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Abstract

Explainable diagnosis requires to the process001
of reaching diagnostic conclusions with clear002
rationale that links a patient’s clinical phe-003
nomenon to authoritative medical knowledge.004
While large language models (LLMs) show005
promise in supporting explainable diagnosis,006
they often fall short due to insufficient di-007
agnostic knowledge. To address this limi-008
tation, we propose Self-learned Explainable009
Knowledge Augmented Diagnosis (SEKAD),010
a unified LLM-based framework for faith-011
ful and explainable diagnosis. Our approach012
builds a high-quality diagnostic knowledge013
base through a record-driven explanation learn-014
ing paradigm, as well as applies this knowledge015
via an explanation-based diagnostic process016
that ensures faithful inference. Experiments on017
the DiReCT and JAMA benchmarks show that018
SEKAD consistently outperforms strong base-019
lines across the metrics. In particular, SEKAD020
achieves absolute improvement of 12.4% in the021
completeness of explanation metric over the022
best existing methods, highlighting its effec-023
tiveness in enhancing diagnostic explainability.024

1 Introduction025

Efficient diagnosis enables earlier interventions,026

improving patient prognosis by preventing disease027

progression or complications (Agha et al., 2022).028

Automatic diagnosis can significantly improve di-029

agnostic efficiency, an advantage that has been well030

demonstrated in recent years by automatic diag-031

nostic systems driven by machine learning (Ahsan032

et al., 2022) and deep learning (Aggarwal et al.,033

2021). In automatic diagnosis, diagnostic accuracy034

is important, and explainable diagnostic results are035

key to building trust.(Edin et al., 2024) Large lan-036

guage models (LLMs) (Zhou et al., 2023) are con-037

sidered as a potential choice for building more ex-038

plainable automated diagnostic tools due to their039

ability to generate coherent natural language output040

(Singhal et al., 2023). However, LLMs still have041

limitations in the quality of diagnostic explana- 042

tions due to lack of specialized medical knowledge, 043

especially concerning the explanatory aspect (Ji 044

et al., 2023). A promising direction to bridge this 045

knowledge gap is to leverage systematic, updatable 046

medical knowledge sources to guide LLM-based 047

explainable automated diagnosis. 048

The needs of explanatory diagnosis knowledge. 049

Human physicians rely on medical guidelines as di- 050

agnostic references to address complex cases. (Na- 051

tional Academies of Sciences et al., 2015) When 052

these knowledge sources are inherently explainable, 053

they can mitigate incomplete knowledge coverage 054

and biases inherent in the limitations of LLMs’ 055

pretraining data. DiReCT (Wang et al., 2024a) 056

improves LLMs’ faithfulness of explanations by 057

using a knowledge base constructed by experts 058

based on guidelines, demonstrating that LLMs can 059

benefit from manually crafted external knowledge 060

sources to enhance explainable diagnostic capabili- 061

ties. Thus, defining and building such explanatory 062

knowledge bases is a key strategy for advancing 063

explainable automatic diagnosis. 064

The construction of explanatory diagnosis 065

knowledge. Medical textbooks, clinical guidelines, 066

and academic literature constitute extensive and 067

readily accessible repositories of diagnostic knowl- 068

edge. Despite their value, these sources are in- 069

herently fragmented and independently structured, 070

making effective utilization a non-trivial task, even 071

for human clinicians, who typically master them 072

only through prolonged training and clinical expe- 073

rience. (Burnier, 2024) While LLMs exhibit strong 074

capabilities in information extraction and reason- 075

ing (Xu et al., 2024), studies have shown that their 076

performance in medical knowledge extraction re- 077

mains unstable (Agrawal et al., 2022). Challenges 078

persist in enabling LLMs to autonomously verify 079

and refine the accuracy of the knowledge they ac- 080

quire from these traditional, structured texts. In 081
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contrast, medical records provide a vast accessible082

