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ABSTRACT

We propose formulating stochastic model predictive control into a coalition game
to use Shapley values for feature attribution. Such analysis is crucial for trans-
parency and achieving optimal outcomes in high-stake applications such as port-
folio optimization and autonomous driving. We categorize Shapley values estima-
tion methods into three families: those based on weighted linear regression, sam-
pling permutations, and multilinear extension. We survey, benchmark, and pro-
vide valuable insight into these methods, previously not attempted in this context.
Our experiments show that halved Owen sampling from multilinear extension and
KernelShap-Paired from weighted linear regression, both utilizing antithetic sam-
pling, perform best.

1 INTRODUCTION

The stochastic model predictive control framework encompasses many sequential decision-making
problems (Allgower et al., 2004). It has extensive applications in finance, including portfolio op-
timization and dynamic option hedging (Primbs, 2018). It also plays a role in operations research,
such as supply chain management (Subramanian et al., 2012). Additionally, it applies to robotics
and drones, such as quad-copters and manipulators (Limon Daniel., 2010). It also has applications
in critical areas of autonomous driving (Batkovic et al., 2022) and technical system automation
(Howes et al., 2014). These diverse applications underscore a fundamental requirement: a compre-
hensive understanding of how each decision and component within the system influences overall
performance. This understanding is more than just a technical necessity. It is also a strategic asset
in achieving optimal outcomes (Minh et al., 2022).

Portfolio optimization in finance involves complex financial markets and portfolios. They require
careful analysis of how each stock affects metrics like the Sharpe ratio, annualized return, and max-
imum drawdown. Investors and stakeholders may have different levels of financial understanding.
Explaining how each stock contributes to the portfolio’s overall performance helps them understand
the reasoning behind the portfolio’s structure. This increases transparency and builds trust between
the portfolio manager and the stakeholders (Kuiper et al., 2022).

Imagine a stock with a low return that is important for reducing risk. It shows why diversification is
crucial (Koumou, 2020). Explaining the importance of such a stock within a portfolio is challeng-
ing. Portfolio optimization frameworks are complex. They include many factors beyond individual
stocks. For example, Boyd et al. (2017) describe a framework that involves leverage, turnover, factor
limits, and weight limits. They also consider errors in return and risk forecasts. There are different
methods to measure risk, such as standard deviation and variance (Markowitz, 1952). Other methods
include distributionally robust approaches (Nguyen et al., 2021). These components interact with
each other. This makes it hard to explain the effects of a single stock.

1



Under review as a conference paper at ICLR 2025

We provide an example to clarify the problem. Picture a simple case with the stocks A and B. Stock
A has a higher expected return. The system might buy only Stock A because it hits the maximum
GMV (Gross Merchandise Value) limit. A trivial explanation method assigns the whole return to
Stock A. This approach undermines the potential importance of Stock B. If Stock A is not available,
the system buys Stock B. This results in a non-zero return. The correct approach is to consider
the potential return of both stocks. The trivial explanation overlooks the interaction between the
stocks and the GMV constraint. In practical applications, a system utilizes many more stocks for
longer periods. Moreover, more sophisticated performance metrics exist, such as the Sharpe ratio
and maximum drawdown.

Despite its importance, there is a significant lack of research on explaining how stochastic model
predictive control systems make decisions. We see this from the limited data on metrics like the
Google Trends Popularity Index. In contrast, researchers extensively study the field of explainable
AI. Figure 1 shows this trend. Motivated by this research gap, we address the problem of additive
component attribution in stochastic model predictive control. We define it as follows:

g(x) = ϕ0 +

M∑
i=1

xiϕi,

where M is the number of components. They correspond to stocks, constraints, and loss terms in
portfolio optimization. x ∈ {0, 1}M is an indicator vector. It shows the presence or absence of
each component in the system. Assume f evaluates the system’s performance. It is the Sharpe ratio,
annualized return, or maximum drawdown in the previous example. g is a simplified version of f
with binary inputs. ϕ0 denotes the baseline performance of the system. It means the performance
without any of the M components. ϕ1 · · ·ϕM indicate the role of each component in the simplified
performance metric g.
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Figure 1: Google Trends Popularity Index of the term
"Explainable AI" over the last decade (2014–2024).
The maximum value is 100. There is insufficient
data to measure the popularity index for terms such as
"Explainable Sequential Optimization" or "Explainable
Stochastic Model Predictive Control."

Among methods for additive attribution, only
Shapley values (Shapley, 1953) satisfy desir-
able properties, including local accuracy, miss-
ingness, and consistency (Lundberg & Lee,
2017). We discuss these properties in Ap-
pendix A.2.

Calculating exact Shapley values requires 2M

evaluations of the performance metric. M is the
number of components. This calculation con-
siders each subset of components. Various esti-
mation methods address this complexity (Cas-
tro et al., 2009; 2017; Lundberg & Lee, 2017;
Lomeli et al., 2019; Covert & Lee, 2020; Simon
& Vincent, 2020; Burgess & Chapman, 2021;
Okhrati & Lipani, 2021; Mitchell et al., 2022).
Researchers have not used many of these methods in stochastic model predictive control. This
encourages us to benchmark them thoroughly within this context. Our experiments demonstrate
that halved Owen sampling (Okhrati & Lipani, 2021) and KernelShap-Paired (Covert & Lee, 2020)
achieve the highest performance in this context.

Contributions. The contributions of this paper are as follows: I) To the best of our knowledge, we
perform the first systematic study of explaining stochastic model predictive control systems. II) We
survey existing methods for estimating Shapley values. We provide valuable insights based on this
survey. Then, we benchmark them in the context of stochastic model predictive control.

The structure of the rest of the paper is as follows: we provide the related work in Section 2. We
discuss stochastic model predictive control and its explainability in Section 3 and Section 4, respec-
tively. Section 5 provides the details of the experiments. We conclude the paper in Section 6.

2 RELATED WORK

Local Model-Agnostic Explanation. LIME (Ribeiro et al., 2016) uses user-defined binary features
around a sample. These binary features are simpler and depend on the original features. LIME sam-
ples random points in the neighborhood. It assigns weights based on their distance from the original
point. It then fits a weighted linear regression model on these points to provide an explanation. If the
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binary features show whether the original features are present or absent, LIME’s feature attributions
match Shapley values. This happens when the sample weights follow a specific equation (Lundberg
& Lee, 2017).

The Shapley value of a missing feature is zero. The contrastive explanation method (Dhurandhar
et al., 2018) emphasizes that absent features play an essential role in explanations. It defines two
sets of features: pertinent positive and pertinent negative. Pertinent positive features are the minimal
features that must be present to achieve the current output. Pertinent negative features must be absent
for the current output to hold.

Ribeiro et al. (2018) define anchors as rules based on key features of a sample. If these rules apply,
the output for that sample is likely to remain consistent. This holds even if other feature values
change. Anchors resemble pertinent positive features in the contrastive explanation method. An-
chors make explanations more stable across different samples. However, they potentially become
overly complex. This complexity makes the explanations harder to understand and less insightful.

Explainability in Stochastic Model Predictive Control. Agogino et al. (2019) explore various
methods to create explanations for a neural network controller. These methods include Bayesian
rule lists (Letham et al., 2015), function analysis, single time step integrated gradients (Sundararajan
et al., 2017), grammar-based decision trees (Lee et al., 2018) sensitivity analysis combined with
temporal modeling with LSTMs (Ribeiro et al., 2016), and explanation templates.

Quade et al. (2020) build upon earlier research on symbolic regression techniques (Vladislavleva
et al., 2008; Schmidt & Lipson, 2009; Quade et al., 2016) to determine the optimal control strate-
gies for dynamic systems based on various optimization criteria or cost functions. Their findings
highlight a significant benefit of using interpretable symbolic regression models compared to more
opaque neural network approaches.

Dang et al. (2021) utilize existing knowledge of the common bang-bang characteristics in low-
input penalized model predictive control to approximate the control law through sparse state space
sampling. This approach involves employing support vector machines to identify the switching
surface within the sampled model predictive control solution.

Jorissen et al. (2021) use a white-box modeling approach to achieve explainability. They explic-
itly represent the physical and thermodynamic principles governing the heating, ventilation, and air
conditioning system. This approach makes the system’s behavior easier to understand. The model
directly links input variables like temperature setpoints and weather conditions to the system’s out-
puts and control actions.

Stevens & De Smedt (2022) explore explainability in process outcome prediction by emphasizing
two key aspects: interpretability and faithfulness. They develop metrics to assess these aspects
across the main dimensions of process data. This approach compares inherently generated explana-
tions and those produced using post-hoc methods. Additionally, the authors provide guidelines to aid
in model selection. They highlight the impact of different preprocessing steps, model complexities,
and explainability techniques on the overall explainability of the model.

Salehi & Doncieux (2024) incorporate prior knowledge of environment kinematics and dynamics
to improve explainability. They achieve this by simplifying the problem and reducing the need
for exploration. This approach expresses the agent’s decisions in terms of physically meaningful
entities.

Explainability With Shapley Values. Previous research applies Shapley values to a wide range of
problems. For instance, Moretti et al. (2008) combine Shapley values and statistics to analyze gene
expression data. Maleki (2015) estimate Shapley values using stratified sampling and apply them
to smart grid management. Tarashev et al. (2016) use Monte Carlo simulation to estimate Shapley
values for risk attribution. Landinez-Lamadrid et al. (2017) propose an optimized algorithm for
Shapley values estimation and apply it to supply chain management. Marcilio-Jr & Eler (2021)
employ KernelShap in dimensionality reduction. Finally, Bertossi et al. (2023) utilize exact Shapley
values in database management.
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3 STOCHASTIC MODEL PREDICTIVE CONTROL
A stochastic model predictive control system consists of system dynamics and the control problem.
We denote system dynamics with f . Its inputs are the current state xt and control input u∗

t . It
predicts the system’s next state xt+1. Equation 1 provides its formulation.

xt+1 = f (u∗
t (θ), xt; ξt) t = 0, . . . , T − 1, (1)

where θ is a hyperparameter with a feasible set Θ. ξt ∼ Ξt specifies a stochastic variable. Let x̂τ |t

indicate the estimate of xτ at time t. Denote f̂ as the approximate dynamics. One obtains the control
input u∗

t by solving Problem 2. One solves this problem for each time step t from 0 to T − 1.

u∗
t|t(θ), . . . , u

∗
t+H−1|t(θ) ∈ argmin

ut|t,...,ut+H−1|t

t+H−1∑
τ=t

E
ξτ∼Ξτ

[
q
(
θ, uτ |t, x̂τ |t; ξτ

)]
subject to x̂τ+1|t = f̂

(
uτ |t, x̂τ |t; ξτ

)
,

uτ |t ∈ U (θ; ξτ ) ,

(2)

where u∗
t (θ) = u∗

t|t(θ). U is the feasible set for control input. q denotes the control loss. Note that
one does not use u∗

t+1|t(θ), . . . , u
∗
t+H−1|t(θ). One optimizes over them only for future planning.

One obtains x = [x0, . . . , xT ], u∗(θ) = [u∗
0(θ), . . . , u

∗
T−1(θ)] after solving Problem 2 for t from 0

to T − 1. Let ξ = [ξ0, . . . , ξT ]. A performance metric p (u∗(θ), x; ξ) evaluates the system. Adding
optional loss terms or constraints to the system potentially improves performance. For instance,
one often adds a risk term because the problem is stochastic. Examples include standard deviation,
variance, and distributionally robust measures.

We study the setting where the hyperparameters θ indicate the presence or absence of optional loss
terms and constraints in Problem 2. This problem has various applications in areas such as robotics
(AlAttar et al., 2022; Song & Scaramuzza, 2022), operations research (Schwenzer et al., 2021),
and finance (Boyd et al., 2017). Specifically, θ = [θ(c), θ(l)] ∈ {0, 1}|θ|. θ(c) and θ(l) denote the
presence or absence of optional constraints and loss terms, respectively.

Let U (o) = [U
(o)
0 · · ·U (o)

|θ(c)|−1
] denote the feasible set corresponding to optional constraints. |θ(c)|

is the number of optional constraints. The feasible set of included optional constraints is
∩{i:θ(c)i =1}U

(o)
i . {i : θ

(c)
i = 1} indicates the set of indices i of θ(c) for which θ

(c)
i = 1. Let U (m)

denote the feasible set associated with mandatory constraints. The feasible set corresponding to all
used constraints is U(θ) = U (m) ∩

(
∩{i:θ(c)i =1}U

(o)
i

)
.

We use q(m) to denote the summation of mandatory loss terms. q̃(o) = [q
(o)
0 . . . q

(o)

|θ(l)|−1
] indicates

the vector of optional loss terms. |θ(l)| is the number of optional loss terms. The final control loss is
q = q(m) + θ(l)⊤q̃(o). Problem 3 shows the updated control problem.

u∗
t|t(θ), . . . , u

∗
t+H−1|t(θ) ∈

argmin
ut|t,...,ut+H−1|t

t+H−1∑
τ=t

E
ξτ∼Ξτ

[
q(m)

(
uτ |t, x̂τ |t; ξτ

)
+ θ(l)⊤q̃(o)

(
uτ |t, x̂τ |t; ξτ

)]
subject to x̂τ+1|t = f̂

(
uτ |t, x̂τ |t; ξτ

)
,

uτ |t ∈ U (m) (ξτ ) ∩
(
∩{i:θ(c)

i =1}U
(o)
i (ξτ )

)
(3)

4 EXPLAINABLE STOCHASTIC MODEL PREDICTIVE CONTROL

We aim to explain how each component in Problem 3 affects a performance metric p. θ = [θ(c), θ(l)]
represents the optional components. θ(c), θ(l) corresponds to the optional constraints and loss term
respectively. These components interact with each other. Hence, explaining their effect is highly
non-trivial. We propose to utilize Shapley values for this purpose. They consider all subsets of
components to account for their interaction. We discuss Shapley values in detail in Appendix A.
Shapley values are the only additive attribution method that satisfies local accuracy, missingness, and
consistency (Lundberg & Lee, 2017). We discuss these properties in Appendix A.2. We formulate
our problem into a coalition game and provide the mapping in Table 1.
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Figure 2: Comparison of the estimators based on their correlation with exact Shapley values. The higher the
correlation, the better. We take the mean over five runs. Annualized return is the system’s performance metric.
Calculating the exact Shapley values for 100 players is impractical. We partition the stocks into ten subsets
of ten stocks each. In each subset, the stocks are optional. The stocks in other subsets are mandatory. Some
estimators require a minimum number of samples. We do not report their performance for the number of
samples below their minimum.

