Under review as a conference paper at ICLR 2026

PROCESS-SUPERVISED REINFORCEMENT LEARNING
FOR INTERACTIVE MULTIMODAL TOOL-USE AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Effective interactive tool use requires agents to master Tool Integrated Reason-
ing: a complex process involving multi-turn planning and long-context dialogue
management. To train agents for this dynamic process, particularly in multimodal
contexts, we introduce a sandbox environment for reinforcement learning (RL)
that supports tool calling and speech-based user simulation. Our core strategy,
Turn-level Adjudicated Reinforcement Learning (TARL), addresses the challenge
of credit assignment in long-horizon tasks by employing a Large Language Model
(LLM) as a judge to provide turn-level evaluation. To enhance exploration, we in-
tegrate a mixed-task training curriculum with mathematical reasoning problems.
This unified approach boosts the task pass rate on the text-based T-BENCH by over
6% compared to strong RL baselines. Moreover, we demonstrate our framework’s
suitability for fine-tuning a multimodal LLM for agentic tasks. By training a base
multimodal LLM on interleaved speech-text rollouts, we equip it with tool-use
abilities, paving the way for more natural, voice-driven interactive agents.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAll 2024} /AL 2024; |Anthropic.; [Team), 2025a; |Yang et al.,
2025)) have demonstrated remarkable understanding and reasoning capabilities across diverse do-
mains. As these models advance, enabling them to interact seamlessly with real-world tools and
services has emerged as a promising direction. We aim to create agents that can understand and
act upon not just text commands, but also spoken language, which requires a new paradigm for
agent training. While interactions can span web interfaces, programming systems, and APIs, the
fundamental challenge remains: the agent must interpret complex, often multi-turn user requests
and execute appropriate actions, whether the input is typed or spoken.

To tackle this challenge, we focus on interactive tool-use agents. We build upon the experimental
setup from 7-BENCH, where an agent assists a simulated user with complex tasks by strategically
calling tools. This multi-turn conversational format mirrors real-world applications and presents
complex reasoning challenges even for state-of-the-art models. Unlike prior approaches (Prabhakar
et al.l |2025) that rely on static, pre-collected trajectories, we employ Reinforcement Learning (RL)
as our primary training methodology. RL allows agents to learn from dynamic model rollouts in an
online manner, which is crucial for handling the variability of real-world interactions.

To support this RL-based training paradigm, we have developed a sandbox environment that facil-
itates agent interactions with users and tools through API calls using the Model Context Protocol
(MCP). A core feature of our infrastructure is its support for both text-based and audio-based user
simulation. This allows us to train and evaluate both text-only and multimodal agents, providing a
direct path toward our primary goal of developing end-to-end voice agents that can act on spoken
commands in realistic scenarios.

However, standard RL algorithms falter in this complex setting. We observed that as training pro-
gresses, models often become overconfident, reducing their capacity for exploration. To counteract
this, we introduce a two-pronged strategy. First, we employ mixed-task training—incorporating
medium-difficulty math problems—to encourage persistent exploration and regularize the learning
process. Second, to solve the critical credit assignment challenge in our long multi-turn trajec-
tories, we propose Turn-level Adjudicated Reinforcement Learning (TARL), visualized in Fig.

Under review as a conference paper at ICLR 2026

Task Context E; A .
(system msg, task policy, [~ -y AGENT (POL ICY LLM) (As -~ Reward Aggregatlon
user request...)

| A l 2 7}
Turn 1 I Turn 2 l Turn N ‘ ‘
\ \J
B Task Context] I o]]]

Agent Action -

Tool Execution [A

User Response I

Reward % i SANDBOX ENVIRONMENT @(é)@ Turn-Level Trajectory-Level

Figure 1: This illustration outlines our training pipeline for an iterative tool-use agent. The agent
operates within a sandbox environment, receiving results from tool executions and feedback from
users. We then evaluate and score both individual turns and the complete trajectory, which generates
the reward signal used to update the agent.

This method uses an LLM-based judge to provide fine-grained, turn-level rewards that guide pol-
icy updates. On text-based tasks, the combination of these techniques boosted the pass rate by an
additional 6% over our already strong RL baselines.

