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Abstract

Internal representations are crucial for understanding deep neural networks, such as their
properties and reasoning patterns, but remain difficult to interpret. While mapping from
feature space to input space aids in interpreting the former, existing approaches often rely
on crude approximations. We propose using a conditional diffusion model - a pretrained
high-fidelity diffusion model conditioned on spatially resolved feature maps - to learn such a
mapping in a probabilistic manner. We demonstrate the feasibility of this approach across
various pretrained image classifiers from CNNs to ViTs, showing excellent reconstruction
capabilities. Through qualitative comparisons and robustness analysis, we validate our
method and showcase possible applications, such as the visualization of concept steering in
input space or investigations of the composite nature of the feature space. This approach
has broad potential for improving feature space understanding in computer vision models.

Original ResNet50 ConvNeXt SwinV2

FeatInv

Figure 1: FeatInv learns a probabilistic mapping from feature space to input space and thereby provides a
visualization of how a sample is perceived by the respective model. The goal is to identify input samples
within the set of natural images whose feature representations align most closely with the original feature
representation of a given model. In this figure, we visualize reconstructed samples obtained by conditioning
on the feature maps of the penultimate layer from ResNet50, ConvNeXt and SwinV2 models.

1



Under review as submission to TMLR

1 Introduction

The feature space is vital for understanding neural network decision processes as it offers insights into the
internal representations formed by these models as they process input data. While it serves as the foundation
for many modern explainability approaches (Rai et al., 2024; Bereska & Gavves, 2024), its importance
extends beyond interpretability. The feature space provides a rich resource for investigating fundamental
properties of deep neural networks, including their robustness against perturbations, invariance characteristics,
and symmetry properties (Bordes et al., 2022). By analyzing the geometry and topology of these learned
representations, researchers can gain insights into model generalization capabilities, failure modes, and
the emergence of higher-order patterns in the data. This perspective enables advancements in theoretical
understanding of neural networks while informing practical improvements in architecture design and training
methodologies.

An important challenge in examining the feature space is establishing a connection back to the input domain,
especially for classification models that map to labels rather than the same domain as the input. One aspect
of this challenge involves identifying which part of the input a particular region or unit in feature space is
sensitive to. GradCAM (Selvaraju et al., 2017) pioneered this by linearly upsampling a region of interest in
feature space to the input size. However, linear upsampling imposes a rather strong implicit assumption. As
an alternative, one might consider the entire receptive field of a feature map location, yet in deep architectures
these fields tend to be broad and less informative.

The more intricate second aspect of this challenge is to derive a mapping from the entirety of the feature
space representation back to the input domain – beyond mere localization. Recent works proposed to leverage
conditional generative models to learn such a mapping by conditioning them on feature maps (Bordes et al.,
2022; Dosovitskiy & Brox, 2016; Rombach et al., 2020). However, these approaches either build on pooled
feature maps (discarding finegrained spatial details of the feature map), only provide deterministic mappings
(overlooking the inherent uncertainty of this ill-posed problem), or do not utilize state-of-the-art generative
models. Related approaches such as diffusion autoencoders (Preechakul et al., 2022) show that diffusion
models can indeed be fitted with meaningful and decodable latent representations that enable near-exact
reconstructions and the manipulation of semantic attributes. However, their latent codes are global and not
spatial, whereas our focus is on conditioning spatially resolved feature maps to preserve the fine-grained
structure. To the best of our knowledge, there is no probabilistic model that provides high-fidelity input
samples when conditioned on a spatially resolved feature map – thereby integrating both aspects of the
challenge described above. We aim to close this gap with this submission.

More specifically, in this work we put forward the following contributions:

1. We demonstrate the feasibility of learning high-fidelity mappings from feature space to input space
using a conditional diffusion model of the ControlNet-flavor, as exemplified in Fig. 1. We investigate
this for different computer vision models, ranging from CNNs to ViTs.

2. We provide quantitative evidence that generated samples align with the feature maps of the original
samples and that the samples represent high-fidelity natural images, see Tab. 1. and carry out a
qualitative model comparison, see Fig. 3 as well as a robustness analysis, see Tab. 2.

3. We provide a specific use-cases for the application of the proposed methodology to visualize concept-
steering in input space, see Fig. 4, as well as to provide insights into the composite nature of the
feature space, see Fig. 5.

