
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ANY-STEP DYNAMICS MODEL IMPROVES FUTURE PRE-
DICTIONS FOR ONLINE AND OFFLINE REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based methods in reinforcement learning offer a promising approach to
enhance data efficiency by facilitating policy exploration within a dynamics model.
However, accurately predicting sequential steps in the dynamics model remains a
challenge due to the bootstrapping prediction, which attributes the next state to the
prediction of the current state. This leads to accumulated errors during model roll-
out. In this paper, we propose the Any-step Dynamics Model (ADM) to mitigate
the compounding error by reducing bootstrapping prediction to direct prediction.
ADM allows for the use of variable-length plans as inputs for predicting future
states without frequent bootstrapping. We design two algorithms, ADMPO-ON and
ADMPO-OFF, which apply ADM in online and offline model-based frameworks,
respectively. In the online setting, ADMPO-ON demonstrates improved sample
efficiency compared to previous state-of-the-art methods. In the offline setting,
ADMPO-OFF not only demonstrates superior performance compared to recent
state-of-the-art offline approaches but also offers better quantification of model
uncertainty using only a single ADM.

1 INTRODUCTION

Model-based Reinforcement Learning (MBRL) (Luo et al., 2024b) has demonstrated empirical
success in both online (Feinberg et al., 2018; Buckman et al., 2018; Chua et al., 2018; Luo et al.,
2019; Janner et al., 2019; Lin et al., 2023) and offline (Yu et al., 2020; Kidambi et al., 2020; Yu
et al., 2021; Rigter et al., 2022; Sun et al., 2023; Luo et al., 2024a) settings. The essence of MBRL
lies in the dynamics model, where extensive explorations and evaluations of the agent can occur,
thereby reducing the reliance on real-world samples. Embedded in the model-based framework,
online policy optimization can leverage a large Update-To-Data (UTD) ratio (Chen et al., 2021)
to improve sample efficiency, while offline policy optimization can be completed using the model
augmented data beyond the dataset.

Although some efforts aim to propose high-fidelity dynamics models, such as adversarial models
(Chen et al., 2023; Bhardwaj et al., 2023), causal models (Zhu et al., 2022), and ensemble dynamics
models (Chua et al., 2018; Janner et al., 2019; Yu et al., 2020) adopted by the majority of MBRL
algorithms, it is challenging to generate high-quality imaginary samples via long-horizon model
roll-out. In a dynamics model with the common form, the state-action pair at time step t, (st, at),
is used as input to predict the next state st+1. Thus, the bootstrapping prediction, which attributes
the next state to the prediction of the current state, is inevitably employed to roll out states in the
dynamics model. The deviation of generated states increases with the roll-out length since the error
accumulates gradually as the state transitions in imagination. If updated on the unreliable samples
with a large compounding error, the policy will be misled by biased policy gradients.

The impact of compounding error (Xu et al., 2021) on policy optimization restricts the utilization
of the model, thereby hindering further improvements in the sample efficiency of online MBRL
and the performance of offline MBRL. One potential way to deal with the issue of compounding
error is to reduce bootstrapping prediction to direct prediction, considering the direct state transition
after executing a multi-step action sequence (Asadi et al., 2018; 2019; Che et al., 2018; Machado
et al., 2023). Although state st+1 is only dependent on state-action (st, at) under the assumption

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

of Markov property (Sutton & Barto, 2018), the prediction of st+1 can actually leverage earlier
information. Tracing back a prior k-step plan, i.e., st+1−k followed by a sequence of k-step actions
(at+1−k, at+2−k, · · · , at), is sufficient to constitute an attribution to predict st+1.

However, a fixed-horizon multi-step dynamics model lacks the ability to roll out a sequence starting
from a single state since the policy cannot make multi-step action decisions at once. More importantly,
it still relies on an ensemble to estimate model uncertainty in the offline setting (Yu et al., 2020;
Sun et al., 2023), which further increases the computational burden. To enhance multi-step direct
prediction, we propose that a dynamics model should be capable of directly predicting future states
across arbitrary horizon lengths. This would incorporate the flexible roll-out capacity of previous
single-step dynamics models, and the variability in horizon lengths could create conditions for
quantification of the model uncertainty, making it possible to abandon the ensemble.

To handle the variable-length plans, we introduce a special Any-step Dynamics Model (ADM) that
allows for the use of st+1−k and (at+1−k, at+2−k, · · · , at) corresponding to any integer k within
a specified range as inputs for predicting st+1. When the agent faces changes occurring in the
trajectory distribution, the state predictions from different backtracking lengths will exhibit noticeable
divergence. This feature naturally enables ADM to estimate model uncertainty without ensemble.
Replacing the ensemble dynamics model with ADM, we devise a unique model roll-out method with
random backtracking, which can be plugged into any existing MBRL algorithmic frameworks. In
this paper, our main purpose is to demonstrate how the augmented data generated by ADM exhibits
excellent effectiveness, both in improving future predictions and measuring the model uncertainty.

In general, our contributions are summarized as follows. (1) We present a generalized dynamics model
called ADM to replace the dynamics model used in existing online and offline MBRL algorithms and
demonstrate its superiority in reducing the compounding error. (2) We propose a new online MBRL
algorithm called ADMPO-ON based on ADM and show that it can outperform recent state-of-the-art
online model-based algorithms in terms of sample efficiency while retaining competitive performance
on MuJoCo (Todorov et al., 2012) benchmarks. (3) We propose a new offline MBRL algorithm
called ADMPO-OFF based on ADM and show that it can effectively quantify the model uncertainty,
achieving superior performance compared to recent state-of-the-art offline algorithms on D4RL (Fu
et al., 2020) and NeoRL (Qin et al., 2022) benchmarks.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS AND REINFORCEMENT LEARNING

We consider a standard Markov Decision Process (MDP) specified by a tupleM = (S,A, T, ρ0, γ),
where S is the state space, A is the action space, T (st+1, rt+1|st, at) is the dynamics function that
calculates the conditioned distribution of st+1 ∈ S and rt+1 ∈ R given (st, at), ρ0 is the initial
state distribution, and γ is the discount factor. We use ρπ to denote the on-policy distribution over
states induced by the dynamics function T and the policy π. From a multi-step perspective, the
attribution of state st+1 and reward rt+1 can be traced back to the earlier k-step plan, st−k+1 along
with the action sequence at−k+1:t = (at−k+1, at−k+2, · · · , at) in between. This relationship can be
represented by the k-step dynamics model

T k(st+1, rt+1|st−k+1, at−k+1:t) =
∑

(st−k+2:t,rt−k+2:t)∈Sk−1×Rk−1

k−1∏
i=0

T (st−i+1, rt−i+1|st−i, at−i).

(1)
We use Γk

π(st−k+1:t, at−k+1:t|st+1) to denote the distribution over (st−k+1:t, at−k+1:t) conditioned
on st+1 induced by the dynamic function T and the policy π.

The optimization goal of Reinforcement Learning (RL) is to find a policy π that maximized the
expected discounted return Eρπ

[∑∞
t=1 γ

t−1rt
]
. Such a policy can be derived from the estimation

of the state-action value function Qπ(st, at) = E(st+1,rt+1)∼T (·|st,at) [rt+1 + γV π(st+1)], where
V π(st+1) = Eat+1∼π(·|st+1) [Q

π(st+1, at+1)] is the state value function.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 MODEL-BASED REINFORCEMENT LEARNING

MBRL aims to find the optimal policy while transferring the agent’s explorations and evaluations from
the environment to the learned dynamics model. Given a dataset Denv collected via interaction in the
real environment, the dynamics model T̂ is typically trained to maximize the expected likelihood
E(st,at,rt+1,st+1)∼Denv

[log T̂ (st+1, rt+1|st, at)]. The estimated dynamics model defines a surrogate
MDP M̂ = (S,A, T̂ , ρ0, γ). Then any RL algorithm can be used to recover the optimal policy with
the augmented dataset Denv ∪ Dmodel, where Dmodel is the synthetic data rolled out in M̂.

The above-mentioned paradigm is adopted by model-based policy optimization (MBPO) (Janner
et al., 2019) and much of its follow-up work (Lin et al., 2023; Li et al., 2022; Pan et al., 2020; Clavera
et al., 2020) in the online setting. These works don’t need to consider the issue of model coverage, as
the agent can explore online to fill in the regions where the dynamics model is uncertain. However,
in the offline setting, the limited dataset causes T̂ to cover only a part of the state-action space.
Therefore, MOPO (Yu et al., 2020) and some of its subsequent offline MBRL algorithms (Kidambi
et al., 2020; Sun et al., 2023) use the ensemble-based uncertainty as a penalty term in the reward
function, allowing the agent to sample within safe regions of T̂ . This work can estimate the model
uncertainty without ensemble models. A related approach is IVE (Filos et al., 2022), which also
proposes an ensemble-free uncertainty estimator through divergence of values obtained by applying
the surrogate Bellman operator to the value function for different times.

3 METHOD

In this section, we propose a special Any-step Dynamics Model (ADM) to replace the mainstream
ensemble dynamics models. ADM reduces bootstrapping prediction to direct prediction by backtrack-
ing variable-length plans. Applying ADM to existing MBRL frameworks for policy optimization, we
introduce two algorithms, namely online ADMPO-ON and offline ADMPO-OFF.

3.1 ANY-STEP DYNAMICS MODEL

Currently, the prevalent dynamics models typically operate on a single-step basis, with st and at as
inputs to predict st+1 and rt+1. In a broader context, dynamics models can also be multi-step (Asadi
et al., 2018; 2019; Che et al., 2018), where inputs encompass st along with a k-step sequence of
actions (at, at+1, · · · , at+k−1) to predict st+k and rt+k. To introduce flexibility in the backtracking
length of the model, we further extend the definition of the multi-step dynamics model to allow k to
be any positive integer within a specified range, as delineated in Definition 3.1.
Definition 3.1 (Any-step Dynamics Model). Given the maximum backtracking length m, an any-step
dynamics model T̂ (st+k, rt+k|st, at:t+k−1) is the distribution of st+k ∈ S and rt+k ∈ R conditioned
on the k-step plan (st, at:t+k−1) = (st, at, at+1, · · · , at+k−1) ∈ S×Ak, where k can be any integer
between [1,m].

