Towards Explainable Diagnosis: A Self-learned Explanatory Knowledge
Base Approach

Anonymous EMNLP submission

Abstract

Explainable diagnosis requires to the process
of reaching diagnostic conclusions with clear
rationale that links a patient’s clinical phe-
nomenon to authoritative medical knowledge.
While large language models (LLMs) show
promise in supporting explainable diagnosis,
they often fall short due to insufficient di-
agnostic knowledge. To address this limi-
tation, we propose Self-learned Explainable
Knowledge Augmented Diagnosis (SEKAD),
a unified LLM-based framework for faith-
ful and explainable diagnosis. Our approach
builds a high-quality diagnostic knowledge
base through a record-driven explanation learn-
ing paradigm, as well as applies this knowledge
via an explanation-based diagnostic process
that ensures faithful inference. Experiments on
the DiReCT and JAMA benchmarks show that
SEKAD consistently outperforms strong base-
lines across the metrics. In particular, SEKAD
achieves absolute improvement of 12.4% in the
completeness of explanation metric over the
best existing methods, highlighting its effec-
tiveness in enhancing diagnostic explainability.

1 Introduction

Efficient diagnosis enables earlier interventions,
improving patient prognosis by preventing disease
progression or complications (Agha et al., 2022).
Automatic diagnosis can significantly improve di-
agnostic efficiency, an advantage that has been well
demonstrated in recent years by automatic diag-
nostic systems driven by machine learning (Ahsan
et al., 2022) and deep learning (Aggarwal et al.,
2021). In automatic diagnosis, diagnostic accuracy
is important, and explainable diagnostic results are
key to building trust.(Edin et al., 2024) Large lan-
guage models (LLMs) (Zhou et al., 2023) are con-
sidered as a potential choice for building more ex-
plainable automated diagnostic tools due to their
ability to generate coherent natural language output
(Singhal et al., 2023). However, LLMs still have

limitations in the quality of diagnostic explana-
tions due to lack of specialized medical knowledge,
especially concerning the explanatory aspect (Ji
et al., 2023). A promising direction to bridge this
knowledge gap is to leverage systematic, updatable
medical knowledge sources to guide LLM-based
explainable automated diagnosis.

The needs of explanatory diagnosis knowledge.
Human physicians rely on medical guidelines as di-
agnostic references to address complex cases. (Na-
tional Academies of Sciences et al., 2015) When
these knowledge sources are inherently explainable,
they can mitigate incomplete knowledge coverage
and biases inherent in the limitations of LLMs’
pretraining data. DiReCT (Wang et al., 2024a)
improves LLLMs’ faithfulness of explanations by
using a knowledge base constructed by experts
based on guidelines, demonstrating that LLMs can
benefit from manually crafted external knowledge
sources to enhance explainable diagnostic capabili-
ties. Thus, defining and building such explanatory
knowledge bases is a key strategy for advancing
explainable automatic diagnosis.

The construction of explanatory diagnosis
knowledge. Medical textbooks, clinical guidelines,
and academic literature constitute extensive and
readily accessible repositories of diagnostic knowl-
edge. Despite their value, these sources are in-
herently fragmented and independently structured,
making effective utilization a non-trivial task, even
for human clinicians, who typically master them
only through prolonged training and clinical expe-
rience. (Burnier, 2024) While LLMs exhibit strong
capabilities in information extraction and reason-
ing (Xu et al., 2024), studies have shown that their
performance in medical knowledge extraction re-
mains unstable (Agrawal et al., 2022). Challenges
persist in enabling LLMs to autonomously verify
and refine the accuracy of the knowledge they ac-
quire from these traditional, structured texts. In



contrast, medical records provide a vast accessible
data source. Although they lack explicit basic ex-
planatory annotations, the inherent links they reveal
between patients’ clinical phenomena and diagnos-
tic conclusions offer a valuable opportunity for the
large-scale, automated construction of explanatory
knowledge bases. Consequently, a key challenge
lies in how to automatically construct such knowl-
edge bases at scale and with high quality.

In this paper, we propose Self-learned
Explainable Knowledge Augmented Diagnosis
(SEKAD), an explainable diagnosis framework.
It consists of an explanatory knowledge base and
an explanation-based diagnosis process. To auto-
matically build a large and high-quality knowledge
base, we propose record-driven explanation
self-learning method. First, it enables LLMs
to autonomously acquire explanatory diagnostic
knowledge from unstructured patient records
by broad medical resources, guaranteeing the
quantity of the knowledge base. Furthermore, we
designed the diagnostic triangulation mechanism,
which guarantees that the acquired knowledge
is supported by multiple sources and could be
generalized. Diagnostic triangulation ensures the
quality of the knowledge base. Building upon
this knowledge base, we propose the explanation
augmented dual-phase diagnosis method, which
consists of differential diagnosis and definitive
diagnosis to avoid biased use of explanatory
knowledge. To validate the effectiveness of our
framework, we conducted extensive experiments
on two explainable diagnosis task. Our method
outperforms five existing baselines across mul-
tiple explainability metrics, and surpasses the
state-of-the-art method by 12.4% and 4.3% on
the completeness of explanation and faithfulness
of explanation metrics, respectively, in terms of
explanation faithfulness. Our contributions are
fourfold:

* We are the first to automatically construct an
explanatory diagnostic knowledge base for
explainable diagnosis. To bridge the knowl-
edge gap in automatic explainable diagno-
sis, we propose SEKAD, which includes
a method for building high-quality diagnos-
tic knowledge via record-driven explanation
self-learning, and a method for utilizing this
knowledge through explanation augmented
dual-phase diagnosis.

* We propose a novel record-driven expla-

nation self-learning method, which ensures
knowledge quantity through automatic self-
learning, and guarantees quality through diag-
nostic triangulation, a mechanism that filters
out misleading explanations via multi-source
validation.