Having established our framework’s effectiveness in the text domain, we applied it to our main
objective: training a multimodal agent with real-world utility. Leveraging our sandbox environment,
we trained a base multimodal LLM on 7-BENCH tasks with speech-based user simulation. Guided
by our proposed mixed-task training and TARL strategies, our approach successfully equipped the
model with robust interactive tool-use abilities, improving the pass rate by over 20% compared to
the base model. This demonstrates a viable path for fine-tuning multimodal foundation models for
complex agentic tasks using process-supervised RL. In summary, our contributions are threefold:

* A generalizable, open-source sandbox designed for training interactive tool-use agents across both
text and speech modalities.

* Anenhanced RL training strategy (TARL) that improves performance by encouraging exploration
and enabling fine-grained, turn-level credit assignment.

* The first demonstration of this framework to successfully train a multimodal voice agent through
RL on interleaved speech-text interactions, showing great performance gains.

2 PRELIMINARY

2.1 SANDBOX ENVIRONMENT FOR TOOL-USE AGENTS

Our sandbox environment is composed of three integrated components designed for training in-
teractive agents. (1) The backend application uses a relational SQLite database, adapted from the
T-BENCH dataset, and exposes tools to the agent through RESTful APIs. (2) Our user simulator,
powered by GPT-4 and SeedTTS, generates text and speech-based user responses. (3) Finally, a
rule-based verifier evaluates the agent’s actions by comparing its database-altering tool calls against
ground-truth data, providing a binary reward to guide reinforcement learning. For more details,
please refer to our detailed description of each component in Appendix [§A]

2.2 RL PRELIMINARIES

We formulate the agent training as a Markov Decision Process (MDP). The policy is an autoregres-
sive language model, py, which generates a sequence of tokens (actions) based on the preceding con-
versation history (state). An interaction trajectory, T, is an alternating sequence of agent-generated
text, =, and environment responses, e’. The objective is to learn the policy parameters 6 that maxi-
mize the expected trajectory-level reward:

J(0) = Errpy [R(7)]

where R(T) is a scalar reward assigned to the entire trajectory. To optimize this objective, we
explore a few on-policy RL algorithms.

Under review as a conference paper at ICLR 2026

Jinss- Multi-turn Conversation

I g‘" Hi, I just received my order and would like to exchange a couple of items.

O Sgec’flfatlon :» User Simulator — User Response (@)
Conversation history [tool call] Calling GET_UsER_DETAILS tool; Argument: USER_ID=XXX

-1 [ad
il =)
| g o Execution result: {USERNAME : JoHN DOE, ORDERS: [#W123,#W38],
= ADDRESS: ...} ey
Database APl Endpoints ~ MCP Tool Servers 2 ‘-":‘-1
Flights — N - =1 5]
— IS . ;) =
Products () ~ <4 = [response to user] Which one of your item do you want to exchange? =
User info C3) — T - = =
g I 2 = (Iwant to change my camera into another brand, with Al-tracking feature. [T]
Tool name; _ . m o <
—| MCP servers > Execution Result a
Argument 2
é More Turns - @

M)

RULE-BASED VERIFICATION)
Iz-- Thank you. [STOP_TOKEN]

Trajectories ——| o~ -
Rule-based Verifier / FAIL
Ground-truth —’ 088~ pass,Reward-1

&)

Figure 2: Our environment setup for interactive tool-use agents.

Proximal Policy Optimization (Schulman et al.| 2017, PPO) is a policy gradient algorithm that sta-
bilizes training by constraining policy updates. It uses a clipped surrogate objective that limits how
much the policy can change from one iteration to the next. The advantage function, which measures
the relative value of an action, is calculated using Generalized Advantage Estimation (GAE), where
all positions share the same reward R(7), obtained through our rule-based verifier.

Group Relative Policy Optimization (Shao et al., 2024, GRPO) enhances PPO by introducing a
reward normalization scheme to improve training stability. For a given batch of G trajectories, it
calculates the mean (1) and standard deviation (o) of the rewards. The advantage for a trajectory
is then its z-score: A = (R(7) — pgr)/or. This normalization makes the training process less
sensitive to the scale of rewards.

REINFORCE Leave-One-Out (Ahmadian et al., 2024, RLOO) is a variance reduction technique
that computes a unique baseline for each trajectory in a batch. The advantage for a specific trajectory
T, is its reward minus the average reward of all other trajectories in the batch: A,, = R(7,) —
= j#n B(7;). This “leave-one-out” baseline is unbiased and effectively reduces the variance
of the policy gradient estimates.