Table 1: Mapping between a coalition game and an SMPC
(Stochastic Model Predictive Control) system.

Coalition Game SMPC
Player i θi

Payoff function v Performance metric p
Presence of player i in the coalition θi = 1
Absence of player i in the coalition θi = 0

The i-th Shapley value ϕi Effect of θi on p

There are several formulations for
the exact computation of Shapley
values. We provide them in Ap-
pendix A.1. They require 2|θ| evalua-
tions, where |θ| is the number of com-
ponents. Several methods estimate
Shapley values. We discuss these
methods in detail in Appendix B. We
categorize them based on the formu-
lation they estimate as follows:

• Weighted linear regression: KernelShap (Lundberg & Lee, 2017), KernelShap-Paired (Covert &
Lee, 2020), and SGD-Shapley (Simon & Vincent, 2020).

• Sampling permutations: ApproShapley (Castro et al., 2009), stratified sampling with Neyman
allocation (Castro et al., 2017), antithetic sampling (Lomeli et al., 2019), improved Monte Carlo
simulation (Simon & Vincent, 2020), stratified Bernstein sampling (Burgess & Chapman, 2021),
kernel herding (Mitchell et al., 2022), sequential Bayesian quadrature (Mitchell et al., 2022),
orthogonal spherical codes (Mitchell et al., 2022), and Sobol sequences on the sphere (Mitchell
et al., 2022).

• Multilinear extension: Owen sampling (Okhrati & Lipani, 2021) and halved Owen sampling
(Okhrati & Lipani, 2021).

Researchers have not applied many of these methods to stochastic model predictive control. So their
performance in this context is unknown. This motivates us to thoroughly benchmark them in the
next section.

5 EXPERIMENTS

Stochastic Model Predictive Control System. We perform our experiments in portfolio optimiza-
tion (Boyd et al., 2017). There are multiple performance metrics with different levels of complexity
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Figure 3: Comparison of the estimators based on correlation with exact Shapley values. The higher the correla-
tion, the better. We take the mean over five runs. Sharpe ratio is the system’s performance metric. Calculating
the exact Shapley values for 100 players is impractical. We partition the stocks into ten subsets of ten stocks
each. In each subset, the stocks are optional. The stocks in other subsets are mandatory. Some estimators
require a minimum number of samples. We do not report their performance for the number of samples below
their minimum.

in this context. Examples include the Sharpe ratio and annualized return. We use the cvxportfolio
package (Busseti et al., 2017) to generate a real-world stochastic model predictive control system.
Various components in our system complicate the interactions between the stocks. They include
full covariance risk measure, min-cash weight and long-only constraints, and leverage, turnover,
weights, and factors limits. The system has 30 steps.

Optional Components. We aim to explain the effect of each stock on each performance metric.
In our framework, we consider loss terms and constraints as components. We use no-trade con-
straints to formulate stocks into components in our framework. We retrieve data of 100 stocks from
yfinance . In this context, computing exact Shapley values for 100 players is impractical. It
requires 2100 evaluations. Moreover, each evaluation requires solving Problem 3 for T = 30 pe-
riods. To circumvent this issue, we design ten coalition games. In each game, we consider only
ten stocks as optional components. The optional components are the players in the coalition game.
We maintain the other 90 stocks in the system to complicate interactions. These stocks are manda-
tory components of the system. These real-world settings highlight why we need a comprehensive
benchmark of the estimation methods in this context.

Metrics. We define two metrics to evaluate the estimation methods: Spearman correlation coeffi-
cient and mean squared error. We compute these values between the exact and estimated Shapley
values. We repeat the experiments five times and report the mean and standard deviation.

Results. Figures 2 to 5 show the performance of the Shapley value estimators across 40 iterations.
Tables 2 to 5 provide the mean and standard deviation after 20 and 40 iterations. Other estimators
heavily outperform SGD-Shapley (Simon & Vincent, 2020). Hence, we do not include it in the
figures. On average, the halved Owen (Okhrati & Lipani, 2021) has the highest performance across
all experiments. KernelShap-Paired (Covert & Lee, 2020) follows it.

5.1 DISCUSSION

WLR-Based Sampling. KernelShap (Lundberg & Lee, 2017) and SGD-Shapley (Simon & Vincent,
2020) use weighted linear regression (WLR) to estimate Shapley values. They differ in solving
the weighted linear regression problem. We discuss this problem in Appendix B.1. One of the
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Table 2: Comparison of the estimators based on mean squared error against exact Shapley values after 20
iterations. The lower the error, the better. We take the mean and standard deviation over five runs. Annualized
return is the system’s performance metric. Calculating the exact Shapley values for 100 players is impractical.
We partition the stocks into ten subsets of ten stocks each. In each subset, the stocks are optional. The stocks
in other subsets are mandatory. We highlight the lowest value for each subset.

Stock Subset 1 Stock Subset 2 Stock Subset 3 Stock Subset 4 Stock Subset 5 Stock Subset 6 Stock Subset 7 Stock Subset 8 Stock Subset 9 Stock Subset 10

Monte Carlo 1.03e-08±7.21e-09 2.91e-11±1.73e-11 4.69e-11±1.91e-11 2.00e-08±9.39e-09 8.48e-08±4.93e-08 2.65e-09±2.26e-09 1.45e-09±1.21e-09 1.00e-10±1.12e-10 4.35e-08±1.52e-08 9.61e-06±7.16e-06
Monte Carlo-Anti 2.81e-09±1.28e-09 9.41e-12±5.72e-12 2.25e-11±1.27e-11 1.19e-08±3.63e-09 4.84e-08±2.90e-08 4.34e-09±4.59e-09 1.23e-09±7.66e-10 7.14e-11±3.84e-11 3.85e-08±2.60e-08 1.92e-06±1.69e-06
Stratified 4.88e-09±2.70e-09 2.86e-11±3.21e-11 2.60e-11±1.58e-11 2.83e-08±1.32e-08 3.86e-08±2.31e-08 1.30e-09±1.21e-09 1.85e-09±1.22e-09 6.12e-11±2.54e-11 5.46e-08±2.36e-08 7.36e-06±4.75e-06
Kernel Herding 7.31e-09±3.85e-09 2.27e-11±2.11e-11 9.42e-12±6.72e-12 2.08e-08±6.61e-09 5.87e-08±2.61e-08 2.70e-09±2.82e-09 9.20e-10±6.54e-10 8.09e-11±6.67e-11 2.97e-08±1.99e-08 5.01e-06±3.72e-06
SBQ 1.10e-08±7.62e-09 2.16e-11±1.66e-11 4.30e-11±2.06e-11 1.79e-08±1.62e-08 5.95e-08±2.71e-08 2.27e-09±1.20e-09 7.14e-10±2.74e-10 7.76e-11±6.15e-11 5.97e-08±2.45e-08 3.13e-06±2.12e-06
Orthogonal 2.37e-09±9.05e-10 1.56e-11±1.50e-11 1.83e-11±1.06e-11 2.71e-08±1.86e-08 5.44e-08±3.03e-08 3.50e-09±2.50e-09 6.67e-10±2.39e-10 5.49e-11±5.76e-11 3.75e-08±1.12e-08 3.90e-06±1.68e-06
Sobol 4.72e-09±4.17e-09 2.88e-11±1.24e-11 3.41e-11±1.90e-11 1.52e-08±9.84e-09 7.14e-08±3.46e-08 1.92e-09±1.56e-09 4.71e-10±3.51e-10 3.05e-11±1.91e-11 8.30e-08±7.44e-08 4.41e-06±3.38e-06
Owen 3.70e-09±3.65e-09 1.59e-11±6.64e-12 4.33e-11±3.06e-11 1.28e-08±6.83e-09 3.09e-08±8.50e-09 2.97e-09±1.76e-09 8.99e-10±5.83e-10 3.22e-11±2.06e-11 2.33e-08±1.14e-08 3.81e-06±1.87e-06
Owen-Anti 3.18e-11±7.91e-12 3.84e-12±3.22e-12 8.19e-13±3.46e-13 1.70e-09±6.75e-10 2.17e-08±9.31e-09 6.65e-10±3.77e-10 7.28e-11±3.28e-11 3.05e-13±1.52e-13 1.16e-08±1.27e-08 1.10e-08±6.54e-09
WLR 1.81e-08±5.58e-09 2.62e-11±1.34e-11 5.90e-11±3.10e-11 3.14e-08±1.78e-08 1.75e-07±1.12e-07 4.56e-09±2.30e-09 6.90e-09±2.52e-09 1.60e-10±9.80e-11 2.38e-07±1.22e-07 1.07e-05±5.91e-06
WLR-Anti 3.01e-11±1.26e-11 3.76e-12±9.94e-13 1.60e-12±1.10e-12 2.62e-09±6.66e-10 7.17e-08±5.05e-08 8.50e-10±2.21e-10 1.65e-10±1.35e-10 1.76e-13±9.71e-14 2.04e-08±9.77e-09 2.18e-08±7.11e-09
SGD-Shapley 4.90e-04±1.02e-04 3.97e-07±1.49e-07 1.80e-05±5.93e-06 6.00e-04±1.89e-04 4.73e-04±1.71e-04 1.10e-05±3.42e-06 5.46e-06±1.08e-06 1.34e-06±4.58e-07 1.64e-04±4.16e-05 3.34e-02±7.44e-03

Table 3: Comparison of the estimators based on mean squared error against exact Shapley values after 40
iterations. The lower the error, the better. We take the mean and standard deviation over five runs. Annualized
return is the system’s performance metric. Calculating the exact Shapley values for 100 players is impractical.
We partition the stocks into ten subsets of ten stocks each. In each subset, the stocks are optional. The stocks
in other subsets are mandatory. We highlight the lowest value for each subset.

Stock Subset 1 Stock Subset 2 Stock Subset 3 Stock Subset 4 Stock Subset 5 Stock Subset 6 Stock Subset 7 Stock Subset 8 Stock Subset 9 Stock Subset 10

Monte Carlo 2.52e-09±1.28e-09 7.44e-12±1.60e-12 2.82e-11±1.00e-11 1.03e-08±8.91e-09 2.93e-08±1.90e-08 3.66e-09±1.81e-09 4.76e-10±2.98e-10 4.55e-11±3.59e-11 4.81e-08±4.31e-08 1.43e-06±7.48e-07
Monte Carlo-Anti 1.54e-09±4.95e-10 2.15e-11±1.49e-11 2.08e-11±2.46e-11 1.28e-08±7.70e-09 2.70e-08±1.47e-08 1.22e-09±7.14e-10 2.19e-10±1.99e-10 2.65e-11±2.60e-11 2.45e-08±1.49e-08 3.52e-06±1.36e-06
Stratified 4.17e-09±2.34e-09 1.40e-11±1.13e-11 1.91e-11±1.09e-11 1.54e-08±1.42e-08 4.65e-08±1.75e-08 1.84e-09±1.87e-09 9.21e-10±3.99e-10 2.63e-11±1.58e-11 4.31e-08±1.67e-08 3.67e-06±3.22e-06
Kernel Herding 4.94e-09±5.18e-09 1.05e-11±8.90e-12 9.48e-12±7.47e-12 1.05e-08±5.35e-09 3.31e-08±1.42e-08 1.01e-09±1.12e-09 4.87e-10±2.26e-10 7.44e-11±6.56e-11 1.93e-08±6.11e-09 2.83e-06±9.60e-07
SBQ 2.11e-09±1.18e-09 1.23e-11±1.41e-11 2.91e-11±2.40e-11 8.83e-09±6.48e-09 2.13e-08±8.82e-09 8.12e-10±8.50e-10 5.58e-10±2.00e-10 3.18e-11±1.99e-11 3.05e-08±1.31e-08 1.60e-06±1.36e-06
Orthogonal 1.15e-09±4.69e-10 1.27e-11±1.41e-11 1.82e-11±1.18e-11 1.33e-08±5.99e-09 3.06e-08±1.75e-08 5.60e-10±2.20e-10 2.73e-10±1.00e-10 1.75e-11±1.47e-11 2.13e-08±1.22e-08 3.99e-06±3.46e-06
Sobol 4.68e-09±3.88e-09 6.57e-12±5.53e-12 1.09e-11±5.98e-12 6.34e-09±1.11e-09 2.47e-08±1.44e-08 1.08e-09±5.18e-10 4.11e-10±2.26e-10 6.87e-11±6.37e-11 2.18e-08±8.76e-09 1.73e-06±1.86e-06
Owen 2.35e-09±2.27e-09 6.47e-12±5.62e-12 1.10e-11±7.12e-12 4.98e-09±2.57e-09 2.58e-08±1.13e-08 1.60e-09±1.06e-09 3.76e-10±2.36e-10 1.89e-11±1.54e-11 4.98e-09±1.91e-09 1.83e-06±1.17e-06
Owen-Anti 1.27e-11±5.56e-12 1.88e-12±4.00e-13 1.22e-12±5.53e-13 8.74e-10±1.82e-10 2.17e-08±1.77e-08 2.38e-10±1.18e-10 2.19e-11±1.48e-11 9.86e-14±6.97e-14 1.02e-08±3.10e-09 6.18e-09±3.55e-09
WLR 9.40e-09±5.15e-09 2.88e-11±1.12e-11 4.59e-11±4.29e-11 2.96e-08±1.19e-08 1.47e-07±3.15e-08 3.10e-09±8.26e-10 3.83e-09±1.63e-09 6.75e-11±3.21e-11 1.12e-07±2.36e-08 7.06e-06±4.31e-06
WLR-Anti 1.11e-11±5.58e-12 2.10e-12±8.67e-13 5.03e-13±1.71e-13 1.25e-09±3.25e-10 3.74e-08±2.07e-08 6.45e-10±2.20e-10 5.43e-11±1.44e-11 1.37e-13±3.98e-14 1.58e-08±6.92e-09 1.40e-08±7.77e-09
SGD-Shapley 3.25e-04±7.69e-05 2.98e-07±5.42e-08 1.60e-05±4.55e-06 4.23e-04±9.76e-05 1.99e-04±3.46e-05 8.20e-06±1.75e-06 3.41e-06±8.70e-07 1.14e-06±3.43e-07 9.70e-05±1.92e-05 2.94e-02±5.62e-03