To handle inputs with variable step sizes, we utilize an RNN (Elman, 1990) with a GRU (Cho
et al., 2014) cell to implement the any-step dynamics model, as depicted in the left part of Figure
1. Certainly, Transformer (Vaswani et al., 2017) is also a feasible choice, but we do not consider it
because the model structure is beyond the scope of this study. Since the input state consists of only
one step, while the action may be a sequence of multiple steps, we duplicate the state to match the
length of the action sequence, and then sequentially feed it into the RNN. The input (st, at:t+k−1),
after being represented by the RNN, yields the hidden hk

t , which is then fed into an MLP to obtain
the mean and standard deviation of st+k and rt+k, i.e., (µs

t+k,Σ
s
t+k) and (µr

t+k,Σ
r
t+k). Similar to

previous model-based methods (Janner et al., 2019; Pan et al., 2020; Lin et al., 2023), we model
the distributions of st+k and rt+k as Gaussian distributions and predict them through sampling. We
call the Any-step Dynamics Model as ADM and denote it as T̂θ(st+k, rt+k|st, at:t+k−1), where
θ represents the neural parameters. With the real samples from the environment, T̂θ is trained to
maximize the expected likelihood:

JT (θ) =
1

m

m∑
k=1

E(st,at:t+k−1,rt+k,st+k)∼Denv

[
log T̂θ(st+k, rt+k|st, at:t+k−1)

]
. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

��+1��

�3�2

�3�2�1
��

······GRU GRU GRU

�� ��+1 ��+�−1

ℎ�
�ℎ�

1 ℎ�
2 ℎ�

�−1

�(��+�
� , ��+�

�)

MLP

�(��+�
� , ��+�

�)

��+� ��+�

Any-step
Dynamics Model (ADM)

�1

······

ADM

······

�1:�

ADM

�2:�

ADM

�3:�

ADM

��

��

��+1
1 ��+1

2 ��+1
3 ��+1

�······ random
choice

Figure 1: Illustration of any-step dynamics model (left) structured using RNN and its application for
next-step prediction with random backtracking (right).

Algorithm 1 Roll-out in ADM: ADM-Roll(T̂θ, πϕ, H , m, (s1, a1, s2, a2, · · · , sm−1, am−1, sm))

Input: Learned ADM T̂θ with parameters θ, policy πϕ with parameters ϕ, roll-out length H ,
maximum backtracking length m, state-action sequence (s1, a1, s2, a2, · · · , sm−1, am−1, sm)

1: for τ = 0 to H − 1 do
2: if τ = 0 then Sample am+τ ∼ πϕ(·|sm+τ)
3: else Sample am+τ ∼ πϕ(·|ŝm+τ)
4: Randomly sample an integer k from [1,m] uniformly
5: if τ ≤ k − 1 then Roll out via (ŝm+τ+1, r̂m+τ+1) ∼ T̂θ(·|sm+τ+1−k, am+τ+1−k:m+τ)

6: else Roll out via (ŝm+τ+1, r̂m+τ+1) ∼ T̂θ(·|ŝm+τ+1−k, am+τ+1−k:m+τ)
7: end for
8: return (sm, am, r̂m+1, ŝm+1, · · · , ŝm+H−1, am+H−1, r̂m+H , ŝm+H)

With T̂θ, the frequent bootstrapping during model roll-out can be reduced. Specifically, given the
maximum backtracking length m, a state-action sequence of length m, (s1, a1, s2, a2, · · · , sm, am),
is sampled from the data buffer to start the roll-out in T̂θ. To obtain the prediction ŝm+1, an integer
between [1,m] is chosen uniformly at random as the backtracking length. If only one step is selected
for backtracking, (sm, am) will be fed into T̂θ to obtain the prediction result; if m−1 steps are chosen,
(s2, a2:m) will be fed into T̂θ, and so forth. The right part of Figure 1 illustrates the aforementioned
process based on random backtracking. Similarly, subsequent state predictions can also backtrack at
most m steps. After rolling out several steps, it inevitably backtracks to previously predicted states.
For example, for the prediction ŝ2m, it can only backtrack to one of (sm, ŝm+1, ŝm+2, · · · , ŝ2m−1).
The backtracked state, one part of the attribution for next state prediction, is located several steps
ahead in expectation. Thus, ADM reduces the actual bootstrapping count of a rolled-out trajectory.
The complete H-step roll-out process in ADM is described in Algorithm 1.

Similar to existing MBRL algorithms, policy roll-out in ADM can generate a large number of
fake samples for policy updates. We refer to the new dyna-style ADM-based policy optimization
framework as ADMPO (ADM-based Policy Optimization). Any policy optimization algorithm can be
plugged into this framework. In the subsequent subsections, we will introduce two new model-based
algorithms, ADMPO-ON and ADMPO-OFF, for online and offline settings, respectively.

3.2 ADMPO-ON: ADM FOR POLICY OPTIMIZATION IN ONLINE SETTING

In the online setting, the agent interacts with the real environment while simultaneously optimizing
the policy. Like MBPO (Janner et al., 2019), ADMPO-ON can be divided into two alternating stages,
namely updating the dynamics model with continuously collected samples and utilizing samples
generated through model roll-outs additionally for policy optimization. ADMPO-ON replaces the
ensemble dynamics model in MBPO framework with ADM. It trains ADM with the optimization
objective shown in Equation (2) and generates a large number of fake samples using the roll-out

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

method depicted in Algorithm 1. The detailed pseudo-code is provided by Algorithm 2 in Appendix
C.1.

During roll-outs, ADM randomly selects a backtracking length at each step and attributes the
states to be predicted to variable-length plans. While backtracking k steps, we view the sampling
process (ŝt+1, r̂t+1) ∼ T̂θ(·|st−k+1, at−k+1:t) as (ŝt+1, r̂t+1) = µθ(st−k+1, at−k+1:t) + ηt+1 with
ηt+1 ∼ N (0,Σθ(st−k+1, at−k+1:t)), where µθ is the deterministic dynamics function and Σθ is the
standard deviation function used to construct the noise distribution with zero mean. In expectation,
the target value of Q(st, at) is estimated as

E(st−m+1:t−1,at−m+1:t−1)∼Γm−1
π (·|st)

[
1

m

m∑
k=1

E(ŝt+1,r̂t+1)∼T̂θ(·|st−k+1,at−k+1:t)
[y(ŝt+1, r̂t+1)]

]
,

(3)
where y(ŝt+1, r̂t+1) = r̂t+1 + γEa∼π(·|ŝt+1) [Q(ŝt+1, a)]. Data generated via roll-outs in our ADM
can be viewed as an implicit augmentation. The augmentation stems from two sources: (i) variation
of the backtracking-length while applying the learned ADM to predict the next state, and (ii) the noise
introduced by the distributionN (0,Σθ(st−k+1, at−k+1:t)) at each backtracking-length k. According
to (Zheng et al., 2023), variations of state predictions can effectively implicitly regularize the local
Lipschitz condition of the Q network around regions where the model prediction is uncertain, thereby
regulating the value-aware model error (Farahmand et al., 2017).

3.3 ADMPO-OFF: ADM FOR POLICY OPTIMIZATION IN OFFLINE SETTING

In the offline setting, due to limitations of the behavior policy corresponding to the dataset, the learned
ADM can only cover some regions of the state-action space. Beyond these safe regions lie the risky
regions where the model is uncertain and unable to be fixed since online exploration is inaccessible
to the agent. To prevent policy optimization collapse, exploitation of the learned model needs to
be focused within the safe regions. Simultaneously, efforts should be made to explore beyond the
boundaries of the safe regions to discover samples conducive to a better policy than the behavior
policy. Achieving such a balance between conservatism and generalization often requires measuring
model uncertainty. Based on ADM, next we will introduce a new uncertainty quantification method.

In our ADM, states predicted using different backtracking lengths exhibit discrepancies. Intuitively,
these discrepancies are closely related to the data distribution. When the agent is in safe regions, the
discrepancies are small. As the agent gradually explores towards risky regions, the discrepancies tend
to increase. The difference among probabilistic predictions T̂θ(·|st−k+1, at−k+1:t) obtained with
different backtracking k serve as a natural measure of model uncertainty, which can be quantified
using variance (or standard deviation), as defined by Definition 3.2.
Definition 3.2 (ADM-Uncertainty Quantifier). For any maximum backtracking length m and the
corresponding learned ADM T̂θ, the uncertainty of T̂θ at (st, at) is quantified as

UADM(st, at) =EΓm−1
π (·|st)

[∥∥∥Vark∼Uniform(m),ŝt+1∼T̂θ(·|st−k+1,at−k+1:t)
[ŝt+1]

∥∥∥
1

]
=EΓm−1

π (·|st)

[∥∥∥∥∥ 1

m

m∑
k=1

(
(Σk

θ)
2 + (µk

θ)
2
)
− (µ̄)2

∥∥∥∥∥
1

]
(4)

for any st ∈ S and at ∈ A, where Σk
θ = Σθ(st−k+1, at−k+1:t), µk

θ = µθ(st−k+1, at−k+1:t) for
convenience, and µ̄ = 1

m

∑m
k=1 µ

k
θ .

This uncertainty term corresponds to a combination of epistemic and aleatoric model uncertainty with
a similar form to the ensemble standard deviation (Lu et al., 2022; Lakshminarayanan et al., 2017).
However, the source of diversity has shifted from ensemble to variable backtracking lengths. Since
estimating the approximation error via epistemic or aleatoric uncertainty has been applied in many
works (Yu et al., 2020; Bai et al., 2022; Sun et al., 2023; Lu et al., 2022), we assume that our ADM
uncertainty (4) is an admissible error estimator (Yu et al., 2020), as described in Assumption 3.3.
Assumption 3.3 (Admissible Error Estimator). Assume that there exists a positive b ∈ R+ such that
the following inequality (5) holds for any maximum backtracking length m and any st ∈ S , at ∈ A.

DTV(T̄θ,m(·|st, at), T (·|st, at)) ≤ b · UADM(st, at), (5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where T̄θ,m is the overall conditioned distribution coming from

T̄θ,m(·|st, at) =
1

m

m∑
k=1

 ∑
st−k+1

at−k+1:t−1

Γk−1
π (st−k+1, at−k+1:t−1|st)T̂θ(·|st−k+1, at−k+1:t))

 . (6)

Under Assumption 3.3 and the ξ-uncertainty quantifier definition (see Appendix A for details)
proposed by PEVI (Jin et al., 2021), we present the following theorem, demonstrating that UADM

can serve as a ξ-uncertainty quantifier to bound the Bellman error.
Theorem 3.4. β · UADM is a valid ξ-uncertainty quantifier, with β = bγrmax

1−γ . Specifically,∣∣∣T̂ πQ(st, at)− T πQ(st, at)
∣∣∣ ≤ β · UADM(st, at), (7)

where T̂ π is the proxy Bellman operator induced by ADM to estimate the true Bellman operator T π .