2 Methods

Approach In this work, we propose a method called FeatInv to approximate an inverse mapping from a
model’s feature space to input space. Our method conditions a pretrained stable diffusion model on a spatially
resolved feature map extracted from a pretrained CNN/ViT model of our choice. As described in detail in
the next paragraph, the feature maps are provided as conditional information along with an unspecific text
prompt (“a high-quality, detailed, and professional image”) to a conditional diffusion model of the ControlNet
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Figure 2: Schematic overview of the FeatInv approach. Left: Given a spatially resolved feature map
cf of some pretrained model, we aim to infer an input x′ within the set of natural images, whose feature
representation aligns as closely as possible with cf , i.e., to learn a probabilistic mapping from feature space to
input space. Previous work consider spatially pooled feature maps, whereas this work conditions on spatially
resolved feature maps. Middle: We leverage a pretrained diffusion model, which gets conditioned on cf by
means of a ControlNet architecture, which parametrizes an additive modification on top of the frozen diffusion
model. Right top: The ControlNet adds trainable copies of blocks in the stable diffusion model, which are
conditioned on the conditional input and added to the output of the original module, which is kept frozen.
Right bottom: The feature map cf is processed through bilinear upsampling and a shallow convolutional
encoder to serve as conditional input for the ControlNet.

(Zhang et al., 2023a) flavor. Importantly, rather than achieving a precise reconstruction of the original sample
in input space, our goal is to infer high-fidelity, synthetic images whose feature representations align with
those of the original image when passed through a pretrained CNN/ViT model.

Architecture and training procedure We use a ControlNet (Zhang et al., 2023a) architecture, building on
a pretrained diffusion models, in our case a MiniSD (Pinkney, 2023) model operating at an input resolution
of 256 × 256. The ControlNet is a popular approach to condition a pretrained diffusion model on dense
inputs such as segmentation maps or depth maps. It leverages a pretrained (text-conditional) diffusion model,
whose weights are kept frozen. The trainable part of the ControlNet model mimics the internal structure of
the pretrained diffusion model, with additional layers introduced to incorporate conditioning inputs. These
conditional inputs are processed by a dedicated encoder and inserted into the corresponding computational
blocks, where their outputs are added to those of the original diffusion model. Convolutional layer that are
initialized to zero ensure that the optimization of the ControlNet model starts from the pretrained diffusion
model.

Conditional input encoder An import design choice is the conditional input encoder, which maps the
feature map (with shape Hf ×Wf ×Cf , where Hf ,Wf ,Cf correspond to the height, width and channels of the
feature map, respectively) to the diffusion model’s internal representation space (with shape Hd ×Wd × Cd).
As a definite example for 224× 224 input resolution, for the output of ResNet50’s final convolutional block
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with Hf = Wf = 7, Cf = 2048 we learn a mapping to the diffusion model’s internal representation space with
Hd = Wd = 32 and Cd = 320. To this end, we first use bilinear upsampling to reach the target resolution.
Then, we allow for a shallow CNN to learn a suitable mapping from the model’s representation space to the
diffusion model’s representation space.

Pooled vs. unpooled To demonstrate superiority over prior work (Bordes et al., 2022), we also consider
the case of pooled feature representations obtained from average-pooling spatial tokens/feature maps. In
order to process them using the same pipeline as for conditioning on spatially resolved feature maps, we copy
the Cd-dimensional input vector along Hd and Wd times to reach an input tensor with shape Hd ×Wd × Cd

as before.

Training The ControlNet is trained using the same noise prediction objective as the original diffusion model
(Ho et al., 2020). Control signals are injected at multiple layers throughout the network, rather than being
restricted to the middle layers, allowing them to influence the denoising process at various stages. Training
was conducted on the ImageNet training set with a batch size of 8 and a learning rate of 1e-5 using an
AdamW optimizer with the stable diffusion model locked. The ControlNet was trained on ImageNet for three
epochs over approximately 45 to 60 hours (depending on backbone) of compute time on two NVIDIA L40
GPUs. During the course of this project, about five times more models were trained until the described setup
was reached.

Full pipeline We work with the original input resolution of the respective pretrained models, which varies
between 224× 224 and 384× 384 for the considered models, see the Supplementary Material A.1 for a detailed
breakdown. Even though the approach allows conditioning on any feature map, we restrict ourselves to the
last spatially resolved feature map, i.e., directly before the pooling layer, and learn mappings to MiniSD’s
internal feature space. The MiniSD model always returns an image with resolution 256 × 256, which we
upsample/downsample to the model’s expect input resolution via bilinear upsampling/downsampling. The
full generation pipeline is visualized in Fig. 2.