challenges in this problem is dealing with infinite weights. KernelShap addresses this by replacing
infinite weights with a large constant value, specifically 106. After this substitution, KernelShap
solves the problem using the closed-form solution. On the other hand, SGD-Shapley uses projected
stochastic gradient. It performs a single iteration of this algorithm after each evaluation. Hence,
it requires more samples for convergence. Using stochastic gradient descent instead of the closed-
form solution is standard in high-dimensional problems. In such problems, inverting matrices is a
computational bottleneck. However, this situation does not apply when estimating Shapley values.
Here, the primary concern is sample efficiency.

Owen Sampling vs. Stratified Sampling. Owen sampling (Okhrati & Lipani, 2021) estimates
Shapley values using the multilinear extension. Stratified sampling (Castro et al., 2017; Burgess &
Chapman, 2021) estimates Shapley values using permutations. We discuss Owen sampling in Ap-
pendix B.3 and stratified sampling in Appendix B.2.3. These methods use different formulations of
Shapley values but are very similar in concept. Stratified sampling partitions the permutation space
into subspaces called strata. The goal is to make the samples within each stratum as similar as possi-
ble. At the same time, one wants the samples in different strata to be as different as possible. When
estimating Shapley values, one defines the strata based on the coalition size in the samples. Owen
sampling estimates the Shapley value for the i-th player using ϕi =

∫ 1

0
ei(q) dq . Here, ei(q) is the

expected marginal contribution of player i to a coalition. This expectation assumes that each player
has a probability q of being included in the coalition. In practice, one approximates this integral
using a Riemann sum. One evaluates the Riemann sum at points q = 0, 1

Q
, · · · , 1 . The parameter Q

controls how accurate the Riemann sum is. Each value of q in Owen sampling corresponds to the
expected number of players in a coalition. This matches a stratum in stratified sampling.

Antithetic Sampling. Antithetic sampling is a variance reduction technique in Monte Carlo simu-
lation (Rubinstein & Kroese, 2016; Lomeli et al., 2019). It chooses negatively correlated samples
instead of independent and identically distributed samples. The negative correlation between sample
pairs balances out extremes in the sampling distribution. This ensures more uniform coverage of the
space and reduces the overall variance of the estimate. We conduct an ablation study on all three
families of Shapley value estimation methods: weighted linear regression, sampling permutations,
and multilinear extension. Our experiments reveal that antithetic sampling significantly enhances
the performance of the baseline methods in the weighted linear regression and multilinear extension
approaches. Figure 6 provides the results.
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Table 4: Comparison of the estimators based on mean squared error against exact Shapley values after 20
iterations. The lower the error, the better. We take the mean and standard deviation over five runs. Sharpe ratio
is the system’s performance metric. Calculating the exact Shapley values for 100 players is impractical. We
partition the stocks into ten subsets of ten stocks each. In each subset, the stocks are optional. The stocks in
other subsets are mandatory. We highlight the lowest value for each subset.

Stock Subset 1 Stock Subset 2 Stock Subset 3 Stock Subset 4 Stock Subset 5 Stock Subset 6 Stock Subset 7 Stock Subset 8 Stock Subset 9 Stock Subset 10

Monte Carlo 7.26e-07±4.37e-07 4.86e-09±2.97e-09 1.59e-07±1.84e-07 1.45e-04±1.52e-04 8.01e-05±3.63e-05 3.30e-06±2.41e-06 2.42e-07±1.17e-07 7.91e-10±6.59e-10 2.76e-05±1.09e-05 1.54e-03±1.56e-03
Monte Carlo-Anti 4.46e-07±2.20e-07 4.11e-09±1.50e-09 1.97e-07±1.03e-07 8.00e-05±7.92e-05 4.64e-05±2.54e-05 1.90e-06±4.88e-07 1.28e-07±5.40e-08 5.98e-10±3.20e-10 1.13e-05±7.32e-06 2.19e-03±1.74e-03
Stratified 7.77e-07±5.44e-07 4.84e-09±3.63e-09 1.69e-07±5.18e-08 5.92e-05±5.48e-05 5.46e-05±2.69e-05 3.79e-06±2.46e-06 1.81e-07±1.21e-07 9.26e-10±8.09e-10 1.80e-05±1.20e-05 1.75e-03±7.66e-04
Kernel Herding 1.07e-06±4.06e-07 3.17e-09±1.85e-09 1.68e-07±1.33e-07 4.10e-05±2.36e-05 5.50e-05±4.07e-05 1.21e-06±8.67e-07 7.14e-08±3.50e-08 7.29e-10±3.45e-10 1.98e-05±1.40e-05 8.31e-04±9.44e-04
SBQ 6.82e-07±5.38e-07 4.19e-09±4.43e-09 1.47e-07±1.10e-07 9.33e-05±6.11e-05 6.80e-05±2.10e-05 1.38e-06±8.21e-07 7.80e-08±6.19e-08 1.67e-09±9.97e-10 1.51e-05±7.87e-06 1.03e-03±1.05e-03
Orthogonal 4.62e-07±2.19e-07 4.99e-09±4.56e-09 2.60e-07±2.56e-07 6.62e-05±5.78e-05 7.53e-05±3.90e-05 1.82e-06±9.21e-07 1.47e-07±1.04e-07 9.93e-10±1.21e-09 7.40e-06±1.67e-06 1.52e-03±9.25e-04
Sobol 2.34e-07±1.40e-07 2.81e-09±2.66e-09 1.30e-07±1.44e-07 5.72e-05±4.57e-05 5.69e-05±2.56e-05 1.90e-06±1.26e-06 8.25e-08±2.63e-08 8.17e-10±5.88e-10 1.26e-05±8.81e-06 1.37e-03±1.42e-03
Owen 2.15e-07±1.65e-07 3.09e-09±2.56e-09 8.12e-08±8.39e-08 5.48e-05±4.37e-05 1.95e-05±4.76e-06 1.65e-06±8.23e-07 5.02e-08±3.75e-08 4.09e-10±2.65e-10 9.11e-06±6.58e-06 1.80e-03±8.92e-04
Owen-Anti 6.12e-09±4.59e-09 1.18e-09±5.64e-10 3.75e-11±3.15e-11 4.73e-07±1.68e-07 1.17e-05±5.91e-06 4.77e-08±1.60e-08 3.80e-09±2.26e-09 2.22e-11±1.14e-11 3.92e-06±2.20e-06 5.39e-07±3.87e-07
WLR 2.02e-06±9.89e-07 1.62e-08±8.91e-09 3.84e-07±2.72e-07 5.14e-04±2.76e-04 2.08e-04±5.89e-05 8.97e-06±7.62e-06 7.73e-07±3.62e-07 3.43e-09±2.50e-09 5.59e-05±3.15e-05 6.19e-03±3.33e-03
WLR-Anti 5.78e-09±1.76e-09 1.90e-09±5.25e-10 1.13e-10±4.38e-11 4.37e-07±5.44e-08 2.36e-05±5.37e-06 4.77e-08±8.60e-09 9.13e-09±3.56e-09 1.87e-11±4.59e-12 8.36e-06±4.60e-06 1.04e-06±1.08e-07
SGD-Shapley 5.94e-02±2.43e-02 7.28e-06±1.83e-06 4.73e-03±7.66e-04 9.90e-02±2.21e-02 9.17e-02±1.75e-02 4.81e-03±7.66e-04 8.51e-04±2.09e-04 1.71e-04±2.78e-05 1.09e-02±3.46e-03 5.58e+00±1.14e+00

Table 5: Comparison of the estimators based on mean squared error against exact Shapley values after 40
iterations. The lower the error, the better. We take the mean and standard deviation over five runs. Sharpe ratio
is the system’s performance metric. Calculating the exact Shapley values for 100 players is impractical. We
partition the stocks into ten subsets of ten stocks each. In each subset, the stocks are optional. The stocks in
other subsets are mandatory. We highlight the lowest value for each subset.

Stock Subset 1 Stock Subset 2 Stock Subset 3 Stock Subset 4 Stock Subset 5 Stock Subset 6 Stock Subset 7 Stock Subset 8 Stock Subset 9 Stock Subset 10

Monte Carlo 3.33e-07±2.78e-07 2.15e-09±1.61e-09 8.91e-08±3.49e-08 4.33e-05±4.26e-05 2.26e-05±3.68e-06 1.05e-06±6.05e-07 6.91e-08±3.63e-08 1.79e-10±2.29e-10 8.15e-06±7.30e-06 5.74e-04±7.31e-04
Monte Carlo-Anti 3.55e-07±1.67e-07 2.08e-09±1.38e-09 1.22e-07±5.19e-08 9.81e-05±7.74e-05 3.27e-05±2.17e-05 2.24e-06±2.02e-06 5.66e-08±2.99e-08 1.68e-10±1.09e-10 7.66e-06±2.17e-06 1.55e-03±7.74e-04
Stratified 9.03e-07±9.65e-07 2.17e-09±1.96e-09 8.27e-08±3.18e-08 1.04e-04±7.09e-05 3.94e-05±2.35e-05 1.52e-06±9.83e-07 1.42e-07±9.72e-08 1.69e-10±8.85e-11 1.04e-05±7.60e-06 4.31e-03±2.42e-03
Kernel Herding 2.46e-07±9.24e-08 2.36e-09±1.17e-09 9.35e-08±8.61e-08 4.64e-05±1.64e-05 2.62e-05±1.96e-05 8.33e-07±4.55e-07 9.21e-08±6.43e-08 4.12e-10±1.63e-10 1.07e-05±7.78e-06 7.72e-04±5.32e-04
SBQ 3.40e-07±1.34e-07 1.64e-09±6.85e-10 1.12e-07±8.86e-08 3.03e-05±2.24e-05 5.83e-05±4.37e-05 6.57e-07±4.39e-07 4.51e-08±2.73e-08 5.91e-10±3.48e-10 1.00e-05±5.98e-06 2.54e-04±2.07e-04
Orthogonal 1.65e-07±1.06e-07 1.92e-09±1.26e-09 1.20e-07±1.18e-07 5.94e-05±4.59e-05 2.98e-05±1.64e-05 8.88e-07±4.27e-07 6.48e-08±3.95e-08 2.26e-10±1.85e-10 1.34e-05±1.42e-05 6.25e-04±4.74e-04
Sobol 2.33e-07±2.04e-07 1.83e-09±1.83e-09 6.38e-08±5.92e-08 8.62e-06±3.68e-06 2.19e-05±9.67e-06 7.60e-07±5.27e-07 8.61e-08±6.19e-08 4.53e-10±3.09e-10 6.84e-06±2.72e-06 1.46e-03±9.56e-04
Owen 2.18e-07±8.17e-08 1.64e-09±5.82e-10 2.93e-08±1.24e-08 1.59e-05±1.14e-05 1.07e-05±6.25e-06 2.84e-07±8.92e-08 3.72e-08±8.35e-09 1.70e-10±1.62e-10 6.91e-06±4.34e-06 5.06e-04±1.82e-04
Owen-Anti 2.86e-09±1.50e-09 1.00e-09±1.05e-09 3.05e-11±1.14e-11 2.78e-07±1.90e-07 6.61e-06±2.05e-06 2.00e-08±1.17e-08 1.15e-09±4.11e-10 1.18e-11±4.84e-12 2.39e-06±1.31e-06 7.03e-07±1.92e-07
WLR 1.49e-06±1.35e-06 4.28e-09±2.89e-09 4.49e-07±3.46e-07 1.15e-04±6.42e-05 1.49e-04±1.29e-04 3.68e-06±1.28e-06 4.09e-07±1.81e-07 1.44e-09±7.29e-10 3.04e-05±5.55e-06 3.25e-03±1.05e-03
WLR-Anti 4.16e-09±1.04e-09 8.69e-10±2.92e-10 4.28e-11±1.41e-11 3.23e-07±6.64e-08 1.37e-05±7.52e-06 2.74e-08±9.08e-09 4.70e-09±7.93e-10 1.13e-11±3.16e-12 3.38e-06±2.10e-06 5.21e-07±2.60e-07
SGD-Shapley 4.49e-02±2.23e-02 6.83e-06±7.47e-07 3.12e-03±9.13e-04 4.59e-02±1.94e-02 8.21e-02±1.26e-02 2.64e-03±7.33e-04 4.21e-04±1.82e-04 1.03e-04±2.95e-05 6.56e-03±2.06e-03 1.87e+00±1.06e+00
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Figure 4: Comparison of the estimators based on mean squared error against exact Shapley values. The lower
the error, the better. We take the mean over five runs. Annualized return is the system’s performance metric.
Calculating the exact Shapley values for 100 players is impractical. We partition the stocks into ten subsets
of ten stocks each. In each subset, the stocks are optional. The stocks in other subsets are mandatory. Some
estimators require a minimum number of samples. We do not report their performance for the number of
samples below their minimum.