* To utilize structured knowledge in the diag-
nostic process, we introduce explanation-
augmented dual-phase diagnosis, which mit-
igates the risk of over-relying on contextually
bias explanations by ensuring that each diag-
nosis is supported by comprehensive explana-
tion.

* Experiments on two explainable diagnos-
tic evaluation datasets demonstrate that our
method outperforms competing baselines, and
achieves superior performance in explanation
generation.

2 Related Works

LLM-based automatic diagnosis. LLMs in the
medical domain have achieved improved diag-
nostic accuracy through fine-tuning with domain-
specific data (Singhal et al., 2023). To enhance
explainability, recent work has introduced multi-
agent collaboration frameworks (Tang et al., 2023;
Kim et al., 2024) that allow LLMs to exhibit de-
tailed explainable thinking. However, such ap-
proaches face limitations due to insufficient medi-
cal knowledge. As noted in Medagents (Tang et al.,
2023), the lack of reliable domain expertise in the
reasoning process leads to reduced credibility of
the generated explanations.

Medical knowledge-enhanced LL.M. Several ap-
proaches have attempted to address this limitation
by incorporating structured knowledge into LLMs.
LLM-AMT (Wang et al., 2024b) enhances models
using curated medical textbooks, MedRAG (Xiong
et al., 2024) integrates broad-scope medical cor-
pora, and KGARevion (Su et al., 2024) employs
knowledge graphs for domain grounding. These
efforts demonstrate the potential of external knowl-
edge sources to augment the factual accuracy of
LLMs. Nonetheless, current methods primarily
focus on improving diagnostic performance, with
limited attention to enhancing the explanatory qual-
ity of model outputs. In response to this gap, we
propose the SEKAD framework, which constructs
a knowledge base specifically designed to support



explanation-oriented augmentation for LLMs in
automated medical diagnosis.

3 Method

In this section, we introduce SEKAD, an explain-
able automatic diagnosis framework augmented
by self-learned knowledge. SEKAD consists of
two parts: (1) Record-driven explanation self-
learning: Given a large amount of unstructured
medical records, autonomously mining explana-
tory diagnostic knowledge. (2) Explanation aug-
mented dual-phase diagnosis: Given a patient’s
clinical notes, under the guidance of explanatory
knowledge, the diagnosis executor first performs
differential diagnosis to identify the likely diag-
nosis, and then generates explanations linking the
patient’s clinical phenomena to the diagnosis in the
definitive diagnosis phase.

3.1 Record-driven Explanation Self-learning

Unstructured medical records, including patient
reports and clinical notes, reflect numerous connec-
tions between clinical phenomena and diagnostic
conclusions. However, the underlying explanations
for these connections are dispersed across authori-
tative medical knowledge sources such as medical
textbooks, clinical guidelines, and academic litera-
ture. Record-driven explanation self-learning aims
to automatically identify these connections from
medical records and learn the corresponding di-
agnostic knowledge from the medical knowledge
sources to build a structured explanatory knowl-
edge base.

3.1.1 Explanatory Knowledge Base

During the process of record-driven explanation
self-learning, an explanatory diagnostic knowledge
base B is incrementally constructed. This knowl-
edge base consists of structured knowledge units,
each capturing a link between a patient’s clini-
cal phenomenon and a corresponding diagnosis,
grounded by an explanatory rationale. Formally,
a knowledge unit k is defined as a tuple (p, e, d),
where:

* p: represents a single clinical phenomenon
observed in the patient, such as “dizziness”.

* d: represents the diagnosis for the patient, at
any level of granularity.

* e: represents a text-based explanation linking
the clinical phenomenon p to the diagnosis d.

The explanatory diagnostic knowledge base B is
defined as a collection of knowledge units k, where
B = {k1,ko,... . kn}.

To ensure that the explanatory diagnostic knowl-
edge base B provides faithful diagnostic insights,
the knowledge unit k£ must satisfy the following
principles:

Unit Specificity: Each knowledge unit £ must ad-
dress a single primary clinical phenomenon p. Al-
though concomitant phenomena may be referenced
within the explanation e, the core focus remains
singular, for example, focusing a unit k£ solely
on ’fever’ rather than requiring both ’fever’ and
"cough’, as knowledge aggregating multiple dis-
tinct phenomena would inherently possess a more
restricted scope.

Self-contained: For explanation e, all abbrevia-
tions of medical terms must be expanded to their
full, unambiguous nomenclature. For example, am-
biguous abbreviations like “MS” (which could refer
to “Multiple Sclerosis” or “Mitral Stenosis™) must
be explicitly expanded within e to avoid potential
misinterpretation. This expansion rule applies ex-
clusively to e, not to p or d.

Generalization: For explanation e, the clinical
phenomenon p is represented as a generalized clini-
cal concept rather than a concrete patient case. For
example, a specific observation such as "heart rate
of 120 bpm" should be transformed into a general
clinical descriptor as "tachycardia". This ensures
that the knowledge unit correctly captures the clin-
ical concept, making it applicable to all specific
situations that fall within that concept.

Faithfulness: Each explanation e should be ro-
bustly supported by evidence from multiple, in-
dependent and authoritative medical knowledge
sources, ensuring the faithfulness of the p <> d
association and thus preventing spurious associa-
tions.

The explanatory diagnostic knowledge base B
serves as a structured and verifiable repository of
validated diagnostic knowledge. During diagnosis,
relevant knowledge units £ = (p, e, d) are retrieved
to support explanation-based diagnosis. As illus-
trated in Figure 1, each unit is incorporated into B
through a sequential process of percept, explain,
and validate, which enables dynamic updates and
ensures knowledge quality.
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Figure 1: Overview of record-driven explanation self-learning. An initial explanation links dizziness to poorly
controlled hypertension based on disease-centered sources. Diagnostic triangulation with pharmacological references
reveals that dizziness may instead result from side effects of antihypertensive medications. This mechanism identifies
conflicting evidence and filters out potentially misleading diagnostic links.