data source. Although they lack explicit basic ex-083

planatory annotations, the inherent links they reveal084

between patients’ clinical phenomena and diagnos-085

tic conclusions offer a valuable opportunity for the086

large-scale, automated construction of explanatory087

knowledge bases. Consequently, a key challenge088

lies in how to automatically construct such knowl-089

edge bases at scale and with high quality.090

In this paper, we propose Self-learned091

Explainable Knowledge Augmented Diagnosis092

(SEKAD), an explainable diagnosis framework.093

It consists of an explanatory knowledge base and094

an explanation-based diagnosis process. To auto-095

matically build a large and high-quality knowledge096

base, we propose record-driven explanation097

self-learning method. First, it enables LLMs098

to autonomously acquire explanatory diagnostic099

knowledge from unstructured patient records100

by broad medical resources, guaranteeing the101

quantity of the knowledge base. Furthermore, we102

designed the diagnostic triangulation mechanism,103

which guarantees that the acquired knowledge104

is supported by multiple sources and could be105

generalized. Diagnostic triangulation ensures the106

quality of the knowledge base. Building upon107

this knowledge base, we propose the explanation108

augmented dual-phase diagnosis method, which109

consists of differential diagnosis and definitive110

diagnosis to avoid biased use of explanatory111

knowledge. To validate the effectiveness of our112

framework, we conducted extensive experiments113

on two explainable diagnosis task. Our method114

outperforms five existing baselines across mul-115

tiple explainability metrics, and surpasses the116

state-of-the-art method by 12.4% and 4.3% on117

the completeness of explanation and faithfulness118

of explanation metrics, respectively, in terms of119

explanation faithfulness. Our contributions are120

fourfold:121

• We are the first to automatically construct an122

explanatory diagnostic knowledge base for123

explainable diagnosis. To bridge the knowl-124

edge gap in automatic explainable diagno-125

sis, we propose SEKAD, which includes126

a method for building high-quality diagnos-127

tic knowledge via record-driven explanation128

self-learning, and a method for utilizing this129

knowledge through explanation augmented130

dual-phase diagnosis.131

• We propose a novel record-driven expla-132

nation self-learning method, which ensures 133

knowledge quantity through automatic self- 134

learning, and guarantees quality through diag- 135

nostic triangulation, a mechanism that filters 136

out misleading explanations via multi-source 137

validation. 138

• To utilize structured knowledge in the diag- 139

nostic process, we introduce explanation- 140

augmented dual-phase diagnosis, which mit- 141

igates the risk of over-relying on contextually 142

bias explanations by ensuring that each diag- 143

nosis is supported by comprehensive explana- 144

tion. 145

• Experiments on two explainable diagnos- 146

tic evaluation datasets demonstrate that our 147

method outperforms competing baselines, and 148

achieves superior performance in explanation 149

generation. 150

2 Related Works 151

LLM-based automatic diagnosis. LLMs in the 152

medical domain have achieved improved diag- 153

nostic accuracy through fine-tuning with domain- 154

specific data (Singhal et al., 2023). To enhance 155

explainability, recent work has introduced multi- 156

agent collaboration frameworks (Tang et al., 2023; 157

Kim et al., 2024) that allow LLMs to exhibit de- 158

tailed explainable thinking. However, such ap- 159

proaches face limitations due to insufficient medi- 160

cal knowledge. As noted in Medagents (Tang et al., 161

2023), the lack of reliable domain expertise in the 162

reasoning process leads to reduced credibility of 163

the generated explanations. 164

Medical knowledge-enhanced LLM. Several ap- 165

proaches have attempted to address this limitation 166

by incorporating structured knowledge into LLMs. 167

LLM-AMT (Wang et al., 2024b) enhances models 168

using curated medical textbooks, MedRAG (Xiong 169

et al., 2024) integrates broad-scope medical cor- 170

pora, and KGARevion (Su et al., 2024) employs 171

knowledge graphs for domain grounding. These 172

efforts demonstrate the potential of external knowl- 173

edge sources to augment the factual accuracy of 174

LLMs. Nonetheless, current methods primarily 175

focus on improving diagnostic performance, with 176

limited attention to enhancing the explanatory qual- 177

ity of model outputs. In response to this gap, we 178

propose the SEKAD framework, which constructs 179

a knowledge base specifically designed to support 180
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explanation-oriented augmentation for LLMs in181

automated medical diagnosis.182

3 Method183

In this section, we introduce SEKAD, an explain-184

able automatic diagnosis framework augmented185

by self-learned knowledge. SEKAD consists of186

two parts: (1) Record-driven explanation self-187

learning: Given a large amount of unstructured188

medical records, autonomously mining explana-189

tory diagnostic knowledge. (2) Explanation aug-190

mented dual-phase diagnosis: Given a patient’s191

clinical notes, under the guidance of explanatory192

knowledge, the diagnosis executor first performs193

differential diagnosis to identify the likely diag-194

nosis, and then generates explanations linking the195

patient’s clinical phenomena to the diagnosis in the196

definitive diagnosis phase.197

3.1 Record-driven Explanation Self-learning198

Unstructured medical records, including patient199

reports and clinical notes, reflect numerous connec-200

tions between clinical phenomena and diagnostic201

conclusions. However, the underlying explanations202

for these connections are dispersed across authori-203

tative medical knowledge sources such as medical204

textbooks, clinical guidelines, and academic litera-205

ture. Record-driven explanation self-learning aims206

to automatically identify these connections from207

medical records and learn the corresponding di-208

agnostic knowledge from the medical knowledge209

sources to build a structured explanatory knowl-210

edge base.211

3.1.1 Explanatory Knowledge Base212

During the process of record-driven explanation213

self-learning, an explanatory diagnostic knowledge214

base B is incrementally constructed. This knowl-215

edge base consists of structured knowledge units,216

each capturing a link between a patient’s clini-217

cal phenomenon and a corresponding diagnosis,218

grounded by an explanatory rationale. Formally,219

a knowledge unit k is defined as a tuple (p, e, d),220

where:221

• p: represents a single clinical phenomenon222

observed in the patient, such as “dizziness”.223

• d: represents the diagnosis for the patient, at224

any level of granularity.225

• e: represents a text-based explanation linking226

the clinical phenomenon p to the diagnosis d.227

The explanatory diagnostic knowledge base B is 228

defined as a collection of knowledge units k, where 229

B = {k1, k2, . . . , kn}. 230

To ensure that the explanatory diagnostic knowl- 231

edge base B provides faithful diagnostic insights, 232

the knowledge unit k must satisfy the following 233

principles: 234

Unit Specificity: Each knowledge unit k must ad- 235

dress a single primary clinical phenomenon p. Al- 236

though concomitant phenomena may be referenced 237

within the explanation e, the core focus remains 238

singular, for example, focusing a unit k solely 239

on ’fever’ rather than requiring both ’fever’ and 240

’cough’, as knowledge aggregating multiple dis- 241

tinct phenomena would inherently possess a more 242

restricted scope. 243

Self-contained: For explanation e, all abbrevia- 244

tions of medical terms must be expanded to their 245

full, unambiguous nomenclature. For example, am- 246

biguous abbreviations like “MS” (which could refer 247

to “Multiple Sclerosis” or “Mitral Stenosis”) must 248

be explicitly expanded within e to avoid potential 249

misinterpretation. This expansion rule applies ex- 250

clusively to e, not to p or d. 251

Generalization: For explanation e, the clinical 252

phenomenon p is represented as a generalized clini- 253

cal concept rather than a concrete patient case. For 254

example, a specific observation such as "heart rate 255

of 120 bpm" should be transformed into a general 256

clinical descriptor as "tachycardia". This ensures 257

that the knowledge unit correctly captures the clin- 258

ical concept, making it applicable to all specific 259

situations that fall within that concept. 260

Faithfulness: Each explanation e should be ro- 261

bustly supported by evidence from multiple, in- 262

dependent and authoritative medical knowledge 263

sources, ensuring the faithfulness of the p ↔ d 264

association and thus preventing spurious associa- 265

tions. 266

The explanatory diagnostic knowledge base B 267

serves as a structured and verifiable repository of 268

validated diagnostic knowledge. During diagnosis, 269

relevant knowledge units k = (p, e, d) are retrieved 270

to support explanation-based diagnosis. As illus- 271

trated in Figure 1, each unit is incorporated into B 272

through a sequential process of percept, explain, 273

and validate, which enables dynamic updates and 274

ensures knowledge quality. 275
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Dizziness is due to poorly
controlled hypertension, leading
to insufficient brain blood supply.

Medical
Resources
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... Chronic hypertension is ... exerts
long-term stress on the cardiovascular
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supplying the brain...
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Explanation
Generator
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Dizziness is due to poorly
controlled hypertension, leading
to insufficient brain blood supply.
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Yes

Over

No
consistent with

 ?
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Diagnositc
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Medical
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...Notably, iatrogenic orthostatic
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precipitates dizziness ...

