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ABSTRACT

Personalized federated learning aims to address data heterogeneity across local
clients in federated learning. However, current methods blindly incorporate either
full model parameters or predefined partial parameters in personalized federated
learning. They fail to customize the collaboration manner according to each local
client’s data characteristics, causing unpleasant aggregation results. To address
this essential issue, we propose Learn2pFed, a novel algorithm-unrolling-based
personalized federated learning framework, enabling each client to adaptively se-
lect which part of its local model parameters should participate in collaborative
training. The key novelty of the proposed Learn2pFed is to optimize each local
model parameter’s degree of participant in collaboration as learnable parameters
via algorithm unrolling methods. This approach brings two benefits: 1) math-
matically determining the participation degree of local model parameters in the
federated collaboration, and 2) obtaining more stable and improved solutions. Ex-
tensive experiments on various tasks, including regression, forecasting, and image
classification, demonstrate that Learn2pFed significantly outperforms previous
personalized federated learning methods.

1 INTRODUCTION

Federated learning (FL) is an emerging collaboration paradigm that was first introduced in (McMahan
et al., 2017). Since only an update to the current global model is uploaded in FL, instead of raw
datasets, it can protect data privacy. Due to this characteristic, it is widely used in finance (Long
et al., 2020), healthcare (Nguyen et al., 2022), smart cities (Zheng et al., 2022), and other fields.
However, data heterogeneity across local clients creates deviations between local models and the
global model so that they cannot reach the consensus (Wang et al., 2020). Hence, personalized
federated learning (Tan et al., 2022; Kulkarni et al., 2020) has been explored to train improved local
models within the federated learning framework, instead of relying solely on a global model.

Previous research in personalized Federated Learning (FL) has traditionally emphasized training
local models with all parameters, as shown in Figure 1(a). This has been achieved through two
predominant approaches. Finetuning-based personalized FL methods adapt the local model from the
global model, in line with established FL techniques such as FedAvg (McMahan et al., 2017) and
FedProx (Li et al., 2020a), utilizing finetuning (FT) across all local model parameters. Similarly,
model-based personalized FL methods (Li et al., 2021; T Dinh et al., 2020) have garnered popularity
by introducing regularization terms with adjustable hyper-parameters to balance the relationship
between local models and the global model. In addition, recent studies have found that involving
only a subset of parameters in collaboration can yield better results than involving full parameters in
FL, relying on heuristic parameter selection (Arivazhagan et al., 2019; Collins et al., 2021; Pillutla
et al., 2022) or binary decision learning (Setayesh et al., 2022; Isik et al., 2023), as illustrated in
Figure 1(b). However, these works do not examine to what degree these chosen partial parameters
should be integrated into the federated learning process. The limited variability caused by binary
selection hinders the creation of personalized models that could better adapt to local data.

Motivated by this, we aim to learn to determine which part of a local model should participate in
federated learning and further to what degree, as illustrated in Figure 1(c). To achieve this, our key
idea is to consider each parameter’s degree of participant in collaboration as one learnable variable,
and then optimizes those parameters in algorithm unrolling. Following this spirit, we propose a novel
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algorithm-unrolling-based personalized federated learning framework, Learn2pFed. Specifically, it
unrolls the parameters, originally in the iterative algorithm that can indicate the degree of participant
in collaboration, into layers of a deep network. Supervised by the sum of training losses collected
from all local clients, Learn2pFed adaptively learns the characteristics of the local data and select
appropriate partial parameters. (a) Full parameters (b) Partial parameters with    

binary decision

(c) Adaptive partial parameters

Client 𝑖 Client 𝑗

…

Server

0+∞
Degree of participant 

in collaboration

Figure 1: Three federated ways of local model parameters:
sending (a) full parameters; (b) partial parameters with binary
decision; (c) adaptive partial parameters. We aim to determine
the part and the degree of local model parameters that partici-
pate in federated collaboration.

Compared to previous works,
Learn2pFed has two distinct advan-
tages: 1) it dynamically determines
which parameters of the local
model need to collaborate in FL
and to what degree, thus adapting to
the local data better and improving
the performance of personalized
FL; and 2) it leverages algorithm
unrolling to make hyper-parameters
learnable and significantly improves
the model capability.

To evaluate Learn2pFed, we con-
sider various personalized FL tasks including regression, forecasting and image classification on
different datasets: synthetic polynomial data, power consumption data, Fashion-MNIST (Xiao et al.,
2017) and CIFAR-10 (Krizhevsky et al., 2009). Learn2pFed outperforms the previous personalized
FL methods in the above three tasks.