6 CONCLUSION

We conduct the first systematic study to explain stochastic model predictive control systems. These
systems have extensive applications in high-stakes scenarios. However, there is limited work explor-
ing their explainability. We demonstrate that the large number of components and their interactions
present significant challenges in explaining these systems. We formulate these systems as a coali-
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Figure 5: Comparison of the estimators based on mean squared error against exact Shapley values. The lower
the error, the better. We take the mean over five runs. Sharpe ratio is the system’s performance metric. Cal-
culating the exact Shapley values for 100 players is impractical. We partition the stocks into ten subsets of ten
stocks each. In each subset, the stocks are optional. The stocks in other subsets are mandatory. Some estimators
require a minimum number of samples. We do not report their performance for the number of samples below
their minimum.
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(b) Correlation with exact Shap-
ley values. Annualized return is
the system’s performance metric.
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(c) Mean squared error against
Shapley values. Sharpe ratio is
the system’s performance metric.
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Figure 6: The effect of antithetic sampling on baseline Shapley value estimation methods from different fam-
ilies. We use ApproShapley as the baseline for permutation-based sampling, Owen for multilinear extension,
and KernelShap for weighted linear regression (WLR). We average results on the first stock subset over five
runs. For correlation, higher values are better. For mean squared error, lower values are better. Antithetic
sampling significantly improves estimation accuracy in weighted linear regression and multilinear extension
methods.

tion game and use Shapley values to quantify the impact of each component on performance metrics.
Computing exact Shapley values is computationally intensive. This is because they account for all
possible subsets of components and their interactions. We benchmark Shapley values estimation
methods in the context of stochastic model predictive control and provide valuable insights. Our
experiments show that halved Owen sampling and KernelShap-Paired offer the best performance.

Limitations and Future Work. Estimating Shapley values remains prohibitive in ultra-high-
dimensional problems. Existing estimation methods do not fully address this challenge. Gradient-
based explanation methods potentially offer a solution within end-to-end differentiable stochastic
model predictive control frameworks. Differentiable optimization (Amos & Kolter, 2017; Agrawal
et al., 2019) allows for gradient calculation through optimization problems. Several gradient-based
explanation techniques exist in explainable artificial intelligence (Simonyan et al., 2014; Sundarara-
jan et al., 2017; Smilkov et al., 2017). We plan to adapt these methods to stochastic model predictive
control.
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A SHAPLEY VALUES

The Shapley value is a key concept in cooperative game theory. It measures each participant’s
contribution to the total payoff of a coalition of players. It is based on the principle of fair distribution
and gives each player a share of the total payoff that matches their contribution across all possible
groups.

A.1 FORMULATIONS

Let N be the set of all players in the coalition game with size |N |. We denote the payoff function
with v. It inputs a subset of players and outputs a real number. Mathematically, v : P(N) → R,
where P(N) is the power set of N . Formulations to compute Shapley values include weighting
based on coalition size, mean over permutations, and the multilinear extension. In the next sections,
we discuss these formulations.

A.1.1 WEIGHTING BASED ON COALITION SIZE

The marginal contribution of a player i to a coalition S excluding player i is represented by the
difference v(S∪{i})−v(S). To compute the Shapley value for player i, denoted as ϕi, the following
equation is used:

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v (S ∪ {i})− v (S)) . (4)

The coefficient within this formulation can be further illustrated as:

|S|!(|N | − |S| − 1)!

|N |!
=

1

|N |
(|N |−1

|S|
) , (5)

where
(|N |−1

|S|
)

is the binomial coefficient denoting the number of distinct coalitions of size |S| that
can be formed from the set N excluding player i. |N | represents the total count of players involved
in the game.

A.1.2 MEAN OVER PERMUTATIONS

An alternative methodology for computing Shapley values is the mean over permutations approach,
which emphasizes the sequence in which players join a coalition. This method evaluates all potential
permutations of player participation, calculating a player’s average marginal contribution across
these varying orders.

A permutation π in the context of the player set N is defined as an ordered arrangement of distinct
indices {π1, . . . , π|N |}, where each πi is a unique identifier corresponding to a player within the set
{1, . . . , |N |}.

Under this framework, the Shapley value for player i, denoted as ϕi, is determined by the following
equation:

ϕi =
1

|N |!
∑
π∈Π

[v([π]i−1 ∪ {i})− v([π]i−1)] , (6)

Here, Π encompasses all permutations involving the |N | players. Within this equation, v([π]i−1)
represents the coalition value composed of players who are positioned before player i in the per-
mutation π. Conversely, v([π]i−1 ∪ {i}) indicates the value of the coalition after the inclusion of
player i. The difference between these two values calculates the marginal contribution of player i to
coalition [π]i−1.

The factor 1
|N |! averages over all |N |! possible player permutations.

A.1.3 MULTILINEAR EXTENSION

The work of Owen (1972) extend the Shapley values framework by incorporating continuous player
contributions into cooperative games. Traditionally, contributions in such games were assumed to
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be binary (present or not present), but this extension allows each player i (where i = 1, . . . , |N |) to
contribute on a continuous scale. These contributions are represented by a continuous variable qi,
constrained within the interval 0 ≤ qi ≤ 1. To accommodate this continuous approach, the payoff
function is generalized as follows:

ṽ(q1, . . . , q|N |) =
∑
S⊆N

∏
j∈S

qj
∏
j /∈S

(1− qj)

 v(S). (7)

This equation encapsulates the notion that the value of a coalition depends not only on the presence
or absence of players but also on the extent of their participation, as indicated by qi. The probabilistic
interpretation of qi as the likelihood of player i participating in the coalition leads to the following
formula for calculating Shapley values:

ϕi =

∫ 1

0

ei(q) dq, (8)

where

ei(q) = E
S∼Uniform(P(N\{i}))

[v (S ∪ {i})− v (S)] . (9)

Uniform (P (N \ {i})) refers to a uniform distribution over the power set of N \ {i}.

A.1.4 BASED ON SYNERGY

Intuitively, the synergy of a coalition, denoted as w(S), can be conceptualized as the additional
value generated by the coalition as a whole, above and beyond the aggregate value of its individual
subsets. The formal definition is as follows:

w(S) = v(S)−
∑
T⊂S

w(T ), (10)

where v(S) denotes the payoff of the coalition S, and w(S) represents its synergy. The equation
establishes that the synergy of any given coalition S is derived by deducting the sum of the synergies
of its subsets from its total value.

Importantly, since the synergy of an empty set is equated to its payoff, i.e., w(∅) = v(∅) = ϕ0, Equa-
tion 10 can be transformed into a unique non-recursive form by applying the principle of inclusion-
exclusion. The transformed equation is as follows:

w(S) =
∑
T⊆S

(−1)|S|−|T |v(T ), (11)

which is proved with mathematical induction. This equation underscores that a coalition’s synergy
is the alternating sum of the payoffs of its subsets.

Furthermore, the synergy concept provides an alternative formulation for Shapley values as follows:

ϕi =
∑

S⊆N\{i}

w(S ∪ {i})
|S|+ 1

. (12)

Equation 12 posits that the Shapley value of player i, denoted as ϕi, is calculated by aggregating the
appropriately normalized synergy contributions from all coalitions of which player i is a part. The
synergy of each such coalition is divided equally among all its members.

A.2 PROPERTIES

The Shapley value possesses several intrinsic properties that underpin its fairness and consistency in
allocating credit among players in a coalition. These properties are outlined as follows:
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• Efficiency: The collective Shapley values of all features sum up to the total value generated by
the coalition. It is mathematically represented as:∑

i∈N

ϕi = v(N)− v(∅), (13)

where ϕi is the Shapley value of feature i, v(N) denotes the total payoff of the coalition, and v(∅)
denotes the payoff of the empty set.

• Symmetry: If two features contribute identically to every coalition, they are assigned the same
Shapley value. This is formally expressed as:

ϕi = ϕj if v(S ∪ {i})− v(S) = v(S ∪ {j})− v(S) for all S ⊆ N \ {i, j}. (14)
• Dummy: A feature with no marginal contribution to any coalition receives a Shapley value of

zero:

ϕi = 0 if v(S ∪ {i})− v(S) = 0 for all S ⊆ N \ {i}. (15)
• Linearity: The Shapley value is linear in the payoff function. If a payoff function is a linear

combination of other functions, the Shapley value is the same linear combination of the values for
these functions:

ϕi(αv + βw) = αϕi(v) + βϕi(w). (16)

Here, ϕi(·) denotes the Shapley value for feature i based on the given value function.

B SHAPLEY VALUES ESTIMATION METHODS
We divide Shapley values estimation methods into three categories based on the Shapley values for-
mulation they approximate: methods based on weighted linear regression, sampling permutations,
and multilinear extension.

B.1 WEIGHTED LINEAR REGRESSION

Algorithms adopting the weighted linear regression formulation for Shapley value calculation in-
clude KernelShap, KernelShap-Paired, and SGD-Shapley. The following sections cover these algo-
rithms in detail.

B.1.1 KERNELSHAP

Lundberg & Lee (2017) pioneer the use of weighted least squares for calculating Shapley values, a
method they term KernelShap. They consider a linear model represented as follows:

g(x) = ϕ0 +

|N |∑
i=1

ϕixi, (17)

where x ∈ {0, 1}|N |, and each xi denotes the absence (0) or presence (1) of player i in a coalition
for i = 1, . . . , |N |. Utilizing weighted linear regression as specified in Equation 18, the parameters
ϕ∗
1, . . . , ϕ

∗
|N | are optimized to approximate the Shapley values for players 1, . . . , |N |. This optimiza-

tion is performed on a training set of input-output pairs (x, v′ (x)), where v′ represents the payoff
function with an indicator vector as its input.

ϕ∗
0, . . . , ϕ

∗
|N | ∈ argmin

ϕ0,...,ϕ|N|

L(v′, g, w) (18)

The weighting function w(·) and loss function L(·) in the model are defined by:

w(x) =
|N | − 1( |N |

1⊤x

)
(1⊤x) (|N | − 1⊤x)

, (19)

L(v′, g, w) =
1

|X|
∑
x∈X

[
w(x) [v′ (x)− g (x)]

2
]
, (20)
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where X ⊆ {0, 1}|N | represents the set of coalition inputs for estimating Shapley values. Equation
18 has a unique solution in practice, particularly when |X| significantly exceeds |N |. The weight
function w(x) depends solely on 1⊤x, the count of non-zero elements in x. It is established that
ϕ∗
1, . . . , ϕ

∗
|N | converge to the exact Shapley values when X = {0, 1}|N |, i.e., when all possible

coalitions are utilized in the computation (Lundberg & Lee, 2017). ϕ∗
0 is not associated with any

specific player but remains a parameter of the model. The cases where w(1) and w(0) are considered
infinite (due to the denominator becoming zero) impose constraints that ensure ϕ∗

0 = g(0) = v′(0)

and
∑|N |

i=0 ϕ
∗
i = g(1) = f(1). In practical applications, these infinite weights are often managed by

assigning a large numerical value, such as 106, to them.

B.1.1.1 Closed-Form Solution The weighted linear regression problem, as specified in Equation
18, admits a closed-form solution via the weighted least squares method. One must first recast the
problem in matrix form to derive this solution. Let us define X̃ to be a 2|N | × (|N | + 1) binary
matrix, where each row corresponds to an element of the set X , augmented by a leading column of
ones to accommodate the intercept term ϕ0, that is, X̃[:, 1] = 1. Moreover, let ϕ = [ϕ0, . . . , ϕ|N |]

⊤

represent the vector of parameters, and let ṽ′ be a vector containing the payoffs for each coalition,
ordered identically to X̃ . Hence, the optimization problem 18 translates to the following matrix
equation:

ϕ∗ ∈ argmin
ϕ

[(
ṽ′ − X̃ϕ

)⊤
W
(
ṽ′ − X̃ϕ

)]
, (21)

where W is a diagonal matrix containing the coalition weights corresponding to the order of X̃ . The
solution to this optimization problem, the weighted least squares estimate of ϕ∗, is given by:

ϕ∗ =
(
X̃⊤WX̃

)−1

X̃⊤Wṽ′. (22)

This closed-form solution requires the evaluation of the payoff function v′ for each possible coali-
tion, an operation with exponential complexity in the number of players. Nonetheless, in practice,
using a representative subset of all coalitions to construct X̃ , W , and ṽ′ is feasible.

B.1.2 KERNELSHAP-PAIRED

Covert & Lee (2020) propose to improve KernelShap by utilizing antithetic sampling from Monte
Carlo simulation (Rubinstein & Kroese, 2016). The key to this method is using negatively correlated
input pairs, specifically x and 1−x, instead of independent and identically distributed (i.i.d.) points.
This approach reduces the variance of the estimator. In Shapley value estimation, where each sample
represents a coalition of players, using pairs like (x,1− x) ensures that each player’s inclusion and
exclusion are considered within the same sample set. This results in a more balanced representation
of coalitions, hence, a reduction in variance. The modification to the weighted linear regression
problem is expressed as follows:

ϕ∗
0, . . . , ϕ

∗
|N | ∈ argmin

ϕ0,...,ϕ|N|

{
1

2|X|
∑
x∈X

[
w(x) (v′ (x)− g (x))

2
+ w(1− x) (v′ (1− x)− g (1− x))

2
]}

.