Proof. See Appendix B.

According to the suboptimality theorem (see Appendix A for details) presented by PEVI (Jin et al.,
2021), the policy π̂ derived via pessimistic value iteration, which incorporates any ξ-uncertainty
quantifier as a penalty term into the value iteration process (Sutton & Barto, 2018), has a bounded
optimality gap to the optimal policy π∗. The optimality gap is dominated by the Bellman error and
the uncertainty quantification. Intuitively, the Bellman error is usually small in safe regions where the
dynamics model has been trained with rich data and tends to yield high consistency under different
backtracking lengths, while large errors often appear in risky regions where data is scarce and the
predictions via backtracking different lengths become inconsistent. The penalization prevents the
policy from taking actions leading it to risky regions, otherwise the model will induce inaccurate
value estimations on these actions. Thus, we can penalize the Bellman operator to obtain a pessimistic
value estimation by

T̂ ADMQ(st, at) := T̂ πQ(st, at)− β · UADM(st, at). (8)

We expect the penalty term β · UADM(st, at) to be as small as possible thereby constraining the
optimality gap. While our Assumption 3.3 lacks theoretical guarantees and the tightness of the bound
in Theorem 3.4 is unclear, we have provided sufficient evidence in Section 4.3.3 that our uncertainty
quantification effectively estimates the model error.

Overall, ADMPO-OFF is the offline version of ADMPO-ON, which introduces a penalized Bellman
operator (8) into the policy optimization process of ADMPO-ON, following the algorithmic frame-
work of MOPO (Yu et al., 2020). The detailed pseudo-code is provided by Algorithm 3 in Appendix
C.2.

4 EXPERIMENTS

In this section, we conduct several experiments to answer: (1) Does ADM roll-out samples with
less compounding error than the ensemble dynamics model? (2) How well does ADMPO-ON
perform in the online setting? (3) How well does ADMPO-OFF perform in the offline setting? Does
ADM quantify the model uncertainty better than the ensemble dynamics model? (4) How does the
maximum backtracking length m affect the performance?

4.1 DYNAMICS MODEL EVALUATION

An essential metric for evaluating dynamics model quality is the compounding error, which increases
with the roll-out length. We selected four D4RL (Fu et al., 2020) datasets, hopper-medium-v2,
hopper-medium-replay-v2, walker2d-medium-v2, and walker2d-medium-replay-v2, to compare the
compounding error between ADM and the commonly used ensemble dynamics model. To eliminate
the influence of the RNN structure, we also compare the bootstrapping RNN dynamic model, which
shares the same structure as ADM but make the prediction ŝt+1 using the historical state-action

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 25 50 75 100
Roll-out Length

102

1010

1018

1026

1034

Pr
ed

ict
io

n
Er

ro
r

hopper-medium

0 25 50 75 100
Roll-out Length

102

1010

1018

1026

1034

Pr
ed

ict
io

n
Er

ro
r

hopper-medium-replay

0 25 50 75 100
Roll-out Length

10 2

10 1

100

101

102

Pr
ed

ict
io

n
Er

ro
r

walker2d-medium

0 25 50 75 100
Roll-out Length

103

1011

1019

1027

1035

Pr
ed

ict
io

n
Er

ro
r

walker2d-medium-replay

ADM (ours) Ensemble Dynamics Model Bootstrapping RNN Dynamics Model

Figure 2: Comparison among ADM, ensemble dynamics model, and bootstrapping RNN dynamics
model, in terms of the growth curve of the compounding error (in log scale) as roll-out length
increases, after offline learning. The overflow value is regarded as the maximum value of float32.

0 25000 50000
Time Steps

0

1000

2000

3000

4000

R
ew

ar
d

Hopper

0 50000 100000 150000 200000
Time Steps

0

2000

4000

6000

R
ew

ar
d

Walker2d

0 100000 200000 300000
Time Steps

0

2000

4000

6000

R
ew

ar
d

Ant

0 100000 200000 300000
Time Steps

0

2000

4000

6000

8000

R
ew

ar
d

Humanoid

ADMPO-ON (ours) MACURA DDPPO BMPO MBPO STEVE SAC convergence

Figure 3: Online learning curves of ADMPO-ON (red) and other six baselines on four MuJoCo-v3
tasks. The blue dashed lines indicate the asymptotic performance of SAC for reference. The solid
lines indicate the mean while the shaded areas indicate the standard error over five different seeds.

sequence (ŝt−k+1, at−k+1, · · · , ŝt, at)1 as input, where k is uniformly sampled from [1,m]. The
dataset is divided into a training set and a validation set, with the former used to train the dynamics
model and the trajectories in the latter used to evaluate the compounding error. Figure 2 shows the
growth curves of the compounding error as the roll-out length increases, with the y-axis in log scale.
The linear-scale version is shown in Appendix E.1. We observe that the curves of ADM remain
close to zero, while the other two models exhibit exponential growth as the roll-out length exceeds a
certain threshold. This phenomenon suggests ADM can improve predictions for future states due to
its any-step backtracking mechanism during model roll-outs.

4.2 EVALUATION IN ONLINE SETTING

We evaluate ADMPO-ON on four difficult MuJoCo continuous control tasks (Todorov et al., 2012),
including Hopper, Walker2d, Ant, and Humanoid. All the tasks adopt version v3 and follow the default
settings. Five model-based methods and one model-free method are selected as our baselines. These
include SAC (Haarnoja et al., 2018), whcih is the state-of-the-art model-free RL algorithm; STEVE
(Buckman et al., 2018), which incorporates an ensemble into the model-based value expansion;
MBPO (Janner et al., 2019), which updates the policy with a mixture of real environmental samples
and branched roll-out data; BMPO (Lai et al., 2020), which builds upon MBPO and replaces the
dynamics model with a bidirectional one; DDPPO (Li et al., 2022), which adopts a two-model-based
learning method to control the prediction error and the gradient error; and MACURA (Frauenknecht
et al., 2024), which uses inherent model uncertainty to consider local accuracy to make roll-out.

Figure 3 shows learning curves of ADMPO-ON and other six baselines, along with SAC’s asymptotic
performance. ADMPO-ON achieves competitive performance after fewer environmental steps than
most of baselines. Taking the most difficult Humanoid as an example, ADMPO-ON and MACURA
have achieved 100% of SAC convergence performance (about 6000) after 150k steps, while DDPPO
needs about 200k steps, and the other four methods can’t get close to the blue dashed line even at step
300k. ADMPO-ON matches the performance of the previous state-of-the-art algorithm, MACURA,
and dominates other baselines in terms of learning efficiency on the Humanoid task. After training,

1It would be (st−k+1, at−k+1, · · · , st, at) from the dataset if it were at the beginning of the roll-out.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Normalized scores after offline learning on D4RL MuJoCo tasks, averaged over five seeds.
Task Name BC CQL TD3+BC EDAC MOPO COMBO RAMBO CBOP MOBILE ADMPO-OFF (ours)

hopper-random 3.7 5.3 8.5 25.3 31.7 17.9 25.4 31.4 31.9 32.7±0.2
halfcheetah-random 2.2 31.3 11.0 28.4 38.5 38.8 39.5 32.8 39.3 45.4±2.8
walker2d-random 1.3 5.4 1.6 16.6 7.4 7.0 0.0 17.8 17.9 22.2±0.2

hopper-medium 54.1 61.9 59.3 101.6 62.8 97.2 87.0 102.6 106.6 107.4±0.6
halfcheetah-medium 43.2 46.9 48.3 65.9 73.0 54.2 77.9 74.3 74.6 72.2±0.6
walker2d-medium 70.9 79.5 83.7 92.5 84.1 81.9 84.9 95.5 87.7 93.2±1.1

hopper-medium-replay 16.6 86.3 60.9 101.0 103.5 89.5 99.5 104.3 103.9 104.4±0.4
halfcheetah-medium-replay 37.6 45.3 44.6 61.3 72.1 55.1 68.7 66.4 71.7 67.6±3.4
walker2d-medium-replay 20.3 76.8 81.8 87.1 85.6 56.0 89.2 92.7 89.9 95.6±2.1

hopper-medium-expert 53.9 96.9 98.0 110.7 81.6 111.1 88.2 111.6 112.6 112.7±0.3
halfcheetah-medium-expert 44.0 95.0 90.7 106.3 90.8 90.0 95.4 105.4 108.2 103.7±0.2
walker2d-medium-expert 90.1 109.1 110.1 114.7 112.9 103.3 56.7 117.2 115.2 114.9±0.3

Average 36.5 61.6 58.2 76.0 70.3 66.8 67.7 79.3 80.0 81.0

Table 2: Normalized scores after offline learning on NeoRL tasks, averaged over five seeds.
Task Name BC CQL TD3+BC EDAC MOPO MOBILE ADMPO-OFF (ours)

neorl-hopper-low 15.1 16.0 15.8 18.3 6.2 17.4 22.3±0.1
neorl-halfcheetah-low 29.1 38.2 30.0 31.3 40.1 54.7 52.8±1.2
neorl-walker2d-low 28.5 44.7 43.0 40.2 11.6 37.6 55.9±3.8

neorl-hopper-medium 51.3 64.5 70.3 44.9 1.0 51.1 51.5±5.0
neorl-halfcheetah-medium 49.0 54.6 52.3 54.9 62.3 77.8 69.3±1.7
neorl-walker2d-medium 48.7 57.3 58.5 57.6 39.9 62.2 70.1±2.4

neorl-hopper-high 43.1 76.6 75.3 52.5 11.5 87.8 87.6±4.9
neorl-halfcheetah-high 71.3 77.4 75.3 81.4 65.9 83.0 84.0±0.8
neorl-walker2d-high 72.6 75.3 69.6 75.5 18.0 74.9 82.2±1.9

Average 45.4 56.1 54.5 50.7 28.5 60.7 64.0

ADMPO-ON can achieve a final performance close to the asymptotic performance of SAC on all these
four MuJoCo tasks. These results demonstrate that ADMPO-ON has both high sample efficiency and
competitive performance. Further study on why ADMPO-ON performs well in the online setting can
be found in Appendix E.2.