3 Related Work

Conditional diffusion models Achieving spatially controllable image generation while leveraging a pre-
trained diffusion model has been a very active area of research recently, see (Zhang et al., 2023b) for a recent
review. Applications include the conditional generation of images from depth maps, normal maps or canny
maps. Popular approaches in this direction include ControlNet (Zhang et al., 2023a) or GLIGEN (Li et al.,
2023). The mapping from feature maps as conditional input is structurally similar to the mentioned cases
of spatially controllable generation. However, there is a key distinction. In the previously mentioned cases,
the conditional information typically matches the resolution of the input image. This often necessitates
downsampling to reach the diffusion model’s internal representation space. In contrast, commonly used
classification models (including CNNs and vision transformers) leverage feature maps with a reduced spatial
resolution. Consequently, the spatial resolution of the conditional information is typically lower dimensional
than the diffusion model’s internal representation space. This difference necessitates an upsampling operation
before conditioning on feature maps.

Feature visualization The idea to reveal structures in feature space to understand what a neural network
has learned is an old one. Approaches range from identifying input structures or samples that maximize the
activation of certain feature neurons (Erhan et al., 2009; Nguyen et al., 2016) to approximate inversion of the
mapping from input to features space (Zeiler, 2014). Our approach clearly stands in the tradition of the latter
approach. Previous work has attempted to learn a deterministic mapping that “inverts” AlexNet feature maps
(Dosovitskiy & Brox, 2016). This approach was recently extended to invert vision transformer representations
(Rathjens et al., 2024). In contrast, FeatInv learns a probabilistic mapping using state-of-the-art diffusion
models and investigates state-of-the-art model architectures. Other approaches tackle the problem using
invertible neural networks to connect VAE latent representations to input space (Rombach et al., 2020)
and/or disentangle these representations using concept supervision (Esser et al., 2020). In contrast, FeatInv
does not rely on a particular encoder/decoder structure but can use any pretrained neural network as encoder.
The closest prior work to our approach is (Bordes et al., 2022), which also uses a diffusion model to learn a
mapping from feature space to input space. However, it uses pooled representations as input, i.e. neglects
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the spatial resolution of the feature map. We argue that pooled representations are too coarse for many
applications as they disregard the finegrained spatial structure of the feature space. Diffusion autoencoders
(Preechakul et al., 2022) also explore how diffusion-based representations can be made both meaningful and
decodable, but their latent codes are global vectors. In contrast, we condition directly on spatial feature
maps to preserve fine-grained structure.

Representation surgery Finally, related feature inversion approaches have also been explored beyond
computer vision, for example in natural language processing (Morris et al., 2023). Here, the ability to invert
latent representations is seen as an essential component for representation surgery approaches (Avitan et al.,
2025). FeatInv enables similar approaches for computer vision models.

Table 1: Reconstruction quality and image quality of the individual models: For the three considered
backbones, we indicate three performance metrics to assess the reconstruction quality: Cosine similarity in
feature space (cosine-sim), calculated by averaging the cosine similarity of all superpixels, top5(1) matches
using the top1 prediction of the original sample as ground truth (top5(1) match) and FID-scores (FID) to
assess the quality of the generated samples. We consider generative models conditioned on unpooled feature
maps (rows 1-3) and models conditioned on pooled feature maps (rows 4-6). The results indicate that the
proposed approach produces high-fidelity input samples as perceived by the respective models.

Model cosine-sim top5(1) match FID

un
po

ol
ed ResNet50 0.46 91% (70%) 11.49

ConvNeXt 0.61 94% (77%) 8.20
SwinV2 0.53 95% (80%) 12.69

po
ol

ed ResNet50 0.12 48% (23%) 31.64
ConvNeXt 0.19 44% (20%) 31.67
SwinV2 0.16 47% (22%) 49.04

4 Results

We investigate three models ResNet50 (He et al., 2016) (original torchvision weights), ConvNeXt (Liu
et al., 2022b) and SwinV2 (Liu et al., 2022a) 1 all of which have been pretrained/finetuned on ImageNet1k.
ConvNeXt and SwinV2 represent modern convolution-based and vision-transformer-based architectures,
identified as strong backbones in (Goldblum et al., 2024). We include ResNet50 due to its widespread
adoption. For each model, we train a conditional diffusion model conditioned on the representations of the
last hidden layer before the final pooling layer to reconstruct the original input samples. Below, we report on
quantitative and qualitative aspects of our findings.