(23)

B.1.3 SGD-SHAPLEY

Simon & Vincent (2020) suggest estimation of Shapley values via projected stochastic gradient
descent, addressing the infinite weights for the empty set and grand coalition, w(0) and w(1) as
described in Equation 19. They circumvent the challenge posed by these weights by introducing
the constraint

∑|N |
i=1 ϕi = v′(1) − v′(0) and eliminating ϕ0 from the set of optimization variables.

Consequently, the weighted linear regression problem originally presented in Equation 18 is recon-
stituted as:
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ϕ∗
1, . . . , ϕ

∗
|N | ∈ argmin

ϕ1,...,ϕ|N|

1

|X|
∑
x∈X

w(x)

v′(x)−
v′(0) +

|N |∑
i=1

ϕixi

2

,

subject to
|N |∑
i=1

ϕi = v′(1)− v′(0),

(24)

Here, w represents the weight function for coalitions, v′ is the payoff function, X is the set of binary
vectors indicating the presence or absence of players in coalitions, and ϕ∗

i stands for the estimated
Shapley value for player i, for all players indexed from 1 to |N |.
To further refine their algorithm and enhance its theoretical grounding, the authors incorporate an
additional constraint ∥ϕ∥ ≤ D, where ϕ = [ϕ1, . . . , ϕ|N |]

⊤ and D is a positive constant, which, in
practice, may be chosen sufficiently large. This gives rise to the final optimization formulation:

ϕ∗
1, . . . , ϕ

∗
|N | ∈ argmin

ϕ1,...,ϕ|N|

1

|X|
∑
x∈X

w(x)

v′(x)−
v′(0) +

|N |∑
i=1

ϕixi

2

,

subject to ϕ ∈ K1 ∩K2,

(25)

where K1 and K2 denote the convex feasible sets derived from the constraints
∑|N |

i=1 ϕi = v′(1)−
v′(0) and ∥ϕ∥ ≤ D, respectively. To solve the optimization problem described in Equation 25,
Simon & Vincent (2020) utilize projected stochastic gradient descent. During each iteration, after
updating the optimization variable ϕ(t) according to the gradient derived from a single sample x, the
variable is projected onto the intersection of the sets K1 and K2. The direct projection onto K1∩K2

is nontrivial as it necessitates solving an additional optimization problem without a simple closed-
form solution. Alternatively, separate projections onto K1 and K2 yield closed-form solutions:

ProjK1
(ϕ(t)) = ϕ(t) − 1

|N |

 |N |∑
i=1

ϕ
(t)
i − (v′(1)− v′(0))

 , (26)

ProjK2
(ϕ(t)) = min

(
1,

D

∥ϕ(t)∥

)
ϕ(t), (27)

where ProjK1
(ϕ(t)) and ProjK2

(ϕ(t)) denote the respective projections of ϕ(t) onto K1 and K2.
Subsequently, Dykstra’s projection algorithm (Boyle & Dykstra, 1986), as outlined in Algorithm 1,
is employed to project ϕ(t) onto K1 ∩K2.

Algorithm 1 Dykstra’s Algorithm

1: Input: ϕt ∈ R|N |, ProjK1
(·), and ProjK2

(·).
2: Result: Projection of ϕt onto K1 ∩K2.
3: p = 0, q = 0.
4: while not converged do
5: ϕ

(prev)
t = ϕt.

6: ϕt = ProjK1
(ϕ

(prev)
t + p).

7: p = (ϕ
(prev)
t + p)− ϕt.

8: ϕ
(prev)
t = ϕt.

9: ϕt = ProjK2
(ϕ

(prev)
t + q).

10: q = (ϕ
(prev)
t + q)− ϕt.

11: end while
12: Return ϕt.
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B.2 SAMPLING PERMUTATIONS

The second category of methods for approximating Shapley values involves sampling permutations.
This approach is grounded in a reformulation of Equation 6 as an expectation:

ϕi = E
π∼Uniform(Π)

[v([π]i−1 ∪ {i})− v([π]i−1)] , (28)

where Π represents the set of all permutations of size |N |, with |N | denoting the number of players
in the game. In this context, v is the payoff function taking players as input, and [π]i−1 com-
prises the players preceding player i in a given permutation π. Subsequent sections discuss various
methodologies to approximate the expectation described in Equation 28. These methodologies en-
compass ApproShapley and its enhanced versions, such as antithetic sampling, stratified sampling,
kernel-based methods, and sampling in real space.

B.2.1 APPROSHAPLEY

ApproShapley (Castro et al., 2009) uses Monte Carlo simulation to estimate Shapley values. This
approach involves randomly sampling permutations from the set of all possible permutations and
then calculating the average of a player’s incremental contributions across these permutations. The
Monte Carlo estimate of the Shapley value for player i can be formalized as follows:

ϕi =
1

|Π̃|

∑
π∈Π̃

[v([π]i−1 ∪ {i})− v([π]i−1)] , (29)

Here, Π̃ ⊆ Π represents the subset of sampled permutations. The set Π consists of all permutations
of the player set of size |N |. In this method, Π̃ is selected randomly from Π, and the expectation is
estimated by averaging over the marginal contributions from these sampled permutations.

B.2.1.1 Improved Monte Carlo Simon & Vincent (2020) propose the improvement provided in
Algorithm 2 which achieves a twofold increase in computational efficiency.

Algorithm 2 Improved Monte Carlo Algorithm for Estimating Shapley Values

1: Input: Value function v, a set of permutations Π̃.
2: Result: Estimation of ϕi = [ϕ1, . . . , ϕ|N |]

⊤.
3: ϕ = 0, m(0) = v(∅), m(prev) = 0, m(new) = m(0).
4: for π ∈ Π̃ do
5: for i in π do
6: m(prev) = m(new).
7: m(new) = v ([π]i−1 ∪ {i}).
8: ϕi = ϕi +

(
m(new) −m(prev)

)
.

9: end for
10: m(prev) = 0, m(new) = m(0).
11: end for
12: ϕ = ϕ

|Π̃|
.

13: Return ϕ.

In this algorithm, [π]i−1 represents the set of players preceding player i in permutation π. The term
m(0), initialized as v(∅), is introduced to avoid redundant calculations of v(∅) in each outer iteration.
The calculation of m(new) − m(prev) captures the marginal contribution of player i to the coalition
[π]i−1.

B.2.2 ANTITHETIC SAMPLING

Rubinstein & Kroese (2016) propose to use antithetic sampling in Monte Carlo simulations to reduce
variance. Unlike standard Monte Carlo methods that rely on independent and identically distributed
(i.i.d.) sampling, antithetic sampling chooses negatively correlated samples. This negative correla-
tion between sample pairs balances out the extremes in the sampling distribution, leading to a more
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uniform coverage of the space and, consequently, reducing the overall variance of the estimate. Vari-
ance is a measure of dispersion in a set of data points. In standard Monte Carlo simulations, random,
independent sampling can lead to clusters of data points in some regions of the space while leaving
other areas sparsely sampled. This non-uniform coverage can inflate the variance of the estimated
value. Antithetic sampling, by contrast, mitigates this issue through its negatively correlated sam-
pling strategy. When a data point falls in one region of space, its antithetic counterpart will likely
fall in a different area, ensuring a more even space exploration.

Lomeli et al. (2019) propose to use Monte Carlo simulation with antithetic sampling to estimate
Shapley values. By considering pairs of coalitions as (π, reverse(π)), antithetic sampling ensures
that the permutations are not just randomly sampled but are chosen in a manner that each sample is
counterbalanced by its reverse. Antithetic sampling is expressed in Equation 30.

ϕi =
1

2|Π̃|

∑
π∈Π̃

[(v([π]i−1 ∪ {i})− v([π]i−1)) + (v([reverse(π)]i−1 ∪ {i})− v([reverse(π)]i−1))] .

(30)

B.2.3 STRATIFIED SAMPLING

Stratified sampling is another variance reduction technique in Monte Carlo simulation. This method
involves partitioning the function’s domain into distinct subgroups, known as strata, and then execut-
ing Monte Carlo simulations within each subgroup independently. The purpose of this stratification
is to minimize the variance within each group and maximize it between different groups, thereby
ensuring a more representative sampling across the entire domain. The expectation estimation using
stratified sampling in a Monte Carlo simulation is mathematically expressed as follows:

E[f ] ≈
n∑

j=1

wj

(
1

nj

nj∑
i=1

f(Xji)

)
, (31)

where n represents the total number of strata, wj denotes the weight of the j-th stratum (usually pro-
portional to the stratum’s size relative to the entire domain), nj is the number of samples within the
j-th stratum, and Xj,i are the samples from this stratum. The function f symbolizes the simulated
process, with E[f ] as the expected value.

B.2.3.1 Connection With Antithetic Sampling Stratified sampling reduces variance by divid-
ing the sample space into distinct, homogeneous strata and ensuring that each is adequately sampled.
Antithetic sampling, on the other hand, creates pairs of negatively correlated samples. Antithetic
sampling can be conceptualized as a particular case of stratified sampling where the domain is bifur-
cated into two complementary strata. At each step, we perform stratified sampling with two strata;
each sample comes from a stratum. Using negatively correlated variables within these pairs is akin
to ensuring diversity among strata in traditional stratified sampling.

B.2.3.2 Methods To use stratified sampling to estimate Shapley values, a stratum is defined by
the size of the coalition to which the marginal contribution is measured. This is equivalent to the
location of player i in a permutation π. Hence, n = |N |, where n denotes the total number of
strata, and |N | is the number of players in the game. A critical component of stratified sampling
is allocating sample sizes to each stratum. Stratified sampling methods to estimate Shapley values
differ by dividing the sampling budget among different strata. We survey the existing methods in
the next sections.

B.2.3.2.1 STRATIFIED SAMPLING WITH NEYMAN ALLOCATION Neyman allocation is an ap-
proach used in stratified sampling to minimize the variance of the estimated mean. The main idea
behind Neyman allocation is to allocate more samples to strata with greater variability and larger
size, as these strata influence the overall estimate variance more. Consider a population divided into
n strata. Let nj be the size of the j-th stratum, σ2

j be the variance within the j-th stratum, and B be
the total sample size. The Neyman allocation for the j-th stratum, nj , is as follows:
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nj = ⌊B ·
σ2
j∑n

i=1 σ
2
i

⌋ (32)

This allocation is derived to minimize the variance of the stratified mean under the constraint of a
fixed total sample size. Castro et al. (2017) propose using stratified sampling with Neyman allocation
to sample permutations to estimate Shapley values. The process is described in Algorithm 3.

Algorithm 3 Stratified Sampling With Neyman Allocation for Estimating Shapley Values

1: Input: Sample budget B.
2: Result: Shapley value estimation for the i-th player, i.e. ϕi.
3: for k = 1 to n do
4: mk = ⌊B/2n⌋.
5: ϕ

(k)
i = 0.

6: s
(k)
i = 0.

7: for j = 1 to mk do
8: t = v([π(i,k)]i−1 ∪ {i})− v([π(i,k)]i−1). # π(i,k) ∼ Uniform(Π(i,k)).
9: ϕ

(k)
i = ϕ

(k)
i + t.

10: s
(k)
i = s

(k)
i + t2.

11: end for

12: V(i,k) = 1
mk−1

(
s
(k)
i −

(
ϕ
(k)
i

)2

mk

)
.

13: end for
14: for k = 1 to n do
15: m′

k = ⌊B V(k)
i∑n

k=1 V(k)
i

⌋ −mk.

16: end for
17: for k = 1 to n do
18: for j = 1 to m′

k do
19: ϕ

(k)
i = ϕ

(k)
i + v([π(i,k)]i−1 ∪ {i})− v([π(i,k)]i−1). # π(i,k) ∼ Uniform(Π(i,k)).

20: end for
21: ϕ

(k)
i =

ϕ
(k)
i

mk+m′
k

.
22: end for
23: ϕi =

∑n
k=1 ϕ

(k)
i

n .
24: Return ϕi.

B.2.3.2.2 STRATIFIED EMPIRICAL BERNSTEIN SAMPLING Burgess & Chapman (2021) pro-
pose a stratified empirical Bernstein sampling technique to minimize the sampling error for both
with-replacement and without-replacement scenarios. For random variable a ≤ X ≤ b, its width,
denoted by D, is defined as b− a. Given sequentially drawn random samples Xi,1, . . . , Xi,mi , first
they define some statistics for each stratum. The average for the first mi samples of stratum i is
given by

X̄i,mi
=

1

mi

mi∑
j=1

Xi,j , (33)

and the biased and the unbiased sample variance for stratum i are computed as follows:

σ̂2
i =

1

mi

mi∑
j=1

(
Xi,j − X̄i,mi

)2
, ˆ̂σ2

i =
1

mi − 1

mi∑
j=1

(
Xi,j − X̄i,mi

)2
, (34)

where σ̂2
i denotes the biased sample variance, and ˆ̂σ2

i is the unbiased sample variance.