4.3 EVALUATION IN OFFLINE SETTING

4.3.1 D4RL BENCHMARK RESULTS

We compare ADMPO-OFF with four model-free methods: BC (behavioral cloning), which simply
imitates the behavior policy of the dataset; CQL (Kumar et al., 2020), which equally penalized the Q
values on out-of-the-distribution state-action pairs; TD3+BC (Fujimoto & Gu, 2021), which simply
incorporates a BC term into the policy optimization objective of TD3 (Fujimoto et al., 2018); and
EDAC (An et al., 2021), which quantifies the Q uncertainty via ensemble; as well as five model-
based methods: MOPO (Yu et al., 2020), which adds the uncertainty of the model prediction as a
penalization term to the reward function; COMBO (Yu et al., 2021), which introduces the penalty
function of CQL into the model-based framework; RAMBO (Rigter et al., 2022), which adversarially
trains the dynamics model and the policy; CBOP (Jeong et al., 2023), which adopts the variance of
values under an ensemble of dynamics models to estimate the Q value conservatively under MVE
(Feinberg et al., 2018) regime; and MOBILE (Sun et al., 2023), which proposes Model-Bellman
inconsistency to estimate the Bellman error.

Table 1 reports the results on twelve D4RL (Fu et al., 2020) MuJoCo datasets (v2 version). The
normalized score for each dataset is obtained via online evaluation after offline learning. The source of
the reported performance in provided in Appendix D.5. We observe that ADMPO-OFF outperforms
the other nine baselines in most tasks and achieves the highest average score. Notably, ADMPO-OFF
has a significant performance advantage over MOPO. This clearly demonstrates the effectiveness of
ADM, since ADMPO-OFF only replaces the dynamics model in MOPO with ADM.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Model Error

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 U

nc
er

ta
in

ty

ADM (Correlation: 0.98)
random action
learned policy
dataset

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Model Error

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 U

nc
er

ta
in

ty

Ensemble (Correlation: 0.94)
random action
learned policy
dataset

(a) hopper-medium-replay-v2

0 1 2 3 4 5 6
Model Error

0

1

2

3

4

M
od

el
 U

nc
er

ta
in

ty

ADM (Correlation: 0.98)
random action
learned policy
dataset

0 1 2 3 4 5 6
Model Error

0

1

2

3

4

M
od

el
 U

nc
er

ta
in

ty

Ensemble (Correlation: 0.91)
random action
learned policy
dataset

(b) walker2d-medium-replay-v2

Figure 4: Comparison between ADM and ensemble model in uncertainty quantification.

4.3.2 NEORL BENCHMARK RESULTS

NeoRL (Qin et al., 2022), is an offline RL benchmark that collects the data in a manner more
conservative and closer to real-world data-collection scenarios. We focus on nine datasets collected
using policies of three different qualities (low, medium, and high) in three environments Hopper-
v3, HalfCheetah-v3, and Walker2d-v3, respectively. In our evaluation, each dataset contains 1000
trajectories.

We compare our ADMPO-OFF with six baselines, including BC, CQL, TD3+BC, EDAC, MOPO,
and MOBILE. Table 2 presents the normalized scores of these methods. Due to the narrow and limited
coverage of the NeoRL data, all the baselines experience a decline in performance. In contrast, our
ADMPO-OFF maintains a relatively high-level average score, still achieving superior performance
in most tasks. This remarkable out-performance indicates the potential of our algorithm in more
challenging real-world tasks.

4.3.3 UNCERTAINTY QUANTIFICATION

In our analysis, we sample a lot of state-action pairs in the learned ADM and the ensemble dynamics
model respectively. These samples are obtained by model roll-out with three types of policy: random
action selection, the learned policy after offline training, and the behavior policy of the dataset.
Subsequently, we measure their model uncertainty and model error. The resulting scatter plots on two
D4RL tasks, hopper-medium-replay-v2 and walker2d-medium-replay-v2, are illustrated in Figure
4. We observe that our ADM provides a better quantification for the model uncertainty. On the one
hand, points sampled in ADM with greater model errors tend to exhibit greater quantified model
uncertainty. The correlation coefficient of 0.98, observed across both tasks, surpasses that of the
ensemble dynamics model. On the other hand, ADM can distinguish the samples from different
policy better than the ensemble model. Samples generated from random actions deviate from the
dataset distribution, whose uncertainty should be maximum in expectation. Conversely, when the
learned policy is optimized within the safe regions covered by the dataset, model uncertainty is
expected to be minimal. The experimental plots of ADM illustrate this phenomenon more clearly.

4.4 STUDY ON m

We set m to 1, 2, 3, 5, 7, and 10, respectively, to study its impact on the performance of ADMPO-OFF.
In addition, since ADM is an improvement for a fixed multi-step dynamics model (Asadi et al., 2018;
2019; Che et al., 2018), we further set the learning and roll-out steps of ADM to fixed lengths to
highlight the importance of the any-step design. Table 3 reports the ablation results on four D4RL
(Fu et al., 2020) MuJoCo datasets (v2 version). The network structure is kept unchanged.

Table 3: Normalized scores corresponding to different maximum backtracking lengths.
Task Name fixed 2-step fixed 3-step fixed 4-step fixed 5-step m = 1 m = 2 m = 3 m = 5 m = 7 m = 10

hopper-medium 6.7±1.4 9.2±1.0 8.6±1.6 8.8±1.3 5.3±1.7 25.2±5.0 106.81±0.7 107.4±0.6 106.1±0.7 106.8±0.7
hopper-medium-replay 22.4±1.6 25.3±1.2 26.3±1.5 22.3±1.9 23.3±1.6 31.8±1.1 99.2±0.7 104.4±0.4 102.3±0.8 103.8±1.3
walker2d-medium 6.3±1.6 5.7±1.5 5.5±1.6 5.3±1.8 5.5±1.3 93.6±16 86.6±16.7 93.2±1.1 90.5±1.1 84.23±2.0
walker2d-medium-replay 17.4±1.6 24.5±2.2 21.9±2.6 22.6±2.1 19.8±2.7 66.3±0.7 83.7±0.6 95.6±2.1 94.3±0.8 91.4±1.0

When setting m to 1 or using a fixed multi-step model, performance severely degrades. This is
because, in these cases, state predictions lack diversity and cannot estimate model uncertainty, which
is critical in the offline setting. Starting from 1 and gradually increasing m to 5 leads to continuous

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

performance improvement. Larger values of m no longer bring further performance advantages since
predicting across too many steps poses a challenge to the expressive capacity of neural networks.
This experiment demonstrates the necessity of the any-step design and the proper selection of m.

5 RELATED WORK

This work is related to online and offline dyna-style MBRL (Sutton, 1990).

5.1 ONLINE MODEL-BASED REINFORCEMENT LEARNING

In the online setting, MBRL algorithms aim to accelerate value estimation or policy optimization with
model roll-out data. MVE (Feinberg et al., 2018) enhances Q-value target estimation by allowing
short-term imagination to a fixed depth using the dynamics model. STEVE (Buckman et al., 2018)
builds upon MVE by incorporating an ensemble into the value expansion to better estimate the Q
value. SLBO (Luo et al., 2019) directly utilizes TRPO (Schulman et al., 2015) to optimize the policy
with synthetic data generated by rolling out to the end of trajectories in the dynamics model. MBPO
(Janner et al., 2019) proposes a branched roll-out scheme to truncate unreliable samples, thereby
reducing the influence of compounding error (Xu et al., 2021), and employs SAC (Haarnoja et al.,
2018) to update the policy with a mixture of real-world data and model-generated data.

Recent work improves MBRL performance mainly from two perspectives. One focuses on learning
a better dynamics model, such as bidirectional models (Lai et al., 2020), adversarial models (Chen
et al., 2023; Bhardwaj et al., 2023), causal models (Zhu et al., 2022), and multi-step models (Asadi
et al., 2018; 2019; Che et al., 2018). The other pursues a better utilization of the learned model,
enhancing the reliability of model-generated samples (Pan et al., 2020) or applying model-based
multi-step planning techniques (Chua et al., 2018; Clavera et al., 2020; Karkus et al., 2019; Okada
et al., 2017; Srinivas et al., 2018; Lin et al., 2023).

5.2 OFFLINE MODEL-BASED REINFORCEMENT LEARNING

Although some model-free RL algorithms (Kumar et al., 2019; Fujimoto et al., 2019; Fujimoto & Gu,
2021; Kumar et al., 2020; An et al., 2021; Bai et al., 2022) have made significant contributions to
offline RL research, MBRL algorithms appear to be more promising for the offline setting since they
can utilize the dynamics model to extend the dataset and largely improve the data efficiency.

The core issue of offline MBRL lies in how to effectively leverage the model. MOPO (Yu et al., 2020)
and MOReL (Kidambi et al., 2020) add the uncertainty of the model prediction as a penalization term
to the original reward function to achieve a pessimistic value estimation. MOBILE (Sun et al., 2023)
improves the uncertainty quantification by introducing Model-Bellman inconsistency into the offline
model-based framework. COMBO (Yu et al., 2021) applies CQL (Kumar et al., 2020) to force the
Q value to be small on model-generated out-of-distribution samples. RAMBO (Rigter et al., 2022)
achieves conservatism by adversarial model learning for value minimization while keeping fitting the
transition function. CBOP (Jeong et al., 2023) introduces adaptive weighting of short-horizon roll-out
into MVE (Feinberg et al., 2018) technique and adopts the variance of values under an ensemble
of dynamics models to estimate the Q value conservatively. MOREC (Luo et al., 2024a) designs
a reward-consistent dynamics model using an adversarial discriminator to let the model-generated
samples be more reliable.

6 CONCLUSION

In this work, we propose a new method for environment model learning and utilization, namely
Any-step Dynamics Model (ADM). ADM is applicable in both online and offline MBRL frameworks
and yields two algorithms, ADMPO-ON and ADMPO-OFF, respectively. Several analysis and
experiments show that ADM outperforms the ensemble dynamics model applied in previous MBRL
approaches widely. The only problem is that RNN may consume more resources during the training
process. We believe ADM has powerful potential beyond the capabilities demonstrated in this
paper. In the future, we will explore the scalability of ADM in non-Markovian visual RL scenarios,
considering both online and offline settings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. In Advances in Neural Information Processing
Systems 34 (NeurIPS’21), Virtual Event, 2021.