3.1.2 Percept

Based on the original patient’s medical record R,
an LLM-based extractor'. is instructed to identify
documented diagnoses (d1, ..., dn,, € D) and sin-
gle clinical phenomena (py, ..., p, € P) as exact
textual spans. These spans are deliberately kept
in their original form at this stage to achieve more
semantically relevant retrieval when diagnosing
from medical records. Each span is retained only
if it matches the string in R and the similarity ex-
ceeds a predefined threshold. This identification
strategy decomposes the patient’s findings into in-
dividual phenomena p;, making each p; a basis for
potentially linking to identified diagnoses d;. By
ensuring each p; serves as the single phenomenon
pink = (p, e, d), this action guarantees unit speci-
ficity for k.

3.1.3 Explain

The explain action aims to find explainable clinical
knowledge that links clinical phenomena p with
diagnoses d from relevant authoritative medical
knowledge sources. Its input includes a specific
clinical phenomenon p identified from the patient’s
medical record R, and the corresponding diagno-
sis d. Together, p and d are concatenated to form
the search query. Using this query, a text retriever

"The prompt is shown in E.1.

TR searches for a relevant subset from the medical
knowledge sources T'. Subsequently, an explana-
tion generator? utilizes the retrieved subset 7' as
reference to generate the explanation e for pair
(p,d), guided by explicit instruction prompts de-
signed to ensure adherence to the principles of self-
contained and generalization. When the retrieved
subset 7' is insufficient to support a detectable as-
sociation between clinical phenomena p and diag-
nosis d, the generator does not produce an explana-
tion.

3.1.4 Validate

Ensuring the faithfulness of each knowledge
unit £ = (p,e,d) produced by these actions is
paramount for a reliable diagnostic knowledge base
B, especially given the known limitations of LLM
in generating faithful medical explanations. Based
solely on their initial source, some initially gen-
erated units contain incorrect p <> d associations
or associations valid only in specific contexts. To
address this crucial requirement, we introduce the
diagnostic triangulation mechanism designed to
verify the p <+ d association and its explanation e
against multiple, independent, authoritative medi-
cal knowledge sources.

Specifically, the validate action is performed by

>The prompt is shown in E.2.
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Figure 2: Overview of explanation augmented dual-phase diagnosis

an LLM-driven knowledge verifier, which lever-
ages deductive reasoning capabilities (Srivastava
et al., 2022). This validation is structured as a
three-stage process:

Validation against existing knowledge B: This
initial stage aims to prevent redundancy. The
knowledge verifier checks if the generated explana-
tion e for a given (p, d) pair aligns with knowledge
already validated and stored in B. For each such
(p, d) pair, the knowledge verifier retrieves the k-
top existing explanations from B and compares
them with e. If e is considered sufficiently similar
to any of the retrieved explanations, the knowledge
unit & is considered validated and passes this stage.
It is not added again to B to avoid duplication.

Consistency with medical record R: In the sec-
ond stage, the knowledge verifier assesses the inter-
nal consistency between the generated explanation
e and the original patient record R, ensuring that e
does not conflict with other conditions documented
in R.

Diagnosis triangulation by external evidence
T: Under the diagnosis triangulation mechanism,
knowledge validation is framed as a natural lan-
guage inference task, leveraging external evidence
T to assess the validity of a candidate knowledge
unit k. A concrete illustration of this mechanism
is provided in Figure 1, where conflicting evidence
from pharmacological literature challenges an ini-
tially misleading explanation. The external set T
is obtained by using the explanation e as a query
to retrieve heterogeneous knowledge not overlap-
ping with the original source 7'. In this task, the
retrieved evidence from T, together with the patient
record R, constitutes the premise, while the can-
didate knowledge unit k serves as the hypothesis.

The verifier then determines whether the premise
logically supports the hypothesis.

A knowledge unit k is validated and subse-
quently incorporated into the knowledge base B
only when it has passed the internal consistency
check against R and is also judged to be supported
by external knowledge under the diagnosis triangu-
lation process.

3.1.5 Reinforcement Learning via Direct
Preference Optimization

To jointly optimize the extraction of clinical phe-
nomena (percept) and the generation of faith-
ful explanations (explain), and to align with
the LLM’s capability of self-learning explanatory
knowledge, we adopt a reinforcement learning
framework based on direct preference optimiza-
tion (DPO) (Rafailov et al., 2023). This enables the
LLM agent 7y to learn from preference data D,
where each sample consists of a context x and a
preferred-less preferred pair (y ™+, y ™).

We construct a preference dataset D*, where
each instance consists of a context z, a preferred
output ™, and a less-preferred output y~. For the
explain action, the context = includes the patient
record and the specific phenomenon—diagnosis pair
under consideration. A generated knowledge unit
k; is considered preferred if it successfully passes
the validation process, receiving a binary reward
of Wg = 1, whereas an alternative k:; that fails
validation with Wg = 0 is treated as less preferred.

For the percept action, the context x is the pa-
tient record, and the preference is established be-
tween two sets of extracted phenomena. A set PT
is preferred if it leads to a higher aggregated down-
stream reward Wp(P™), in comparison to a set
P~ associated with a lower reward Wp(P™).



Formally, for each (x,y™,y ™), the training ob-
jective is:

Lppo = —10g0’ (f9($, y+) - "ﬁ@(l}y_)) , (1)
where 79(z,y) = Blog :ef(é'@ )) is the implicit re-
ward, and [ is a temperature parameter.

This approach unifies percept and explain within

the same optimization framework, improving the
efficiency of explanation learning.