Knowledge
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 ? 

YesIn this case, 
cannot support 

A 78-year-old male… presents with recent
onset dizziness and confusion over the past week... He
has a history of treatment with hydrochlorothiazide 25mg
daily for several years and… has been diagnosed
with hypertension ... diabetes ...

R

78-year-old

male

dizziness

...

hypertension

diabetes

...

Figure 1: Overview of record-driven explanation self-learning. An initial explanation links dizziness to poorly
controlled hypertension based on disease-centered sources. Diagnostic triangulation with pharmacological references
reveals that dizziness may instead result from side effects of antihypertensive medications. This mechanism identifies
conflicting evidence and filters out potentially misleading diagnostic links.

3.1.2 Percept276

Based on the original patient’s medical record R,277

an LLM-based extractor1. is instructed to identify278

documented diagnoses (d1, ..., dm ∈ D) and sin-279

gle clinical phenomena (p1, ..., pn ∈ P ) as exact280

textual spans. These spans are deliberately kept281

in their original form at this stage to achieve more282

semantically relevant retrieval when diagnosing283

from medical records. Each span is retained only284

if it matches the string in R and the similarity ex-285

ceeds a predefined threshold. This identification286

strategy decomposes the patient’s findings into in-287

dividual phenomena pi, making each pi a basis for288

potentially linking to identified diagnoses dj . By289

ensuring each pi serves as the single phenomenon290

p in k = (p, e, d), this action guarantees unit speci-291

ficity for k.292

3.1.3 Explain293

The explain action aims to find explainable clinical294

knowledge that links clinical phenomena p with295

diagnoses d from relevant authoritative medical296

knowledge sources. Its input includes a specific297

clinical phenomenon p identified from the patient’s298

medical record R, and the corresponding diagno-299

sis d. Together, p and d are concatenated to form300

the search query. Using this query, a text retriever301

1The prompt is shown in E.1.

T R searches for a relevant subset from the medical 302

knowledge sources T . Subsequently, an explana- 303

tion generator2 utilizes the retrieved subset T̂ as 304

reference to generate the explanation e for pair 305

(p, d), guided by explicit instruction prompts de- 306

signed to ensure adherence to the principles of self- 307

contained and generalization. When the retrieved 308

subset T̂ is insufficient to support a detectable as- 309

sociation between clinical phenomena p and diag- 310

nosis d, the generator does not produce an explana- 311

tion. 312

3.1.4 Validate 313

Ensuring the faithfulness of each knowledge 314

unit k = (p, e, d) produced by these actions is 315

paramount for a reliable diagnostic knowledge base 316

B, especially given the known limitations of LLM 317

in generating faithful medical explanations. Based 318

solely on their initial source, some initially gen- 319

erated units contain incorrect p ↔ d associations 320

or associations valid only in specific contexts. To 321

address this crucial requirement, we introduce the 322

diagnostic triangulation mechanism designed to 323

verify the p ↔ d association and its explanation e 324

against multiple, independent, authoritative medi- 325

cal knowledge sources. 326

Specifically, the validate action is performed by 327

2The prompt is shown in E.2.
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Medical record
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presented to the clinic today for a
routine check-up. ... He mentions
occasional mild morning
headaches and reports feeling
tired or weak at times. ... His past
medical history includes ... His
family history is notable for a
father who had a history of ...
high blood pressure. ... Physical
examination revealed ... Blood
pressure reading today was
155/92 mmHg, taken after a few
minutes of rest under
standardized conditions. ...
Previous blood pressure
readings from one year ago were
in the range of 130/85 mmHg,
also measured under
standardized conditions.

poorly controlled hyper-
tension or a hypertensive
crisis, can manifest as
morning headaches

Brain tumors often result in
morning headaches that
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Figure 2: Overview of explanation augmented dual-phase diagnosis

an LLM-driven knowledge verifier, which lever-328

ages deductive reasoning capabilities (Srivastava329

et al., 2022). This validation is structured as a330

three-stage process:331

Validation against existing knowledge B: This332

initial stage aims to prevent redundancy. The333

knowledge verifier checks if the generated explana-334

tion e for a given (p, d) pair aligns with knowledge335

already validated and stored in B. For each such336

(p, d) pair, the knowledge verifier retrieves the k-337

top existing explanations from B and compares338

them with e. If e is considered sufficiently similar339

to any of the retrieved explanations, the knowledge340

unit k is considered validated and passes this stage.341

It is not added again to B to avoid duplication.342

Consistency with medical record R: In the sec-343

ond stage, the knowledge verifier assesses the inter-344

nal consistency between the generated explanation345

e and the original patient record R, ensuring that e346

does not conflict with other conditions documented347

in R.348

Diagnosis triangulation by external evidence349

T̃ : Under the diagnosis triangulation mechanism,350

knowledge validation is framed as a natural lan-351

guage inference task, leveraging external evidence352

T̃ to assess the validity of a candidate knowledge353

unit k. A concrete illustration of this mechanism354

is provided in Figure 1, where conflicting evidence355

from pharmacological literature challenges an ini-356

tially misleading explanation. The external set T̃357

is obtained by using the explanation e as a query358

to retrieve heterogeneous knowledge not overlap-359

ping with the original source T̂ . In this task, the360

retrieved evidence from T̃ , together with the patient361

record R, constitutes the premise, while the can-362

didate knowledge unit k serves as the hypothesis.363

The verifier then determines whether the premise 364

logically supports the hypothesis. 365

A knowledge unit k is validated and subse- 366

quently incorporated into the knowledge base B 367

only when it has passed the internal consistency 368

check against R and is also judged to be supported 369

by external knowledge under the diagnosis triangu- 370

lation process. 371

3.1.5 Reinforcement Learning via Direct 372

Preference Optimization 373

To jointly optimize the extraction of clinical phe- 374

nomena (percept) and the generation of faith- 375

ful explanations (explain), and to align with 376

the LLM’s capability of self-learning explanatory 377

knowledge, we adopt a reinforcement learning 378

framework based on direct preference optimiza- 379

tion (DPO) (Rafailov et al., 2023). This enables the 380

LLM agent πθ to learn from preference data D±, 381

where each sample consists of a context x and a 382

preferred–less preferred pair (y+, y−). 383

We construct a preference dataset D±, where 384

each instance consists of a context x, a preferred 385

output y+, and a less-preferred output y−. For the 386

explain action, the context x includes the patient 387

record and the specific phenomenon–diagnosis pair 388

under consideration. A generated knowledge unit 389

k+ij is considered preferred if it successfully passes 390

the validation process, receiving a binary reward 391

of WE = 1, whereas an alternative k−ij that fails 392

validation with WE = 0 is treated as less preferred. 393

For the percept action, the context x is the pa- 394

tient record, and the preference is established be- 395

tween two sets of extracted phenomena. A set P+ 396

is preferred if it leads to a higher aggregated down- 397

stream reward WP (P
+), in comparison to a set 398

P− associated with a lower reward WP (P
−). 399
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Formally, for each (x, y+, y−), the training ob-400