Given probability p and weights τ for strata, the bounds are as follows:
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P

√√√√ n∑
i=1

τi(X̄i,mi
− µi)2 ≥

√
α+

(√
β +

√
γ
)2 ≤ p, (35)

where

α =

n∑
i=1

4

17
Ωni

mi
D2

i τ
2
i , β = log

(
3

p

)(
max

i
τ2i Ψ

ni
mi

D2
i

)
, (36)

γ = 2

n∑
i=1

τ2i Ψ
ni
mi

(mi − 1)
σ̂2
i

mi
+ log

(
6n

p

) n∑
i=1

τ2i D
2
iΨ

ni
mi

Ψni
mi

+ log

(
3

p

)(
max

i
τ2i Ψ

ni
mi

D2
i

)
,

(37)

where for sampling with replacement, Ωn
m and Ψn

m are as follows:

Ωn(w/)

m = Ψn(w/)

=
1

m
. (38)

On the other hand, for sampling without replacement, Ωn
m and Ψn

m are as follows:

Ωn(w/o)

m =

n−1∑
k=m

1

k2
, Ψn(w/o)

=

n−1∑
k=m

n

k2(k + 1)
. (39)

The authors suggest calculating two bounds, one applicable when samples are drawn with replace-
ment and another for when samples are drawn without replacement. Before each sampling event,
they estimate both bounds and select the tighter of the two to guide the sampling process. The final
procedure is provided at Algorithm 4. Note that in this context, a random variable corresponds to the
marginal contribution of a player to a coalition given a permutation, i.e., v([π]i−1∪{i})−v([π]i−1),
where v is the payoff function taking a coalition of players as input, and [π]i−1 comprises the players
preceding player i in a given permutation π. An upper bound for the width of marginal contribution
should be available as D. aj , bj , cj , and dj for j = 0, 1 in lines 12-19 are used to calculate α, β,
and γ in the Equation 35.

B.2.4 KERNEL MONTE CARLO

In Monte Carlo simulations, utilizing a kernel to guide the sampling process represents a signif-
icant refinement over simple random sampling. This kernel-based approach, called kernel Monte
Carlo, leverages the information from previously sampled points to make informed decisions about
subsequent sampling locations.

The process begins with selecting initial sample points randomly or based on some heuristic. As
the simulation progresses, instead of selecting future points independently, a kernel function is em-
ployed to determine the next points based on the properties of previously sampled points. This
kernel function establishes a probability distribution over the sample space, where the likelihood of
choosing a particular point depends on its relationship to the existing samples. The kernel function’s
characteristics determine the nature of this relationship. A commonly used kernel might assign
higher probabilities to points near previously sampled points, encouraging local exploration of the
sample space. Alternatively, the kernel might prioritize under-explored regions, guiding the simula-
tion to sample more diversely and cover a broader domain area.

If we denote xi as the i-th sampled point and K(xi, ·) as the kernel function centered at xi, the
probability of sampling a new point xm+1 can be expressed as

P (xm+1) ∝
m∑
i=1

K(xi, xm+1), (40)

where m is the number of points already sampled. The kernel function K aggregates the influences
of all previous samples to determine the sampling probability of new points. The kernel approach
to Monte Carlo simulations is particularly advantageous when dealing with complex or multi-modal
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Algorithm 4 Stratified Empirical Bernstein Sampling for Estimating Shapley Values

1: Input: Probability p, strata number n, initial sample numbers mi, initial stratum sample vari-
ances σ̂2

i , weights τi, widths Di, sample budget B.
2: Result: Shapley value estimation for the i-th player, i.e. ϕi.
3: while

∑n
i mi < B do

4: k∗ = −1.
5: l∗ = ∞.
6: j∗ = −1.
7: for k = 1 to n do
8: mk = mk + 1.
9: a = [0, 0], b = [0, 0], c = [0, 0], d = [0, 0].

10: for i = 0 to n do
11: Ωmin = min(Ωni

(w/)

mi
,Ωni

(w/o)

mi
).

12: Ψmin = min(Ψni
(w/)

mi
,Ψni

(w/o)

mi
).

13: a0 = a0 + log(6n/p)D2
iΨ

ni
(w/)

mi
Ωminτ

2.
14: a1 = a1 + log(6n/p)D2

iΨ
ni

(w/o)

mi
Ωminτ

2.
15: b0 = max(b0, log(3/p)D

2
iΨ

ni
(w/)

mi
Ψminτ

2).
16: b1 = max(b1, log(3/p)D

2
iΨ

ni
(w/o)

mi
Ψminτ

2).
17: c0 = c0 + 2Ψni

(w/)

mi
((mi − 1)ˆ̂σ2

i /mi)τ
2.

18: c1 = c1 + 2Ψni
(w/o)

mi
((mi − 1)ˆ̂σ2

i /mi)τ
2.

19: d0 = d0 +
4
17D

2
iΩ

ni
(w/)

mi
τ2.

20: d1 = d1 +
4
17D

2
iΩ

ni
(w/o)

mi
τ2.

21: end for
22: j = argminĵ(dĵ + (

√
cĵ + aĵ + bĵ +

√
bĵ)

2).

23: w∗ = (dj + (
√
cj + aj + bj +

√
bj)

2).
24: if w∗ < l∗ then
25: k∗ = k.
26: l∗ = w∗.
27: j∗ = j.
28: end if
29: mk = mk − 1.
30: end for
31: if j∗ == 0 then
32: Sample for stratum k∗ with replacement.
33: else if j∗ == 1 then
34: Sample for stratum k∗ without replacement.
35: end if
36: mk∗ = mk∗ + 1.
37: Update X̄k∗,mk∗ , σ̂2

k∗ , and ˆ̂σ2
k∗ .

38: end while
39: ϕi =

∑n
i=1 τiX̄i,mi∑n

i=1 τi
.

40: Return ϕi.
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distributions in discrete spaces. The adaptive nature of the sampling process, guided by the kernel
function, allows for more efficient space exploration. It balances the need to thoroughly investigate
areas around known high-value points (exploitation) with discovering potentially valuable regions
that have not been sampled yet (exploration).

In kernel Monte Carlo simulations, the kernel function K is a fundamental component that deter-
mines how each new sampling point is chosen based on the existing samples. This kernel function
is not just a simple measure of distance or proximity between points in the sample space; rather,
it often involves embedding the points into a higher-dimensional space where their similarities can
be assessed more effectively. The concept of embedding in the context of kernel functions refers
to mapping the original data points into a higher-dimensional feature space. In this transformed
space, relationships between points that might not be apparent in the original space become more
discernible. The kernel function K then evaluates the similarity between these embedded points.

Suppose we have a function Φ that maps a data point x to a new space, i.e., Φ(x). The kernel
function K(xi, xj) then measures the similarity between points xi and xj based on their images in
this new space, often calculated as an inner product as follows:

K(xi, xj) = ⟨Φ(xi),Φ(xj)⟩. (41)

This inner product in the feature space allows the kernel to capture complex relationships and pat-
terns in the data that are not evident in the original space. For instance, in a discrete setting, the
embedding might allow the kernel to recognize and emphasize certain patterns or sequences in the
data points, which are crucial for the estimation task. In the next sections, we will first review
existing kernel functions on permutations and then discuss more sophisticated kernel methods.

B.2.4.1 Kernel Functions Mitchell et al. (2022) propose adopting kernel Monte Carlo to esti-
mate Shapley values. Choices of kernels applicable to permutation space include Kendall, Mallows,
and Spearman kernels, which we discuss in the next sections.

B.2.4.1.1 KENDALL KERNEL To comprehend the foundation of the Kendall kernel, we must
first discuss the nature of the Kendall rank correlation coefficient, denoted by τ . Initially introduced
by Kendall (1938) and further developed in the context of kernel methods by Jiao & Vert (2015), τ
is a non-parametric statistic that measures the ordinal association between two variables.

Consider a dataset comprising pairs of observations (x1, y1), (x2, y2), . . . , (xn, yn), with x and y
representing two distinct variables. Kendall τ is computed by evaluating the concordance and dis-
cordance between all pairs of observations as follows:

τ =

∑
i<j sgn(xi − xj) · sgn(yi − yj)(

n
2

) ,

where n denotes the total count of observations, and sgn(·) signifies the sign function, which is
defined for any pair (xi, xj) as

sgn(xi − xj) =


1 if xi > xj ,

0 if xi = xj ,

−1 if xi < xj .

The value of τ offers insights into the nature of the relationship between the variables: a positive
τ suggests a similar ranking by both variables, a negative τ implies an inverse relationship and a τ
near zero indicates little to no association.

Turning our focus to permutations, the Kendall kernel operates on two permutations, π and π′, of
length |N |. It commences by ascertaining the number of concordant and discordant pairs, mathe-
matically expressed as

24



Under review as a conference paper at ICLR 2025

ncon(π, π
′) =

∑
i<j

[
1π(i)<π(j)1π′(i)<π′(j) + 1π(i)>π(j)1π′(i)>π′(j)

]
, (42)

ndis(π, π
′) =

∑
i<j

[
1π(i)<π(j)1π′(i)>π′(j) + 1π(i)>π(j)1π′(i)<π′(j)

]
. (43)

A pair (i, j), with i, j ∈ {1, . . . , |N |}, is labeled concordant in the permutations π and π′ if the
order of i and j is consistent across both permutations. If not, the pair is deemed discordant. The
sum of concordant and discordant pairs equals the total number of pairings

(|N |
2

)
, which is the count

of all possible unordered pairs of the set {1, . . . , |N |}. The Kendall kernel is then defined as the
normalized difference between the numbers of concordant and discordant pairs:

Kτ (π, π
′) =

ncon(π, π
′)− ndis(π, π

′)(|N |
2

) . (44)

This kernel measures the degree of similarity between permutations. A direct implementation of the
Kendall kernel requires O(|N |2) operations, which can be computationally intensive for coalition
games. However, Knight (1966) propose an efficient O (|N | log (|N |)) algorithm, which leverages
the concept of the merge sort.

The embedding function associated with the Kendall kernel Kτ is as follows:

Φτ (π) =

 1√(|N |
2

) (1π(i)>π(j) − 1π(i)<π(j)

)
1≤i<j≤|N |

, (45)

which captures the pairwise ordinal relations within the permutation π. The Kendall kernel between
two permutations π and π′ can be expressed as the inner product of their respective embeddings:

Kτ (π, π
′) = Φτ (π)

⊤Φτ (π
′). (46)

B.2.4.1.2 MALLOWS KERNEL Like the Kendall kernel, the Mallows kernel, as introduced in
the work by Jiao & Vert (2015), is constructed on the foundation of discordant pairs in two permu-
tations. The Mallows kernel for a pair of permutations π and π′ is defined as

Kλ
M (π, π′) = e−λndis(π,π

′)/(|N|
2 ), (47)

where λ is a non-negative parameter regulating the impact of discordance on the kernel’s value, and
ndis(π, π

′) denotes the number of discordant pairs between the permutations π and π′. Mitchell et al.
(2022) propose to add

(|N |
2

)
to scale the kernel’s output relative to the size of the permutation set.

The Mallows kernel does not have an explicit feature space representation as readily as the Kendall
kernel. As noted by Mania et al. (2018), an explicit feature map for the Mallows kernel would
involve a complex and high-dimensional representation. The computation of the Mallows kernel is
usually performed directly using the formula stated above without explicitly referencing a feature
space.

B.2.4.1.3 SPEARMAN KERNEL Mitchell et al. (2022) propose the Spearman Kernel based on
the unnormalized Spearman rank distance. The Spearman rank distance is a measure utilized to
quantify the discrepancy between two sets of rankings. It is useful when the rankings do not nec-
essarily follow a normal distribution, allowing for non-parametric statistical analysis. The unnor-
malized form of the Spearman rank distance between two permutations, π and π′, each of length
|N |, is defined as the sum of the squared differences between the ranks of each element in the two
permutations as follows:
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DSpearman(π, π
′) =

|N |∑
i=1

(π(i)− π′(i))2. (48)

The term (π(i) − π′(i))2 represents the squared rank difference for the i-th element between the
permutations π and π′. The Spearman rank distance aggregates these squared differences across
all elements to provide a cumulative measure of the rank divergence between the two permutations.
The distance is larger when there is a greater disparity in the rankings and reaches a minimum value
of zero when the rankings are identical. The Spearman rank distance DSpearman(π, π

′) is a semi-
metric of negative type (Diaconis, 1988). Mitchell et al. (2022) leverage this property to transform
the Spearman rank distance into a kernel, denoted as KSpearman, using the connection between semi-
metrics of negative type and kernels as detailed by Sejdinovic et al. (2013). Assuming KSpearman is
unknown, the Spearman rank distance can be expressed in the context of a kernel as follows:

DSpearman(π, π
′) = KSpearman(π, π) +KSpearman(π

′, π′)− 2KSpearman(π, π
′), (49)

where the Spearman rank distance is formulated by:

DSpearman(π, π
′) =

|N |∑
i=1

(π(i)− π′(i))2 = π⊤π + π′⊤π′ − 2π⊤π′. (50)

Here, the kernel KSpearman(π, π
′) naturally emerges as the inner product π⊤π′, satisfying the rela-

tionship in Equation 49. The feature map ΦSpearman associated with the Spearman kernel corresponds
to the permutation itself, hence ΦSpearman(π) = π.

B.2.4.2 Expected Values for Kernels In this section, we detail the methodology proposed by
Mitchell et al. (2022) for computing the expected value of each kernel for a fixed point π and the
uniform distribution over permutations. We denote the uniform distribution over permutations with
PΠ = Uniform(Π), where Π indicates the set of all permutations of size |N |.

B.2.4.2.1 KENDALL KERNEL The computation of the expected value for the Kendall kernel is
direct. The following equation represents it:

∀π ∈ Π, Eπ′∼Π[Kτ (π, π
′)] = 0.

B.2.4.2.2 SPEARMAN KERNEL The expected value for the Spearman kernel is straightforward
to compute. The formula is given as

∀π ∈ Π, Eπ′∼Π[KSpearman(π, π
′)] =

|N |(|N |+ 1)2

4
.

