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ABSTRACT

Effective interactive tool use requires agents to master Tool Integrated Reason-
ing: a complex process involving multi-turn planning and long-context dialogue
management. To train agents for this dynamic process, particularly in multimodal
contexts, we introduce a sandbox environment for reinforcement learning (RL)
that supports tool calling and speech-based user simulation. Our core strategy,
Turn-level Adjudicated Reinforcement Learning (TARL), addresses the challenge
of credit assignment in long-horizon tasks by employing a Large Language Model
(LLM) as a judge to provide turn-level evaluation. To enhance exploration, we in-
tegrate a mixed-task training curriculum with mathematical reasoning problems.
This unified approach boosts the task pass rate on the text-based τ -BENCH by over
6% compared to strong RL baselines. Moreover, we demonstrate our framework’s
suitability for fine-tuning a multimodal LLM for agentic tasks. By training a base
multimodal LLM on interleaved speech-text rollouts, we equip it with tool-use
abilities, paving the way for more natural, voice-driven interactive agents.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI, 2024; AI, 2024; Anthropic.; Team, 2025a; Yang et al.,
2025) have demonstrated remarkable understanding and reasoning capabilities across diverse do-
mains. As these models advance, enabling them to interact seamlessly with real-world tools and
services has emerged as a promising direction. We aim to create agents that can understand and
act upon not just text commands, but also spoken language, which requires a new paradigm for
agent training. While interactions can span web interfaces, programming systems, and APIs, the
fundamental challenge remains: the agent must interpret complex, often multi-turn user requests
and execute appropriate actions, whether the input is typed or spoken.

To tackle this challenge, we focus on interactive tool-use agents. We build upon the experimental
setup from τ -BENCH, where an agent assists a simulated user with complex tasks by strategically
calling tools. This multi-turn conversational format mirrors real-world applications and presents
complex reasoning challenges even for state-of-the-art models. Unlike prior approaches (Prabhakar
et al., 2025) that rely on static, pre-collected trajectories, we employ Reinforcement Learning (RL)
as our primary training methodology. RL allows agents to learn from dynamic model rollouts in an
online manner, which is crucial for handling the variability of real-world interactions.

To support this RL-based training paradigm, we have developed a sandbox environment that facil-
itates agent interactions with users and tools through API calls using the Model Context Protocol
(MCP). A core feature of our infrastructure is its support for both text-based and audio-based user
simulation. This allows us to train and evaluate both text-only and multimodal agents, providing a
direct path toward our primary goal of developing end-to-end voice agents that can act on spoken
commands in realistic scenarios.

However, standard RL algorithms falter in this complex setting. We observed that as training pro-
gresses, models often become overconfident, reducing their capacity for exploration. To counteract
this, we introduce a two-pronged strategy. First, we employ mixed-task training—incorporating
medium-difficulty math problems—to encourage persistent exploration and regularize the learning
process. Second, to solve the critical credit assignment challenge in our long multi-turn trajec-
tories, we propose Turn-level Adjudicated Reinforcement Learning (TARL), visualized in Fig. 1.
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Figure 1: This illustration outlines our training pipeline for an iterative tool-use agent. The agent
operates within a sandbox environment, receiving results from tool executions and feedback from
users. We then evaluate and score both individual turns and the complete trajectory, which generates
the reward signal used to update the agent.

This method uses an LLM-based judge to provide fine-grained, turn-level rewards that guide pol-
icy updates. On text-based tasks, the combination of these techniques boosted the pass rate by an
additional 6% over our already strong RL baselines.

Having established our framework’s effectiveness in the text domain, we applied it to our main
objective: training a multimodal agent with real-world utility. Leveraging our sandbox environment,
we trained a base multimodal LLM on τ -BENCH tasks with speech-based user simulation. Guided
by our proposed mixed-task training and TARL strategies, our approach successfully equipped the
model with robust interactive tool-use abilities, improving the pass rate by over 20% compared to
the base model. This demonstrates a viable path for fine-tuning multimodal foundation models for
complex agentic tasks using process-supervised RL. In summary, our contributions are threefold:

• A generalizable, open-source sandbox designed for training interactive tool-use agents across both
text and speech modalities.

• An enhanced RL training strategy (TARL) that improves performance by encouraging exploration
and enabling fine-grained, turn-level credit assignment.

• The first demonstration of this framework to successfully train a multimodal voice agent through
RL on interleaved speech-text interactions, showing great performance gains.

2 PRELIMINARY

2.1 SANDBOX ENVIRONMENT FOR TOOL-USE AGENTS

Our sandbox environment is composed of three integrated components designed for training in-
teractive agents. (1) The backend application uses a relational SQLite database, adapted from the
τ -BENCH dataset, and exposes tools to the agent through RESTful APIs. (2) Our user simulator,
powered by GPT-4 and SeedTTS, generates text and speech-based user responses. (3) Finally, a
rule-based verifier evaluates the agent’s actions by comparing its database-altering tool calls against
ground-truth data, providing a binary reward to guide reinforcement learning. For more details,
please refer to our detailed description of each component in Appendix §A.

2.2 RL PRELIMINARIES

We formulate the agent training as a Markov Decision Process (MDP). The policy is an autoregres-
sive language model, pθ, which generates a sequence of tokens (actions) based on the preceding con-
versation history (state). An interaction trajectory, τ , is an alternating sequence of agent-generated
text, xi, and environment responses, ei. The objective is to learn the policy parameters θ that maxi-
mize the expected trajectory-level reward:

J(θ) = Eτ∼pθ
[R(τ )]

where R(τ ) is a scalar reward assigned to the entire trajectory. To optimize this objective, we
explore a few on-policy RL algorithms.
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Figure 2: Our environment setup for interactive tool-use agents.

Proximal Policy Optimization (Schulman et al., 2017, PPO) is a policy gradient algorithm that sta-
bilizes training by constraining policy updates. It uses a clipped surrogate objective that limits how
much the policy can change from one iteration to the next. The advantage function, which measures
the relative value of an action, is calculated using Generalized Advantage Estimation (GAE), where
all positions share the same reward R(τ ), obtained through our rule-based verifier.

Group Relative Policy Optimization (Shao et al., 2024, GRPO) enhances PPO by introducing a
reward normalization scheme to improve training stability. For a given batch of G trajectories, it
calculates the mean (µR) and standard deviation (σR) of the rewards. The advantage for a trajectory
is then its z-score: A = (R(τ ) − µR)/σR. This normalization makes the training process less
sensitive to the scale of rewards.

REINFORCE Leave-One-Out (Ahmadian et al., 2024, RLOO) is a variance reduction technique
that computes a unique baseline for each trajectory in a batch. The advantage for a specific trajectory
τn is its reward minus the average reward of all other trajectories in the batch: An = R(τn) −

1
G−1

∑
j ̸=n R(τj). This ”leave-one-out” baseline is unbiased and effectively reduces the variance

of the policy gradient estimates.