For the detailed RL formalization of our multi-turn tool-use setting, please refer to Appendix

2.3 BENCHMARK RL ALGORITHMS

After constructing our sandbox environment, we first benchmark RL algorithms on 7-BENCH to un-
derstand the capabilities of vanilla RL algorithms on tool-use tasks. We utilize text-based user simu-
lation with Qwen3-8B (Yang et al.|[2025) as our base model with training configurations in Appendix
For our training data, we use GPT-4.1 to synthesize user instruction prompts and ground-truth
tool-call annotations through publicly released trajectory data from APIGEN-MT (Prabhakar et al.,
2025 More details of our data preparation can be found in Appendix

Since there are a very limited number of trajectories and test cases for AIRLINE, we only synthesize
RETAIL domain’s training data. For evaluation, we assess our models on both RETAIL and AIRLINE
domains. Across all our experiments, we use the pass”k metric (Yao et al.| [2024) in conjunction
with our rule-based verifier. For a given task, pass’k equals 1 only when all k sampled conversation
trajectories are verified as correct by the environment.

In-Domain RL Training Shows Promise but Faces Limitations Our benchmark results in Table/I]
demonstrate that all RL algorithms successfully improve Qwen3-8B’s performance on the RETAIL
domain. GRPO achieves the largest improvement, closely followed by PPO (both using n = 4
rollouts), indicating that RL training effectively enhances the model’s tool-using capabilities. The
improvement is most pronounced in single-sample scenarios (pass™1), where GRPO delivers ap-
proximately 9% improvement over the baseline.

! Publicly available at https: //huggingface.co/datasets/Salesforce/APIGen-MT-5k

https://huggingface.co/datasets/Salesforce/APIGen-MT-5k

Under review as a conference paper at ICLR 2026

Agent Model Retail Airline
pass’l pass2 pass"3 pass’4d | #Wait Len | pass"l pass"2 pass"3 pass'4
Baseline Models
GPT-4.1 60.9 55.7 51.3 47.8 0.3 54 48 34 26 24
Llama-xLAM-2-8B 42.6 34.8 28.7 26.1 0.1 19 36 26 20 18
Qwen3-8B 42.6 30.4 25.2 21.7 14.6 228 32 24 20 20
QOwen3-8B + RL
GRPO (n=4) 51.3 374 30.4 27.0 11.7 204 28 14 8 4
RLOO (n=4) 47.0 31.3 28.7 24.3 11.1 180 36 20 16 12
PPO (n=4) 48.7 36.5 31.3 26.1 8.4 162 32 22 14 12

Table 1: pass”k results of tool-use agents trained with different RL algorithms on 7-BENCH (baseline
models—GPT4.1 (OpenAll |2024), xXLAM-2-8B (Prabhakar et al.,{2025)), and Qwen3-8B (Yang et al.,
2025)—are replicated with our environment setup). n denotes the number of rollouts during training.
The best RL-trained results are bolded. For RETAIL, we also report #wait (the average number of
“wait” tokens as an indicator of self-reflection) and Len (response length per turn).

However, the learned skills do not generalize to out-of-domain AIRLINE tasks, a limitation we
attribute to our small, domain-specific training dataset and the fact that AIRLINE tasks are generally
harder than the RETAIL domain. Achieving better generalization would require crafting large and
diverse environments, as demonstrated by recent work like Kimi-K2 (Team, [2025b). On the other
hand, our focus is on optimizing RL strategies for in-domain performance.

The Confidence Paradox: When More Confidence Isn’t Better While RL training is known to
enhance model confidence and sampling efficiency (Shao et al., [2024; [Damani et al., 2025} [Yue
et al.l 2025)—indeed reflected in our improved pass”l results—this increased confidence comes
with gradually reduced explorations. Analysis of our sampled trajectories reveals that post-training
models exhibit reduced self-reflection and self-correction behaviors, as evidenced by the substantial
decrease in “wait” tokens (Qwen3 tends to use phrases like ‘wait, ...” to interrupt its thinking process
and reflect on its actions) and shorter average response lengths. For example, we observe that the
model over-confidently cancels orders without confirming with users, leading to avoidable errors.

Although these behavioral changes do not necessarily translate to lower overall performance, they
significantly impact the exploration benefits of RL training once the model is confidently exploring
sub-optimal strategies. Furthermore, the vanilla use of trajectory-level rewards could be problematic
for multi-turn conversations—in our case, with contexts up to 32,768 tokens—as it creates sparse re-
ward signals that lead to suboptimal credit assignment when the model performs multiple actions per
trajectory. These challenges inspire us to design training strategies that encourage agent exploration
with fine-grained turn-level feedback in the next section.