jective is:401

LDPO = − log σ
(
r̂θ(x, y

+)− r̂θ(x, y
−)

)
, (1)402

where r̂θ(x, y) = β log πθ(y|x)
πref(y|x) is the implicit re-403

ward, and β is a temperature parameter.404

This approach unifies percept and explain within405

the same optimization framework, improving the406

efficiency of explanation learning.407

3.2 Explanation Augmented Dual-phase408

Diagnosis409

With the accumulation of explanatory knowledge,410

SEKAD performs explainable diagnosis under the411

guidance of the knowledge base B. Given a patient412

record without a diagnostic conclusion, SEKAD413

outputs the most likely diagnosis along with a se-414

ries of rationales that connect the patient’s clini-415

cal phenomena to the proposed diagnosis. In this416

method, an LLM acts as the diagnosis executor,417

querying explanatory diagnostic knowledge base418

B through self-queries, and performing diagnosis419

strictly under the guidance of this knowledge.420

By simulating real-world clinical workflows, we421

divide the diagnostic process into two complemen-422

tary phases: differential diagnosis, which involves423

evaluating and narrowing down the range of poten-424

tial diagnoses to improve diagnostic accuracy, and425

definitive diagnosis, which provides a detailed ex-426

planation for the identified condition.427

3.2.1 Differential diagnosis428

In clinical practice, differential diagnosis refers to429

the process by which physicians analyze specific430

clinical phenomena to narrow down the range of431

possible conditions. To implement this process, the432

diagnosis executor adopts a bidirectional knowl-433

edge retrieval strategy, as shown in Figure 2. First,434

a preliminary analysis is performed to identify a435

likely category of disease and initiates self-queries436

such as “What are common symptoms or risk fac-437

tors of this disease?” Based on the retrieved knowl-438

edge unit k, if some clinical phenomena are not439

mentioned, the executor then reverses the query-440

ing direction by asking, “What diseases commonly441

present with this phenomenon?” for those not yet442

identified3.443

During the differential diagnosis phase, diagno-444

sis executor does not generate full explanations for445

each tentative candidate diagnosis. This design446

3The prompt is shown in E.7.

constraint is intended to avoid overconfident expla- 447

nations for provisional hypotheses; it helps mitigate 448

the risk of premature diagnostic anchoring arising 449

from excessive explanation at an early stage. 450

3.2.2 Definitive diagnosis 451

Since explanations in the differential diagnosis 452

phase remain incomplete, the definitive diagnosis 453

phase builds upon the initial hypothesis by perform- 454

ing more targeted knowledge retrieval focused on 455

the confirmed diagnosis. At this phase, the execu- 456

tor issues diagnosis-centered self-queries, aiming 457

to identify supporting evidence such as high-risk 458

factors and diagnostic gold standards. The objec- 459

tive is to provide a comprehensive explanation of 460

the patient’s clinical phenomena by matching them 461

with validated knowledge units k. Only success- 462

fully matched knowledge is used to construct the 463

definitive explanation. If contradictions arise or suf- 464

ficient supporting evidence is lacking, the diagnos- 465

tic process is designed to revert to the differential 466

diagnosis phase for further exploration. 467

4 Experiments 468

4.1 Benchmarks 469

4.1.1 DiReCT 470

The DiReCT dataset (Wang et al., 2024a) com- 471

prises 511 physician-annotated clinical notes from 472

MIMIC-IV (Johnson et al., 2020), meticulously 473

detailing diagnostic processes and final diagnoses. 474

It defines an explainable diagnostic task where, 475

given a patient’s clinical record R and a graph con- 476

structed from all diagnoses G, the model must find 477

the path to the primary discharge diagnosis, select 478

relevant observational phenomena p, and provide 479

corresponding explanations e. The benchmark also 480

provides an expert-curated knowledge graph K, 481

which contains guideline knowledge for each diag- 482

nostic node in G, used as an external knowledge 483

baseline, for example DiReCT w/ K. Our evalu- 484

ation primarily focuses on three core aspects: ac- 485

curacy of diagnosis Acccat and Accdiag, complete- 486

ness of observation Obscomp, and faithfulness of 487

explanation Expcom and Expall. For a detailed ex- 488

perimental setup and metric specifics, please refer 489

to Appendix B.2.1. 490

4.1.2 JAMA Clinical Challenge 491

The JAMA Clinical Challenge dataset (Chen et al., 492

2025) comprises complex, text-based clinical cases 493

sourced from the Journal of the American Medical 494

6



Method Acccat Accdiag Obscomp Expcom Expall

GPT4
DiReCT w/ G 0.804 0.610 0.391 0.481 0.210
DiReCT w/ K 0.808 0.611 0.371 0.645 0.273

DeepSeek-R1
COT 0.690 0.586 0.192 0.263 0.071
DiReCT w/ G 0.830 0.687 0.322 0.430 0.152
DiReCT w/ K 0.812 0.611 0.324 0.615 0.222
SEKAD 0.889 0.694 0.405 0.769 0.316

DeepSeek-V3
COT 0.702 0.585 0.185 0.276 0.065
DiReCT w/ G 0.796 0.587 0.346 0.321 0.131
DiReCT w/ K 0.808 0.635 0.351 0.492 0.202
KGARevion 0.792 0.629 0.239 0.345 0.094
MDAgents 0.688 0.566 0.218 0.349 0.099
MedAgent 0.740 0.599 0.205 0.319 0.076
MedRAG 0.817 0.640 0.288 0.232 0.069
SEKAD 0.847 0.653 0.400 0.759 0.312

Table 1: Performance comparison on the DiReCT bench-
mark. Bold indicates the best result.