For the detailed RL formalization of our multi-turn tool-use setting, please refer to Appendix §B.

2.3 BENCHMARK RL ALGORITHMS

After constructing our sandbox environment, we first benchmark RL algorithms on τ -BENCH to un-
derstand the capabilities of vanilla RL algorithms on tool-use tasks. We utilize text-based user simu-
lation with Qwen3-8B (Yang et al., 2025) as our base model with training configurations in Appendix
§D. For our training data, we use GPT-4.1 to synthesize user instruction prompts and ground-truth
tool-call annotations through publicly released trajectory data from APIGEN-MT (Prabhakar et al.,
2025)1. More details of our data preparation can be found in Appendix §C.

Since there are a very limited number of trajectories and test cases for AIRLINE, we only synthesize
RETAIL domain’s training data. For evaluation, we assess our models on both RETAIL and AIRLINE
domains. Across all our experiments, we use the passˆk metric (Yao et al., 2024) in conjunction
with our rule-based verifier. For a given task, passˆk equals 1 only when all k sampled conversation
trajectories are verified as correct by the environment.

In-Domain RL Training Shows Promise but Faces Limitations Our benchmark results in Table 1
demonstrate that all RL algorithms successfully improve Qwen3-8B’s performance on the RETAIL
domain. GRPO achieves the largest improvement, closely followed by PPO (both using n = 4
rollouts), indicating that RL training effectively enhances the model’s tool-using capabilities. The
improvement is most pronounced in single-sample scenarios (passˆ1), where GRPO delivers ap-
proximately 9% improvement over the baseline.

1 Publicly available at https://huggingface.co/datasets/Salesforce/APIGen-MT-5k
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Agent Model Retail Airline
passˆ1 passˆ2 passˆ3 passˆ4 #Wait Len passˆ1 passˆ2 passˆ3 passˆ4

Baseline Models
GPT-4.1 60.9 55.7 51.3 47.8 0.3 54 48 34 26 24
Llama-xLAM-2-8B 42.6 34.8 28.7 26.1 0.1 19 36 26 20 18
Qwen3-8B 42.6 30.4 25.2 21.7 14.6 228 32 24 20 20

Qwen3-8B + RL
GRPO (n=4) 51.3 37.4 30.4 27.0 11.7 204 28 14 8 4
RLOO (n=4) 47.0 31.3 28.7 24.3 11.1 180 36 20 16 12
PPO (n=4) 48.7 36.5 31.3 26.1 8.4 162 32 22 14 12

Table 1: passˆk results of tool-use agents trained with different RL algorithms on τ -BENCH (baseline
models–GPT4.1 (OpenAI, 2024), xLAM-2-8B (Prabhakar et al., 2025), and Qwen3-8B (Yang et al.,
2025)–are replicated with our environment setup). n denotes the number of rollouts during training.
The best RL-trained results are bolded. For RETAIL, we also report #wait (the average number of
“wait” tokens as an indicator of self-reflection) and Len (response length per turn).

However, the learned skills do not generalize to out-of-domain AIRLINE tasks, a limitation we
attribute to our small, domain-specific training dataset and the fact that AIRLINE tasks are generally
harder than the RETAIL domain. Achieving better generalization would require crafting large and
diverse environments, as demonstrated by recent work like Kimi-K2 (Team, 2025b). On the other
hand, our focus is on optimizing RL strategies for in-domain performance.

The Confidence Paradox: When More Confidence Isn’t Better While RL training is known to
enhance model confidence and sampling efficiency (Shao et al., 2024; Damani et al., 2025; Yue
et al., 2025)—indeed reflected in our improved passˆ1 results—this increased confidence comes
with gradually reduced explorations. Analysis of our sampled trajectories reveals that post-training
models exhibit reduced self-reflection and self-correction behaviors, as evidenced by the substantial
decrease in “wait” tokens (Qwen3 tends to use phrases like ‘wait, ...’ to interrupt its thinking process
and reflect on its actions) and shorter average response lengths. For example, we observe that the
model over-confidently cancels orders without confirming with users, leading to avoidable errors.

Although these behavioral changes do not necessarily translate to lower overall performance, they
significantly impact the exploration benefits of RL training once the model is confidently exploring
sub-optimal strategies. Furthermore, the vanilla use of trajectory-level rewards could be problematic
for multi-turn conversations—in our case, with contexts up to 32,768 tokens—as it creates sparse re-
ward signals that lead to suboptimal credit assignment when the model performs multiple actions per
trajectory. These challenges inspire us to design training strategies that encourage agent exploration
with fine-grained turn-level feedback in the next section.

3 METHOD

3.1 MIXED-TASK TRAINING

To encourage exploration during training, we propose incorporating medium-difficulty math prob-
lems into the training process. This strategy leverages the fact that base models like Qwen3-8B
(Yang et al., 2025) have been pre-trained on mathematical and coding problems, giving them strong
reasoning capabilities. When solving math problems, language models naturally engage in self-
reflection and make multiple self-corrections, which elongates their chain-of-thought (Wei et al.,
2023, COT) reasoning trajectories and promotes exploratory behavior. By mixing math problems
with RETAIL domain tasks, we regularize the training process to prevent the model from overfitting
to the retail domain while preserving its exploration abilities through self-reflection.

In practice, we evaluated several math datasets including GSM8K (Cobbe et al., 2021), DeepScaleR
(Luo et al., 2025), and DAPO-MATH-17K (Yu et al., 2025), ultimately selecting medium-difficulty
problems from DeepScaleR. We chose this dataset because medium-level problems provide suf-
ficient challenge to force the model to reflect on its reasoning process and generate longer CoT
trajectories, while remaining manageable difficulty for an 8B parameter model.
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Figure 3: The judge assesses each turn based on the full conversation history with ground-truth
annotations. Here, the agent makes a mistake by picking the wrong Bluetooth speaker variant.

3.2 TURN-LEVEL ADJUDICATED REINFORCEMENT LEARNING (TARL)

For a granular, turn-level assessment of each trajectory, we employ an LLM-based judge that evalu-
ates every conversation turn (i.e., agent’s reasoning, action, and environment feedback) against the
ground-truth annotations. Prompt details of our judge are available in Appendix §E.

The judge’s evaluation, visualized in Fig. 3, assigns one of three rewards: −1, 0, or 1, with the
constraint that at most one turn can receive −1 per trajectory. A reward of −1 indicates a major
deviation from expected behavior, typically occurring when the agent provides incorrect information
after faulty reasoning (e.g., selecting the wrong item during an exchange request) or executes tool
calls with erroneous arguments that cause irreversible database changes (e.g., canceling orders that
should not be canceled). A reward of 0 indicates minor issues that are later corrected or a by-product
of major deviation. A turn receives 1 for correct execution without issues.