Our main contributions are three-fold: (1) We introduce adaptive collaboration in personalized
federated learning by enabling each client to select which part of its local model parameters should
participate in personalized federated learning, addressing data heterogeneity and improving ag-
gregation results. (2) We propose a novel algorithm-unrolling-based framework Learn2pFed for
personalized federated learning to optimize the degree of participant for each model parameter in
collaboration, which turns the fixed hyper-parameters in the optimization into learnable parameters in
our framework. (3) We conduct extensive experiments in various tasks, and show that the performance
is competitive with state-of-the-art methods.

2 RELATED WORKS

Vanilla federated learning: Federated learning (McMahan et al., 2017) enables multiple local clients
to collaboratively train a global model without sharing their raw data. The basic idea is to distribute
the training process across clients, with each training the model on its local data. The local models
are then aggregated into a global model in the server, which is then sent back to the local clients for
further training. This process is repeated iteratively until the global model converges to a satisfying
level of accuracy. It assumes that the datasets from different clients are sampled from the same
distribution, however, such data homogeneity assumption does not hold in practice.

Personalized federated learning: Personalized federated learning (Tan et al., 2022) aims to address
data heterogeneity across local clients in federated learning by mainly two approaches: personalizing
the global model or learning the personalized model. The first approach focuses on generalizing
the global model and local adaptation. It involves training a single global model that is then
applied in downstream tasks using techniques like finetuning and knowledge transfer (Kairouz et al.,
2021). While effective, this approach may not fully capture the unique characteristics of individual
clients’ data. The second approach, which our method belongs to, aims to provide personalized
solutions within the federated learning framework. By modifying the learning process with full
model parameters in FL, these personalized FL methods are presented in a variety of ways through
optimization on the well-designed objective functions (T Dinh et al., 2020; Li et al., 2021; Lin
et al., 2022), meta-learning (Fallah et al., 2020), clustering (Sattler et al., 2020; Marfoq et al., 2022),
generative networks (Shamsian et al., 2021), etc. In addition, some works (Arivazhagan et al., 2019;
Collins et al., 2021; Pillutla et al., 2022) realize that personalization with full parameters may be
unnecessary, and manually divide them into personal parameters and shared parameters, where only
the former is updated locally. Another branch of works enables clients to selectively share a dynamic
parameter subset, including methods such as parameter prunning (e.g., FedClip (Lu et al., 2023),
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FedMP (Jiang et al., 2022)), and subnet training (e.g., HeteroFL (Diao et al., 2021), FedPM (Isik
et al., 2023)). Rather than learning pruning parameters to determine the shared part of model in a
binary manner, our proposed method leverages algorithm unrolling to transform the traditionally
fixed parameters into learnable ones, enabling continuous refinement of model personalization.

Algorithm unrolling: Algorithm unrolling (Monga et al., 2021) is a technique that unrolls one specific
iterative optimization algorithm, e.g., the iterative shrinkage and thresholding algorithm (ISTA (Beck
& Teboulle, 2009) ), the alternating direction method of multipliers (ADMM (Boyd et al., 2011)),
into stacked layers of a deep network. Then, each forward propagation of the network is equivalent
to performing several iterations of the iterative algorithm. In this way, unrolling enhances both the
representation ability of the iterative algorithm and the generalization ability of the generic neural
networks, thus reaching an attractive balance. For these advantages, it has been widely applied
in various domains, including the context of sparse coding (Gregor & LeCun, 2010), compress
sensing (Yang et al., 2018) and signal denoising (Chen et al., 2021; Vu et al., 2021; Li et al., 2020b). In
our work, we leverage deep unrolling to determine the personal parameters in personalized federated
learning, bridging the gap between iterative algorithms and the federated learning framework.

3 PRELIMINARY

The personalized federated learning framework consists of one parameter server and M local clients,
where the i-th client holds the local data Di = {Xi, Yi} with Xi ∈ Rni×k, Yi ∈ Rni generated from
one of the unknown models. ni denotes the number of samples in the i-th client and k denotes the
feature dimension. Let w ∈ Rk be the global model parameters, and vi ∈ Rk be the i-th local model
parameters for i ∈ [M ], where we denote the set {1, 2, . . . ,M} for any integer M as [M ].