4.1 Quantitative and qualitative comparison

Experimental setup For each ImageNet class, we reconstructed 10 validation set samples with FeatInv,
resulting in 10.000 reconstructed samples. We adjust the diffusion model’s control strength and guidance scale
to optimize the match of classification outputs between original and reconstructed samples on the validation
set, resulting in different control strengths and guidance scales for each model. Since our goal is to represent
the feature space as accurately as possible, we also observed the cosine similarity between the feature maps
of the original and reconstructed samples and observed a strong correlation between classification match
and cosine similarity, which further supports our choice of parameters. In our experience, it is also possible
to achieve good results with the same control strength and guidance scale for all three models, see the
Supplementary Material A.2 for details. We reconstruct with a sample step size of 50. For each model this
took roughly 12 hours on a single NVIDIA L40 GPU. We only generate one sample per feature map but it is

1timm model weights: convnext_base.fb_in22k_ft_in1k, swinv2_base_window12to24_192to384_22kft1k.
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also possible to generate multiple to observe the variability across reconstructions (given the same conditional
input), see Supplementary Material A.3 for insights. The generated samples are assessed according to two
complementary quality criteria, reconstruction quality and sample quality:

1. Reconstruction quality The encoded generated image should end up close to the feature
representation of the original samples, which can be understood as a reconstruction objective that is
implemented implicitly by conditioning the diffusion model on a chosen feature map. (1a) The most
obvious metric is cosine similarity between both feature maps. However, not all parts of the feature
space will be equally important for the downstream classifier. (1b) Most reliable measure is the
classifier output itself. Focusing on top-predictions, one can also compare top-k predictions to the
top prediction for the original sample. More general alignment measures between generated input
and original feature representation are not helpful in this context, as we require a precise recon-
struction of the original feature space for the downstream classifier above the layer under consideration.

2. Sample quality We aim to generate samples within the set of high-fidelity natural images. In our
case, this objective is is implemented through the use of a pretrained diffusion model. Apart from
qualitative assessments in the following sections, we rely on FID-scores as established measures to
assess sample quality.

Reconstruction quality Comparing identical models conditioned either on pooled or unpooled feature
maps, not surprisingly unpooled models show a significantly higher reconstruction quality. Samples generated
by models conditioned on unpooled feature maps show a very good alignment with the feature maps of
the original samples (cosine similarities above 0.53 and top5 matching predictions of 94% or higher for the
two modern vision backbones). Samples conditioned on pooled feature maps show some alignment but
fail to accurately reconstruct the respective feature map and are therefore unreliable for investigations of
structural properties of models. These findings support the hypothesis that the approach yield feature space
reconstructions that closely match the original feature representations.

Sample quality The corresponding class-dependent diffusion model achieves an FID score around 29,
which is typically considered as good quality. The models conditioned on pooled representations still show
acceptable FID scores between 31 and 49. Interestingly, models conditioned on unpooled representations
show a significant increase in image quality with FID scores between 8 and 12. These results support the
statement that the created samples were sampled from the space of high-fidelity natural images.

Backbone comparison Within each category (pooled vs. unpooled), there is a gap between the two most
recent model architectures ConvNeXt and SwinV2, notwithstanding the architectural differences (CNN vs.
Vision transformer) between the two, in comparison to the older Resnet50 models. The former achieve cosine
similarities of .61 or higher and top5 matches of 94% or higher in the unpooled category. This suggests that
there is a qualitative difference between the representations of ResNet50-representations and representations
of more modern image backbones.

Qualitative comparison In Fig. 3, we present a qualitative comparison based on randomly selected samples.
The visual impressions of ConvNeXt and SwinV2 reconstructions are similar to each other while also being
close to the input sample despite the fact that they were trained on high-level semantic feature maps, i.e.,
without a reconstruction objective in input space. The ResNet50 reconstructions seem in many cases an
interpretation of the sample’s semantic content (see e.g. 2. toucan or 5. file), albeit with the correct spatial
composition, while matching specific color composition and textures much less accurately than ConvNeXt and
SwinV2. We primarily attribute the differences between ResNet and ConvNeXt/SwinV2 to the nature of the
feature spaces themselves, stressing qualitative difference between modern architectures such as ConvNeXt
and SwinV2 and older model architectures such as ResNet50, which are much more pronounced than the
differences between different model architectures such as ViTs and CNNs. The samples obtained from
conditioning on pooled feature representations often seem to capture overall semantic content of the image
correctly (file, space shuttle, traffic light), but fail to reflect the details of the composition of the image. This
can further be observed in the Supplementary Material A.4.