For GRPO, our final trajectory-level reward is a weighted combination of these turn-level scores (ri)
and the terminal (outcome) reward (R(τ )) from our rule-based verifier. We scale the terminal reward
R(τ ) by 10× to heavily prioritize successful task completion, and multiply the major deviation score
(−1) by 5× to penalize critical mistakes strongly, and scale all other turn scores by 1/T (where T
is the number of turns) to cap their contribution and prevent longer trajectories from being unfairly
advantaged. Our reward design yields four distinct trajectory categories:

1. Perfect trajectory (15 points): 10 points for terminal success +5 points from turn-level rewards.
2. Good trajectory (10−15 points): 10 points for terminal success plus 0−5 points from turn-level

rewards, indicating some turns have minor issues.
3. Good attempt trajectory (0 − 5 points): 0 points for terminal failure but positive turn-level

rewards, occurring when the judge finds no major errors despite rule-based verification failure
(rare cases, often due to unclear or hallucinated user responses)

4. Failed trajectory (−5 to 0 points): 0 points for terminal failure plus −5 points for one major
error, with some positive reward from other turns.

Since PPO calculates advantages at the token level, we tested two reward granularities:

• Per-Turn Assignment: Applying each turn’s reward specifically to the final token of that turn to
provide more granular feedback, which will be propogated backwards by GAE (see Equation 4).

• Trajectory-Level Assignment: Calculating a single, normalized reward (using the same approach
as GRPO) for the entire trajectory and applying it uniformly across all tokens.

By default, TARL for PPO uses trajectory-level assignment as it performs better (ablation available
in §5). Beyond our core reward design, we also attempted several other strategies, including en-
couraging exploration with high-entropy token training (Wang et al., 2025) and utilizing turn-level
verifiers to interrupt the reasoning process and force self-reflection. Though these strategies did not
yield improvements, we discuss them in our analysis (§5) to provide insights for future research.

4 EXPERIMENTS

4.1 TEXT-BASED AGENT TRAINING

Training Data. We train our text-based agents on approximately 3,000 synthetic tasks derived
from APIGEN-MT (Prabhakar et al., 2025) trajectories. Each task provides: (1) a user instruction
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Agent Model Response Metrics Performance Metrics

#Wait Len passˆ1 passˆ2 passˆ3 passˆ4

Baseline Model
Qwen3-8B 14.6 228 42.6 30.4 25.2 21.7

Qwen3-8B + RL (GRPO Variants)
GRPO 11.7 204 51.3 37.4 30.4 27.0
+TARL 14.0 210 53.9 (+2.6) 40.9 (+3.5) 33.9 (+3.5) 30.4 (+3.4)
+MATH + TARL 15.8 236 57.4 (+6.1) 42.6 (+5.2) 36.5 (+6.1) 33.9 (+6.9)

Qwen3-8B + RL (PPO Variants)
PPO 8.4 162 48.7 36.5 31.3 26.1
+MATH + TARL 11.5 204 53.0 (+4.3) 40.0 (+3.5) 35.7 (+4.4) 31.3 (+5.2)

Table 2: Performance comparison of different training strategies on the τ -BENCH RETAIL domain.
We report average wait time (#Wait), average response length (Len), and passˆk metrics. Our
proposed strategies (highlighted rows) consistently achieve the best performance

to guide the simulated user, and (2) the ground-truth tool calls the agent is expected to execute.
Detailed construction process and examples are provided in Appendix §C. To ensure comprehensive
coverage, our sandbox environment is also pre-populated with all seed data from τ -BENCH. For
our mixed-task training strategy, we incorporate math problems from the DeepScaleR dataset (Luo
et al., 2025), filtering for problems with integer answers and alternating between RETAIL and math
tasks during training. We will open-source all curated task instructions and ground-truth tool calls.

Model. We use Qwen3-8B (Yang et al., 2025) as the base model for our experiments. When using
our proposed Turn-level Adjudicated Reinforcement Learning (TARL), we employ GPT-4.1 as the
LLM judge to score each turn, following the mechanism described in §3.2. For full training hyper-
parameters, please refer to Appendix §D.

Results As shown in Table 2, our proposed Turn-level Adjudicated Reinforcement Learning (TARL)
strategy, especially when augmented with mixed-task math training, consistently outperforms stan-
dard reinforcement learning baselines like GRPO and PPO2. Our optimal method (Math+TARL)
achieves a 57.4% passˆ1 score, representing a 6% relative improvement over GRPO and 15% over
the base model. This result is competitive with capable closed-source models like GPT-4.1 (see Ta-
ble 1), and the performance gains hold across different values of k, indicating enhanced reliability.
Qualitatively, our method also produces models that engage in more frequent self-correction (higher
#Wait tokens) and generate longer responses (Len), as detailed in Table 2. We provide further anal-
ysis of training statistics and alternative strategies in §5.

4.2 MULTIMODAL AGENT SETUP

Environment and Simulation To extend our framework to voice-driven interaction, we simulate
realistic user speech by first generating textual user prompts and then converting them to audio
using SeedTTS (Anastassiou et al., 2024), a high-quality text-to-speech model. This allows us to
train agents on interleaved speech-text rollouts.

For evaluation, we assess the model in both text and speech modes. For the text mode, all settings
are the same as text agents. For speech-mode evaluation, we exclude the authentication step from
the RETAIL task in τ -BENCH, as this step requires the agent to obtain user IDs in “name number”
format, which proves error-prone when processed through our TTS pipeline. Instead, we directly
provide the agent with the user profile and continue the conversation.

Model Selection and Baseline Performance Our first step was to select a suitable base model capa-
ble of processing both speech and text. We evaluated several state-of-the-art foundational models, in-
cluding Qwen2.5-Omni (Xu et al., 2025), Audio-Flamingo3 (Goel et al., 2025), and Audio-Reasoner
(Xie et al., 2025). We found that none of these models demonstrated satisfactory tool-use capabilities
out-of-the-box. While Audio-Flamingo3 and Audio-Reasoner struggled significantly, often hallu-

2 TARL uses the trajectory-level assignment for PPO. Ablations on reward granularity are conducted in §5
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Training Configuration Performance Metrics

Eval Mode Agent Train Mode passˆ1 passˆ2 passˆ3 passˆ4

Baseline Models
Text Qwen2.5-Omni-7B — 7.8 7.8 7.8 7.8
Speech Qwen2.5-Omni-7B — 14.8 8.7 5.2 5.2

Qwen2.5-Omni-7B + RL
Text GRPO + Math S & T 31.3 20.9 12.2 12.2

GRPO + Math + TARL S & T 36.5 25.2 21.7 16.5

Speech GRPO + Math S & T 34.8 25.2 21.7 16.5
GRPO + Math + TARL S & T 37.4 26.1 22.6 20.9
GRPO + Math + TARL T-only 32.2 18.3 14.8 11.3

Table 3: Performance comparison across training and evaluation modalities on τ -BENCH. Models
are trained with speech-text (S-T) or text-only (T-only) rollouts and evaluated with text or speech-
based user agent. Our proposed methods (highlighted rows) achieve the best performance.

cinating after one or two turns, Qwen2.5-Omni-7B achieved the best—though still poor—initial
performance with a passˆ1 rate of 7.8% (see Table 3). This highlights that multi-turn, interactive
tool-use remains an under-explored capability for most speech-enabled foundation models.