3.2 Explanation Augmented Dual-phase
Diagnosis

With the accumulation of explanatory knowledge,
SEKAD performs explainable diagnosis under the
guidance of the knowledge base B. Given a patient
record without a diagnostic conclusion, SEKAD
outputs the most likely diagnosis along with a se-
ries of rationales that connect the patient’s clini-
cal phenomena to the proposed diagnosis. In this
method, an LLLM acts as the diagnosis executor,
querying explanatory diagnostic knowledge base
B through self-queries, and performing diagnosis
strictly under the guidance of this knowledge.

By simulating real-world clinical workflows, we
divide the diagnostic process into two complemen-
tary phases: differential diagnosis, which involves
evaluating and narrowing down the range of poten-
tial diagnoses to improve diagnostic accuracy, and
definitive diagnosis, which provides a detailed ex-
planation for the identified condition.

3.2.1 Differential diagnosis

In clinical practice, differential diagnosis refers to
the process by which physicians analyze specific
clinical phenomena to narrow down the range of
possible conditions. To implement this process, the
diagnosis executor adopts a bidirectional knowl-
edge retrieval strategy, as shown in Figure 2. First,
a preliminary analysis is performed to identify a
likely category of disease and initiates self-queries
such as “What are common symptoms or risk fac-
tors of this disease?” Based on the retrieved knowl-
edge unit k, if some clinical phenomena are not
mentioned, the executor then reverses the query-
ing direction by asking, “What diseases commonly
present with this phenomenon?” for those not yet
identified?.

During the differential diagnosis phase, diagno-
sis executor does not generate full explanations for
each tentative candidate diagnosis. This design

3The prompt is shown in E.7.

constraint is intended to avoid overconfident expla-
nations for provisional hypotheses; it helps mitigate
the risk of premature diagnostic anchoring arising
from excessive explanation at an early stage.

3.2.2 Definitive diagnosis

Since explanations in the differential diagnosis
phase remain incomplete, the definitive diagnosis
phase builds upon the initial hypothesis by perform-
ing more targeted knowledge retrieval focused on
the confirmed diagnosis. At this phase, the execu-
tor issues diagnosis-centered self-queries, aiming
to identify supporting evidence such as high-risk
factors and diagnostic gold standards. The objec-
tive is to provide a comprehensive explanation of
the patient’s clinical phenomena by matching them
with validated knowledge units k. Only success-
fully matched knowledge is used to construct the
definitive explanation. If contradictions arise or suf-
ficient supporting evidence is lacking, the diagnos-
tic process is designed to revert to the differential
diagnosis phase for further exploration.

4 Experiments

4.1 Benchmarks
4.1.1 DiReCT

The DiReCT dataset (Wang et al., 2024a) com-
prises 511 physician-annotated clinical notes from
MIMIC-IV (Johnson et al., 2020), meticulously
detailing diagnostic processes and final diagnoses.
It defines an explainable diagnostic task where,
given a patient’s clinical record R and a graph con-
structed from all diagnoses G, the model must find
the path to the primary discharge diagnosis, select
relevant observational phenomena p, and provide
corresponding explanations e. The benchmark also
provides an expert-curated knowledge graph /C,
which contains guideline knowledge for each diag-
nostic node in G, used as an external knowledge
baseline, for example DiReCT w/ K. Our evalu-
ation primarily focuses on three core aspects: ac-
curacy of diagnosis Acc® and Acc¥®2, complete-
ness of observation Obs“°™P, and faithfulness of
explanation Fxzp™ and Exp. For a detailed ex-
perimental setup and metric specifics, please refer
to Appendix B.2.1.

4.1.2 JAMA Clinical Challenge

The JAMA Clinical Challenge dataset (Chen et al.,
2025) comprises complex, text-based clinical cases
sourced from the Journal of the American Medical



Method Acc™ Acc®™® Obs©™ Ezp™® Erpt
GPT4
DiReCTw/ G 0.804 0.610 0.391 0.481 0.210
DiReCT w/ K 0.808 0.611 0.371 0.645 0.273
DeepSeek-R1
coT 0.690 0.586 0.192 0.263 0.071
DiReCTw/ G 0.830 0.687 0.322 0.430 0.152
DiReCT w/ K 0.812 0.611 0.324 0.615 0.222
SEKAD 0.889 0.694 0405 0.769 0.316
DeepSeek-V3
CcoT 0.702 0.585 0.185 0.276 0.065
DiReCTw/ G 0.796 0.587 0.346 0.321 0.131
DiReCT w/ K 0.808 0.635 0.351 0.492 0.202
KGARevion 0.792 0.629 0.239 0.345 0.094
MDAgents 0.688 0.566 0.218 0.349 0.099
MedAgent 0.740 0.599 0.205 0.319 0.076
MedRAG 0.817 0.640 0.288 0.232 0.069
SEKAD 0.847 0.653 0.400 0.759 0.312

Table 1: Performance comparison on the DiReCT bench-
mark. Bold indicates the best result.

Association, featuring multiple-choice diagnostic
questions and expert-authored explanations. For
this task, models predict the most probable diag-
nosis and generate corresponding explanations for
presented clinical cases. Performance is evaluated
based on diagnostic prediction accuracy and ex-
planation quality, using G-Eval (Liu et al., 2023)
metrics, including coherence, consistency, and rele-
vance, which are scored by an LLM-based eval-
uator. For further details on the dataset, task
setup, and metrics specifics, please refer to Ap-
pendix B.2.2.

4.2 Baselines

We evaluate our proposed method with five dis-
tinct baselines, including the Chain-of-Thought
(COT) (Wei et al., 2022) method and four lead-
ing medical-enhanced QA approaches: MedAgents
(Tang et al., 2023), MDAgent (Kim et al., 2024),
MedRAG (Xiong et al., 2024), and KGARevion
(Su et al., 2024).