Kavosh Asadi, Evan Cater, Dipendra Misra, and Michael L. Littman. Towards a simple approach to
multi-step model-based reinforcement learning. CoRR, abs/1811.00128, 2018.

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michael L. Littman. Combating the
compounding-error problem with a multi-step model. CoRR, abs/1905.13320, 2019.

Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhi-Hong Deng, Animesh Garg, Peng Liu, and Zhaoran
Wang. Pessimistic bootstrapping for uncertainty-driven offline reinforcement learning. In 10th
International Conference on Learning Representations (ICLR’22), Virtual Event, 2022.

Mohak Bhardwaj, Tengyang Xie, Byron Boots, Nan Jiang, and Ching-An Cheng. Adversarial model
for offline reinforcement learning. In Advances in Neural Information Processing Systems 36
(NeurIPS’23), New Orleans, LA, 2023.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble value expansion. In Advances in Neural
Information Processing Systems 31 (NeurIPS’18), Montréal, Canada, 2018.

Tong Che, Yuchen Lu, George Tucker, Surya Bhupatiraju, Shane Gu, Sergey Levine, and Yoshua
Bengio. Combining model-based and model-free RL via multi-step control variates. https://
openreview.net, 2018. URL https://openreview.net/forum?id=HkPCrEZ0Z.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized ensembled double q-learning:
Learning fast without a model. In 9th International Conference on Learning Representations
(ICLR’21), Virtual Event, 2021.

Xiong-Hui Chen, Yang Yu, Zhengmao Zhu, Zhihua Yu, Zhenjun Chen, Chenghe Wang, Yinan Wu,
Rong-Jun Qin, Hongqiu Wu, Ruijin Ding, and Fangsheng Huang. Adversarial counterfactual envi-
ronment model learning. In Advances in Neural Information Processing Systems 36 (NeurIPS’23),
New Orleans, LA, 2023.

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP’14), Doha, Qatar, 2014.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems 31 (NeurIPS’18), Montréal, Canada, 2018.

Ignasi Clavera, Yao Fu, and Pieter Abbeel. Model-augmented actor-critic: Backpropagating through
paths. In 8th International Conference on Learning Representations (ICLR’20), Addis Ababa,
Ethiopia, 2020.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

Amir Massoud Farahmand, André Barreto, and Daniel Nikovski. Value-aware loss function for
model-based reinforcement learning. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS’17), Fort Lauderdale, FL, 2017.

Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I. Jordan, Joseph E. Gonzalez, and Sergey
Levine. Model-based value estimation for efficient model-free reinforcement learning. CoRR,
abs/1803.00101, 2018.

Angelos Filos, Eszter Vértes, Zita Marinho, Gregory Farquhar, Diana Borsa, Abram L. Friesen, Feryal
M. P. Behbahani, Tom Schaul, André Barreto, and Simon Osindero. Model-value inconsistency as
a signal for epistemic uncertainty. In Proceedings of the 39th International Conference on Machine
Learning (ICML’22), Baltimore, Maryland, 2022.

11

https://openreview.net
https://openreview.net
https://openreview.net/forum?id=HkPCrEZ0Z

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bernd Frauenknecht, Artur Eisele, Devdutt Subhasish, Friedrich Solowjow, and Sebastian Trimpe.
Trust the model where it trusts itself - model-based actor-critic with uncertainty-aware rollout
adaption. In Proceedings of the 41st International Conference on Machine Learning (ICML’24),
2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep
data-driven reinforcement learning. CoRR, abs/2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems 34 (NeurIPS’21), Virtual Event, 2021.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In Proceedings of the 35th International Conference on Machine Learning
(ICML’18), Stockholm, Sweden, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Proceedings of the 36th International Conference on Machine Learning (ICML’19),
Long Beach, California, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning (ICML’18), Stockholm, Sweden, 2018.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In Advances in Neural Information Processing Systems 32 (NeurIPS’19),
Vancouver, Canada, 2019.

Jihwan Jeong, Xiaoyu Wang, Michael Gimelfarb, Hyunwoo Kim, Baher Abdulhai, and Scott Sanner.
Conservative bayesian model-based value expansion for offline policy optimization. In The 11th
International Conference on Learning Representations (ICLR’23), Kigali, Rwanda, 2023.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In
Proceedings of the 38th International Conference on Machine Learning (ICML’21), Virtual Event,
2021.

Péter Karkus, Xiao Ma, David Hsu, Leslie Pack Kaelbling, Wee Sun Lee, and Tomás Lozano-Pérez.
Differentiable algorithm networks for composable robot learning. In Robotics: Science and
Systems XV (RSS’19), Freiburg im Breisgau, Germany, 2019.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. In Advances in Neural Information Processing Systems 33
(NeurIPS’20), Virtual Event, 2020.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
Q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems 32 (NeurIPS’19), Vancouver, BC, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems 33 (NeurIPS’20),
Virtual Event, 2020.

Hang Lai, Jian Shen, Weinan Zhang, and Yong Yu. Bidirectional model-based policy optimization.
In Proceedings of the 37th International Conference on Machine Learning (ICML’20), Virtual
Conference, 2020.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In Advances in Neural Information Processing
Systems 30 (NeurIPS’17), Long Beach, CA, 2017.

Chongchong Li, Yue Wang, Wei Chen, Yuting Liu, Zhi-Ming Ma, and Tie-Yan Liu. Gradient
information matters in policy optimization by back-propagating through model. In 10th In-
ternational Conference on Learning Representations (ICLR’22), Virtual Event, 2022. URL
https://openreview.net/forum?id=rzvOQrnclO0.

12

https://openreview.net/forum?id=rzvOQrnclO0

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Haoxin Lin, Yihao Sun, Jiaji Zhang, and Yang Yu. Model-based reinforcement learning with
multi-step plan value estimation. In Proceedings of the 26th European Conference on Artificial
Intelligence (ECAI’23), Kraków, Poland, 2023.

Cong Lu, Philip J. Ball, Jack Parker-Holder, Michael A. Osborne, and Stephen J. Roberts. Revisiting
design choices in offline model based reinforcement learning. In The 10th International Conference
on Learning Representations (ICLR’22), Virtual Event, 2022.

Fan-Ming Luo, Tian Xu, Xingchen Cao, and Yang Yu. Reward-consistent dynamics models are
strongly generalizable for offline reinforcement learning. In The 12th International Conference on
Learning Representations (ICLR’24), Vienna, Austria, 2024a.

Fan-Ming Luo, Tian Xu, Hang Lai, Xiong-Hui Chen, Weinan Zhang, and Yang Yu. A survey on
model-based reinforcement learning. SCIENCE CHINA Information Sciences, 2024b.

Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu Ma. Algorithmic
framework for model-based deep reinforcement learning with theoretical guarantees. In 7th
International Conference on Learning Representations (ICLR’19), New Orleans, LA, 2019.

Marlos C. Machado, André Barreto, Doina Precup, and Michael Bowling. Temporal abstraction in
reinforcement learning with the successor representation. Journal of Machine Learning Research,
24:80:1–80:69, 2023.

Masashi Okada, Luca Rigazio, and Takenobu Aoshima. Path integral networks: End-to-end differen-
tiable optimal control. CoRR, abs/1706.09597, 2017. URL http://arxiv.org/abs/1706.
09597.

Feiyang Pan, Jia He, Dandan Tu, and Qing He. Trust the model when it is confident: Masked
model-based actor-critic. In Advances in Neural Information Processing Systems 33 (NeurIPS’20),
Virtual Event, 2020.

Rongjun Qin, Xingyuan Zhang, Songyi Gao, Xiong-Hui Chen, Zewen Li, Weinan Zhang, and Yang
Yu. Neorl: A near real-world benchmark for offline reinforcement learning. In Advances in Neural
Information Processing Systems 35 (NeurIPS’22), New Orleans, LA, 2022.

Marc Rigter, Bruno Lacerda, and Nick Hawes. RAMBO-RL: Robust adversarial model-based offline
reinforcement learning. In Advances in Neural Information Processing Systems 35 (NeurIPS’22),
New Orleans, LA, 2022.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning
(ICML’15), Lille, France, 2015.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal planning
networks: Learning generalizable representations for visuomotor control. In Proceedings of the
35th International Conference on Machine Learning (ICML’18), Stockholm, Sweden, 2018.

Yihao Sun. Offlinerl-kit: An elegant pytorch offline reinforcement learning library. https:
//github.com/yihaosun1124/OfflineRL-Kit, 2023.

Yihao Sun, Jiaji Zhang, Chengxing Jia, Haoxin Lin, Junyin Ye, and Yang Yu. Model-bellman incon-
sistency for model-based offline reinforcement learning. In Proceedings of the 40th International
Conference on Machine Learning (ICML’23), Honolulu, Hawaii, 2023.

Richard S. Sutton. Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In Proceedings of the 7th International Conference on Machine
Learning (ICML’90), Austin, Texas, 1990.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT Press, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’20), Vilamoura,
Portugal, 2012.

13

http://arxiv.org/abs/1706.09597
http://arxiv.org/abs/1706.09597
https://github.com/yihaosun1124/OfflineRL-Kit
https://github.com/yihaosun1124/OfflineRL-Kit

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30 (NeurIPS’17), Long Beach, CA, 2017.

Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments for reinforce-
ment learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y. Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. MOPO: Model-based offline policy optimization. In Advances in Neural
Information Processing Systems 33 (NeurIPS’20), Virtual Event, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
COMBO: Conservative offline model-based policy optimization. In Advances in Neural Informa-
tion Processing Systems 34 (NeurIPS’21), Virtual Event, 2021.

Ruijie Zheng, Xiyao Wang, Huazhe Xu, and Furong Huang. Is model ensemble necessary? Model-
based RL via a single model with lipschitz regularized value function. In The 11th International
Conference on Learning Representations (ICLR’23), Kigali, Rwanda, 2023.