Generally, the objective of personalized FL is formed as the local objectives Li(vi;w
∗) given the

optimized global model w∗, composed of local empirical loss Fi(vi) on the local training data in the
i-th client and the regularized term ∥vi−w∗∥2 indicating the distance between the global model and
local model. Mathematically, the optimization of personalized FL is typically formed as below.

min
vi

Li(vi;w
∗) = Fi(vi) + λ∥vi − w∗∥2, s.t. w∗ = argmin

w

M∑
i=1

piLi(v
∗
i ;w), (1)

where λ and {pi} are two kinds of positive hyper-parameters in personalized FL, and {·} denotes
the abbreviation of {·}Mi=1. Specifically, λ regularizes the similarity between the global model and
local models, with larger values of λ indicating stronger similarity. When λ→∞, personalized FL
degrades to the general FL; when λ=0, personalized FL degrades to the local independent learning.

While (1) provides the mathematical form commonly used in personalized federated learning methods,
it has a limitation arisen from treating the entire local parameter model as a single entity, thus
overlooking the unique characteristics of local data. This limitation may hamper the ability to
adapt the model to individual data distributions and can result in worse performance in personalized
federated learning. Therefore, it becomes crucial to address this limitation and develop a solution by
learning the specific parameters of local models in collaboration.

In this regard, we propose Learn2pFed, a novel framework that entails redesigning the formulation
of (1). We will delve into the details of the Learn2pFed framework in the next section.

4 Learn2pFed: UNROLLING-BASED PERSONALIZED FL FRAMEWORK

To determine which specific parameters of the local models should participate in the federated
learning, this section introduces Learn2pFed, a novel deep unrolling framework for personalized
federated learning from both aspects of mathematical optimization and federated implementation.
We further discuss its characteristics including parameters, communication and privacy.

4.1 OVERALL OPTIMIZATION

Based on the original optimization problem (1), we introduce another crucial component, Λi, along-
side the aggregation weight variable pi. This addition allows us to achieve personalized regularization
for each model parameter, further enhancing the adaptive federated aggregation.
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Regularized variable Λi: Instead of using a scalar λ in (1) to regularize all model parameters, we
introduce a personalized diagonal matrix Λi ∈ Rk×k for the i-th client for element-wise regulariza-
tion. Each element (Λi)jj is a positive value, indicating the degree of each model parameter that
participates in the federated collaboration. This matrix enables customized regularization for different
parameters within each client’s local model. Such fine-grained personalized regularization allows
for adaptive control of the degree of participant in collaboration, improving model performance by
tailoring the regularization to the specific characteristics of each client’s data.

Subsequently, the overall optimization of Learn2pFed is formulated as a bi-level optimization prob-
lem, which involves the learning objective Pf ({vi}, w) and the constraint problem Pb({Λi, pi}):

min
{vi},w

Pf ({vi}, w) =
1

M

∑M

i=1
pi

(
Fi(vi) + (vi − w)⊤Λi(vi − w)

)
s.t. {Λi, pi} = arg min

{Λi,pi}
Pb({Λi, pi}) =

∑M

i=1
Fi(v

⋆
i ),

(2)

where v⋆i is the output ofPf ({vi}, w) and Fi(v
⋆
i ) denotes the local training loss in the i-th client based

on the specific tasks, such as Mean-Squared-Error (MSE) loss for regression or Cross-Entropy (CE)
loss for classification. Intuitively, (2) aims to output the learned local model {vi} for personalized FL,
while learning the adaptive collaboration pattern via learnable parameters {Λi, pi}with the supervised
information in the form of the sum of local training losses. Unlike (1), (2) also includes the learning
of {Λi, pi}, thus it can adaptively determine the specific part of local model parameters involved in
the collaboration, allowing for a more flexible and effective personalized federated learning process.
To address the optimization problem presented in (2), we leverage algorithm unrolling. Specifically,
our approach involves solving the objective of (2) using a single optimization algorithm, as discussed
in Section 4.2. Subsequently, we unroll this algorithm into layers and train a deep network, as
explained in Section 4.3.

4.2 OPTIMIZATION ALGORITHM

This sub-section aims to solve the learning objective of (2) with fixed parameters {Λi, pi}. Since the
global model and local models are coupled in Pf ({vi}, w) in (2), the alternating direction method
of multipliers (ADMM (Boyd et al., 2011)) is a way to split the variables into local sides and the
global side. Specifically, we introduce the auxiliary variable {zi} indicating the consensus constraint
in the local. It brings two benefits: 1) it decouples the global and local model so that solving the local
variables can be carried out in parallel in each client; 2) it allows for a more flexible expression of
constraints making the problem easier to solve. Then, Pf ({vi}, w) in (2) is reformulated as below.

min
{zi},{vi},w

Pf (zi, vi, w) =
1

M

∑M

i=1
pi

(
Fi(vi) + z⊤i Λizi

)
s.t. zi = vi − w. (3)