6



Under review as submission to TMLR

Original
R
es
N
et
50

C
on
vN
eX
t

S
w
in
V
2

C
on
vN
eX
t


po
ol
ed

0.61

0.52

0.17

0.87

0.67

0.29

0.89

0.64

0.10

0.79

0.63

0.260.16

0.74

0.860.67

0.62

0.22

0.79

0.32

0.160.26


0.78


0.88


0.55 0.64 0.48 0.45 0.540.310.45 0.46

Figure 3: Qualitative comparison of reconstructed samples for the ResNet50, ConvNeXt, SwinV2 and
ConvNeXt pooled models. The cosine similarity of the original feature map and that of the reconstruction is
noted at the bottom edge of the images. The qualitative comparison confirms the insights from the quantitative
analysis in Tab. 1. The two modern vision backbones, ConvNeXt and SwinV2, show reconstructions that
resemble the original very closely, not only in terms of semantic content and spatial alignment but also in
terms of color schemes and finegrained details. Semantic content and composition also mostly matches in case
of the ResNet50, but not even the semantic content seems to be captured when using pooled representations
(ConvNeXt pooled as an example).

Table 2: Cross-model evaluation: Percentage of matching of the actual predictions (top5/top1) and the
predictions based on the reconstructions for different models. The FeatInv models based on the ResNet50,
ConvNeXt and SwinV2 features were used for the reconstruction and evaluated by the same three models.

evaluated by
conditioned on ResNet50 ConvNeXt SwinV2
ResNet50 91% / 70% 90% / 68% 91% / 71%
ConvNeXt 92% / 73% 94% / 77% 96% / 81%
SwinV2 94% / 77% 94% / 78% 95% / 80%

Robustness evaluation To assess the robustness of the presented results, we carry out cross-model
comparisons where we measure model performance based on samples generated by conditioning on the feature
map extract from a different model. The results for this experiment are compiled in Tab. 2. It turns out
that all three sets of samples (conditioned on features generated by the three different backbones) transfer
quite remarkably to other models. In the Supplementary Material B, we also present results supporting the
robustness of our approach when applied to out-of-distribution (OOD) samples.
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4.2 Application: FeatInv-Viz – Visualizing concept steering in input space

Concept steering in input space In generative NLP, steering is sometimes used to verify concept
interpretations by reducing or magnifying concepts in the model activations and observing how this changes
the generated output text, as famously demonstrated at the example of the Golden Gate concept (Bricken
et al., 2024) in Claude 3 Sonnet. This approach is not directly applicable to vision classifiers. However,
with our method of inverting model representations from feature to input space, we can observe the effect of
concept steering within hidden model activations in the input representation space instead of the output.
This enables a novel method for concept visualization, with benefits over existing approaches (see below).

Concept definition Concepts are typically defined as structures in feature space such as individual neurons,
single directions or multi-dimensional subspaces. Many concept-based XAI methods define a way to decompose
a feature vector into concepts from a dictionary/concept bank (FEL et al., 2023). In this work, we use
concepts from multi-dimensional concept discovery (MCD) (Vielhaben et al., 2023), which defines concepts as
linear subspaces in feature space. Nevertheless, our approach is applicable to any concept discovery method.

Concept visualization through attenuated feature maps A common challenge for unsupervised concept
discovery methods is inferring the meaning of discovered concepts. To address this, we steer a concept in
feature space and observe the effect in input space. Specifically, we attenuate coefficients for the concept
under consideration to 25%, see the Supplementary Material C for details. Then, we use FeatInv to map the
original and the modified feature map to input space using identical random seeds for the diffusion process.
By comparing the resulting images, we gain insights into how the concept is expressed in input space. We
call this method FeatInv-Viz and present it in Algorithm 1.