Curriculum Learning for Warming Up Given the models’ limited initial abilities, we adopted
a curriculum learning strategy to warm-up the multimodal agent’s tool-use abilities. Instead of
supervised fine-tuning, we applied GRPO for 30 steps using a simplified set of training tasks. These
tasks feature more detailed and specific user instructions to create a easier learning environment for
skill acquisition (see Appendix §C). Qwen2.5-Omni showed rapid improvement on this simplified
curriculum, demonstrating its ability to correctly use tools and engage in multi-turn conversations.

After the curriculum learning phase, we train the model on our normal training dataset and evalu-
ate its performance across both text and speech modalities. During training, we employ a mixed-
modality training strategy where the dataloader alternates between three types of data batches: (1)
math problems, (2) text-only RETAIL task, and (3) RETAIL task with user response in speech. The
first two batch types follow the same configuration used when post-training text agents. For the
third data type, the model explores with interleaved speech-text rollouts where the speech contents
are generated by the simulated user agent.

4.3 MULTIMODAL TRAINING RESULTS

The results in Table 3 validate the effectiveness of our proposed training strategy. Our final model,
GRPO + MATH + TARL, consistently delivers superior performance across both text and speech
evaluation settings, achieving a pass ˆ1 improvement of over 20% compared to the baseline. While
the multimodal agent’s performance currently lags behind its text-only counterparts, we anticipate
this gap will narrow as foundational multimodal models continue to advance.

Crucially, an ablation study highlights the necessity of our mixed-modality training approach. When
a model was fine-tuned exclusively on text and then evaluated in the speech-based setting, its perfor-
mance degraded substantially (see final row of Table 3). This finding demonstrates that fine-tuning
solely on textual data can erode a model’s pre-trained speech understanding capabilities, underscor-
ing the importance of using interleaved speech-text rollouts to develop effective voice agents.

5 ANALYSIS

5.1 REWARD GRANULARITY FOR PPO-BASED TRAINING

Given that PPO supports token-level rewards, we investigate how different reward granularities af-
fect training performance. After obtaining turn-level evaluation from our judge, we experiment with
two granularities as mentioned in §3.2: (1) TARL (turn-level): assigning per-turn rewards at the fi-
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Figure 4: Training time average reward and response length comparison of PPO-based strategies.
Trajectory-level assignment with turn-level eval (TARL traj-level) obtains the best performance.

nal token position of each turn and (2) TARL (trajectory-level): computing a single trajectory-level
reward (same as GRPO) and applying it uniformly across all token positions.

As illustrated in Fig. 4, the trajectory-level approach promotes more effective exploration and ex-
hibits stable reward growth during training, ultimately achieving a 4.3% improvement in passˆ1
performance compared to vanilla PPO training (see Table 2). In contrast, assigning rewards at turn-
level granularity leads to degraded performance, with training rewards falling below even the vanilla
PPO baseline. We hypothesize that assigning turn-level rewards at different positions complicates
the credit assignment process and overly relies on the judge’s accuracy. It is also sensitive to PPO hy-
perparameters that affect the discounting behavior of GAE. On the contrary, trajectory-level reward
is much more robust as they are broadly dissected into four categories outlined in §3.2.

5.2 STRATEGIES FOR INCENTIVIZING EXPLORATION

Data Distribution Modification: Mixed-Task Training We first examine the effectiveness of
mixed-task training with mathematical problems. As shown in Fig. 5, GRPO+MATH demonstrates
increased exploration activity during training, evidenced by longer average response lengths com-
pared to the baseline. However, despite this enhanced exploration, test set performance remains
comparable to the GRPO baseline, suggesting that exploration alone is insufficient for improved
generalization. The combination of exploration strategies with better credit assignment proves
crucial. GRPO+MATH+TARL, which incorporates both mixed-task training and turn-level re-
wards, exhibits the highest exploration levels (reflected in the longest average response lengths) and
achieves substantially better performance on test set tasks (Table 2). Notably, all methods—GRPO,
GRPO+MATH, and GRPO+MATH+TARL—converge to similar high reward levels during train-
ing (Fig. 3), indicating that the benefits of enhanced exploration and credit assignment primarily
manifest in generalization to unseen RETAIL tasks rather than training performance improvements.
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Figure 5: Training time average reward and response length comparison of different strategies.
Mixed-task training with turn-level evaluation (GRPO+Math+TARL) achieves the best performance.

Loss Function Adjustment: Entropy-based Modification We are also curious if loss func-
tion adjustment with entropy-based modification could help incentivize exploration. We follow
the recent study (Wang et al., 2025) to restrict policy gradient updates to the top 20% highest-
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entropy tokens. While this approach shows improved exploration compared to the baseline (see
GRPO+Entropy+TARL in Fig. 5), it fails to enhance test-time performance and actually achieves
lower training rewards than other strategies. We hypothesize that though entropy-based modifi-
cation helps the model to explore, limiting updates to high-entropy positions could cause training
instability, particularly problematic for our long-horizon sequential decision-making tasks.

In Appendix §F, we have additional analysis on the rollout intervention where we attempt to en-
courage exploration by forcing self-reflection when an erroneous tool-call is made. It turns out that
editing the rollout context during training results in unstable updates that harm the performance.

Key Takeaways: Our mixed-task training strategy, when combined with a trajectory-level assess-
ment that integrates both turn-level and terminal rewards, promotes more effective exploration and
yields higher task completion rates. In contrast, more sophisticated interventions like complex re-
ward shaping and elaborate training loss designs tend to destabilize the training process and ulti-
mately degrade performance—a finding that echoes the ”bitter lesson” (Sutton, 2019).

6 RELATED WORK

Tool-Use Agent Benchmarks Numerous evaluation benchmarks have been developed for tool-
use tasks, including τ -BENCH (Yao et al., 2024), τ2-BENCH (Barres et al., 2025), BFCL (Patil
et al., 2025), AppWorld (Trivedi et al., 2024), ToolSandbox (Lu et al., 2025), UserBench (Qian
et al., 2025), and Ace-Bench (Chen et al., 2025a). In our work, we adopt τ -BENCH for training and
evaluation as it supports realistic user-agent interactions, making it suitable for testing an end-to-end
voice agent. However, τ -BENCH has limitations, including its narrow scope of tasks (supporting
only 2 domains) and limited control over user behavior. More recent benchmarks like UserBench
have begun addressing these issues through preference-driven interactions, and we expect continued
work in this direction to provide more controllable sandboxes for interactive tool-use tasks.