For faster convergence, we also provide its augmented Lagrangian as

Lpi,ρi,Λi
({vi},{zi},w; {αi})=

1

M

∑M

i=1
pi

(
Fi(vi) + z⊤i Λizi +

ρi
2
∥zi − vi + w + αi∥2

)
, (4)

where {αi} are Lagrangian multipliers in the local and {ρi} are positive hyper-parameters. That is,
taking the regression problem as example where Fi(vi) = ∥Xivi − Yi∥2, the ADMM alternatively
optimizes {vi} , {zi} , w, {αi} by solving the following sub-problems in the ℓ-th iteration.

vℓi := argmin
vi

∥Xivi − Yi∥2 + ρi

2

∥∥zℓ−1
i + wℓ−1 + αℓ−1

i − vi
∥∥2 , (5)

zℓi := argmin
zi

z⊤i Λizi +
ρi

2

∥∥zi − vℓi + wℓ−1 + αℓ−1
i

∥∥2 , (6)

wℓ := argmin
w

M∑
i

piρi

2

∥∥zℓi − vℓi + w + αℓ−1
i

∥∥2 , (7)

αℓ
i := αℓ−1

i + ρi
(
zℓi − vℓi + wℓ

)
. (8)

Since it follows the standard ADMM, its convergence is guaranteed by (Hong et al., 2016; Hong &
Luo, 2017). After performing multiple iterations, e.g., L iterations, till convergence as described
above, we obtain the local model {vLi }.
However, determining {Λi, pi, ρi} plays a critical role in (5)-(8) since each has a distinct impact on
the performance and convergence behavior. For example, the elements of Λi control the similarity
between local and global models for specific features. Tuning these elements influences the models’
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the  -th cell in Learn2pFed

Figure 2: Illustration of the ℓ-th cell in Learn2pFed. It unrolls (9)-(12) into one four-layer cell of the
deep network. Black lines indicate the flow of intermediate variables, e.g., {wℓ, αℓ, zℓi , v

ℓ
i} in the ℓ-th

cell. Blue line indicates the local data flow, which however, will not be shared across clients.

behavior in capturing global patterns. Similarly, ρi affects the convexity and underfitting of local
models. Balancing ρi is crucial to avoid overfitting or excessive similarity. But selecting suitable
{Λi, pi, ρi} is challenging due to their interplay and sensitivity. Manual tuning is time-consuming
and prone to biases. Moreover, directly optimizing them in the original problem is not feasible for
the trivial solution. Therefore, how to determine {Λi, pi, ρi} is a big challenge, and we provide our
method making them learnable in the next section.

4.3 ALGORITHM UNROLLING

We introduce the proposed personalized FL framework Learn2pFed based on algorithm unrolling
to adaptively determine the learnable parameters in the above section. The key idea is to view the
parameters Θℓ = {Λℓ

i , p
ℓ
i , ρ

ℓ
i} in (5)-(8) as trainable parameters in a deep network with the input

and parameters as Φ({Xi, Yi}; {Θℓ}Lℓ=1), where local data {Xi, Yi} are privately stored in local
clients. Specifically, we solve the optimization in (5)-(8) iteratively, and model one of iterations as a
four-layer cell in Φ({Xi, Yi}; {Θℓ}Lℓ=1), as illustrated in Figure 2. Mathematically, we provide the
formulations of the intermediate outputs in the ℓ-th cell as follows.

αℓ
i ← Φ1(α

ℓ−1
i , vℓ−1

i , zℓ−1
i , wℓ−1; ρℓi) = αℓ−1

i + ρℓi(z
ℓ−1
i − vℓ−1

i + wℓ−1), (9)

vℓi ← Φ2(α
ℓ
i , z

ℓ−1
i , wℓ−1; ρℓi) = (X⊤

i Xi + ρℓiIk)−1(ρℓi(w
ℓ−1 + zℓ−1

i + αℓ
i) +X⊤

i Yi), (10)

zℓi ← Φ3(α
ℓ
i , v

ℓ
i , w

ℓ−1; ρℓi ,Λ
ℓ
i) = ρℓi(ReLU(Λℓ

i) + ρℓiIk)−1
(
vℓi − wℓ−1 − αℓ

i

)
, (11)

wℓ ← Φ4(α
ℓ
i , v

ℓ
i , z

ℓ
i ; ρ

ℓ
i , p

ℓ
i) =

∑
i p

ℓ
iρ

ℓ
i

(
vℓi − zℓi − αℓ

i

)∑
i p

ℓ
iρ

ℓ
i

, (12)

where Ik means the identity matrix with the dimension k, and the parameters Θℓ = {Λℓ
i , p

ℓ
i , ρ

ℓ
i} are

learnable. This is the main difference from the iterative algorithm in (5)-(8). In addition, we build
up the ReLU (LeCun et al., 2015) module to guarantee the diagonal element of {Λℓ

i} is positive,
which is given manually in the previous. In this way, the proposed Learn2pFed concatenates multiple
four-layer modules as described above into the deep network. It is worth noting that the update
sequence of the ADMM has little impact on its convergence, hence the decision to design the layers
is for easier federated implementation.