Association, featuring multiple-choice diagnostic495

questions and expert-authored explanations. For496

this task, models predict the most probable diag-497

nosis and generate corresponding explanations for498

presented clinical cases. Performance is evaluated499

based on diagnostic prediction accuracy and ex-500

planation quality, using G-Eval (Liu et al., 2023)501

metrics, including coherence, consistency, and rele-502

vance, which are scored by an LLM-based eval-503

uator. For further details on the dataset, task504

setup, and metrics specifics, please refer to Ap-505

pendix B.2.2.506

4.2 Baselines507

We evaluate our proposed method with five dis-508

tinct baselines, including the Chain-of-Thought509

(COT) (Wei et al., 2022) method and four lead-510

ing medical-enhanced QA approaches: MedAgents511

(Tang et al., 2023), MDAgent (Kim et al., 2024),512

MedRAG (Xiong et al., 2024), and KGARevion513

(Su et al., 2024).514

On the DiReCT benchmark, we also include the515

official baseline method for comparison, which con-516

sists of two configurations: G, a diagnosis graph517

representing structured diagnostic relationships,518

and K, which incorporates expert knowledge from519

diagnostic guidelines at intermediate steps of the520

diagnostic process.521

4.3 Result522

We present the evaluation results on the DiReCT523

benchmark in Table 1. Our method outperforms all524

Method Acc Relev . Coh. Consist .

DeepSeek-V3
COT 0.711 4.672 4.945 4.305
KGARevion 0.631 4.331 4.852 4.101
MDAgents 0.691 4.531 4.711 4.141
MedAgent 0.450 3.651 3.705 3.537
MedRAG 0.400 3.745 3.570 3.282
SEKAD 0.771 4.672 4.740 4.313

Table 2: Performance comparison on the JAMA bench-
mark. Bold indicates the best result.

six provided baselines and achieves improvements 525

of 8.4%, 1.4%, and 4.3% over the best-performing 526

baseline in terms of accuracy of diagnosis, com- 527

pleteness of observation, and faithfulness of expla- 528

nation, respectively. Notably, the significant gain 529

in explanation faithfulness highlights our method’s 530

ability to generate clinically aligned reasoning. The 531

high score on Expcom, which measures explana- 532

tion–observation consistency, further demonstrates 533

that SEKAD produces explanations that closely re- 534

flect expert reasoning based on the patient’s clinical 535

presentation. 536

We further observe that existing baselines gener- 537

ally underperform in explanation faithfulness. This 538

is primarily because, under this benchmark, only 539

explanations that correctly support the intended 540

diagnostic target are considered valid. Baseline 541

models tend to misinterpret evidence suggestive 542

of a disease as confirmatory, leading to inaccurate 543

diagnostic rationales. This highlights the effec- 544

tiveness of our dual-phase diagnostic process in 545

distinguishing between diagnostic suspicion and 546

confirmation. 547

Table 2 reports performance on the JAMA Clin- 548

ical Challenge dataset. SEKAD demonstrates 549

strong competitiveness in diagnostic accuracy as 550

well as in the relevance and consistency of the gen- 551

erated explanations compared to baselines. We 552

also note that COT exhibits superior coherence, be- 553

cause it relies solely on internal reasoning without 554

external information. 555

Due to the lack of imaging data, the diagnostic 556

context in the JAMA dataset is incomplete. Under 557

these conditions, many baseline models tend to en- 558

gage in over-reasoning or fall into heuristic bias, of- 559

ten performing worse than the base model. In con- 560

trast, SEKAD maintains robust diagnostic reason- 561

ing through its structured Differential–Definitive 562

two-stage explanatory framework. Among the 563
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baselines, KGAREVION benefits from a knowl-564

edge graph review mechanism that helps filter out565

misinformation, while MDAGENTS avoids unnec-566

essary complexity through adaptive task decom-567

position. In comparison, MEDRAG, which relies568

on text similarity-based retrieval, is more prone to569

introducing irrelevant knowledge that may mislead570

diagnosis.571

4.4 Ablation Study572

As shown in Table 3, the explanatory knowledge573

base B plays a critical role in enhancing diagnostic574

performance across all metrics. Removing B re-575

sults in significant drops in Accdiag from 65.3% to576

56.9% and in Expcom from 73.1% to 50.2%, high-577

lighting its centrality to both diagnostic accuracy578

and explanation faithfulness. In contrast, ablat-579

ing the diagnostic triangulation mechanism causes580

a smaller reduction in Accdiag to 63.9%, but still581

leads to a notable decrease in Expcom to 56.8%.582

This underscores that while diagnostic triangula-583

tion does not directly boost classification accuracy,584

it plays an essential role in ensuring the faithfulness585

and completeness of generated explanations.586

Method Acccat Accdiag Obscomp Expcom Expall

DeepSeek-V3
w/o B 0.792 0.569 0.299 0.502 0.185
w/o D.T. 0.819 0.639 0.400 0.568 0.251
origin 0.847 0.653 0.400 0.731 0.295

Table 3: Ablation study results on the DiReCT bench-
mark. Bold indicates the best result. D.T. stands for
diagnostic triangulation.

4.5 Impact of Knowledge Scale on587

Performance588

The performance on accuracy of diagnosis, com-589

pleteness of observations, and faithfulness of expla-590

nation is shown, respectively, in Figure 3. Overall,591

increasing the scale of the knowledge base leads to592

consistent improvements, particularly in faithful-593

ness of explanation, which grows from 17% to 29%,594

demonstrating that richer knowledge significantly595

enhances explanation faithfulness. Completeness596

of observations also benefits from scale, though it597

peaks around 41% before slightly declining, sug-598

gesting a limit beyond which added knowledge599

may become redundant. The diagnostic accuracy600

exhibits slight fluctuations with increasing knowl-601

edge base size but consistently remains higher than602

the no-knowledge setting, indicating that the incor- 603

poration of structured medical knowledge enhances 604

diagnostic performance. 605
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Figure 3: Performance across different knowledge base
sizes.