Training Tool-Use Agents Reinforcement learning (RL) algorithms have been developed and
tested on a wide spectrum of problems. Foundational work demonstrated success in classic con-
trol tasks and games, such atari games (Mnih et al., 2015), and AlphaGo (Silver et al., 2016). More
recently, RL has become a cornerstone for refining large language models (LLMs) beyond standard
pre-training. Techniques like Reinforcement Learning from Human Feedback (RLHF) were criti-
cal in aligning models to follow user instructions and enhance safety (Ouyang et al., 2022). This
paradigm has been extended to improve complex reasoning abilities, such as solving mathematical
problems by rewarding correct final outcomes (Shao et al., 2024) or verifying intermediate reason-
ing steps with process reward modeling (Lightman et al., 2023). RL has also been applied to agentic
tasks, such as WebShop (Yao et al., 2022; Zhou et al., 2024; Putta et al., 2024), AppWorld (Chen
et al., 2025b), etc., with a simulated environment.

Addressing the credit assignment challenge in multi-turn interactions is difficult when using only
final outcome-based rewards, despite their scaling potential (Shao et al., 2024; Zhang et al., 2025).
Recent studies have shown that turn-level feedback offers a more effective solution for tool-use
agents (Zhao et al., 2025; Zeng et al., 2025; Zhou et al., 2025). Building on insights from Process
Reward Modeling (PRM) (Lightman et al., 2023; Ma et al., 2023; Zhang et al., 2025; Choudhury,
2025), we implement a turn-level reward system. Unlike previous approaches that rely on structured,
rule-based evaluators (Zeng et al., 2025; Zhao et al., 2025), our method employs an LLM as a judge
to provide more nuanced feedback (such as distinguishing between small and recoverable error
versus major deviation) on an agent’s performance at each turn.

7 CONCLUSION

We develop an interactive tool-use agent that communicates with simulated users and tool sandboxes
to complete complex tasks. Through our carefully crafted environment, we enable the agent to
perform online exploration and train it using reinforcement learning algorithms. We further enhance
the learning process by incorporating mixed-task training to sustain exploration and employing turn-
level evaluation to improve credit assignment in long-horizon tasks. Furthermore, we extend our
framework to train multimodal voice agents, incorporating additional strategies such as curriculum
learning and mixed-modality training to enhance agent performance across different modalities.
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ETHICS STATEMENT

Our work focuses on developing interactive tool-use agents, including multimodal voice agents ca-
pable of executing tasks based on spoken commands. While this technology holds promise for creat-
ing more natural and efficient human-computer interaction, it also introduces potential risks. Agents
that can perform actions like modifying or canceling orders through API calls could be exploited for
unauthorized or malicious purposes if not properly secured. Furthermore, the development of voice
agents that interact via synthesized speech raises the possibility of misuse for deceptive applications,
such as impersonation or social engineering. To mitigate these risks, we advocate for the implemen-
tation of robust safeguards, including strict access controls, user confirmation for critical actions,
comprehensive audit trails for agent activities, and the use of techniques like audio watermarking to
identify synthetic speech.

REPRODUCIBILITY STATEMENT

Our research is conducted using publicly available datasets, including APIGEN-MT (Prabhakar
et al., 2025) and DeepScaleR, in accordance with their respective licensing terms. The base models
used in our experiments, such as the Qwen series (Xu et al., 2025; Yang et al., 2025) and vari-
ous foundational models, are developed by third parties. Our user simulator and LLM-based judge
leverage models like GPT-4.1 (OpenAI, 2024) and SeedTTS (Anastassiou et al., 2024). We pro-
mote transparency by providing the detailed judging prompt in Appendix §E. In the spirit of repro-
ducibility and to encourage further research, we plan to open-source all synthetically generated task
instructions and ground-truth tool calls created for this work. Our hyperparameters can be found in
Appendix §D and we plan to open-source our codebase for reproducible experiments.
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Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms, 2024. URL https://arxiv.org/abs/2402.14740.

Meta AI. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong,
Lelai Deng, Chuang Ding, Lu Gao, Mingqing Gong, Peisong Huang, Qingqing Huang, Zhiying
Huang, Yuanyuan Huo, Dongya Jia, Chumin Li, Feiya Li, Hui Li, Jiaxin Li, Xiaoyang Li, Xingx-
ing Li, Lin Liu, Shouda Liu, Sichao Liu, Xudong Liu, Yuchen Liu, Zhengxi Liu, Lu Lu, Junjie
Pan, Xin Wang, Yuping Wang, Yuxuan Wang, Zhen Wei, Jian Wu, Chao Yao, Yifeng Yang, Yuan-
hao Yi, Junteng Zhang, Qidi Zhang, Shuo Zhang, Wenjie Zhang, Yang Zhang, Zilin Zhao, Dejian
Zhong, and Xiaobin Zhuang. Seed-tts: A family of high-quality versatile speech generation mod-
els, 2024. URL https://arxiv.org/abs/2406.02430.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. URL https://api.semantic
scholar.org/CorpusID:268232499.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τ2-bench: Evaluating
conversational agents in a dual-control environment, 2025. URL https://arxiv.org/ab
s/2506.07982.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, Wulong Liu, Xinzhi Wang, Defu Lian, Baoqun Yin, Yasheng
Wang, and Wu Liu. Acebench: Who wins the match point in tool usage?, 2025a. URL https:
//arxiv.org/abs/2501.12851.

Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger,
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A SANDBOX ENVIRONMENT

Our sandbox environment, illustrated in Fig. 2, comprises three components, including (1) a backend
application with a pre-configured database and API endpoints for MCP server communication; (2) a
user simulator that leverages LLM capabilities to generate realistic user requests and responses; and
(3) a rule-based verifier that evaluates interaction trajectories and provides binary rewards. Below,
we detail each component’s implementation and functionality.

Backend Application. We implement a SQLite database to store the comprehensive dataset from
τ -BENCH, encompassing various data tables such as Products, Orders, and Users. Rather than re-
lying on static JSON files for seed data storage, we construct a proper relational database schema
with well-defined table structures and database operations. This design choice enables our back-
end application to be easily extended and adapted for other tasks. We expose the available tools
as RESTful API endpoints through application routers and register them as MCP tools, providing
seamless integration for agent interactions.