Algorithm 1: FeatInv-Viz : Visualization of concept steering in input space
Input: Model m, concept decomposition ϕ =

∑
i ϕi, concept with id c

Output: Visualization of concept c in input space
Notation: x ∈ R3×H×W where x(j) refers to color channels with j ∈ {R, G, B}
ϕ′ ←

∑
i̸=c ϕi + 0.25 · ϕc ; // Attenuated feature map

for i = 1 to n do
si ← RandomSeed()
xi ← FeatInv(ϕ, seed = si) ; // Original reconstruction
x′

i ← FeatInv(ϕ′, seed = si) ; // Attenuated reconstruction

∆i ←
√∑

j∈{R,G,B}(x(j)
i − x

′(j)
i )2 ; // Euclidean distance

return median{∆i}n
i=1 ; // Median along sample axis

Exemplary results Fig. 4 shows exemplary concept steering visualizations for four samples from the
Indigo Bunting class. Here, we decomposed ConvNeXt’s feature space into three linear concept subspaces.
FeatInv-Viz provides a visualization of these concepts in input space. The method provides a very finegrained
visualization of which specific regions in input space change upon steering each concept in feature space.
More examples can be found in the Supplementary Material C.1.

Benefits We emphasize that FeatInv-Viz extends commonly used concept activation maps in two ways: First,
it provides a finegrained visualization rather than a coarse upscaling Bau et al. (2017); Vielhaben et al. (2023)
of a lower-resolution feature map. Second, it goes beyond merely verifying alignment with a predefined
concepts Bau et al. (2017), by providing counterfactual information from targeted feature-map manipulations.

4.3 Application: Investigating the composite nature of the feature space

In NLP, well-known examples of feature-space arithmetic – e.g. king − man + woman = queen Mikolov
et al. (2013) – have shaped our understanding of embedding geometries. FeatInv offers insights into the
composite nature of the feature space in vision models by conditioning on feature maps from two samples.
In particular, we investigate the effect of convex linear superpositions of two feature maps. To this end we
linearly interpolate between the feature representations of two input samples and visualize reconstructions
for different weighted combinations, as shown in Fig. 5. We also indicate the cosine similarity between the
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Figure 4: FeatInv-Viz visualization of three concepts identified within ConvNeXt’s feature space of the
Indigo Bunting class, which can be associated with sky/background, bird head/breast and branches/leaves.
For the visualization we normalize the respective outputs of Algorithm 1 and threshold it below 0.33 as a
binary mask to indicate unaffected regions of the image.

reconstruction and the weighted feature map, which is highest for the original feature maps and typically
reaches its lowest value for the equally weighted interpolated feature map. This can be seen as an indication
that the weighted average of two feature maps is in general not a well-defined operation. Nevertheless,
foreground objects from one image and background from a second, seem to be reasonably combined through
linear superposition (see e.g. bird, landscape). In Fig. 6, we show spatially composed combinations of two
feature maps. The results indicate that feature maps exhibit a very local influence, which aligns well with the
simple upscaling of the feature map resolution to the input resolution.

4.4 Limitations and future work

Our work is subject to different limitations, which provide directions for future investigations: First, the
present work focuses exclusively on the domain of natural images. It would be very instructive to extend
the approach to other domains, such as medical imaging. Second, the proposed approach building on the
ControlNet method, builds on a pretrained diffusion model, which might not be readily available in any
application contexts. Third, every model and layer choice requires training a dedicated FeatInv model, which
represents a computation hurdle. First experiments and the results in Tab. 2 indicate that finetuning could
be beneficial to alleviate this issue. Finally, both application scenarios rely on modifications of the feature
space. In order to obtain reliable results, it would be instrumental to introduce measures to detect input
samples, i.e., feature maps that are outside the scope of the model.

5 Summary and Discussion

In this work, we address the problem of obtaining insights into the structure of a given model’s feature map
by means of a learned probabilistic mapping from feature space to input space, implemented as a conditional
diffusion model. We demonstrate the feasibility of training such a model in a ControlNet-style achieving
very accurate and robust reconstruction results across different model architectures. We present two possible
applications both of which relate to gaining inside into manipulated feature maps. However, we believe that
the proposed approach could be widely applicable to further applications. We envision a potentially positive
societal impact through improved model understanding, along the lines of the concept steering use case.
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Figure 5: Reconstructions from weighted combinations of two ConvNeXt feature maps. The
cosine similarity between the weighted feature map and that of the reconstruction is noted at the bottom
edge of the images.
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Figure 6: Reconstructions of spatially composed mixtures of two ConvNeXt feature maps. The
cosine similarity between the manipulated map and that of the reconstruction is noted at the bottom edge of
the images. The yellow outlines show the part of the feature map that was manipulated
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