In the training stage of Learn2pFed, we consider the following optimization problem:

min
{Λi,pi,ρi}

Pb({Λi, pi, ρi}) =
∑M

i=1
Fi(v

L
i ), (13)

where Fi(v
L
i ) is the local training loss based on the output of the final layer. In contrast toPb({Λi, pi})

in (2), {ρi} introduced by the ADMM is also treated as the target variable in (13). Then, the parameters
{Λi, pi, ρi} are updated iteratively through the standard gradient descent.

In conclusion, the proposed Learn2pFed framework performs the iterative algorithm in forward
propagation, and trains the learnable parameters in the deep network supervised by the sum of
local training losses, which carries high-level information from other clients. Learn2pFed enjoys
the following benefits: 1) it adaptively learns{Λi,pi,ρi}during the training process, enabling it to
determine the degree of participation of each local model’s parameters in the collaboration. This
adaptive learning capability allows the framework to dynamically adjust the collaboration strategy
based on the specific characteristics of the data and the optimization problem at hand. 2) the
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integration of deep neural networks in Learn2pFed provides a powerful modeling capability. By
leveraging the expressive power of deep networks, the framework can capture complex patterns in
each local data, leading to improved performance over traditional iterative algorithms and heuristic
neural network approaches.

4.4 FEDERATED IMPLEMENTATION

We provide a detailed federated implementation of Learn2pFed. We initialize local learnable parame-
ters {Λℓ−1

i , ρℓ−1
i }, the local model, and its intermediate variables {vℓ−1

i , zℓ−1
i , αℓ−1

i } on the client
sides, where ℓ = 1. Additionally, we initialize global learnable parameters {pℓ−1

i , γℓ−1
i } and the

global model wℓ−1, with γℓ−1
i serving as a copy of {ρℓ−1

i } on the server side. We then introduce the
implementation on both client and server sides.

1) Client-Side Computation and Communication: In the client sides, Learn2pFed updates the
intermediate variables {αℓ

i , v
ℓ
i , z

ℓ
i} by (9), (10), (11), respectively, in the ℓ-th cell of the deep network

based on the learnable parameters {Λℓ
i , ρ

ℓ
i}. Note that when updating {vℓi}, since Fi(vi) can be

convex or non-convex, we need to discuss the solution separately, and take the two tasks that we
will face in the experiments for example. In regression tasks, we perform (10) directly. However, in
classification tasks, Fi(vi) is non-linear. Then we reformulate the update of {vℓi} in (10) using the
gradient descent as follows.

vℓi ← vℓ−1
i − lr ∗ ∂hi(vi)/∂vi, (14)

where we denote hi(vi) = Fi(vi) +
ρℓ
i

2

∥∥zℓ−1
i + wℓ−1 + αℓ

i − vi
∥∥2 based on (5). We find that the

approximation accuracy of the solution in this layer does not affect the convergence of the network
much in practice, so the learning rate lr can be artificially set.

As for the communication, each local client sends the vector vℓi − zℓi − αℓ
i and the local training loss

Fi(v
L
i ) to the server in each cell ℓ ∈ [L] and the final cell L of the network, respectively. Additionally,

each client receives the global model wℓ and the sum of local training losses across clients broadcasted
by the serveri n each cell ℓ ∈ [L] and the final cell L of the network, respectively. Finally, each client
leverages the sum of losses to independently update their learnable parameters {Λℓ

i , ρ
ℓ
i} using the

gradient descent method in the final cell L of the network in the client sides.

2) Server-Side Computation and Communication: In the server side, Learn2pFed updates the
intermediate variable wℓ by (8) in the ℓ-th cell of the deep network based on the learnable parameters
{pℓi , ρℓi}. Since {ρℓi} appears in both sides, we copy it as γℓ

i and update the only in the server side. In
terms of communication, the server broadcasts the updated global model wℓ and the sum of local
training losses back to all the clients in each cell ℓ ∈ [L] ann the final cell L of the network. At the
same time, the learnable parameters {pℓi , γℓ

i } are updated based on the sum of local training losses in
the server side using the gradient descent method in the final cell L of the network.