On the DiReCT benchmark, we also include the
official baseline method for comparison, which con-
sists of two configurations: G, a diagnosis graph
representing structured diagnostic relationships,
and /C, which incorporates expert knowledge from
diagnostic guidelines at intermediate steps of the
diagnostic process.

4.3 Result

We present the evaluation results on the DiReCT
benchmark in Table 1. Our method outperforms all

Method Acc Relev. Coh. Consist.

DeepSeek-V3
COT 0.711 4.672 4.945 4.305
KGARevion 0.631 4.331 4.852 4.101
MDAgents 0.691 4.531 4.711 4.141
MedAgent 0.450 3.651 3.705 3.537
MedRAG  0.400 3.745 3.570 3.282
SEKAD 0.771 4.672 4.740 4.313

Table 2: Performance comparison on the JAMA bench-
mark. Bold indicates the best result.

six provided baselines and achieves improvements
of 8.4%,1.4%, and 4.3% over the best-performing
baseline in terms of accuracy of diagnosis, com-
pleteness of observation, and faithfulness of expla-
nation, respectively. Notably, the significant gain
in explanation faithfulness highlights our method’s
ability to generate clinically aligned reasoning. The
high score on Exp®™, which measures explana-
tion—observation consistency, further demonstrates
that SEKAD produces explanations that closely re-
flect expert reasoning based on the patient’s clinical
presentation.

We further observe that existing baselines gener-
ally underperform in explanation faithfulness. This
is primarily because, under this benchmark, only
explanations that correctly support the intended
diagnostic target are considered valid. Baseline
models tend to misinterpret evidence suggestive
of a disease as confirmatory, leading to inaccurate
diagnostic rationales. This highlights the effec-
tiveness of our dual-phase diagnostic process in
distinguishing between diagnostic suspicion and
confirmation.

Table 2 reports performance on the JAMA Clin-
ical Challenge dataset. SEKAD demonstrates
strong competitiveness in diagnostic accuracy as
well as in the relevance and consistency of the gen-
erated explanations compared to baselines. We
also note that COT exhibits superior coherence, be-
cause it relies solely on internal reasoning without
external information.

Due to the lack of imaging data, the diagnostic
context in the JAMA dataset is incomplete. Under
these conditions, many baseline models tend to en-
gage in over-reasoning or fall into heuristic bias, of-
ten performing worse than the base model. In con-
trast, SEKAD maintains robust diagnostic reason-
ing through its structured Differential-Definitive
two-stage explanatory framework. Among the



baselines, KGAREVION benefits from a knowl-
edge graph review mechanism that helps filter out
misinformation, while MDAGENTS avoids unnec-
essary complexity through adaptive task decom-
position. In comparison, MEDRAG, which relies
on text similarity-based retrieval, is more prone to
introducing irrelevant knowledge that may mislead
diagnosis.

4.4 Ablation Study

As shown in Table 3, the explanatory knowledge
base B plays a critical role in enhancing diagnostic
performance across all metrics. Removing B re-
sults in significant drops in Acc%22 from 65.3% to
56.9% and in Exp®™ from 73.1% to 50.2%, high-
lighting its centrality to both diagnostic accuracy
and explanation faithfulness. In contrast, ablat-
ing the diagnostic triangulation mechanism causes
a smaller reduction in Acc%28 to 63.9%, but still
leads to a notable decrease in Exp®™ to 56.8%.
This underscores that while diagnostic triangula-
tion does not directly boost classification accuracy,
it plays an essential role in ensuring the faithfulness
and completeness of generated explanations.

Method  Acc™ Acc® Qbs™™ Exp™™ Exzp™
DeepSeek-V3
w/io B  0.792 0.569 0.299 0.502 0.185
w/o D.T. 0.819 0.639 0.400 0.568 0.251
origin 0.847 0.653 0.400 0.731 0.295

Table 3: Ablation study results on the DiReCT bench-
mark. Bold indicates the best result. D.T. stands for
diagnostic triangulation.

4.5 Impact of Knowledge Scale on
Performance

The performance on accuracy of diagnosis, com-
pleteness of observations, and faithfulness of expla-
nation is shown, respectively, in Figure 3. Overall,
increasing the scale of the knowledge base leads to
consistent improvements, particularly in faithful-
ness of explanation, which grows from 17% to 29%,
demonstrating that richer knowledge significantly
enhances explanation faithfulness. Completeness
of observations also benefits from scale, though it
peaks around 41% before slightly declining, sug-
gesting a limit beyond which added knowledge
may become redundant. The diagnostic accuracy
exhibits slight fluctuations with increasing knowl-
edge base size but consistently remains higher than

the no-knowledge setting, indicating that the incor-
poration of structured medical knowledge enhances
diagnostic performance.
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Figure 3: Performance across different knowledge base
sizes.

4.6 Generalization to Unseen Diseases

To evaluate the generalizability of the constructed
knowledge base B, we perform an ablation study
by selectively masking domain-specific knowledge
at varying levels of granularity. The detailed exper-
imental setup is provided in Appendix C.1. Results
in Figure 4 show that even when specialized knowl-
edge varies, the model still benefits by 13%, 6%,
and 5%, respectively, across diagnostic metrics.
This suggests that knowledge from other special-
ties can aid differential diagnosis by helping to rule
out diseases from the perspective of shared clinical
phenomena. However, when masking is applied at
the catalog level, performance drops slightly within
specialties. This is likely because diseases within
the same specialty often share similar manifesta-
tions, making it harder for the model to distinguish
between them and increasing the risk of misdirec-
tion.

Accuracy Observation
08 0.40 030
0.64 0.38 0.28
026
024

0.22

Explanation

0.62 0.36
0.60 0.34
0.32
0.58 0.20
0.30 018

Masked Domain

I Al [ Speciality [ Catelog [ Diagnosis 1 None

Figure 4: Performance across different degrees of in-
domain knowledge masking.