User Simulator. Our user simulator employs GPT-4 (OpenAI, 2024) to role-play as human users,
generating contextually appropriate requests and responses based on the task instructions from τ -
BENCH. We adopt the ReACT (Yao et al., 2023) reasoning framework using a consistent prompt
with τ -BENCH, which compels the user model to engage in structured thinking processes before
formulating responses to agent queries. For speech-based user simulation, we use SeedTTS (Anas-
tassiou et al., 2024) to convert the text responses to into natural speech.

Rule-based Verifier. We implement a rule-based verifier that systematically inspects successful
write operations—specifically, tool calls that alter the database state, such as those involved in order
modifications, exchanges, reservations, and cancellations. This verifier cross-references the argu-
ments from the agent’s tool calls with ground-truth annotations and outputs a binary reward: 1 for a
complete match and 0 otherwise.

Notably, τ -BENCH includes an additional verification step that checks for expected outputs in the
agent’s responses. However, we observe that this criterion is highly sensitive to variations in how
user responses are phrased, so we exclude it from our reinforcement learning (RL) training and
evaluation protocols. For the sake of consistency, though, we also report results incorporating this
output check in Appendix §G.

B RL ALGORITHMS

In this section, we provide more detailed and formal description of the RL algorithms we adopted
in our interactive tool-use scenario:

We formulate the interactive tool-use agent training as a Markov Decision Process (MDP). Given
an autoregressive language model as the policy backbone, the state at any point in the interaction
is simply the token sequence observed so far. The interaction follows an alternating pattern: when
the agent is responding (calling tools with arguments), it takes actions by sampling the next token
from the policy distribution pθ and appending the token to the existing trajectory. When the agent
stops talking, the environment generates feedback (through simulated user agent or tool execution
results) and appends a sequence of tokens (denoting user response or tool execution result) to the
existing trajectory. More formally, let xi = (xi

1, x
i
2, . . .) denote the i-th agent token sequence and

ei = (ei1, e
i
2, . . .) denote the i-th environment token sequence. When the environment response is

from tool execution or text-based user simulation, ei is a sequence of text tokens. When we use
speech-based user simulation, ei is a sequence of speech tokens (or their placeholder tokens). The
complete trajectory is an interleaved sequence: τ = (x1, e1,x2, e2, . . . ,xT , eT ). Here T is the
total number of interaction steps, reached when user agent replied special token ##STOP## or when
the maximum number of interaction steps is reached. In our case, T ∈ [1, 30] as we set a maximum
of 30 interaction steps. Our objective is to maximize the expected reward over complete trajectories:

J(θ) = Eτ∼pθ
[R(τ )] (1)

where R(τ ) is a trajectory-level reward function that evaluates the quality of the generated trajectory
using the rule-based verifier described in §2.1. To optimize this objective, we experiment with the
following widely-used RL algorithms:
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PPO (Proximal Policy Optimization): We begin with PPO (Schulman et al., 2017), which
constrains policy updates to prevent large deviations from the current policy through a clip-
ping mechanism. For brevity, we denote the conversation history up to token xi

j as hi
j =

[c;x1, e1, . . . ,xi−1, ei−1, xi
1, . . . , x

i
j−1]. PPO operates at the token level using policy gradient ra-

tios. Given a current policy θold and a new policy θ, the probability ratio for each token is:

rij(θ) =
pθ(x

i
j |hi

j)

pθold(x
i
j |hi

j)
(2)

The PPO objective function applies clipping to this ratio (we omit the KL divergence term here):

LPPO(θ) = Eτ∼pθold

 1∑T
i=1 |xi|

T∑
i=1

|xi|∑
j=1

min
(
rij(θ)A

i
j , clip(rij(θ), 1− ϵ, 1 + ϵ)Ai

j

) (3)

where Ai
j is the advantage function and ϵ is the clipping parameter. PPO uses the Generalized

Advantage Estimate (GAE):

Ai
j =

∞∑
l=0

(γλ)lδij+l, where δij = Ri
j+1 + γV (sij+1)− V (sij) (4)

This formula relies on several key terms. The calculation is driven by the Temporal Difference (TD)
error (δij), which measures the one-step prediction error of the value function. The TD error itself is
found using the immediate reward (Ri

j+1) and the value function’s estimate for the current and next
states. This calculation is weighted by two parameters: the discount factor (γ), which determines
how much future rewards are valued, and the GAE parameter (λ), which balances the trade-off
between bias and variance in the final advantage estimate3. Since we use a trajectory-level verifiable
reward, we simply have Ri

j+1 = R(τ ), i.e., the token-level reward is the same across all positions.
Note that throughout our RL training, we compute loss only over agent sampled tokens x and mask
the loss over all environment tokens e to avoid unstable updates.

GRPO (Group Relative Policy Optimization): GRPO (Shao et al., 2024) also shares the same
clipping mechanism but introduces a group-based relative policy optimization approach that nor-
malizes rewards within each group to improve training stability. Given a group of G trajectories
{τ1, τ2, . . . , τG}, GRPO computes the mean and standard deviation of rewards:

µR =
1

G

G∑
n=1

R(τn), σR =

√√√√ 1

G

G∑
n=1

(R(τn)− µR)2 (5)

The advantage for trajectory n is then computed as An = (R(τn)− µR)/σR. The GRPO objective
function is:

LGRPO(θ) = E{τn}G
n=1∼Pθold

 1∑Tn

i=1 |xi|

Tn∑
i=1

|xi|∑
j=1

min
(
ri,nj (θ)An, clip(ri,nj (θ), 1− ϵ, 1 + ϵ)An

)
(6)

where ri,nj (θ) =
pθ(x

i,n
j |hi,n

j )

pθold (x
i,n
j |hi,n

j )
is the probability ratio for token j in turn i of trajectory n. This

normalization approach helps stabilize training by reducing reward scale variations across different
batches and tasks.

RLOO (REINFORCE Leave-One-Out): RLOO (Ahmadian et al., 2024) is similar to GRPO but
uses a different baseline computation. Given a group of G trajectories {τ1, τ2, . . . , τG}, the baseline
for each trajectory τn is computed using all other trajectories in the group:

bn =
1

G− 1

∑
j ̸=n

R(τj) (7)

Then the advantage function is computed as An = R(τn) − bn for the n-th trajectory. This leave-
one-out approach ensures that the baseline is unbiased while significantly reducing the variance of
gradient estimates compared to standard REINFORCE.

3 In practice, we set γ = 1, λ = 1 given our long-horizon trajectories
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C TRAINING DATA

User Specification Ground-Truth Tool-Calls
Your email is noah.brown7922@example.com.
You are a customer who recently received an or-
der and want to exchange two items: the green
small polyester laptop-compartment backpack for
a navy large polyester laptop-compartment back-
pack, and the black wired laser gaming mouse for
a black wireless optical gaming mouse ... De-
scribe the items you want to exchange and the
new options you want, and confirm the use of your
original payment method for any price difference
only after the agent identifies it. Respond to the
AI agent to complete your exchange request.