4.6 Generalization to Unseen Diseases 606

To evaluate the generalizability of the constructed 607

knowledge base B, we perform an ablation study 608

by selectively masking domain-specific knowledge 609

at varying levels of granularity. The detailed exper- 610

imental setup is provided in Appendix C.1. Results 611

in Figure 4 show that even when specialized knowl- 612

edge varies, the model still benefits by 13%, 6%, 613

and 5%, respectively, across diagnostic metrics. 614

This suggests that knowledge from other special- 615

ties can aid differential diagnosis by helping to rule 616

out diseases from the perspective of shared clinical 617

phenomena. However, when masking is applied at 618

the catalog level, performance drops slightly within 619

specialties. This is likely because diseases within 620

the same specialty often share similar manifesta- 621

tions, making it harder for the model to distinguish 622

between them and increasing the risk of misdirec- 623

tion. 624
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Figure 4: Performance across different degrees of in-
domain knowledge masking.

5 Conclusion 625

We present SEKAD, a framework that automati- 626

cally builds and applies an explanatory diagnostic 627

knowledge base for interpretable medical diagnosis. 628

It combines record-driven explanation self-learning 629

and an explanation-augmented dual-phase diagnos- 630

tic strategy. Experiments on two benchmarks show 631

that SEKAD outperforms strong baselines in both 632

diagnostic accuracy and explanation quality. 633
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Limitations634

This work, while demonstrating promising results,635

has inherent limitations. Our current framework636

primarily operates on textual clinical data and does637

not yet incorporate multimodal information or ex-638

tend to multilingual clinical contexts. Furthermore,639

its evaluation is currently limited to the scale of640

existing benchmarks; scaling up to larger and more641

diverse real-world datasets presents avenues for fu-642

ture research. While our method utilizes SEKAD,643

integrating and evaluating it with larger and more644

advanced foundational models remains unexplored.645

Ethics Statement646

We affirm that all patient data utilized was strictly647

anonymized and strictly adhere to the data Use648

Agreement of the MIMIC dataset. We acknowl-649

edge the imperative to address potential biases in650

both data and algorithms to ensure equitable out-651

comes. Besides, we use an AI assistant to check652

the grammar. However, we double-checked and653

made sure that the AI assistant did not change the654

original meaning of the paper.655
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A Details of Record-driven explanation 800

self-Learning 801

A.1 Datasets 802

Patient Records. We use PMC-Patients (Zhao 803

et al., 2022), a corpus of 167,000 patient summaries 804

extracted from case reports in PubMed Central. 805

Only unstructured patient narratives are utilized. 806

Medical Knowledge Sources. The explanatory 807

knowledge is retrieved from MedCorp (Xiong 808

et al., 2024), a comprehensive corpus that aggre- 809

gates data from various public biomedical reposito- 810

ries. MedCorp is composed of PubMed (containing 811

23.9 million biomedical articles), StatPearls (9,330 812

clinical decision support articles), medical text- 813

books (18 books, chunked), and Wikipedia (chun- 814

ked encyclopedia data). These components collec- 815

tively provide access to the latest biomedical re- 816

search, clinical decision support, foundational med- 817

ical knowledge, and general domain information, 818

forming a cross-source retrieval resource. These 819

sources serve as T̂ or T̃ depending on the retrieval 820

context. 821

A.2 Retrieval Method 822

We adopt MedCPT (Jin et al., 2023), a neural re- 823

triever optimized for zero-shot semantic search, 824

developed by the National Center for Biotechnol- 825

ogy Information (NCBI). For explanation gener- 826

ation, the top-5 relevant texts (|T̂ | = 5) are re- 827

trieved; for diagnostic triangulation, we retrieve 828

|T̃ | = 8 diverse knowledge entries to support cross- 829

validation. 830

A.3 LLM Backbone and Training Details 831

The core modules, including the extractor, expla- 832

nation generator, and knowledge verifier, are pow- 833

ered by Qwen-7B-Instruct. To align model pref- 834

erences with high-quality explanatory reasoning, 835

we apply Direct Preference Optimization (DPO) 836

using 200 preference samples from DeepSeek-V3 837

(Liu et al., 2024), with a batch size of 64, a peak 838

learning rate of 5× 10−6, and 3 epochs. We used 839

10 NVIDIA GeForce RTX 3090 GPUs (24GB) for 840

running DPO, and 2 GPUs for the whole learning 841

stage. 842

10

https://doi.org/10.18653/v1/2024.findings-emnlp.95
https://doi.org/10.18653/v1/2024.findings-emnlp.95
https://doi.org/10.18653/v1/2024.findings-emnlp.95