5 Conclusion

We present SEKAD, a framework that automati-
cally builds and applies an explanatory diagnostic
knowledge base for interpretable medical diagnosis.
It combines record-driven explanation self-learning
and an explanation-augmented dual-phase diagnos-
tic strategy. Experiments on two benchmarks show
that SEKAD outperforms strong baselines in both
diagnostic accuracy and explanation quality.



Limitations

This work, while demonstrating promising results,
has inherent limitations. Our current framework
primarily operates on textual clinical data and does
not yet incorporate multimodal information or ex-
tend to multilingual clinical contexts. Furthermore,
its evaluation is currently limited to the scale of
existing benchmarks; scaling up to larger and more
diverse real-world datasets presents avenues for fu-
ture research. While our method utilizes SEKAD,
integrating and evaluating it with larger and more
advanced foundational models remains unexplored.

Ethics Statement

We affirm that all patient data utilized was strictly
anonymized and strictly adhere to the data Use
Agreement of the MIMIC dataset. We acknowl-
edge the imperative to address potential biases in
both data and algorithms to ensure equitable out-
comes. Besides, we use an Al assistant to check
the grammar. However, we double-checked and
made sure that the Al assistant did not change the
original meaning of the paper.
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A Details of Record-driven explanation
self-Learning

A.1 Datasets

Patient Records. We use PMC-Patients (Zhao
et al., 2022), a corpus of 167,000 patient summaries
extracted from case reports in PubMed Central.
Only unstructured patient narratives are utilized.

Medical Knowledge Sources. The explanatory
knowledge is retrieved from MedCorp (Xiong
et al., 2024), a comprehensive corpus that aggre-
gates data from various public biomedical reposito-
ries. MedCorp is composed of PubMed (containing
23.9 million biomedical articles), StatPearls (9,330
clinical decision support articles), medical text-
books (18 books, chunked), and Wikipedia (chun-
ked encyclopedia data). These components collec-
tively provide access to the latest biomedical re-
search, clinical decision support, foundational med-
ical knowledge, and general domain information,
forming a cross-source retrieval resource. These
sources serve as 1 or T’ depending on the retrieval
context.

A.2 Retrieval Method

We adopt MedCPT (Jin et al., 2023), a neural re-
triever optimized for zero-shot semantic search,
developed by the National Center for Biotechnol-
ogy Information (NCBI). For explanation gener-
ation, the top-5 relevant texts (|| = 5) are re-
trieved; for diagnostic triangulation, we retrieve
|T\ = 8 diverse knowledge entries to support cross-
validation.

A.3 LLM Backbone and Training Details

The core modules, including the extractor, expla-
nation generator, and knowledge verifier, are pow-
ered by Qwen-7B-Instruct. To align model pref-
erences with high-quality explanatory reasoning,
we apply Direct Preference Optimization (DPO)
using 200 preference samples from DeepSeek-V3
(Liu et al., 2024), with a batch size of 64, a peak
learning rate of 5 x 107%, and 3 epochs. We used
10 NVIDIA GeForce RTX 3090 GPUs (24GB) for
running DPO, and 2 GPUs for the whole learning
stage.
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B Details of Main Experiments
B.1 Baseline and SEKAD Configurations

KGAREVion utilizes PrimeKG as its structured
medical knowledge graph. For explanation verifi-
cation, we adopt the publicly released LLAMA-3
checkpoint provided by the original authors.

MedRAG Based on the MedCorp corpus as our
method. It applies an RRF-4 ensemble retriever to
fetch the top 16 documents per query.

MDAgents We have set 3 agents responsible for in-
ternal clinical tasks (ICT) and 5 agents mimicking a
multidisciplinary team (MDT) of medical experts.

MedAgents models agent-based interaction with
m = 5 domain-specialized experts generating di-
agnostic questions and n = 2 additional experts
evaluating the candidate answers.

SEKAD follows an explanation-guided diagnostic
paradigm. During the explanation-based diagnosis
phase, it employs the MEDCPT retriever to collect
the top-10 relevant knowledge subsets per query.
The system is allowed a maximum of 3 reason-
ing rounds per diagnostic episode. All language
model components operate with a fixed decoding
temperature of 0.7 to balance output diversity and
coherence.

B.2 Benchmarks
B.2.1 DiReCT

Dataset. The DiReCT (Wang et al., 2024a) dataset
comprises 511 clinical notes, spanning 25 disease
categories, sourced from the publicly available
database MIMIC-IV (Johnson et al., 2020). Each
clinical note is meticulously annotated with fine
granularity by professional physicians, detailing
the diagnostic process from observations within
the note to the final diagnosis, which is presented
in an entailment tree structure.

Task setup. DiReCT defines a diagnostic task
that requires explanations, given a patient’s clinical
record without diagnostic conclusions and a graph
constructed from all the diagnoses in the dataset
domain G, the model is required to find the path to
the primary discharge diagnosis from the graph and
to choose the patient’s observational phenomena at
each node along the path and explain them accord-
ingly. In addition, DiReCT provides a knowledge
graph /C, corresponding to G, which contains the
knowledge extracted by the expert from the corre-
sponding diagnostic guidelines for each diagnostic
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node in G. In our experiments, DiReCT with K is
considered as an alternative baseline enhanced by
external knowledge.

Metrics. We mainly report five experimental met-
rics, grouped into three categories.

Accuracy of diagnosis quantifies the model’s
ability to correctly identify diseases. This is mea-
sured by Acc®™, reflecting performance across 25
predefined disease categories, and Acc®2, which
represents the accuracy of the final discharge diag-
nosis.

Completeness of observation, denoted by
Obs°™P | quantifies the model’s attention to and
coverage of patient clinical phenomena during di-
agnostic explanation generation. This metric inte-
grates both the recall and precision of identified
observations.