B.2.4.2.3 MALLOWS KERNEL Computing the expected value for the Mallows kernel is more
challenging. We begin by discussing inversions in a permutation, probability-generating, and
moment-generating functions.

B.2.4.2.3.1 Preliminaries

• Inversion: Given a permutation π, an inversion is a pair of elements (πi, πj) satisfying πi > πj

and i < j. Take, for example, the permutation [1, 3, 2, 4], which contains a single inversion: the
pair (3, 2). In this case, three is larger and appears before 2. The total number of inversions in
π, denoted as ninv, equates to the count of discordant pairs compared to the identity permutation
[1 . . . |N |], expressed as ninv = ndis(π, [1 . . . |N |]).

• The probability-generating and the moment-generating functions: The probability-generating
function for a discrete random variable X is given by
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GX(s) =

∞∑
k=0

P (X = k) · sk,

where GX(s) encapsulates the probabilities of X’s outcomes into a function. The moment-
generating function for discrete distributions is defined as

MX(t) = E[etX ] =
∑
k

etkP (X = k).

The moment-generating function encodes all the moments of X’s distribution. The n-th derivative
of MX(t) evaluated at t = 0 yields the n-th moment of X .

B.2.4.2.3.2 Calculating the Expectation

Back to calculating the expected value for Mallows kernel, Muir (1898) compute the probability-
generating function for the number of inversions ninv in a permutation. This function is given by

Gninv(s) =

|N |∏
j=1

1− sj

j(1− s)
, (51)

where Gninv(s) is the probability-generating function of ninv, and |N | denotes the length of the
permutation.

Based on this, the moment generating function, Mninv(t), is derived as follows:

Mninv(t) = Gninv(e
t) =

|N |∏
j=1

1− etj

j(1− et)
= E[etninv ], (52)

indicating that Mninv(t), the moment generating function, expresses the expected exponential growth
of tninv. As it was mentioned earlier, the total number of inversions in π, denoted as ninv, equates to
the count of discordant pairs compared to the identity permutation [1 . . . |N |]. Hence we have

Mninv

(
− λ(|N |

2

)) = E

[
e
− λninv

(|N|
2 )

]
= Eπ′∼Uniform(Π)

[
Kλ

M ([1 . . . |N |], π′)
]
. (53)

Mitchell et al. (2022) utilize the right-invariance property of the number of discordant pairs, ndis,
expressed as

ndis(π, π
′) = ndis (τ(π), τ(π

′)) for all τ ∈ Π, (54)

to reach the following conclusion:

∀τ ∈ Π, Eπ′∼Uniform(Π)[K
λ
M ([1 . . . |N |], π′)] = Eπ′∼Uniform(Π)[K

λ
M (τ [1 . . . |N |], τπ′)] (55)

= Eπ′∼Uniform(Π)[K
λ
M (τ [1 . . . |N |], π′)], (56)

which ultimately leads to the expectation for Mallows kernel as follows:

∀π ∈ Π, Eπ′∼Uniform(Π)[K
λ
M ([1 . . . |N |], π′)] = Eπ′∼Uniform(Π)[K

λ
M (π, π′)] (57)

=

|N |∏
j=1

1− e−λj/(|N|
2 )

j(1− e−λ/(|N|
2 ))

. (58)

In the next sections, we discuss how the aforementioned kernels are used to estimate Shapley values.
Methodologies include kernel herding and sequential Bayesian quadrature.
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B.2.4.3 Kernel Herding The kernel herding algorithm selects samples by maximizing the fol-
lowing criterion for the next sample π(n+1):

π(n+1) = argmax
π

[
Eπ′∼Uniform(Π)[K(π, π′)]− 1

n+ 1

n∑
i=1

K(π, π(i))

]
,

where Ex′∼Uniform(Π)[K(π, π′)] is the expected kernel evaluation over the distribution Uniform(Π),
and 1

n+1

∑n
i=1 K(π, π(i)) is the average kernel evaluation over the samples so far. The selected

sample π(n+1) is the one that, when added to the current set of samples, yields the largest dis-
crepancy from the true mean embedding in the reproducing kernel Hilbert space, hence improv-
ing the representation of Uniform(Π). Kernel herding improves the rate of error reduction to
O(1/n), surpassing the O(1/

√
n) rate achieved by standard random sampling methods. The term

Ex′∼Uniform(Π)[K(π, π′)] is calculated for Kendall, Spearman, and Mallows kernels in the previous
sections. Mitchell et al. (2022) propose to approximate the argmax in the above equation by sam-
pling a limited number of permutations and taking the one maximizing the objective function. In
this way, kernel herding would have the computational complexity of O(n2) for producing n per-
mutations. The marginal contribution of the sampled permutations estimates Shapley values, i.e.:

ϕi ≈
1

n

∑
j∈[1,...,n]

[
v([π(j)]i−1 ∪ {i})− v([π(j)]i−1)

]
, (59)

where v is the payoff function taking players as input, and [π(j)]i−1 comprises the players preceding
player i in a given permutation π(j), ϕi is the Shapley value for the i-th player, and π(1) . . . π(n) are
generated with kernel herding.

B.2.4.4 Sequential Bayesian Quadrature In this section, we first describe sequential Bayesian
quadrature (Rasmussen & Ghahramani, 2003). Then, explain how it can estimate Shapley values.
Consider the task of computing the integral Z =

∫
f(x)p(x)dx, where f represents a function, and

p signifies the input density. This procedure begins by assigning a Gaussian process (GP) as a prior
over f . Utilizing a Gaussian process in this context is called Bayesian quadrature, enabling us to
derive a posterior distribution over Z.

The mean of the posterior over Z is expressed as a linear combination of the function values at the
sampled points x(1), . . . , x(n), illustrated in the following equation:

EGP[Z|f(x(1)), . . . , f(x(n))] =

n∑
i=1

zTi Σ
−1f(x(i)), (60)

In this equation, zi =
∫
K(x, x(i))p(x)dx denotes the expected kernel function value at the point

x(i). Minimizing the posterior variance of Z is a key step in sequential Bayesian quadrature to guide
sampling. This variance is given as follows:

VGP[Z|f(x(1)), . . . , f(x(n))] =

∫ ∫
K(x, x′)p(x)p(x′) dx dx′ − zTΣ−1z, (61)

where Σ−1 is the inverse of the kernel covariance matrix. The selection of sample points is per-
formed in a manner that sequentially minimizes this variance. Once the samples x(1), . . . , x(n) are
selected, the integral Z is estimated as follows:

Z ≈
n∑

i=1

wif(x
(i)), (62)

where the weights wi are derived by solving the linear system Σw = z.

Now we describe how sequential Bayesian quadrature could be utilized to estimate Shapley values
(Mitchell et al., 2022). Consider the integral zi =

∫
K(x, x(i))p(x)dx, previously computed for
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kernels such as Kendall, Spearman, and Mallows. This integral is a constant dependent only on the
problem’s dimensionality. Focusing on the sequential Bayesian quadrature variance (Equation 61),
it is observed that the nested integrals’ value does not depend on z and can thus be ignored when
minimizing for z. The challenge then is minimizing the term −zTΣ−1z. Mitchell et al. (2022)
propose approximating this by sampling a limited number of points and selecting the one minimizing
the expression. An important computational consideration is the inversion of the kernel covariance
matrix Σ. Utilizing the Cholesky decomposition reduces the computational cost. The Cholesky
decomposition is formulated as Σ = LLT , where L is a lower triangular matrix. In contrast to the
typical O(n3) complexity of direct matrix inversion, Cholesky factorization reduces this to solving
two systems of linear equations. By first solving LY = I for Y , with I being the identity matrix, and
then LTX = Y for X , we efficiently obtain X as Σ−1. Furthermore, when a new row and column
are appended to Σ, updating its Cholesky factorization is not an extensive operation. Therefore,
sequentially generating n samples to approximate Shapley values via sequential Bayesian quadrature
results in an overall complexity of O(n3). We refer to Mitchell et al. (2022) for error analysis in
reproducing kernel Hilbert spaces.

B.2.5 SAMPLING IN REAL SPACE

Various advanced Monte Carlo sampling techniques, typically employed in real space, are adapted
for Shapley value estimation by defining a mapping from real space to permutation space. This
adaptation encompasses methods such as Sobol sequences on the sphere and orthogonal spherical
codes.

B.2.5.1 Mapping From Real Space R|N |−1 to Permutation Space We start with providing
background and then explain the process of mapping a point from real space R|N |−1 to the hyper-
sphere S|N |−2 and then from the hypersphere S|N |−2 to the permutation space.

B.2.5.1.1 PRELIMINARIES This section provides background on permutohedrons, the Cayley
graph, and their connection to hypersphere S|N |−2.

B.2.5.1.1.1 Permutohedrons

A permutohedron is a geometric representation that serves to understand the complexities of per-
mutations, particularly when considering a specific permutation π. This polytope is associated with
the permutations of a set and is uniquely characterized for a set of |N | elements as an (|N | − 1)-
dimensional figure. It encapsulates all possible permutations of these elements in its structure. Each
vertex of the permutohedron represents a distinct permutation; hence, for any permutation π of |N |
elements, there is a corresponding vertex on this (|N | − 1)-dimensional polytope. The vertices and
edges of the symbolize adjacency between permutations, where two permutations are considered
adjacent if they can be obtained from one another by a single swap of adjacent elements. Therefore,
the neighboring vertices of π on the permutohedron represent permutations that are reachable from
π through such a swap. Though the permutohedrons exists within an |N |-dimensional space, it itself
is (|N | − 1)-dimensional. The vertex placement for π within this geometry provides an understand-
ing of how π is positioned in relation to other permutations, illustrating the number of swaps needed
to transition between them. The permutohedron corresponding to the permutation space of size |N |
lies on the following hyperplane:

|N |∑
i=1

π−1(i) =
|N |(|N |+ 1)

2
, (63)

which is simply the summation of numbers from 1 to |N |. Also, the normal vector is as follows:

n⃗ =
[

1√
|N |

1√
|N |

· · · 1√
|N |

]
. (64)
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B.2.5.1.1.2 Caley Graph

A Cayley graph is a graphical representation used in group theory to visualize the structure of a
group and its operation. Given a group G and a set of generators S for G, the Cayley graph is
constructed by representing each element of G as a vertex and connecting two vertices with an edge
if one can be obtained from the other by applying a generator from the set S. The connection be-
tween permutohedrons and Cayley graphs becomes evident when considering permutation groups.
A permutohedron for a set of size |N | can be viewed as a geometric representation of a permutation
group, where each vertex represents a permutation and edges indicate a single transposition between
permutations. Similarly, using transpositions as generators, a Cayley graph of a permutation group
exhibits a structure where vertices represent permutations and edges correspond to applying a trans-
position. This graph has interesting properties. For instance, the antipode of a vertex, which denotes
the vertex farthest from it, is the vertex corresponding to the inverse of its permutation. Regarding
the kernels previously discussed, the Kendall distance of two permutations is equal to the graph dis-
tance of their corresponding vertices. Moreover, the Spearman distance between two permutations
equals the Euclidean distance between their corresponding vertices.

B.2.5.1.1.3 Hypersphere S|N |−2

Note that each vertex of the permutohedron, which corresponds to each vertex of the Caley graph,
lies on the following hypersphere S|N |−2:

|N |∑
i=1

π−1(i)2 =
|N |(|N |+ 1)(2|N |+ 1)

6
, (65)

which is the summation of squared numbers from 1 to |N |. Given the connection between the
hypersphere S|N |−2 and the Caley graph and the intuitive properties of the Caley graph, which was
discussed before, the hypersphere S|N |−2 is a continuous relaxation of the permutation space. Plis
et al. (2010) discover this connection, and Mitchell et al. (2022) utilize it to estimate Shapley value.
In the next section, we describe how a point sampled from real space R|N |−1 is mapped to the
hypersphere S|N |−2, and then the permutation space.

B.2.5.1.2 MAPPING FROM REAL SPACE R|N |−1 TO HYPERSPHERE S|N |−2 Mapping samples
from real space R|N |−1 to the hypersphere S|N |−2 is straightforward. Donald et al. (1999) propose
normalizing each sample to have unit length and demonstrate that independent Gaussian random
variables in real space R|N |−1 are uniformly distributed on the hypersphere S|N |−2 using this map-
ping.

B.2.5.1.3 MAPPING FROM HYPERSPHERE S|N |−2 TO PERMUTATION SPACE To map a vector
x from the hypersphere S|N |−2, first it needs to be projected into the hyperplane of the permuto-
hedron, i.e.

∑|N |
i=1 π

−1(i) = |N |(|N |+1)
2 . For this purpose, matrix U ∈ R|N |−1×|N | is defined as

follows:

U =


1 −1 0 · · · 0
1 1 −2 · · · 0
...

...
...

. . .
...

1 1 1 · · · −(|N | − 1)

 , (66)

It is easy to show Û n⃗ = 0, as the summation of each row of U is zero, and n⃗ is a scalar multiple of
the unit vector. In this way, x ∈ S|N |−2 is mapped into the hyperplane of the permutohedron using
the following equation:

x̃ = Û⊤x, (67)
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where Û denotes U with row vectors normalized. It is proved that x̃ lies on the hyperplane of the
permutohedron by simply showing

x̃⊤n⃗ = x⊤Û n⃗ = 0. (68)

Once the point on the hyperplane of the permutohedron, i.e., x̃, is available, the closest vertex of the
Caley graph, which denotes the closest permutation to it, is found using the following equation:

π = argsort(x̃⊤). (69)

B.2.5.2 Sampling Permutations From Real Space R|N |−1 In this section, we provide the final
algorithm to generate permutations by sampling from the real space R|N |−1 so that the resulting
distribution of the generated permutations is uniform.