B Details of Main Experiments843

B.1 Baseline and SEKAD Configurations844

KGAREVion utilizes PrimeKG as its structured845

medical knowledge graph. For explanation verifi-846

cation, we adopt the publicly released LLAMA-3847

checkpoint provided by the original authors.848

MedRAG Based on the MedCorp corpus as our849

method. It applies an RRF-4 ensemble retriever to850

fetch the top 16 documents per query.851

MDAgents We have set 3 agents responsible for in-852

ternal clinical tasks (ICT) and 5 agents mimicking a853

multidisciplinary team (MDT) of medical experts.854

MedAgents models agent-based interaction with855

m = 5 domain-specialized experts generating di-856

agnostic questions and n = 2 additional experts857

evaluating the candidate answers.858

SEKAD follows an explanation-guided diagnostic859

paradigm. During the explanation-based diagnosis860

phase, it employs the MEDCPT retriever to collect861

the top-10 relevant knowledge subsets per query.862

The system is allowed a maximum of 3 reason-863

ing rounds per diagnostic episode. All language864

model components operate with a fixed decoding865

temperature of 0.7 to balance output diversity and866

coherence.867

B.2 Benchmarks868

B.2.1 DiReCT869

Dataset. The DiReCT (Wang et al., 2024a) dataset870

comprises 511 clinical notes, spanning 25 disease871

categories, sourced from the publicly available872

database MIMIC-IV (Johnson et al., 2020). Each873

clinical note is meticulously annotated with fine874

granularity by professional physicians, detailing875

the diagnostic process from observations within876

the note to the final diagnosis, which is presented877

in an entailment tree structure.878

Task setup. DiReCT defines a diagnostic task879

that requires explanations, given a patient’s clinical880

record without diagnostic conclusions and a graph881

constructed from all the diagnoses in the dataset882

domain G, the model is required to find the path to883

the primary discharge diagnosis from the graph and884

to choose the patient’s observational phenomena at885

each node along the path and explain them accord-886

ingly. In addition, DiReCT provides a knowledge887

graph K, corresponding to G, which contains the888

knowledge extracted by the expert from the corre-889

sponding diagnostic guidelines for each diagnostic890

node in G. In our experiments, DiReCT with K is 891

considered as an alternative baseline enhanced by 892

external knowledge. 893

Metrics. We mainly report five experimental met- 894

rics, grouped into three categories. 895

Accuracy of diagnosis quantifies the model’s 896

ability to correctly identify diseases. This is mea- 897

sured by Acccat, reflecting performance across 25 898

predefined disease categories, and Accdiag, which 899

represents the accuracy of the final discharge diag- 900

nosis. 901

Completeness of observation, denoted by 902

Obscomp, quantifies the model’s attention to and 903

coverage of patient clinical phenomena during di- 904

agnostic explanation generation. This metric inte- 905

grates both the recall and precision of identified 906

observations. 907

Faithfulness of explanation assesses the consis- 908

tency between the model’s generated explanations 909

and expert-annotated ground truth. Expcom mea- 910

sures the faithfulness for observations successfully 911

matched with the ground truth, while Expall mea- 912

sures the overall alignment with expert-annotated 913

explanations. All binary judgments for model pre- 914

dictions against expert annotations (for both expla- 915

nations and observations) are performed automati- 916

cally using Llama-3.1-8B, which has been shown 917

to align well with human judgments in DiReCT. 918

Baseline Adaptation to DiReCT 919

DiReCT evaluates models based on their abil- 920

ity to explain diagnoses using only nodes from the 921

predefined diagnostic graph G. We modified the 922

baseline to operate in an end-to-end manner, taking 923

medical history as input and generating explana- 924

tions as output, and embedded the diagnostic graph 925

G from DiReCT in the prompt. For evaluation, 926

we extracted all observation-diagnosis pairs from 927

the generated explanations and mapped them to 928

DiReCT’s diagnostic graph G. 929

B.2.2 JAMA Clinical Challenge 930

Dataset. The JAMA Clinical Challenge (Chen 931

et al., 2025) dataset is constructed from real-world 932

cases published in the Clinical Challenge archive of 933

the Journal of the American Medical Association. 934

Each case includes a complex clinical vignette, a 935

multiple-choice question regarding diagnosis or 936

management, and expert-authored explanations jus- 937

tifying the correct and incorrect options. While 938

the original cases include accompanying images, 939

they are excluded in this dataset, as part of them 940
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do not contain information essential for diagnostic941

decision-making. This design emphasizes evalua-942

tion in settings where textual clinical information943

is the primary source.944

Task Setup. In the experiment, we focused on ques-945

tions related to diagnosis from the dataset. We uti-946

lized 149 challenge questions published by JAMA947

from 2022 to 2025. Models are presented with a948

clinical case report and four answer options. The949

task requires the model to predict the most probable950

diagnosis and generate the corresponding explana-951

tion, which is performed end-to-end directly from952

the patient report.953

Metrics. Model performance is evaluated based954

on diagnostic prediction accuracy and the quality955

of generated explanations. To assess explanation956

quality, we adopt three automatic metrics from the957

G-Eval (Liu et al., 2023): coherence, consistency,958

and relevance. These metrics have shown rela-959

tively strong alignment with human judgment on960

this benchmark, particularly in evaluating factual961

correctness. Each metric is defined on a 5-point962

Likert scale and scored by DeepSeek-V3.963

C Additional experiments964

C.1 Generalization to Other Knowledge965

Domains966

We evaluated the generalization value of the ac-967

quired knowledge by classifying the target diag-968

noses within the DiReCT benchmark according969

to different hierarchical levels. These levels in-970

clude the first level by specialty (e.g., Cardiology,971

Endocrinology), the second level by disease cata-972

log (e.g., ACS, Aortic Dissection), and the third973

level by specific diagnosis (e.g., Type A Aortic974

Dissection, Type B Aortic Dissection). To assess975

generalization, we conducted experiments where,976

for each patient case, the in-domain knowledge977

in the knowledge base corresponding to its main978

discharge diagnosis was masked or removed at dif-979

ferent classification levels.980

C.2 Impact of Retrieval Scale981

We varied the number of retrieved knowledge units982

during the explanation-based diagnosis process. As983

shown in Figure 5, performance on both accuracy984

and faithfulness improves initially but saturates985

at approximately 15 retrieved units. Beyond this986

point, additional knowledge introduces noise, lead-987

ing to a decline in both accuracy and faithfulness.988

In contrast, completeness of observation continues989

to improve as more knowledge is incorporated, re- 990

flecting its dependence on the quantity rather than 991

the precision of retrieved evidence. 992
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Figure 5: Performance across different retrieved knowl-
edge numbers.

D Notation 993

Symbol Meaning

R Medical record
B Explanatory knowledge base
k Knowledge unit
p Clinical phenomenon observed in the patient
P Set of clinical phenomena
d Diagnosis for the patient
D Set of diagnoses
e Textual explanation linking p and d
T R Text retriever
T Medical knowledge sources
T̂ Retrieved subset of T for explanation generation
T̃ Retrieved subset of T from sources disjoint with T̂

Table 4: Notation used throughout the paper.

E Prompts 994
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Prompt E.1: Extractor of Percept Action

Given the patient’s clinical note, extract all clinical phenomena hat are may relevant to the patient’s diagnosed disease.

Return them as a Python-style list. Each item must be extracted from the origin note.

Do not include any additional text outside the list.

{{Few-shot Sample}}

Prompt E.2: Explanation Generator of Explain Action

### Input
1. phenomenon: A description of the patient’s symptoms or findings.
2. candidate_diseases: A list of potential diseases.
3. reference_passages: A set of text passages, each with a unique SourceID.

### Instructions
1. Analyze the phenomenon, candidate_diseases, and reference_passages.
2. Identify the single disease from candidate_diseases that is most strongly supported by the information *within the
passages* as the cause or explanation for the phenomenon.
3. Identify the *single* SourceID of the passage that provides the best evidence for this link.
4. Formulate an explanation:
• This must be a single, complete, affirmative sentence.
• It must state a general medical fact, principle, or definition linking a key aspect of the phenomenon (generalized, e.g., "high
fever" not "39.5 C fever") to the chosen disease.
• This explanation should function as a standalone "theorem" – objective, definitive, and suitable for use as a fundamental
statement without referring back to its origin.
• Crucially, do not mention the patient’s specific details, the passages, source IDs, or use phrases like "according to the
source," "the reference indicates," "this case matches," or any wording that implies it’s derived *from* a specific source
*within the sentence itself*.
5. Construct a JSON object containing the explanation, the exact disease name, and the selected source_id.
6. Output *only* the JSON object. Ensure no extra text precedes or follows the JSON structure.