Faithfulness of explanation assesses the consis-
tency between the model’s generated explanations
and expert-annotated ground truth. Ezp®°™ mea-
sures the faithfulness for observations successfully
matched with the ground truth, while Ezp*! mea-
sures the overall alignment with expert-annotated
explanations. All binary judgments for model pre-
dictions against expert annotations (for both expla-
nations and observations) are performed automati-
cally using L1ama-3.1-8B, which has been shown
to align well with human judgments in DiReCT.

Baseline Adaptation to DiReCT

DiReCT evaluates models based on their abil-
ity to explain diagnoses using only nodes from the
predefined diagnostic graph G. We modified the
baseline to operate in an end-to-end manner, taking
medical history as input and generating explana-
tions as output, and embedded the diagnostic graph
G from DiReCT in the prompt. For evaluation,
we extracted all observation-diagnosis pairs from
the generated explanations and mapped them to
DiReCT’s diagnostic graph G.

B.2.2 JAMA Clinical Challenge

Dataset. The JAMA Clinical Challenge (Chen
et al., 2025) dataset is constructed from real-world
cases published in the Clinical Challenge archive of
the Journal of the American Medical Association.
Each case includes a complex clinical vignette, a
multiple-choice question regarding diagnosis or
management, and expert-authored explanations jus-
tifying the correct and incorrect options. While
the original cases include accompanying images,
they are excluded in this dataset, as part of them



do not contain information essential for diagnostic
decision-making. This design emphasizes evalua-
tion in settings where textual clinical information
is the primary source.

Task Setup. In the experiment, we focused on ques-
tions related to diagnosis from the dataset. We uti-
lized 149 challenge questions published by JAMA
from 2022 to 2025. Models are presented with a
clinical case report and four answer options. The
task requires the model to predict the most probable
diagnosis and generate the corresponding explana-
tion, which is performed end-to-end directly from
the patient report.

Metrics. Model performance is evaluated based
on diagnostic prediction accuracy and the quality
of generated explanations. To assess explanation
quality, we adopt three automatic metrics from the
G-Eval (Liu et al., 2023): coherence, consistency,
and relevance. These metrics have shown rela-
tively strong alignment with human judgment on
this benchmark, particularly in evaluating factual
correctness. Each metric is defined on a 5-point
Likert scale and scored by DeepSeek-V3.

C Additional experiments

C.1 Generalization to Other Knowledge
Domains

We evaluated the generalization value of the ac-
quired knowledge by classifying the target diag-
noses within the DiReCT benchmark according
to different hierarchical levels. These levels in-
clude the first level by specialty (e.g., Cardiology,
Endocrinology), the second level by disease cata-
log (e.g., ACS, Aortic Dissection), and the third
level by specific diagnosis (e.g., Type A Aortic
Dissection, Type B Aortic Dissection). To assess
generalization, we conducted experiments where,
for each patient case, the in-domain knowledge
in the knowledge base corresponding to its main
discharge diagnosis was masked or removed at dif-
ferent classification levels.

C.2 Impact of Retrieval Scale

We varied the number of retrieved knowledge units
during the explanation-based diagnosis process. As
shown in Figure 5, performance on both accuracy
and faithfulness improves initially but saturates
at approximately 15 retrieved units. Beyond this
point, additional knowledge introduces noise, lead-
ing to a decline in both accuracy and faithfulness.
In contrast, completeness of observation continues
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to improve as more knowledge is incorporated, re-
flecting its dependence on the quantity rather than
the precision of retrieved evidence.

Accuracy Observation Explanation

0.400 0.30 1

0375
0.350 0.257

0.325
0.20 4

0300 T T T
20 0 10 20 0
# of retrieved knowledge

10 20

Figure 5: Performance across different retrieved knowl-
edge numbers.

D Notation

72}
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Meaning

Medical record

Explanatory knowledge base

Knowledge unit

Clinical phenomenon observed in the patient
Set of clinical phenomena

Diagnosis for the patient

Set of diagnoses

Textual explanation linking p and d

Text retriever

Medical knowledge sources

Retrieved subset of 7" for explanation generation

Retrieved subset of 7" from sources disjoint with T

’ﬂr%’ﬂs\“ TRUT oW

Table 4: Notation used throughout the paper.

E Prompts



Prompt E.1: Extractor of Percept Action

Given the patient’s clinical note, extract all clinical phenomena hat are may relevant to the patient’s diagnosed disease.
Return them as a Python-style list. Each item must be extracted from the origin note.

Do not include any additional text outside the list.

{{Few-shot Sample}}

\ J

Prompt E.2: Explanation Generator of Explain Action

### Input

1. phenomenon: A description of the patient’s symptoms or findings.

2. candidate_diseases: A list of potential diseases.

3. reference_passages: A set of text passages, each with a unique SourceID.

#i## Instructions

1. Analyze the phenomenon, candidate_diseases, and reference_passages.

2. Identify the single disease from candidate_diseases that is most strongly supported by the information *within the
passages* as the cause or explanation for the phenomenon.

3. Identify the *single* SourceID of the passage that provides the best evidence for this link.

4. Formulate an explanation:

o This must be a single, complete, affirmative sentence.

o It must state a general medical fact, principle, or definition linking a key aspect of the phenomenon (generalized, e.g., "high
fever" not "39.5 C fever") to the chosen disease.

e This explanation should function as a standalone "theorem" — objective, definitive, and suitable for use as a fundamental
statement without referring back to its origin.

e Crucially, do not mention the patient’s specific details, the passages, source IDs, or use phrases like "according to the
source," "the reference indicates," "this case matches," or any wording that implies it’s derived *from* a specific source
*within the sentence itself*.

5. Construct a JSON object containing the explanation, the exact disease name, and the selected source_id.

6. Output *only* the JSON object. Ensure no extra text precedes or follows the JSON structure.

{{Few-shot Sample}}

Prompt E.3: Knowledge Verifier of Validate Action

##H# Task

Given a set of reference passages and a conclusion statement, evaluate whether the conclusion is sufficiently supported by the
references.