Zheng-Mao Zhu, Xiong-Hui Chen, Hong-Long Tian, Kun Zhang, and Yang Yu. Offline reinforcement
learning with causal structured world models. CoRR, abs/2206.01474, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL INTRODUCTION TO PESSIMISTIC VALUE ITERATION (PEVI)

Pessimistic Value Iteration (PEVI) (Jin et al., 2021) is a meta-algorithm for offline RL settings. It
constructs an estimated Bellman operator T̂ π based on the given dataset Denv to approximate the
true Bellman operator T π that satisfies

T πVh+1(sh, ah) = E(sh+1,rh+1)∼T (·|sh,ah) [rh+1 + Vh+1(sh+1)] , (9)
where h is the step index less than the horizon H. Then the state-action value function is updated
with

Qh(sh, ah)← T̂ πVh+1(sh, ah)− Λh(sh, ah) (10)
for each (sh, ah), where Λh is the penalty function that guarantees the conservatism of the learned
policy. Especially, Λh should be a ξ-uncertainty quantifier as follows.
Definition A.1 (ξ-Uncertainty Quantifier (proposed by (Jin et al., 2021))). The set of penalization
{Λh}h∈[H] forms a ξ-uncertainty quantifier if∣∣∣T̂ πVh+1(sh, ah)− T πVh+1(sh, ah)

∣∣∣ ≤ Λh(sh, ah) (11)

holds with probability at least 1− ξ for all (sh, ah) ∈ S ×A.

The following theorem characterizes the suboptimality of PEVI.
Theorem A.2 (Suboptimality of PEVI (proposed by (Jin et al., 2021))). Suppose {Λh}Hh=1 in PEVI
is a set of ξ-uncertainty quantifier. Then the derived policy π̂ satisfies∣∣∣V π∗

1 (s1)− V π̂
1 (s1)

∣∣∣ ≤ 2

H∑
h=1

Eρπ∗ [Λh(sh, ah)] (12)

with probability at least 1 − ξ for all starting s1 ∈ S. Here Eρπ∗ is with respect to the trajectory
induced by the optimal policy π∗ in the underlying MDP given the fixed function Λh.

Proof. See PEVI (Jin et al., 2021) for detailed proof.

B THEORETICAL RESULTS

Theorem B.1. β · UADM is a valid ξ-uncertainty quantifier, with β = bγrmax

1−γ . Specifically,∣∣∣T̂ πQ(st, at)− T πQ(st, at)
∣∣∣ ≤ β · UADM(st, at), (13)

where T̂ π is the proxy Bellman operator induced by ADM to estimate the true Bellman operator T π .

Proof. First, we define y(ŝt+1, r̂t+1) = r̂t+1 + γEa∼π(·|ŝt+1) [Q(ŝt+1, a)] and expand these two
Bellman operator to

T̂ πQ(st, at)

=E(st−m+1:t−1,at−m+1:t−1)∼Γm−1
π (·|st)

[
1

m

m∑
k=1

E(ŝt+1,r̂t+1)∼T̂θ(·|st−k+1,at−k+1:t)
[y(ŝt+1, r̂t+1)]

]

=
∑

st−m+1
at−m+1:t−1

Γm−1
π (st−m+1, at−m+1:t−1|st)

 1

m

m∑
k=1

∑
ŝt+1

r̂t+1

T̂θ(·|st−k+1, at−k+1:t)y(ŝt+1, r̂t+1)



=
1

m

m∑
k=1

 ∑
st−k+1

at−k+1:t−1

Γk−1
π (st−k+1, at−k+1:t−1|st)

∑
ŝt+1

r̂t+1

T̂θ(·|st−k+1, at−k+1:t))y(ŝt+1, r̂t+1)


=

∑
ŝt+1,r̂t+1

T̄θ,m(ŝt+1, r̂t+1|st, at)y(ŝt+1, r̂t+1),

(14)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

and

T πQ(st, at)

=Eŝt+1,r̂t+1∼T (·|st,at) [y(ŝt+1, r̂t+1)]

=
∑

ŝt+1,r̂t+1

T (ŝt+1, r̂t+1|st, at)y(ŝt+1, r̂t+1).
(15)

Then, we can obtain∣∣∣T̂ πQ(st, at)− T πQ(st, at)
∣∣∣

=
∑

ŝt+1,r̂t+1

∣∣T̄θ,m(ŝt+1, r̂t+1|st, at)− T (ŝt+1, r̂t+1|st, at)
∣∣ · |y(ŝt+1, r̂t+1)|

=γ
∑

ŝt+1,r̂t+1

∣∣T̄θ,m(ŝt+1, r̂t+1|st, at)− T (ŝt+1, r̂t+1|st, at)
∣∣ · ∣∣Ea∼π(·|ŝt+1) [Q(ŝt+1, a)]

∣∣
≤γrmax

1− γ

∑
ŝt+1,r̂t+1

∣∣T̄θ,m(ŝt+1, r̂t+1|st, at)− T (ŝt+1, r̂t+1|st, at)
∣∣

=
γrmax

1− γ
DTV(T̄θ,m(·|st, at), T (·|st, at))

≤bγrmax

1− γ
UADM(st, at).

(16)

Thus, let β = bγrmax

1−γ , we can say that β · UADM is a valid ξ-uncertainty quantifier, as defined by
Definition A.1.

C IMPLEMENTATION DETAILS

C.1 ADMPO-ON

Our ADMPO-ON algorithm follows the framework of MBPO (Janner et al., 2019), as shown in
Algorithm 2. The only difference between ADMPO-ON and MBPO lies in the way the dynamics
model is trained and utilized, as indicated by the blue-highlighted parts in the pseudo-code.

Algorithm 2 ADMPO-ON

Input: Initial ADM T̂θ and policy πϕ, roll-out length H , maximum backtracking length m, real data
buffer Denv, model data buffer Dmodel, warm-up size U , interaction epochs N , steps per epoch E

1: Explore for U environmental steps and add data to Denv

2: for N epochs do
3: Train ADM T̂θ on Denv by maximizing Equation (2)
4: for t = 1 to E do
5: Sample action at according to πϕ(·|st)
6: Perform at in the environment and add the real sample (st, at, rt+1, st+1) to Denv

7: for M model roll-outs do
8: Sample initial m-step state-action sequence (si:i+m−1, ai:i+m−2) from Denv

9: Roll out H steps in T̂θ via ADM-Roll(T̂θ, πϕ, H , m, (si:i+m−1, ai:i+m−2)) and add the
model roll-out data to Dmodel

10: end for
11: for G policy updates do
12: Update current policy πϕ using samples from Denv ∪ Dmodel

13: end for
14: end for
15: end for

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.2 ADMPO-OFF

Our ADMPO-OFF algorithm follows the framework of MOPO (Yu et al., 2020), as shown in
Algorithm 3. The only difference between ADMPO-OFF and MOPO lies lies in the way the
dynamics model is trained and utilized, as indicated by the blue-highlighted parts in the pseudo-code.

Algorithm 3 ADMPO-OFF

Input: Pre-collected dataset Denv, initial ADM T̂θ and policy πϕ, roll-out length H , maximum
backtracking length m, model data buffer Dmodel, iterations N , penalty coefficient β

1: Train ADM T̂θ on Denv by maximizing Equation (2)
2: for N iterations do
3: for M model roll-outs do
4: Sample initial m-step state-action sequence (si:i+m−1, ai:i+m−2) from Denv

5: Roll out H steps in T̂θ via ADM-Roll(T̂θ, πϕ, H , m, (si:i+m−1, ai:i+m−2))
6: Penalize the reward via r̃ = r − βUADM(s, a) for each rolled-out step
7: Add the penalized model roll-out data to Dmodel

8: end for
9: for G policy updates do

10: Update current policy πϕ using samples from Denv ∪ Dmodel

11: end for
12: end for

C.3 POLICY OPTIMIZATION

The policy optimization method used in our ADMPO-ON and ADMPO-OFF is SAC (Haarnoja et al.,
2018), following MBPO (Janner et al., 2019) and MOPO (Yu et al., 2020). The hyper-parameters
about SAC follow its standard implementation, as listed in Table 4.

Table 4: Hyper-parameters of Policy Optimization in ADMPO-ON and ADMPO-OFF.

Hyper-parameter Value Description

NQ 2 the number of critics.
actor network FC(256,256) fully connected (FC) layers with ReLU activations.
critic network FC(256,256) fully connected (FC) layers with ReLU activations.
τ 5× 10−3 target network smoothing coefficient.
γ 0.99 discount factor.
lractor 1× 10−4 learning rate of actor.
lrcritic 3× 10−4 learning rate of critic.
optimizer Adam optimizers of the actor and critics.
batch size 256 batch size for each update.

D EXPERIMENTAL DETAILS

D.1 RESOURCE REQUIREMENTS

All experiments can be completed with just one NVIDIA GeForce RTX 2080 Ti or any other type
of GPU with larger graphic memory. There are no additional resource requirements. The time of
execution for each task is about 24 hours.

D.2 ADMPO-ON SETTINGS

The experimental settings of our ADMPO-ON in Section 4.2 are listed in Table 5.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 5: Hyper-parameter settings of ADMPO-ON results presented in Figure 3. x → y over
a→ b denotes a thresholded linear increasing schedule, i.e. the length of model roll-outs at step t is
calculated by f(t) = min

(
max

(
x+ t−a

b−a · (y − x), x
)
, y
)

.

environment Hopper Walker2d Ant Humanoid

steps 50k 200k 300k

Update-To-Date ratio 20

maximum backtracking length m 5 2

model roll-out schedule 1→15 over 1→10 over 1→5 over 1→10 over
0→50k 0→100k 10k→100k 10k→100k

target entropy -1 -3 -4 -8

D.3 ADMPO-OFF SETTINGS

The experimental settings of our ADMPO-OFF in Section 4.3 are listed in Table 6.

Table 6: Hyper-parameter settings of ADMPO-OFF results presented in Section 4.3.
Domain Name Task Name m H β

D4RL MuJoCo

hopper-random 5 50 5
halfcheetah-random 2 10 2.5
walker2d-random 2 50 2.5
hopper-medium 5 10 1

halfcheetah-medium 2 5 2.5
walker2d-medium 5 10 5

hopper-medium-replay 5 5 0.1
halfcheetah-medium-replay 2 5 2.5
walker2d-medium-replay 5 5 0.1
hopper-medium-expert 2 20 20

halfcheetah-medium-expert 2 50 10
walker2d-medium-expert 3 2 6

NeoRL MuJoCo

neorl-hopper-low 5 20 5
neorl-halfcheetah-low 2 20 10
neorl-walker2d-low 5 10 2.5

neorl-hopper-medium 5 20 50
neorl-halfcheetah-medium 2 5 20
neorl-Walker2d-medium 5 10 5

neorl-hopper-high 5 20 50
neorl-halfcheetah-high 2 10 50
neorl-walker2d-high 5 10 2.5

D.4 HYPER-PARAMETER TUNING OF ADMPO-OFF

There are three important hyper-parameters in ADMPO-OFF: the maximum backtracking length m,
the roll-out length H , and the penalty coefficient β. Below, we will introduce how to tune these three
hyper-parameters.