Then, the above computations and communications are repeated untill Learn2pFed converges. To
sum up, we summarize the overall algorithm in Alg. 1 in the Appendix A.2.

Discussion: Though FL framework avoids local data being exposed, the full model parameters may
still leak the data privacy by various attack methods (Fredrikson et al., 2015; Shokri et al., 2017). In
our framework, we send the linear combination of multiple local variables, which protects the local
client from such attacks. In addition, the server only collects local losses in the final layer, which also
will not leak sensitive information about local data. More discussions go to Appendix A.2.

5 EXPERIMENTS

In this section, we first conduct algorithm comparisons in a three-order polynomial regression task,
and investigate the characteristics of Learn2pFed through ablation studies. Further, we apply it in
both power consumption forecasting and image classification with the real-world data in various
personalized FL settings, demonstrating superior performance compared to baseline methods.

5.1 EXPERIMENTAL SETUP

Baselines. We compare our proposed Learn2pFed with 12 representative baselines under multiple
experimental settings. Local-Only indicates that each client trains an independent model using its local
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Table 1: Regression performance w.r.t. three personalized FL settings on synthetic data. The proposed
Learn2pFed achieves the best performance in all the three personalized FL settings.

Methods Type in FL Averaged RMSE
Setting 1 Setting 2 Setting 3

Local-Only - 0.0204 0.0149 0.0208

FedAvg Generalized 0.2067± 0.0070 1.6571± 0.1238 3.9092± 3.8794
FedProx Generalized 0.1351± 0.0418 0.4214± 0.4953 2.3072± 1.5184

FedAvg + FT Finetune 0.0023± 0.0001 0.0014± 0.0001 0.0716± 0.0973
FedProx+ FT Finetune 0.0132± 0.0179 0.0176± 0.0245 0.0109± 0.0150
FedPer Split layers 0.0006± 0.0008 0.0016± 0.0007 0.0029± 0.0026
FedRep Split layers 0.0175± 0.0045 0.0136± 0.0023 0.0154± 0.0027
pFedMe Optimization 0.0017± 0.0002 0.0111± 0.0004 0.0113± 0.0008
Ditto Optimization 0.0005± 0.0000 0.0011± 0.0007 0.0004± 0.0000
lp proj Optimization 0.0023± 0.0000 0.0015± 0.0000 0.0017± 0.0000

Learn2pFed Optimization 0.0002 ± 0.0002 0.0003 ± 0.0002 0.0003 ± 0.0002

data without federated collaboration. FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020a)
are two general FL baselines, while FedAvg+FT and FedProx+FT are their fine-tuning versions.
Other personalized FL baselines include FedPer (Arivazhagan et al., 2019), FedRep (Collins et al.,
2021), Ditto (Li et al., 2021), pFedMe (T Dinh et al., 2020), lp proj (Lin et al., 2022), CFL (Sattler
et al., 2020), and KNN-per (Marfoq et al., 2022). Note that cluster-based personalized FL methods
like CFL and KNN-per are only used in our classification tasks.

Training Details. We consider 500 communication rounds of FL and 2 epochs for each round with
the batch size of 64. We use Adam as the optimizer with a learning rate of 0.01. For regression and
forecasting tasks, we build up Learn2pFed following Alg. 1 with L = 10, while using MLP and
LSTM (Yu et al., 2019) as baseline models, respectively, for comparison. For image classification
tasks, we use Learn2pFed as a plug-and-play model that replaces the last layer of the original CNN
with a linear approximation; see more details in Appendix B.

5.2 POLYNOMIAL REGRESSION TASK

Dataset and Federated Settings. In this experiment, each client i has a distinct ground-truth
(gt) objective function fi(x) =

∑3
d=0 ai[d] · xd, where ai = [a0, a1, a2, a3] is the polynomial

coefficient vector. Different clients have different coefficient vectors, while they may share some
coefficients. Here, we consider three different settings: Setting 1: all clients share three coefficients,
i.e., ai[d] = aj [d];∀i, j;∀d ∈ {0, 1, 2}. Setting 2: all clients share two coefficients, i.e., ai[d] =
aj [d];∀i, j;∀d ∈ {0, 1}. Setting 3: all clients share one coefficient, i.e., ai[0] = aj [0];∀i, j. The
remaining coefficients are set distinctly across clients. Note that since high-order coefficients can
have a greater impact on the disturbance of the function, we prefer to keep the lower-order coefficients
the same across clients to increase the task’s difficulty. Finally, we generate local data by adding
Gaussian noise to the local gt function with a mean of 0 and a standard deviation of 0.1.

