatial query and spatio-temporal range query remain unchanged.
This is because the use of model determination does not generate
structured sentences, and NALMO will not give user expected re-
sults. Nearest neighbor query and trajectory similarity query add 8
and 7 wrong queries which all do not generate structured sentences.
In terms of time cost, there is not much difference compared with
using the model which has little effect on user experience.

7 CONCLUSION
We design and develop a natural language interface for moving
objects databases. The proposal supports translating four types
of queries. Experiment results demonstrate the advantage of our
method in terms of accuracy, precision and efficiency. An important
task in the future is to improve the fault tolerance and the associ-
ation prompts of input errors. When the input is not successfully
sent into the system, NALMO is able to determine whether the
user has entered similar information before. Another important
task is to make NALMO support more query types such as join and
efficiently utilize index structures.
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APPENDIX

Table 6: Moving objects queries in natural language

Id Query Expression
Q1 Which places did the trains go between 9:00 and 10:00 o’clock?
Q2 Which trains pass the station Mehringdamm from 8:00 to 10:00?
Q3 Please tell me the position of train 3 between 11am and 1pm?
Q4 Who can tell me which train has the similar trajectory of the train 134 at 7am?
Q5 Which trains are the 5 continuous nearest neighbors of the train 345 from 8:00 to 9:00 o’clock?
Q6 Did any trains pass Westhafen between 1pm and 1:30pm?
Q7 Find the trains that pass Mehringdamm from 8:20 to 10:59.
Q8 Which train is the nearest neighbor of the train 123 from 9am to 10am?
Q9 Which train is the nearest neighbor to the train 345 between [9am, 10am]?
Q10 Could you tell me which train is similar to the train 77 during [5pm, 9pm]?
Q11 What is the location of the train 1 from 8:00 to 9:10?
Q12 Please find almost 20 continuous nearest neighbors of the train 28 which is in Nanjing between 2am and 4am.
Q13 Which trains arrive at the Zoogarten between 8:18 and 10:27?
Q14 May I know the similar trajectory of the taxi 2 from 1:13 to 2:24?
Q15 What is the location of train 44 at 23:01?
Q16 Do you know the route of the train 56 between 7:00am and 16:00pm?
Q17 Query the trains that have left from 11am to 2pm.
Q18 Find the periods that the train 11 went to Alexanderplatz.
Q19 Did any trains pass the station Alexanderplatz during [11am, 12am] today?
Q20 Please tell me which trains have been to the Mehringdamm station from 8:20 to 10:00?
Q21 Find precisely seven closest neighbors of the train 8 during [10am, 6pm].
Q22 Which train has the similar trajectory of the train 17 between 17:00 and 19:00 o’clock?
Q23 Would you mind telling me the trajectory that is close to the fastest train 29 at 18:19 in Beijing?
Q24 May I know which train is similar to the train 1 that passes Sydney Opera House near me?
Q25 Tell me which train has the similar trajectory of the train 37 at Shanghai station during [7:19, 11:19].
Q26 Please tell me which trains have been to the Koepenick from 8:20 to 10:00?
Q27 Which train is the nearest neighbor to the train 345 between [9am, 10am]?
Q28 Where was the train 5 at 17:00 o’clock on Saturday?
Q29 Find the periods that train 17 passed by the Arch of Triumph?
Q30 From 8am to 9am, which trains are five nearest neighbors to the train 47?
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