[...(other tool-calls),
{
"name": "exchange_delivered_order",
"arguments": {
"order_id": "#W7678072",
"item_ids": [

"3557711149",
"2193628750"

],
"new_item_ids": [

"8084436579",
"8214883393"

],
"payment_method_id": "paypal_xxx"}

}]

Table 4: Example of synthetic training data showing user specification and corresponding ground-
truth tool calls for an item exchange scenario.

We generate synthetic training tasks by leveraging conversation trajectories from APIGEN-MT
(Prabhakar et al., 2025) and using large language models to synthesize corresponding user speci-
fications (instructions) with the prompt below. An illustrative example of this process is presented
in Table 4. In practice, we employ GPT-4.1 to extract user specifications from the conversation
trajectories provided by APIGEN-MT. The prompt to craft such specifications is shown below:

User Specification Synthesis Prompt Template

Role & Objective: You are an expert in analyzing human-AI conversation trajectories.
Your task is to infer the core instruction or task that the human user was given, which
led to their interaction with the AI.

Analysis Framework: Analyze the provided conversation transcript, paying close
attention to:
1. Initial Request: The human’s opening statement or question
2. Response Patterns: How the human responds to AI queries
3. AI Actions: Function calls, observations, and AI responses that reflect user

intent
4. Conversation Flow: Overall progression and resolution

Output Requirements: Based on your analysis, formulate a concise, direct, and clear
instruction that, if given to a human, would result in the conversation you observe.
The instruction must capture:
- User’s role/identity
- User’s objective/task
- Reason/context for the task
- Key constraints or requirements

Output Format Template: "Your user id is [user id or email if available in
conversation]. You are [User’s Role/Identity] and you are trying to [User’s
Objective/Task] because [Reason/Context]. You need to provide [Key Information
Required] and respond to the AI’s prompts to achieve your goal."

Input: [CONVERSATION TRANSCRIPT]

Expected Output: [SYNTHESIZED USER INSTRUCTION]

While the template above enables us to synthesize high-quality user instructions for each task, these
instructions tend to conform to a similar format due to our structured ”output format template”. To
introduce greater diversity and increase the exploration challenge for the model, we rewrite the syn-
thesized instructions using the following template. We rewrite the instruction to be more challenging
for the agent to complete, while ensuring that the tasks remain solvable. The re-writing prompt is
shown below:
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User Instruction Rewriting Prompt Template

You will be provided with a user-agent conversation trajectory and a user instruction.
You job is to re-write the user instruction following the steps below:

1. You should first read through the conversation between user and agent, understanding
the user’s intention and from the AI agent’s reply, you will have detailed information
such as the user’s information and order details. Pay special attention to the function
calls and the arguments in each function call.

2. You should then read through current user instruction, the insturction already
provides necessary and detailed information to the user to complete the conversation
with the agent.

3. Now your job is to re-write the user instruction so that the user withhold certain
information from the agent, but the task should still be possible to complete even
without those withheld information, because such information might be retrieved from
other function calls.

For example, get user details will show not only user information but also payment methods
and the user’s current order ids. Therefore, even if the user forgets order ID, it
can be retrieved and confirmed by the agent. Similarly, get order details will return
order id, user id, user address, order items, as well payment history, payment status, and
fulfillments. These information can then be used to help process the order even if the
user forgets some details about their order or address.

Here are some ways to re-write the instruction and make it harder for the agent:
- You can ask the user not to provide order details (say that you do not remember it)
but ask the agent to derive it from its user profile
- You can ask the user not to provide payment method (say that you do not remember it)
but only to confirm after agent replies with options
- You can ask the user not to provide details they want (say that you do not remember
it) but only expose them after such items/products are provided by the agent as options
- Be creative and think of any other ways to make the instruction harder (but please
make sure that the task is possible to complete)

Do not make the task too hard, only randomly apply one or two withholding strategies
above in your re-write process. Also, please ensure that the user instruction contains
necessary information (order ids, payment methods, etc.,) even if the user does not
provide it explicitly. The agent will always authenticate the user’s identity first so
please make sure that the user information is provided in the instruction:

- User information could be user id, user name + zipcode or user email.
- You can modify the instruction so that user withholh some of their user

information, but at least one of these information should be possible to be obtained
by the agent (e.g., user can forget user id and zipcode but provide email for
authentication)

4. When you re-write the instruction to be more challenging for the agent, please
make sure the original information necessary for the user to complete the task is still
provided to user. For example, even if you ask the user to withhold their user id,
address, payment method, order details, etc., you should still provide these information
in the instruction (so that user still knows about them even if they will not provide
information explicitly to the agent).

Output Requirements:

<think>
You should conduct an evaluation of the user instruction and think about how to re-write
the instruction based on my rules above inside this block
</think>

Then you need to output a json object with the following fields:
{

"rewrite instruction": <your re-written instruction>
}
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Note that in section §4.3, we mentioned that for multimodal warm-up training, we use a simpler
version of the training tasks. To create this simple version, we use the following prompt template:

Simplification Prompt Template for Multimodal LLM Warm-up Training

You will be provided with a user-agent conversation trajectory and a user instruction.
You job is to re-write the user instruction following the steps below:

1. You should first read through the conversation between user and agent, understanding
the user’s intention and from the AI agent’s reply, you will have detailed information
such as the user’s information and order details.
2. You should then read through current user instruction, and check if it provides
enough information for the user to complete the conversation with the agent. Pay
special attention to the conversation where the agent is asking for user’s information
or confirmation about choices.
3. Try to re-write the user instruction to be more detailed. Pay special attention
to the arguments in each function calling. User information, order number and details,
payment information should all be included in the instruction if available.

Output Requirements:

<think>
You should conduct an evaluation of the user instruction and think about how to re-write
the instruction based on my rules above inside this block
</think>

Then you need to output a json object with the following fields:
{

"rewrite instruction": <your re-written instruction>
}

D TRAINING DETAILS

We adopt verl4 and RL Factory 5 as our framework to support RL training with multi-turn conversa-
tion. We train the model with a batch size of 128 (e.g., 32 distinct tasks with 4 rollouts per task). We
train the agent model until convergence (performance normally plateaus after 200-300 steps) with
hyperparameters shown in Table 5.

Hyperparameter Value Hyperparameter Value
grad clip 1.0 max prompt length 4096
clip ratio 0.2 max response length 1024
ppo epochs 1 kl coef 0.001
num rollout 4 kl loss coef 0.003
top p 0.95 actor lr 1× 10−6

temperature 0.7 critic lr 1× 10−5

max turns 30

Table 5: Hyperparameter settings used in our experiments.