### Input Reasoning Process

First, think step by step about what kind of reasoning or evidence would be required to justify the conclusion. Then, examine
the provided references to determine whether they contain the necessary support. Finally, state whether the references support
the conclusion or not, and explain why.

### Input Output Structure

Your output should include:

1. A short reasoning process describing what is needed to justify the conclusion.
2. An assessment of whether the references satisfy that need.

3. A final determination: either [Supported] or [Unsupportable], with a brief justification.
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Prompt E.4:Prompts for Differential Diagnosis (1)

Medical Record:

{notes}

Think step by step, determine which of the following diagnoses the patient is likely to have
based on his medical records.

The diagnosis you identify must come from this list:

{disease_options}

Please include your final chosen diagnosis in the <diagnosis> tag.

Output Format:

[Thinking Here ...]

<diagnosis>[likely diagnosis from the list, split with a comma]</diagnosis>

Prompt E.5: Prompts for Differential Diagnosis (2)

TASK: Create an extremely concise clinical summary for *{diag}’ based on the provided discrete medical facts.
INPUT FACTS:
{exp_knowledge}

KEY AREAS:
{queries_key}

CORE RULES:
1. STRICTLY BASED ON INPUT: The summary content must solely be derived from the "INPUT FACTS’
provided above. Do not add any external knowledge or information.
2. STRUCTURE: The summary must be organized under ’KEY AREAS’. Each key area uses bold font
for its heading (e.g., Risk Factor).
3. CONTENT: Under each bold heading, synthesize the relevant "INPUT FACTS’ into an extremely
compact list of phrases or terms. Full sentences are not required. The goal is maximum conciseness.
4. PROHIBITIONS: Do not use bullet points, numbered lists, or lengthy paragraphs.
OUTPUT FORMAT REQUIREMENT (Strictly adhere):
Key Area Name
Terms/phrases related to this area, extracted from Input Facts and compactly arranged.
EXAMPLE OUTPUT FORMAT:
{{Few-shot Sample}} Please generate the summary for ’{diag}’ now.
.
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Prompt E.6: Prompts for Differential Diagnosis (3)

Medical Record:

{notes}

Analyze the patient’s medical data below and determine the most likely next diagnosis from the provided list.
— Data for Analysis —

- guidelines -

{knowledges}

- Patient Medical Notes -
Provided previously.
(Note: This section contains the patient’s clinical information and findings.)

- Previous Diagnostic Summary -
{summary}
— End Data —

Instructions:

1. Detailed Analysis: Perform a step-by-step analysis based on the patient’s medical records and strictly
follow the diagnosis guidelines. Find evidence to support or refute the potential diagnosis from the
list of potential diagnoses. Detail your reasoning process. Output this analysis results within the
<analyze> tag.

2. Diagnosis Summary & Confidence: Based on your analysis in step 1, provide a concise summary of
the key findings and your conclusions related to the diagnosis selection. This summary MUST also
explicitly include the strength of evidence supporting the primary diagnosis suggested by the
notes and analysis. Use one of the following exact phrases to state the evidence strength:

"Strength of Evidence: High", "Strength of Evidence: Moderate", "Strength of Evidence: Low",
"Strength of Evidence: Insufficient". If you determine that the patient’s condition does not
align with any condition in the list of options (leading you to select "None’ in Step 3), you
MUST rate the strength of evidence as "Strength of Evidence: Insufficient". Output the entire
summary, including the strength of evidence statement, within the <summary> tag.

3. Select Next Diagnosis: Choose the single most appropriate NEXT diagnosis from the Potential
Diagnoses List. Your selection MUST be an EXACT STRING MATCH to an item in the list:
{disease_list + ["None"]}. Select 'None’ if and only if you find that your current illness
does not fall into any of the categories in the list. Output this selection within <diagnosis>
tags.

Output ONLY the content within the specified tags, in the order: <analyze>, <summary>, <diagnosis>.

Format Example:

<analyze>

[Detailed analysis text from Step 1 goes here]
</analyze>

<summary>

[Concise summary text from Step 2 goes here]
</summary>

<diagnosis>

[Selected diagnosis string from Step 3 goes here]
</diagnosis>

. J

Prompt E.7: Prompts for Differential Diagnosis (4)

You are now going to differentiate the disease {diag}.

Only focus on confirming the diagnosis; do not consider treatment or other aspects.
What aspects of {diag} would you like to know about for diagnosis?

Please list {g_num} items, each starting with ’-’, one per line.
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Prompt E.8: Prompts for Definitive Diagnosis

Objective:
Analyze the Medical Record using the Guidelines to map the diagnostic reasoning process.

Instructions:

1. Medical record analysis:

- Identify the criteria for the current step within the Guidelines.

- Scan specific patient evidence (phenotypes) in the Record to match these criteria.

- Explain why the evidence is relevant by citing Guideline knowledge.

- Maintain strict focus: Only include evidence directly supporting the current diagnostic step.

2. JSON Output:

- Structure: Top-level keys are the exact Guideline diagnostic step names. Each key’s value is a dictionary:

- Keys:

- Patient evidence (phenotypes). Extract the original record text and record in the order of the original text.

- Each piece of evidence can only be used once at multiple steps.

- Values: Justification based strictly on Guideline knowledge explaining the evidence’s relevance to that step.
- Strict Relevance: Ensure every entry directly supports its parent step.

- No Evidence: If a step has no supporting evidence in the Record per the Guidelines, use an empty object {} as its value.

Procedure:

Perform the analysis first, then output the JSON.
{{Few-shot Sample}}

Input:

Guidelines:

{all_exp}

Medical Record:
{note}.

Initiate the Chain-of-Thought process now, and follow it with the final JSON output.

- J
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