Results and Analysis. We perform the experiments for five independent trials with full 10-client
participation, and report the averaged Root-Mean-Squared-Error (RMSE) results in Table 1. We
see that (1) the optimization-based methods, including Ditto (Li et al., 2021) and lp proj (Lin et al.,
2022), perform better in terms of both accuracy and stability, as they exhibit smaller RMSEs and
variances compared to other approaches. However, the performance of the methods varies depending
on the complexity of the dataset. For example, in simpler Setting 1, Ditto and FedPer show better
performance than other methods, while in the more complex Setting 3, only Ditto outperforms other
methods. This suggests that the choice of the method depends on the characteristics of the dataset.
(2) Notably, Learn2pFed consistently outperforms other methods in fitting the polynomial model
across all experimental settings, indicating that Learn2pFed is effective in capturing the underlying
patterns in the personalized data and is robust to variations in the input. More visualization results
are shown in Appendix D.1.

Impact of Learnable Parameters. Table 4 in Appendix C.1 reveals that learning more learnable
parameters increases the representation power of Learn2pFed and improves the performance. Further,
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learning {ρi} in (8), which play a role like learning rates in forward propagation (9), is shown to be
not helpful enough. However, learning the parameters {pi,Λi} (especially {Λi}) plays an important
role in Learn2pFed since they are more concerned with the FL process.

Figure 3: Diagonal values of {Λi}. All
clients share the same initialization of
{Λi} (on the left). The right shows the
learned {Λi} in five clients by Learn2pFed
under Setting 1.

Impact of {Λi}. We evaluate the impacts of learning
{Λi} by comparing the the performance of Learn2pFed
achieved with and without learning {Λi} in Setting
1. We find that learning {Λi} greatly improves per-
formance. Specifically, the averaged RMSE is decreased
from 0.0026 to 0.0002, a 92% reduction. By further
analyzing the learned {Λi} in Figure 3, we see that the
element of the matrix (Λi)33 → 0 for all clients, which
are consistent with our expectation since (Λi)33 varies
across clients in Setting 1 and thus should be learned lo-
cally. Besides, it also suggests that ai[2] (in the ground-
truth objective function) need to be learned locally since
(Λi)22 → 0. Overall, these findings highlight the im-
portance of learning {Λi} in our Learn2pFed algorithm
and demonstrate its ability to adapt to the characteristics
of the underlying local data distribution.

Impact of the Number of Layers on Convergence. Figure 5 in Appendix C.1 shows the convergence
of Learn2pFed in synthetic data w.r.t. three personalized settings mentioned above. It demonstrates
that the deeper network, which unrolls more iterations L of the ADMM, leads to faster convergence
and more accurate solutions. Unless specified, we set L = 10 for the subsequent experiments.

5.3 POWER CONSUMPTION FORECASTING

Dataset and Federated Settings. We use the dataset Electricity Consuming Load (Lai et al.,
2018) (ECL1) for electical load forecasting, which includes power consumption records (Kwh) for
over 300 clients from 2011 to 2014. After data pre-processing, there are 313 candidate clients, each
with 105216 records. We perform experiments following two personalized FL settings: (a) Setting 1
of full client participation scenario: we select 5 clients that have the most distinct properties, which
are distinguished by using t-SNE technique (Van der Maaten & Hinton, 2008). (b) Setting 2 of partial
client participation scenario: we randomly sample 50 clients to participate at each FL round.. In both
cases, we split the local data of each selected client into train and test subsets in a ratio of 9:1.

Results and Analysis. We conduct five independent trials and report the averaged RMSE results
evaluated on the testing dataset in Table 2. From the table, we see that 1) different from the results in
regression simulation task, optimization-based methods, including pFedMe (T Dinh et al., 2020) and
lp proj (Lin et al., 2022), fail to perform well in such real-world complicated datasets and require
large tuning efforts. In contrast, Learn2pFed still outperforms the other approaches with lower
RMSEs. Additionally, we provide visualizations of the prediction results for both participating and
non-participating clients in Appendix D.2.2 to verify the performance of the proposed Learn2pFed.