3 METHOD

3.1 MIXED-TASK TRAINING

To encourage exploration during training, we propose incorporating medium-difficulty math prob-
lems into the training process. This strategy leverages the fact that base models like Qwen3-8B
(Yang et al., 2025)) have been pre-trained on mathematical and coding problems, giving them strong
reasoning capabilities. When solving math problems, language models naturally engage in self-
reflection and make multiple self-corrections, which elongates their chain-of-thought (Wei et al.,
2023, COT) reasoning trajectories and promotes exploratory behavior. By mixing math problems
with RETAIL domain tasks, we regularize the training process to prevent the model from overfitting
to the retail domain while preserving its exploration abilities through self-reflection.

In practice, we evaluated several math datasets including GSM8K (Cobbe et al.||2021), DeepScaleR
(Luo et al.,[2025)), and DAPO-MATH-17K (Yu et al., [2025)), ultimately selecting medium-difficulty
problems from DeepScaleR. We chose this dataset because medium-level problems provide suf-
ficient challenge to force the model to reflect on its reasoning process and generate longer CoT
trajectories, while remaining manageable difficulty for an 8B parameter model.

Under review as a conference paper at ICLR 2026

Ground-truth Tool Call: MODIFY_ORDER_ITEMS; Arguments: ORDER_ID=#W7572, ITEM_IDS=4594,NEW_ITEM_IDS=0199,PAYMENT_METHOD_ID=GIFT_CARD_9075

[tool call] Calling
MODIFY_ORDER_
ITEMS;
Argument:
ORDER_ID=
NEW_ITEM_IDS=
5257, PAYMENT=

[tool calll . [respond to | [[user responsel| | [tool calll [respond to
calling Fnp_ H user] Your Can you change Calling ceT_| Succeeded; Products: user] I found
pending order || the Bluetooth PRODUCT_ | ... {id=0199, color=red, |the variant with
¢ DETAILS; | water resistant=True, |ID 5257 ... It can
o # .
W7572 .. with| | speaker tothe | |y aument: | price=321.64}, . . be covered by
2IP=XXX, gift card 9075. || variant that is PRODUCT_ID)| {id=5257, color=red, your gift card.
USER_NAME= What would red and water =9376 water resistant=False, | Would you like

orderand ... XXX ooner youlike to do? | |resistant? | | price=285.43} ... to proceed ...?

UsER tool;
Argument:

#stop##

3
2
g
s
4
g
2
<
s
]
g

Succeeded ..
[respond to user]

Turn 1 Turn 4 Turn 5 Turn 6 Turn 7 Turn 9

(<]
@ Turnlevel + -+ + + +
Trajectory-level

Figure 3: The judge assesses each turn based on the full conversation history with ground-truth
annotations. Here, the agent makes a mistake by picking the wrong Bluetooth speaker variant.

3.2 TURN-LEVEL ADJUDICATED REINFORCEMENT LEARNING (TARL)

For a granular, turn-level assessment of each trajectory, we employ an LLM-based judge that evalu-
ates every conversation turn (i.e., agent’s reasoning, action, and environment feedback) against the
ground-truth annotations. Prompt details of our judge are available in Appendix [§E]

The judge’s evaluation, visualized in Fig. [3] assigns one of three rewards: —1, 0, or 1, with the
constraint that at most one turn can receive —1 per trajectory. A reward of —1 indicates a major
deviation from expected behavior, typically occurring when the agent provides incorrect information
after faulty reasoning (e.g., selecting the wrong item during an exchange request) or executes tool
calls with erroneous arguments that cause irreversible database changes (e.g., canceling orders that
should not be canceled). A reward of 0 indicates minor issues that are later corrected or a by-product
of major deviation. A turn receives 1 for correct execution without issues.

For GRPO, our final trajectory-level reward is a weighted combination of these turn-level scores (r;)
and the terminal (outcome) reward (R(7)) from our rule-based verifier. We scale the terminal reward
R(7) by 10x to heavily prioritize successful task completion, and multiply the major deviation score
(—1) by 5x to penalize critical mistakes strongly, and scale all other turn scores by 1/7 (where T
is the number of turns) to cap their contribution and prevent longer trajectories from being unfairly
advantaged. Our reward design yields four distinct trajectory categories:

1. Perfect trajectory (15 points): 10 points for terminal success +5 points from turn-level rewards.

2. Good trajectory (10— 15 points): 10 points for terminal success plus 0 — 5 points from turn-level
rewards, indicating some turns have minor issues.