Algorithm 5 Sampling Permutation From Real Space R|N |−1

1: Result: A permutation of length |N |.
2: x = Normal(0, 1).
3: x = x

∥x∥ .
4: x̂ = U⊤x.
5: π = argsort(x̂).
6: Return π.

Note that the starting points on the real space R|N |−1 have a standard normal distribution, but fol-
lowing the steps described in the algorithm, the resulting points on the hypersphere S|N |−2 and the
permutation space have a uniform distribution.

B.2.5.3 Orthogonal Spherical Codes Unlike the independent random samples used in standard
Monte Carlo methods, orthogonal Monte Carlo generates samples that are orthogonal to each other.
This orthogonality ensures a more uniform distribution of samples across the space, minimizing
overlap and redundancy. Mitchell et al. (2022) propose to use orthogonal Monte Carlo to sample
permutations to estimate Shapley values. In the first step, |N |−1 orthonormal vectors are generated
in the real space R|N |−1. This is done with the Gram-Schmidt process. The Gram-Schmidt process
starts with |N | − 1 linearly independent vectors as input. It leaves the first vector as it is. Then, it
involves iteratively adjusting each subsequent vector in the original set. Given the original vector yi,
the process modifies it to be orthogonal to all previously processed vectors x1, x2, . . . , xi−1. This
is accomplished by projecting yi onto each of the previously-obtained orthogonal vectors xj and
subtracting this projection from yi, which mathematically is

xi := yi −
i−1∑
j=1

projxj
(yi),

where projxj
(yi) is the projection of yi onto xj , and is calculated as

projxj
(yi) =

⟨yi, xj⟩
⟨xj , xj⟩

xj .

The pseudo-code of the Gram-Schmidt process is provided in Algorithm 6.

Once a set of |N | − 1 orthonormal vectors in the real space R|N |−1 is generated, they are converted
to permutations by computing argsort( ˆU⊤x) for x ∈ X , where X is the output of Gram-Schmidt
process. This results |N | − 1 permutations. Antithetic sampling is also proposed to accelerate con-
vergence. The final procedure to generate 2(|N | − 1) permutations by sampling orthogonal vectors
is outlined in Algorithm 7. v is the payoff function taking players as input, [π]i−1 comprises the
players preceding player i in a given permutation π, and line 9 is motivated by antithetic sampling.
Mitchell et al. (2022) prove Algorithm 7 is an unbiased estimator of Shapley values.
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Algorithm 6 Gram-Schmidt Process

1: Input: A set of |N | − 1 linearly independent vectors Y = {y1, y2, ..., y|N |−1}.
2: Result: Set of orthonormal vectors X = {x1, x2, ..., x|N |−1}.
3: X = ∅.
4: for i = 1 to |N | − 1 do
5: xi = yi.
6: for j = 1 to i− 1 do
7: xi = xi − ⟨xj ,yi⟩

⟨xj ,xj⟩xj .
8: end for
9: xi =

xi

∥x∥ .
10: Add xi to the set X .
11: end for
12: Return X .

Algorithm 7 Orthogonal Spherical Codes for Shapley Value Estimation

1: Input: A set of |N | − 1 linearly independent vectors Y = {y1, y2, ..., y|N |−1}, value function
v.

2: Result: Estimation of Shapley value ϕi for the i-th player.
3: ϕi = 0.
4: X = GramSchmidtProcess(Y ).
5: for x in X do
6: x̂ = U⊤x.
7: π = argsort(x̂).
8: ϕi = ϕi + v([π]i−1 ∪ {i})− v([π]i−1).
9: π = argsort(−x̂).

10: ϕi = ϕi + v([π]i−1 ∪ {i})− v([π]i−1).
11: end for
12: ϕi = ϕi/ (2 (|N | − 1)).
13: return ϕi.
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Note that this mapping is similar to the concept of spherical codes, which aims to find the opti-
mal arrangement of points on the sphere so that the minimum distance between any two points is
maximized.

B.2.5.4 Sampling Using Sobol Sequence We start by providing some background to facilitate
explaining this method, then explain the sampling process.

B.2.5.4.1 PRELIMINARIES In this section, we review the Sobol sequence and generalized polar
coordinate system, which are essential to understanding how Shapley values could be estimated by
sampling using the Sobol sequence.

B.2.5.4.1.1 Sobol Sequence

A Sobol sequence is a quasi-random, low-discrepancy sequence used in numerical analysis to esti-
mate the properties of high-dimensional integrals. Constructed using methods of digital sequences,
it is defined over the field of two elements and generates points in a unit hypercube [0, 1)|N |−1. The
sequence employs a set of direction numbers for each dimension derived from primitive polynomials
over a finite field.

The properties of Sobol sequences are notable for their uniform distribution, as the sequence fills
the space more uniformly than uncorrelated random points. This means that the proportion of points
within any small region of the unit hypercube should be approximately equal to the region’s vol-
ume. Moreover, the sequences exhibit low discrepancy, meaning they have a lower deviation from
the uniform distribution compared to random sequences. They also maintain good projection prop-
erties onto lower-dimensional subspaces, retaining their low-discrepancy nature even when some
dimensions are ignored.

B.2.5.4.1.2 Generalized Polar Coordinate System

The Generalized Polar Coordinate System is an extension of the traditional two-dimensional polar
coordinate system, adapted for higher-dimensional spaces, specifically for |N | − 1 dimensions.
This system represents a point using one radial coordinate and |N | − 2 angular coordinates. The
radial coordinate, denoted as r, indicates the point’s distance from a central reference point or the
origin and is a non-negative number. It is defined similarly across all dimensions, given by r =√
x2
1 + x2

2 + · · ·+ x2
|N |−1, where x1, x2, . . . , x|N |−1 are the Cartesian coordinates of the point.

The angular coordinates, denoted as θ1, θ2, . . . , θ|N |−2, are generalizations of angles to higher di-
mensions. These angular coordinates are akin to angles in a plane but are extended to encompass
|N | − 1 dimensions. The first |N | − 3 angles, θ1, . . . , θ|N |−3, typically range from 0 to π. In con-
trast, the final angle, θ|N |−2, varies from 0 to 2π, similar to the azimuthal angle in traditional polar
coordinates.

The angular coordinates on the sphere are independent and have probability density functions:

f(θ|N |−3) =
1

2π
,

and
f(θj) =

1

B
(

|N |−j−2
2 , 1

2

) sin(|N |−j−3)(θj),

for 1 ≤ j < |N | − 3, where B is the beta function. The B function scales the sin(|N |−j−3)(θj)
term such that when you integrate f(θj) over the interval [0, π], the result is one to reflect the total
probability theorem. The cumulative distribution function for the angular coordinates is as follows:

Fj(θj) =

∫ θj

0

fj(u) du. (70)
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B.2.5.4.2 SAMPLING PROCESS Mitchell et al. (2022) propose an approach to estimate Shapley
values using a Sobol sequence. Initially, they generate a set of samples Y within the unit range
[0, 1]|N |−2 using the Sobol sequence. These samples serve as the cumulative distribution function
value for the angular coordinates on the hypersphere S|N |−2. Using root-finding techniques, the
angles are then obtained by solving a specific equation, indicated as Equation 70. They set the
radius to one to ensure all samples are on the hypersphere’s surface. In the next step, the location of
the samples in the Cartesian coordinates system is calculated. These samples on the hypersphere are
subsequently projected onto the hyperplane of the permutohedron. The permutohedron hyperplane
is defined by the equation

∑|N |
i=1 π

−1(i) = |N |(|N |+1)
2 . They apply the projection using the matrix

outlined in Equation 66. Following the projection, the points on the permutohedron hyperplane are
mapped to the nearest vertex of the permutohedron, corresponding to a vertex of the Cayley graph.
Finally, with the obtained set of n sampled permutations, they estimate Shapley values for the i-th
player using the following equation:

ϕi ≈
1

n

∑
j∈[1,...,n]

[
v([π(j)]i−1 ∪ {i})− v([π(j)]i−1)

]
, (71)

where v denotes the payoff function that takes players as input, and [π(j)]i−1 includes the players
preceding player i in a given permutation π(j), with ϕi representing the Shapley value for the i-th
player. The procedure is detailed in Algorithm 8.

Algorithm 8 Sobol Sequences on the Sphere for Shapley Value Estimation

1: Input: Number of samples n, value function v.
2: Result: Estimation of Shapley value ϕi for the i-th player.
3: ϕi = 0.
4: Y = SobolSequence (n, |N | − 2).
5: for y in Y do
6: θ = 0.
7: for j = 1 to |N | − 2 do
8: θj = F−1

j (yj).
9: end for

10: x = PolarToCartesian(r = 1, θ = θ).
11: x̂ = U⊤x.
12: π = argsort(x̂).
13: ϕi = ϕi + v([π]i−1 ∪ {i})− v([π]i−1).
14: end for
15: ϕi = ϕi/n.
16: return ϕi.

B.3 MULTILINEAR EXTENSION

This family of methods estimates Shapley values by approximating the multilinear extension formu-
lation of Shapley values, which is as follows:

ϕi =

∫ 1

0

ei(q) dq, (72)

where ei(q) measures the expected increase in value when player i joins a random subset of other
players. This is calculated as

ei(q) = E
S∼Uniform(P(N\{i}))

[v (S ∪ {i})− v (S)] , (73)

and Uniform (P (N \ {i})) refers to a uniform distribution over the power set of N \ {i}, meaning
all possible groups of players excluding player i are equally likely to be chosen.

Okhrati & Lipani (2021) propose to estimate Shapley values by approximating the integral in Equa-
tion 72. To estimate the integral ϕi =

∫ 1

0
ei(q) dq using a Riemann sum, the interval from 0 to 1

34



Under review as a conference paper at ICLR 2025

is divided into Q equal subintervals of width ∆q = 1
Q . Sample points q1, q2, . . . , qQ are chosen

in each subinterval. The function ei(q) is estimated at these points using a Monte Carlo simulation
with M samples. The values ei(q1), ei(q2), . . . , ei(qQ) are obtained through this simulation. Each
rectangle’s area, calculated with height ei(qk) estimated by Monte Carlo and width ∆q, is computed.
The Riemann sum

∑Q
k=1 ei(qk) ·∆q is the sum of these areas and approximates the integral ϕi. The

final procedure proposed by Okhrati & Lipani (2021) is provided in Algorithm 9. In this algorithm,
v′ represents the payoff function, which inputs an indicator vector. The variable Q determines the
precision of the Riemann sum. The term M specifies the accuracy of the Monte Carlo estimation
for approximating the expectation value in Equation 73. Line 7 of the algorithm ensures that player
i is not included in the coalition represented by the binary vector x. Subsequently, in line 8, the
marginal contribution of player i in the coalition denoted by x is computed, where ei refers to the
i-th unit vector:

Algorithm 9 Owen Sampling for Shapley Value Estimation

1: Input: Value function v′, Q, M .
2: Result: Estimation of Shapley value ϕi for the i-th player.
3: ϕi = 0.
4: for q in [0, 1/Q, 2/Q, . . . , 1] do
5: for m = 1 to M do
6: x = Bern(q).
7: x[i] = 0.
8: ϕi = ϕi + v′ (x+ ei)− v′(x).
9: end for

10: end for
11: ϕi = ϕi/(M(Q+ 1)).
12: return ϕi.

Okhrati & Lipani (2021) propose to utilize antithetic sampling to reduce the variance of the estimator
provided in Algorithm 9. To achieve this, each sample needs to be paired with the sample with the
least correlated. Regarding coalitions represented by indicator vectors, this corresponds to 1 − x,
where x denotes the sampled coalition. The updated procedure is provided at Algorithm 10. Note
that as the number of samples in the inner loop is doubled, q in the outer loop goes only to 0.5
instead of 1. In this way, the total number of samples remains the same at (M(Q+1). Owen (1972)
propose the multilinear extension to games. Hence, Okhrati & Lipani (2021) names algorithms 9
and 10 Owen sampling and Halved Owen sampling.

Algorithm 10 Halved Owen Sampling for Shapley Value Estimation

1: Input: Value function v′, Q, M .
2: Result: Estimation of Shapley value ϕi for the i-th player.
3: ϕi = 0.
4: for q in [0, 1/Q, 2/Q, . . . , 0.5] do
5: for m = 1 to M do
6: x = Bern(q).
7: x[i] = 0.
8: ϕi = ϕi + v′ (x+ ei)− v′(x).
9: x = 1− x.

10: x[i] = 0.
11: ϕi = ϕi + v′ (x+ ei)− v′(x).
12: end for
13: end for
14: ϕi = ϕi/(M(Q+ 1)).
15: return ϕi.

B.3.1 CONNECTION TO STRATIFIED SAMPLING

The multilinear extension for estimating Shapley values is related to stratified sampling. In stratified
sampling, the population is divided into different groups or strata, and samples are taken from each
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stratum. Each value of q in the integral from 0 to 1 in the Shapley value estimation process can
be considered as defining a stratum. This is because q sets the expected size of the coalition, S,
influencing the probability of including any particular player in a random subset. Each value of
q corresponds to a different stratum of coalition sizes. In the context of the Shapley value, ei(q)
represents the expected marginal contribution of player i when joining a randomly selected subset of
players, S, from all subsets not containing i. This is akin to taking a sample from the stratum defined
by q. The uniform distribution over the power set P(N \ {i}) ensures that each potential coalition
is equally likely to be chosen, analogous to ensuring equal representation of each stratum in the
sample. The integration of ei(q) from 0 to 1 aggregates the contributions across all these strata. The
expected contributions of player i across all possible coalition sizes, weighted by their probability,
are summed up by integrating. This parallels how results from different strata are combined in
stratified sampling to produce an overall estimate.
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