• m: The first hyper-parameter to tune is m, as it can be adjusted based on the validation
error after the training of the dynamics model. Experiments show that a moderately large m
can effectively ensure algorithm performance, and increasing m does not lead to significant
performance degradation. Considering that an excessively large m would consume excessive
computational resources, an initial value for m between 5 and 10 is recommended. Then,
observe whether the validation error of the dynamics model after training meets the task
requirements. If not, slightly decrease m, but ensure it does not go below 2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• H: The second hyper-parameter to tune is H . After training the dynamics model, H directly
affects the compounding error generated during roll-outs using the model. A larger H value
can produce more diverse data, which benefits policy learning. It is recommended to set
the initial value of H to 5 and then gradually increase it until the compounding error after
H-step roll-outs approaches the acceptable threshold.

• β: Tuning β relies on the results of Q-value estimation. According to the findings of the
previous work (Lu et al., 2022), in general, larger H values require larger β values for
support. An appropriate initial β value can be selected based on the size of H , typically
ranging from one-tenth to one-half of H . Then, adjust β based on the estimation bias of the
Q-value. If the Q-value is overestimated, increase β; otherwise, decrease β. Finally, identify
the critical β value at which the Q-value is no longer overestimated.

D.5 SOURCE OF BASELINES’ RESULTS

For the evaluation on D4RL (Fu et al., 2020) benchmarks, the results of the compared baselines come
from two sources:

• Retraining on D4RL datasets of v2 version with OfflineRL-Kit (Sun, 2023), for the algo-
rithms whose original papers only report the performance on the v0 version, such as CQL
(Kumar et al., 2020), MOPO (Yu et al., 2020).

• Including the scores in their papers, for the algorithms whose original papers report the
performance on the v2 version, such as TD3+BC (Fujimoto & Gu, 2021), EDAC (An et al.,
2021), RAMBO (Rigter et al., 2022), CBOP (Jeong et al., 2023), and MOBILE (Sun et al.,
2023), or who does not provide source codes, such as COMBO (Yu et al., 2021).

For the evaluation on NeoRL (Qin et al., 2022) benchmarks, we report the scores of BC, CQL, and
MOPO from the original paper of NeoRL and retrain TD3+BC and EDAC with OfflineRL-Kit (Sun,
2023).

E ADDITIONAL EXPERIMENTS

E.1 SUPPLEMENTARY RESULTS OF DYNAMICS MODEL EVALUATION

0 25 50 75 100
Roll-out Length

0

1

2

3

4

5

Pr
ed

ict
io

n
Er

ro
r

hopper-medium

0 25 50 75 100
Roll-out Length

0

1

2

3

4

5

Pr
ed

ict
io

n
Er

ro
r

hopper-medium-replay

0 25 50 75 100
Roll-out Length

0

1

2

3

4

5

Pr
ed

ict
io

n
Er

ro
r

walker2d-medium

0 25 50 75 100
Roll-out Length

0

1

2

3

4

5

Pr
ed

ict
io

n
Er

ro
r

walker2d-medium-replay

ADM (ours) Ensemble Dynamics Model Bootstrapping RNN Dynamics Model

Figure 5: Comparison among ADM, ensemble dynamics model, and bootstrapping RNN dynamics
model, in terms of the growth curve of the compounding error as roll-out length increases, after
offline learning.

In Section 4.1, we present the compounding error curves of ADM, the bootstrapping RNN dynamics
model, and the ensemble dynamics model as the roll-out length increases. The y-axis uses a log
scale, which clearly highlights ADM’s advantage in future predictions. However, the log scale also
makes it difficult to depict the precise values of ADM’s compounding error. Here, we also provide
the linear-scale version of Figure 2, as shown in Figure 5. In the hopper task, ADM’s prediction error
remains close to zero even after rolling out to 100 steps. In the more complex walker2d task, ADM’s
prediction error does not exceed 1 when the roll-out length is less than 50 steps.

Additionally, we set m to 1, 5, 10, 15, and 20 respectively to observe the compounding error curves
of ADM after offline training, as shown in Figure 6. Overall, as m increases, the growth rate of

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 25 50 75 100
Roll-out Length

0.00

0.05

0.10

0.15

0.20

Pr
ed

ict
io

n
Er

ro
r

hopper-medium

0 25 50 75 100
Roll-out Length

0.00

0.05

0.10

0.15

0.20

Pr
ed

ict
io

n
Er

ro
r

hopper-medium-replay

0 25 50 75 100
Roll-out Length

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ed

ict
io

n
Er

ro
r

walker2d-medium

0 25 50 75 100
Roll-out Length

0.0

0.5

1.0

1.5

2.0

2.5

Pr
ed

ict
io

n
Er

ro
r

walker2d-medium-replay

m = 1 m = 5 m = 10 m = 15 m = 20

Figure 6: Comparison among ADM with m set to 1, 5, 10, 15, 20, in terms of the growth curve of the
compounding error as roll-out length increases, after offline learning.

the compounding error tends to slow down. This is because a larger m implies fewer expected
bootstrapping iterations and thus fewer error accumulation steps. Specifically, when m = 1, the
growth rate of the compounding error is particularly rapid. This also indirectly demonstrates the
effectiveness of ADM with an appropriate m.

E.2 STUDY ON WHY ADMPO-ON PERFORMS WELL IN ONLINE SETTING

Value-aware model error (Farahmand et al., 2017) is a dependable metric for measuring the learning
quality of the dynamics model and the suboptimality of the MBRL algorithm. We conduct a study
to verify how well ADMPO-ON regulates the value-aware model error. Without loss of rigor, we
only choose MBPO for comparison since most other model-based methods follow the same way of
learning and utilizing the ensemble dynamics model. Figure 7 shows the results on the most difficult
Humanoid task. The learned ADM in ADMPO-ON and the ensemble dynamics model in MBPO
achieve similar mean squared errors, indicating their similar fitting abilities. However, ADMPO-ON
provides greater model roll-out standard deviation over diverse state prediction, forcing the agent to
explore more uncertain areas. Therefore, since the variation of state prediction helps smoothen the Q
target, the Q network in ADMPO-ON has a significantly smaller Lipschitz constant, and afterwards
the value-aware model error, which measures the suboptimality of MBRL becomes smaller. This
phenomenon explains why ADMPO-ON performs significantly better then MBPO in Figure 3. For
details of the metrics used in this experiment, refer to (Zheng et al., 2023).

0 100000 200000 300000
Time Steps

0.0

0.5

1.0

1.5

2.0

M
od

el
 M

ea
n

Sq
ua

re
d

Er
ro

r

(a)

0 100000 200000 300000
Time Steps

0.0

0.2

0.4

0.6

0.8

1.0

M
od

el
 R

ol
l-o

ut
 S

td

(b)

0 100000 200000 300000
Time Steps

0

3

6

9

12

Li
ps

ch
itz

 C
on

st
an

t o
f Q

 (L
og

)

(c)

0 100000 200000 300000
Time Steps

0

2

4

6

8

Va
lu

e-
aw

ar
e

M
od

el
 E

rr
or

 (L
og

)

(d)

ADMPO-ON (ours)
MBPO

Figure 7: Comparison between ADMPO-ON and MBPO on Humanoid, in terms of (a) model mean
squared error, (b) model roll-out standard deviation over diverse predictions, (c) estimated Lipschitz
constant (Zheng et al., 2023) of Q, and (d) value-aware model error (Farahmand et al., 2017). Results
are averaged over five seeds.

E.3 D4RL ANTMAZE RESULTS

We compare ADMPO-OFF with several offline MBRL algorithms on the D4RL (Fu et al., 2020)
AntMaze tasks, which test the capability of algorithms to find a effective goal-oriented policy. Table
7 reports the corresponding results. ADMPO-OFF still outperforms other offline MBRL baselines in
most AntMaze tasks and achieves the highest average score. Notably, the policy learned by MOPO
lacks any ability to reach the goal, scoring zero on all AntMaze tasks. However, by simply replacing
the dynamics model with ADM, ADMPO-OFF is able to learn a policy with some capability to solve
the tasks, demonstrating potential in addressing such challenging tasks.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 7: Normalized scores after offline learning on D4RL AntMaze tasks, averaged over five seeds.

Task Name MOPO COMBO RAMBO MOBILE ADMPO-OFF (ours)

antmaze-umaze 0.0 80.3 25.0 77.0 88.4±1.2
antmaze-umaze-diverse 0.0 57.3 0.0 20.4 81.7±8.6

antmaze-medium-play 0.0 0.0 16.4 64.6 23.9±6.3
antmaze-medium-diverse 0.0 0.0 23.2 1.6 24.1±5.7

antmaze-large-play 0.0 0.0 0.0 2.6 8.3±4.1
antmaze-large-diverse 0.0 0.0 2.4 7.2 0.0±0.0

Average 0.0 22.9 16.8 28.9 37.7

E.4 STUDY ON DYNAMICS MODEL DESIGN

To predict the next state, ADM uniformly chooses a k from [1,m], then backtracks the state from k
steps earlier along with the following k-step sequence of actions as input. The prediction error of the
next state is accumulated based on the deviation of the state from k steps earlier. The only one-step
input state is duplicated to match the length of the action sequence. To verify the effectiveness of
ADM’s design for policy optimization, we introduce two ablation versions of ADMPO-OFF:

• BootRNN replaces ADM with a bootstrapping RNN dynamics model, which uses the
preceding k-step sequence of state-action pairs as input when predicting the next state, where
k is sampled uniformly from [1,m]. The prediction error of the next state is accumulated
based on the deviation of the current state. All other settings remain consistent with
ADMPO-OFF.

• ADMPO-OFF-zero takes a state and the following any-step actions as input to the dynamics
model, the same as ADMPO-OFF. However, the state is only fed into the RNN during its
first cell access, and subsequently, zero tensors are concatenated with the actions to match
the dimensions. All other settings remain consistent with ADMPO-OFF.