5.4 IMAGE CLASSIFICATION

Dataset and Federated Settings. We use two classical image classification datasets in FL, CIFAR-
10 (Krizhevsky et al., 2009) and Fashion-MNIST (FMNIST) (Xiao et al., 2017) in two personalized
settings: 1) we consider full client participation with M = 10 clients using the Dirichlet distribu-
tion (Yurochkin et al., 2019) with argument βdir = {0.1, 0.5}, where a smaller βdir indicates the
greater heterogeneity among the clients. 2) we consider partial client participation in order to follow
the convention in federated learning literature, e.g., in Ditto and FedRep, where we perform the
experiments with 100 clients, and 10 clients of them are chosen randomly per round. We further split
the local data into training and testing sets at the ratio of 8:2 in both settings. In order to leverage
the powerful representation capabilities of the deep neural network, we use the features extracted
from the second-to-last layer of a CNN as the input of Learn2pFed. As a result, Learn2pFed aims to

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
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Table 2: Averaged RMSE for power consumption fore-
casting task. Lower is better. Our proposed Learn2pFed
consistently performs the best.

Methods Setting 1 Setting 2

Local-Only 0.0998 ± 0.0002 0.2166± 0.0001
FedAvg 0.3796 ± 0.1535 0.7465± 0.2454
FedProx 0.3799 ± 0.1533 0.7471± 0.2448
FedPer 0.0342 ± 0.0177 0.1181 ± 0.0737
FedRep 0.0341 ± 0.0178 0.1182 ± 0.0737
pFedMe 0.0522 ± 0.0276 0.1226 ± 0.0413
Ditto 0.0339 ± 0.0151 0.1168 ± 0.0754
lp proj 0.0733 ± 0.0550 0.1577 ± 0.1200

Learn2pFed 0.0307 ± 0.0001 0.0619 ± 0.0001

Figure 4: Communication cost and
accuracy comparisons. Learn2pFed
achieves the highest accuracy with mi-
nor communication cost.

linearly estimate the last fully-connected layer. Then, we jointly train the CNN and Learn2pFed with
only the latter involved in FL communication.

Results and Analysis. 1) Table 3 shows that our proposed Learn2pFed consistently outperforms base-
lines across different datasets and different levels of data heterogeneity, indicating the effectiveness of
learning to determine which parts of parameters for federation. 2) Figure 4 shows the communication
cost per-epoch (KB) and accuracy of several representative methods in CIFAR-10 with 10 clients and
βdir = 0.5. Combined with results in Table 3, we see that our proposed Learn2pFed achieves the
highest performance with minor communication cost, striking a great trade-off between communi-
cation cost and accuracy. This reveals another valuable property of our proposed Learn2pFed that
it not only achieves pleasant accuracy, but also helps relieve communication cost. This reduction
is attributed to Learn2pFed specifically replacing only the linear layers of the CNN model during
federation, effectively minimizing communication overhead.
Table 3: Averaged classification accuracy (%) w.r.t. different Dirichlet parameters (βdir) in CIFAR-10
and FMNIST in both settings, and communication (Comm.) cost (KB) per epoch. The proposed
Learn2pFed consistently outperforms the state-of-the-art methods in both accuracy and Comm. cost,
and the best results are in bold.

Settings 10 clients 100 clients Comm. cost (KB)

Dataset CIFAR-10 FMNIST CIFAR-10 FMNIST CIFAR-10 FMNIST

βdir 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.5 - -

Local-Only 85.60 57.82 92.26 87.95 71.25 50.43 92.20 87.46 0 0
FedAvg 30.05 31.01 76.04 77.87 30.69 40.37 84.86 83.24 62.01 10.29
FedProx 41.68 52.54 80.42 86.19 52.56 48.22 90.84 87.13 62.01 10.29
FedPer 89.12 66.84 96.55 91.67 84.08 64.10 97.54 90.88 61.16 5.28
FedRep 86.56 62.39 96.03 88.72 84.81 60.27 96.60 90.11 61.16 5.28
pFedMe 90.31 65.19 97.48 92.86 83.11 51.07 98.15 88.56 62.01 10.29
Ditto 87.30 64.72 96.57 90.34 83.60 54.87 97.23 89.24 62.01 10.29
CFL 87.35 64.29 96.89 90.31 88.15 51.90 95.48 89.60 62.01 10.29
kNN-Per 88.47 64.28 97.64 90.09 74.69 61.74 92.13 88.82 62.01 10.29

Learn2pFed 90.71 71.02 98.06 94.09 89.45 71.64 98.97 91.99 4.06 4.06

6 CONCLUSION

We introduce Learn2pFed, a novel framework for personalized federated learning through algorithm
unrolling. Our framework tackles the challenge of learning hyper-parameters that are typically
unlearnable in the optimization process. By allowing the learnable parameters to determine the
participation of local models in federated learning, we enhance adaptability of personalized FL
methods. Extensive experiments on synthetic, time-series, and natural image datasets demonstrate
the superior performance of Learn2pFed. Furthermore, as the unrolling-based framework, it holds
potential for application in various scenarios in personalized FL approaches.
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