E LLM JUDGE SETUP FOR TURN-LEVEL EVALUATION

To assess the multi-turn trajectory, the LLM-based Judge will receive the complete trajectory and
ground-truth tool-call annotations to output a score for each turn. Below is the prompt that we use
to provide turn-level rewards:

4https://github.com/volcengine/verl
5https://github.com/Simple-Efficient/RL-Factory
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Role: Task Execution Evaluation Judge

Your core responsibility is to thoroughly and precisely evaluate multi-turn conversations
between a user and an agent. You must carefully read each conversation to pinpoint where
the agent’s decisions lead to deviations from the ground-truth function-call trajectories.
Information Provided for Your Evaluation

You will be given four key pieces of information to guide your assessment:

1. Policy: This document outlines the strict rules the agent must adhere towhen
making tool calls. If an agent’s action violates this policy, you must
immediately halt its current action and instruct it to reconsider and correct
its approach.

2. Task Instruction: This is the specific instruction provided to the user.The
user’s requests and responses should always align with this instruction. The
agent does not have access to this instruction.

3. Ground-Truth Function Call Trajectories: This serves as the definitive standard
for assessing the accuracy of the agent’s tool calls.

– The agent doesn’t need to follow the exact order of this trajectory.

– It’s acceptable for the agent to call information-gathering functions (e.g.,
get order details) multiple times, but the agent’s write operation (modifying,
exchanging, returning, or canceling orders) needs to match exactly with the
ground-truth function calls.

4. Conversation Trajectories: This provides the detailed record of the multi-turn
conversation between the user and the agent. You will use these conversations to
identify executed tools and evaluate the correctness of the agent’s processing of
results. Each agent’s reasoning and action within a turn will be preceded by a
label like [Turn N].

Evaluation Process

Deviations from the ground truth typically arise due to:

• The agent failing to gather sufficient or correct information, either through function
calls or by asking the user.

• Incorrect reasoning or understanding by the agent based on the results of tool
execution.

• The agent not following policy, resulting in wrong execution of tools.

Pay exceptionally close attention to operations involving modifying, exchanging,
returning, or canceling orders. The agent’s calling for these function should match
exactly with the ground-truth. These are critical evaluation points and frequent sources
of error. Three kinds of error are possible with write operation:

(1) The agent might call the function with wrong arguments that do not match with
ground-truth.

(2) The agent calls unnecessary write operation that should never be called.

(3) The agent did not call the write operation which is listed in the ground-truth.

If any of the three cases above occurs, you need to carefully read the conversation and
identify the turns where the agent deviates from the ground-truth.

For each turn in the conversation (identified by the [Turn N] tag), you should evaluate
whether agent’s reasoning and action in that turn is the primary cause of a deviation from
the ground-truth function call. Assign a score for each turn. You have three kinds of
score to assign:

• If the turn is correct, assign a score of 1.

• If the turn is the primary reason for a deviation, assign a score of -1. This can only
be assigned to at most one of the conversation turns if deviation is found.

• If the turn has issue (e.g., not following the policy or function call formats), assign
a score of 0.

Your Response Format

You must first conduct your evaluation process within a <think></think> block.

After completing your thinking process, you must output only a single JSON object. No
other text, commentary, or explanation should be included outside of the JSON block. The
JSON object must adhere strictly to the following format, including all turn’s scores from
score 0 up to score n (where n is the total number of turns).

{
"score 0": <turn 0’s score>,
"score 1": <turn 1’s score>,
// ... (include all turns up to ’n’)
"score n": <turn n’s score>

}
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F FORCING EXPLORATION WITH ROLLOUT INTERVENTION

Inspired by self-refinement techniques (Weng et al., 2023; Madaan et al., 2023), we also explored
whether real-time intervention from a verifier could improve the agent’s exploration through forcing
self-reflections. We deployed an LLM-based verifier to continuously monitor the agent’s action, as
visualized in Fig. 6.

Task 
Context

Agent 
Action

Environment
Output

 force reflections

N

× N turns until conversation is finished

LLM Judge
Interrupt?

Y

Figure 6: Rollout intervention with an LLM-based
judge. When major deviations from expected ground-
truth tool calls are detected, the judge will force the
agent to think and act again.

By comparing the agent’s actions to
ground-truth tool calls, the verifier can
identify suboptimal reasoning as it hap-
pens. When a mistake is detected, it
triggers a self-correction mechanism by
interrupting the generation and adding a
corrective prompt to the reasoning trace:
“Wait, my previous reasoning might be
wrong, let me try again.” This prompts
the model to find a better approach, with
a limit of two interventions per reasoning
step to avoid infinite loops. This real-time guidance is a more dynamic version of our turn-level
reward system, which only provides feedback after a task is complete. However, this strategy ul-
timately backfired, destabilizing training without improving performance. As shown in Fig. 7, the
rapid decrease in entropy loss, paired with a significant rise in KL divergence, suggests the model
began to overfit the unusual data patterns created by the interruptions. We attribute this failure to
the disruption of the model’s natural thought process, which led to confusion and worse results than
even the standard baseline.
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Figure 7: Training time average reward, entropy loss, and KL loss comparison between GRPO and
GRPO+Intervention.
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G MORE EXPERIMENTAL RESULTS

Agent Model Retail Airline
pass ˆ1 pass ˆ2 pass ˆ3 pass ˆ4 pass ˆ1 pass ˆ2 pass ˆ3 pass ˆ4

Baseline Models
GPT-4.1 58.3 53.0 49.6 46.1 48 34 26 24
xLAM-2-8B 41.7 30.4 25.2 22.6 32 24 18 16
Qwen3-8B 40.0 27.8 22.6 18.3 30 20 18 18

Qwen3-8B + RL
GRPO (n=4) 47.0 35.7 27.8 24.3 28 12 6 2
RLOO (n=4) 44.3 29.6 26.1 21.7 34 18 14 10
PPO (n=4) 47.0 33.9 28.7 22.6 30 20 12 10
PPO (n=1) 47.0 26.1 18.3 15.7 30 16 8 6

Table 6: Results of tool-use agents trained with different RL algorithms on τ -BENCH with output
check.

Agent Model Avg. Wait Resp. Len passˆ1 passˆ2 passˆ3 passˆ4

Qwen3-8B 14.6 228 40.0 27.8 22.6 18.3

GRPO 11.7 204 47.0 35.7 27.8 24.3
+Turn-Level Reward 14.0 210 52.2 39.1 29.6 26.1
+MATH + Turn-Level Reward 15.8 236 53.9 40.0 34.8 30.4

PPO 8.4 162 47.0 33.9 28.7 22.6
+MATH + Turn-Level Reward 11.5 204 52.2 39.1 34.8 30.4

Table 7: Performance comparison of different training strategies on the τ -BENCH RETAIL domain
(with output check). We report average wait time, response length, and passˆk metrics. Best results
are highlighted in bold.
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