We compare the performance of these dynamics model designs on nine D4RL Fu et al. (2020)
MuJoCo tasks. Table 8 reports the corresponding results.

Table 8: Normalized scores corresponding to different dynamics model designs.

Task Name BootRNN ADMPO-OFF-zero ADMPO-OFF

hopper-medium 89.8±1.8 106.0±0.6 107.4±0.6
hopper-medium-replay 87.2±2.7 101.2±0.1 104.4±0.4
hopper-medium-expert 108.6±1.0 112.9±1.5 112.7±0.3

walker2d-medium 78.9±1.4 94.1±0.2 93.2±1.1
walker2d-medium-replay 74.6±0.9 92.6±2.4 95.6±2.1
walker2d-medium-expert 95.5±2.3 113.2±0.2 114.9±0.3

halfcheetah-medium 52.8±1.2 73.7±0.1 72.2±0.6
halfcheetah-medium-replay 58.2±1.6 66.3±0.6 67.6±3.4
halfcheetah-medium-expert 94.0±1.2 101.1±0.3 103.7±0.2

BootRNN experiences significant policy performance degradation compared to ADMPO-OFF, since
the bootstrapping RNN dynamics model accumulates the prediction error at each step based on the
deviation from the last step, leading to a larger compounding error. This has already been validated
in the dynamics model evaluation experiment in Section 4.1. ADMPO-OFF-zero does not exhibit
significant performance differences compared to ADMPO-OFF, as their inputs are identical, differing
only in the way they are forwarded. This difference has minimal impact on the overall performance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E.5 STUDY ON UNCERTAINTY QUANTIFIER

ADMPO-OFF uses the standard deviation of predictions as a measure of model uncertainty, which
is actually a combination of epistemic and aleatoric model uncertainty. Other common uncertainty
choices include maximum aleatoric uncertainty and maximum pairwise difference. Denoting the
mean and standard deviation of predictions when backtracking k steps as µk

θ and Σk
θ , respectively,

the descriptions fore these uncertainties are as follows.

• Max aleatoric (Yu et al., 2020): maxk=1,··· ,m ∥Σk
θ∥F , which corresponds to the maximum

aleatoric error.

• Max Pairwise Difference (Kidambi et al., 2020): maxi,j ∥µi
θ − µj

θ∥2, which corresponds
to the pairwise maximum difference of the predictions from different k.

• Prediction Standard Deviation (Lu et al., 2022): 1
m

∑m
k=1

(
(Σk

θ)
2 + (µk

θ)
2
)
−(

1
m

∑m
k=1 µ

k
θ

)2
, which corresponds to a combination of epistemic and aleatoric model

uncertainty.

We compare the performance of these uncertainty choices on nine D4RL (Fu et al., 2020) MuJoCo
tasks. Table 9 reports the corresponding results.

Table 9: Normalized scores corresponding to different uncertainty quantifier choices.

Task Name Max Aleatoric Max Pairwise Difference Prediction Std (ADMPO-OFF)

hopper-medium 55.6±0.9 105.6±0.2 107.4±0.6
hopper-medium-replay 103.3±0.1 101.8±1.3 104.4±0.4
hopper-medium-expert 113.1±0.2 111.7±1.2 112.7±0.3

walker2d-medium 87.7±0.5 79.7±1.8 93.2±1.1
walker2d-medium-replay 93.4±0.3 96.3±0.9 95.6±2.1
walker2d-medium-expert 111.6±0.4 110.4±0.7 114.9±0.3

halfcheetah-medium 71.5±0.3 70.4±3.4 72.2±0.6
halfcheetah-medium-replay 69.7±1.3 59.4±2.8 67.6±3.4
halfcheetah-medium-expert 102.8±2.3 96.9±2.9 103.7±0.2

The prediction standard deviation, which is similar to ensemble standard deviation in the ensemble
dynamics model, performs the best. Similarly, it is found by (Lu et al., 2022) that ensemble standard
deviation is the best while using the ensemble dynamics model. The key to ADM is that it provides a
method for diversifying state predictions that is different from ensemble methods, and any form of
uncertainty is feasible.

E.6 STUDY ON PREDICTION CHOICE

While rolling out a sequence using ADM, we choose the backtracking length k uniformly from
{1, 2, · · · ,m} then predict the next state by feeding the state from k steps ago and the following
k-step sequence of actions into the ADM. The random sampling of the backtracking length can be
viewed as an implicit augmentation. The variations of state predictions can effectively implicitly
regularize the local Lipschitz condition of the Q network around regions where the model prediction
is uncertain, thereby regulating the value-aware model error (Farahmand et al., 2017), according to
(Zheng et al., 2023). Other intuitive choices to predict the next state include:

• Priority Sampling: Determining the sampling priority based on the fitting losses of different
backtracking lengths. For instance, the sampling probability corresponding to k is given by
pk = e−ϵk∑m

i=1 e−ϵi
, where ϵk is the fitting loss of the k-step prediction.

• Max Backtracking: Always choosing the maximum backtracking length m to predict the
next state.

• Average Prediction: Averaging the predictions corresponding to different backtracking
lengths from {1, 2, · · · ,m}.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We compare the performance of these prediction choices on nine D4RL (Fu et al., 2020) MuJoCo
tasks. Table 10 reports the corresponding results.

Table 10: Normalized scores corresponding to different prediction choices.
Task Name Priority Sampling Max Backtracking Average Prediction Uniform (ADMPO-OFF)

hopper-medium 106.4±0.8 98.8±0.9 56.1±2.4 107.4±0.6
hopper-medium-replay 105.3±0.8 95.6±0.8 51.6±1.9 104.4±0.4
hopper-medium-expert 113.6±3.7 110.3±1.6 52.6±1.4 112.7±0.3

walker2d-medium 89.0±1.5 84.5±1.1 85.9±1.8 93.2±1.1
walker2d-medium-replay 96.2±1.0 91.1±0.6 87.0±1.6 95.6±2.1
walker2d-medium-expert 115.5±0.7 107.7±1.1 88.6±1.0 114.9±0.3

halfcheetah-medium 71.4±3.2 56.9±0.2 58.9±1.3 72.2±0.6
halfcheetah-medium-replay 61.7±2.3 49.8±0.9 46.8±1.3 67.6±3.4
halfcheetah-medium-expert 103.2±1.4 67.0±1.4 63.2±0.9 103.7±0.2

We find that there is no significant performance difference between the priority sampling and the
uniform sampling, since both of them introduce diversity in state prediction. Both maximum
backtracking and average prediction experience significant performance degradation.

E.7 COMPUTING RESOURCE EVALUATION

In Table 11, we compare the computing resource consumption of ADMPO-OFF and MOPO, including
the size of model parameters, GPU memory usage during training, and runtime.

Table 11: Comparison of ADMPO-OFF and MOPO in terms of computing resource consumption.

Task Name Size of Parameters (MB) GPU Memory (GB) Runtime (s/epoch)
ADMPO-OFF MOPO ADMPO-OFF MOPO ADMPO-OFF MOPO

hopper-random 3.77 7.66 7.85 3.46 10.20 7.55
halfcheetah-random 3.83 7.91 3.98 3.54 8.59 8.37
walker2d-random 3.83 7.91 3.98 3.54 9.78 8.19

hopper-medium 3.77 7.66 7.85 3.46 9.94 8.16
halfcheetah-medium 3.83 7.91 3.98 3.54 6.65 8.41
walker2d-medium 3.83 7.91 9.06 3.54 10.61 8.54

hopper-medium-replay 3.77 7.66 7.85 3.46 9.51 8.16
halfcheetah-medium-replay 3.83 7.91 3.98 3.54 7.35 8.27
walker2d-medium-replay 3.83 7.91 9.06 3.54 7.01 8.15

hopper-medium-expert 3.77 7.66 3.38 3.46 8.61 8.01
halfcheetah-medium-expert 3.83 7.91 3.98 3.54 8.49 8.07
walker2d-medium-expert 3.83 7.91 4.32 3.54 7.01 8.09

The model parameter size of ADMPO-OFF is smaller than that of MOPO, primarily because MOPO
uses an ensemble for its dynamics model. The GPU memory usage of ADMPO-OFF primarily
depends on the value of m, and it is generally higher than that of MOPO. The runtime is roughly the
same for both.

F LIMITATIONS

In general, our work’s limitations are summarized as follows.

• Similar to most previous MBRL algorithms focused on locomotion tasks, the dynamics
modeling approach and uncertainty estimation used by ADMPO are likely not suitable for
highly stochastic environments, as they are prone to being influenced by randomness, leading
to poor performance. Improving ADMPO to address the challenges of highly stochastic
environments is an important issue for future research. We will consider this as part of our
future work.

• The computing resources used by ADMPO are mainly influenced by the maximum back-
tracking length m. When m takes particularly large values, ADMPO requires significantly
more GPU memory compared to the previous MOPO algorithm.

23

	Introduction
	Preliminaries
	Markov Decision Process and Reinforcement Learning
	Model-based Reinforcement Learning

	Method
	Any-step Dynamics Model
	ADMPO-ON: ADM for Policy Optimization in Online Setting
	ADMPO-OFF: ADM for Policy Optimization in Offline Setting

	Experiments
	Dynamics Model Evaluation
	Evaluation in Online Setting
	Evaluation in Offline Setting
	D4RL Benchmark Results
	NeoRL Benchmark Results
	Uncertainty Quantification

	Study on m

	Related Work
	Online Model-based Reinforcement Learning
	Offline Model-based Reinforcement Learning

	Conclusion
	Additional Introduction to Pessimistic Value Iteration (PEVI)
	Theoretical Results
	Implementation Details
	ADMPO-ON
	ADMPO-OFF
	Policy Optimization

	Experimental Details
	Resource Requirements
	ADMPO-ON Settings
	ADMPO-OFF Settings
	Hyper-parameter Tuning of ADMPO-OFF
	Source of Baselines' Results

	Additional Experiments
	Supplementary Results of Dynamics Model Evaluation
	Study on Why ADMPO-ON Performs Well in Online Setting
	D4RL AntMaze Results
	Study on Dynamics Model Design
	Study on Uncertainty Quantifier
	Study on Prediction Choice
	Computing Resource Evaluation

	Limitations