{{Few-shot Sample}}

Prompt E.3: Knowledge Verifier of Validate Action

### Task
Given a set of reference passages and a conclusion statement, evaluate whether the conclusion is sufficiently supported by the
references.
### Input Reasoning Process
First, think step by step about what kind of reasoning or evidence would be required to justify the conclusion. Then, examine
the provided references to determine whether they contain the necessary support. Finally, state whether the references support
the conclusion or not, and explain why.
### Input Output Structure
Your output should include:

1. A short reasoning process describing what is needed to justify the conclusion.

2. An assessment of whether the references satisfy that need.

3. A final determination: either [Supported] or [Unsupportable], with a brief justification.
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Prompt E.4:Prompts for Differential Diagnosis (1)

Medical Record:
{notes}
Think step by step, determine which of the following diagnoses the patient is likely to have
based on his medical records.
The diagnosis you identify must come from this list:
{disease_options}
Please include your final chosen diagnosis in the <diagnosis> tag.
Output Format:
[Thinking Here ...]
<diagnosis>[likely diagnosis from the list, split with a comma]</diagnosis>

Prompt E.5: Prompts for Differential Diagnosis (2)

TASK: Create an extremely concise clinical summary for ’{diag}’ based on the provided discrete medical facts.
INPUT FACTS:
{exp_knowledge}

KEY AREAS:
{queries_key}

CORE RULES:
1. STRICTLY BASED ON INPUT: The summary content must solely be derived from the ’INPUT FACTS’
provided above. Do not add any external knowledge or information.
2. STRUCTURE: The summary must be organized under ’KEY AREAS’. Each key area uses bold font
for its heading (e.g., Risk Factor).
3. CONTENT: Under each bold heading, synthesize the relevant ’INPUT FACTS’ into an extremely
compact list of phrases or terms. Full sentences are not required. The goal is maximum conciseness.
4. PROHIBITIONS: Do not use bullet points, numbered lists, or lengthy paragraphs.
OUTPUT FORMAT REQUIREMENT (Strictly adhere):
Key Area Name
Terms/phrases related to this area, extracted from Input Facts and compactly arranged.
EXAMPLE OUTPUT FORMAT:
{{Few-shot Sample}} Please generate the summary for ’{diag}’ now.
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Prompt E.6: Prompts for Differential Diagnosis (3)

Medical Record:
{notes}
Analyze the patient’s medical data below and determine the most likely next diagnosis from the provided list.
— Data for Analysis —
- guidelines -
{knowledges}

- Patient Medical Notes -
Provided previously.
(Note: This section contains the patient’s clinical information and findings.)

- Previous Diagnostic Summary -
{summary}
— End Data —

Instructions:

1. Detailed Analysis: Perform a step-by-step analysis based on the patient’s medical records and strictly
follow the diagnosis guidelines. Find evidence to support or refute the potential diagnosis from the
list of potential diagnoses. Detail your reasoning process. Output this analysis results within the
<analyze> tag.

2. Diagnosis Summary & Confidence: Based on your analysis in step 1, provide a concise summary of
the key findings and your conclusions related to the diagnosis selection. This summary MUST also
explicitly include the strength of evidence supporting the primary diagnosis suggested by the
notes and analysis. Use one of the following exact phrases to state the evidence strength:
"Strength of Evidence: High", "Strength of Evidence: Moderate", "Strength of Evidence: Low",
"Strength of Evidence: Insufficient". If you determine that the patient’s condition does not
align with any condition in the list of options (leading you to select ’None’ in Step 3), you
MUST rate the strength of evidence as "Strength of Evidence: Insufficient". Output the entire
summary, including the strength of evidence statement, within the <summary> tag.

3. Select Next Diagnosis: Choose the single most appropriate NEXT diagnosis from the Potential
Diagnoses List. Your selection MUST be an EXACT STRING MATCH to an item in the list:
{disease_list + ["None"]}. Select ’None’ if and only if you find that your current illness
does not fall into any of the categories in the list. Output this selection within <diagnosis>
tags.

Output ONLY the content within the specified tags, in the order: <analyze>, <summary>, <diagnosis>.

Format Example:
<analyze>
[Detailed analysis text from Step 1 goes here]
</analyze>
<summary>
[Concise summary text from Step 2 goes here]
</summary>
<diagnosis>
[Selected diagnosis string from Step 3 goes here]
</diagnosis>

Prompt E.7: Prompts for Differential Diagnosis (4)

You are now going to differentiate the disease {diag}.
Only focus on confirming the diagnosis; do not consider treatment or other aspects.
What aspects of {diag} would you like to know about for diagnosis?
Please list {q_num} items, each starting with ’-’, one per line.
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Prompt E.8: Prompts for Definitive Diagnosis

Objective:
Analyze the Medical Record using the Guidelines to map the diagnostic reasoning process.

Instructions:
1. Medical record analysis:
- Identify the criteria for the current step within the Guidelines.
- Scan specific patient evidence (phenotypes) in the Record to match these criteria.
- Explain why the evidence is relevant by citing Guideline knowledge.
- Maintain strict focus: Only include evidence directly supporting the current diagnostic step.
2. JSON Output:
- Structure: Top-level keys are the exact Guideline diagnostic step names. Each key’s value is a dictionary:
- Keys:
- Patient evidence (phenotypes). Extract the original record text and record in the order of the original text.
- Each piece of evidence can only be used once at multiple steps.
- Values: Justification based strictly on Guideline knowledge explaining the evidence’s relevance to that step.
- Strict Relevance: Ensure every entry directly supports its parent step.
- No Evidence: If a step has no supporting evidence in the Record per the Guidelines, use an empty object {} as its value.

Procedure:
Perform the analysis first, then output the JSON.
{{Few-shot Sample}}
Input:
Guidelines:
{all_exp}

Medical Record:
{note}.

Initiate the Chain-of-Thought process now, and follow it with the final JSON output.
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