3. Good attempt trajectory (0 — 5 points): 0O points for terminal failure but positive turn-level
rewards, occurring when the judge finds no major errors despite rule-based verification failure
(rare cases, often due to unclear or hallucinated user responses)

4. Failed trajectory (—5 to 0 points): 0 points for terminal failure plus —5 points for one major
error, with some positive reward from other turns.

Since PPO calculates advantages at the token level, we tested two reward granularities:

* Per-Turn Assignment: Applying each turn’s reward specifically to the final token of that turn to
provide more granular feedback, which will be propogated backwards by GAE (see [Equation 4)).

* Trajectory-Level Assignment: Calculating a single, normalized reward (using the same approach
as GRPO) for the entire trajectory and applying it uniformly across all tokens.

By default, TARL for PPO uses trajectory-level assignment as it performs better (ablation available
in[§3). Beyond our core reward design, we also attempted several other strategies, including en-
couraging exploration with high-entropy token training (Wang et al., 2025) and utilizing turn-level
verifiers to interrupt the reasoning process and force self-reflection. Though these strategies did not
yield improvements, we discuss them in our analysis (§3)) to provide insights for future research.

4 EXPERIMENTS

4.1 TEXT-BASED AGENT TRAINING

Training Data. We train our text-based agents on approximately 3,000 synthetic tasks derived
from APIGEN-MT (Prabhakar et al., 2025) trajectories. Each task provides: (1) a user instruction

Under review as a conference paper at ICLR 2026

Agent Model Response Metrics Performance Metrics
#Wait Len pass’1 pass™2 pass™3 pass™4
Baseline Model
Qwen3-8B 14.6 228 42.6 304 252 21.7
Owen3-8B + RL (GRPO Variants)
GRPO 11.7 204 51.3 374 304 27.0
+TARL 14.0 210 53.9 (+2.6) 40.9 (+3.5) 339 (+3.5) 304 (+3.4)
+MATH + TARL 15.8 236 57.4 (+6.1) 42.6 (+5.2) 36.5 (+6.1) 33.9 (+6.9)
Owen3-8B + RL (PPO Variants)
PPO 8.4 162 48.7 36.5 31.3 26.1
+MATH + TARL 11.5 204 53.0 (+4.3) 40.0 (+3.5) 35.7 (+4.4) 31.3 (+5.2)

Table 2: Performance comparison of different training strategies on the 7-BENCH RETAIL domain.
We report average wait time (#Wait), average response length (Len), and pass’k metrics. Our
proposed strategies (highlighted rows) consistently achieve the best performance

to guide the simulated user, and (2) the ground-truth tool calls the agent is expected to execute.
Detailed construction process and examples are provided in Appendix [§C| To ensure comprehensive
coverage, our sandbox environment is also pre-populated with all seed data from 7-BENCH. For
our mixed-task training strategy, we incorporate math problems from the DeepScaleR dataset (Luo
et al.l 2025), filtering for problems with integer answers and alternating between RETAIL and math
tasks during training. We will open-source all curated task instructions and ground-truth tool calls.

Model. We use Qwen3-8B (Yang et al., |2025)) as the base model for our experiments. When using
our proposed Turn-level Adjudicated Reinforcement Learning (TARL), we employ GPT-4.1 as the
LLM judge to score each turn, following the mechanism described in[§3.2] For full training hyper-
parameters, please refer to Appendix

Results As shown in Table[2] our proposed Turn-level Adjudicated Reinforcement Learning (TARL)
strategy, especially when augmented with mixed-task math training, consistently outperforms stan-
dard reinforcement learning baselines like GRPO and PPqﬂ Our optimal method (Math+TARL)
achieves a 57.4% pass”1 score, representing a 6% relative improvement over GRPO and 15% over
the base model. This result is competitive with capable closed-source models like GPT-4.1 (see Ta-
ble[T), and the performance gains hold across different values of k, indicating enhanced reliability.
Qualitatively, our method also produces models that engage in more frequent self-correction (higher
#Wait tokens) and generate longer responses (Len), as detailed in Table[2} We provide further anal-
ysis of training statistics and alternative strategies in[§5]

4.2 MULTIMODAL AGENT SETUP

Environment and Simulation To extend our framework to voice-driven interaction, we simulate
realistic user speech by first generating textual user prompts and then converting them to audio
using SeedTTS (Anastassiou et al.| [2024), a high-quality text-to-speech model. This allows us to
train agents on interleaved speech-text rollouts.

For evaluation, we assess the model in both text and speech modes. For the text mode, all settings
are the same as text agents. For speech-mode evaluation, we exclude the authentication step from
the RETAIL task in 7-BENCH, as this step requires the agent to obtain user IDs in “name_number”
format, which proves error-prone when processed through our TTS pipeline. Instead, we directly
provide the agent with the user profile and continue the conversation.

Model Selection and Baseline Performance Our first step was to select a suitable base model capa-
ble of processing both speech and text. We evaluated several state-of-the-art foundational models, in-
cluding Qwen2.5-Omni (Xu et al.,[2025), Audio-Flamingo3 (Goel et al.;|2025), and Audio-Reasoner
(Xie et al.;[2025). We found that none of these models demonstrated satisfactory tool-use capabilities
out-of-the-box. While Audio-Flamingo3 and Audio-Reasoner struggled significantly, often hallu-

2 TARL uses the trajectory-level assignment for PPO. Ablations on reward granularity are conducted in

Under review as a conference paper at ICLR 2026

Training Configuration Performance Metrics
Eval Mode Agent Train Mode pass”1 pass™2 pass™3 pass™4
Baseline Models
Text Qwen2.5-Omni-7B — 7.8 7.8 7.8 7.8
Speech Qwen2.5-Omni-7B — 14.8 8.7 5.2 5.2
Owen2.5-Omni-7B + RL
Text GRPO + Math S&T 31.3 20.9 12.2 12.2
GRPO + Math + TARL S&T 36.5 25.2 21.7 16.5
Speech GRPO + Math S&T 34.8 252 21.7 16.5
GRPO + Math + TARL S&T 374 26.1 22.6 20.9
GRPO + Math + TARL T-only 322 18.3 14.8 11.3

Table 3: Performance comparison across training and evaluation modalities on 7-BENCH. Models
are trained with speech-text (S-T) or text-only (T-only) rollouts and evaluated with text or speech-
based user agent. Our proposed methods (highlighted rows) achieve the best performance.

cinating after one or two turns, Qwen2.5-Omni-7B achieved the best—though still poor—initial
performance with a pass”l rate of 7.8% (see Table [3). This highlights that multi-turn, interactive
tool-use remains an under-explored capability for most speech-enabled foundation models.

Curriculum Learning for Warming Up Given the models’ limited initial abilities, we adopted
a curriculum learning strategy to warm-up the multimodal agent’s tool-use abilities. Instead of
supervised fine-tuning, we applied GRPO for 30 steps using a simplified set of training tasks. These
tasks feature more detailed and specific user instructions to create a easier learning environment for
skill acquisition (see Appendix [§C). Qwen2.5-Omni showed rapid improvement on this simplified
curriculum, demonstrating its ability to correctly use tools and engage in multi-turn conversations.

After the curriculum learning phase, we train the model on our normal training dataset and evalu-
ate its performance across both text and speech modalities. During training, we employ a mixed-
modality training strategy where the dataloader alternates between three types of data batches: (1)
math problems, (2) text-only RETAIL task, and (3) RETAIL task with user response in speech. The
first two batch types follow the same configuration used when post-training text agents. For the
third data type, the model explores with interleaved speech-text rollouts where the speech contents
are generated by the simulated user agent.

4.3 MULTIMODAL TRAINING RESULTS

The results in Table [3] validate the effectiveness of our proposed training strategy. Our final model,
GRPO + MATH + TARL, consistently delivers superior performance across both text and speech
evaluation settings, achieving a pass "1 improvement of over 20% compared to the baseline. While
the multimodal agent’s performance currently lags behind its text-only counterparts, we anticipate
this gap will narrow as foundational multimodal models continue to advance.

Crucially, an ablation study highlights the necessity of our mixed-modality training approach. When
a model was fine-tuned exclusively on text and then evaluated in the speech-based setting, its perfor-
mance degraded substantially (see final row of Table[3). This finding demonstrates that fine-tuning
solely on textual data can erode a model’s pre-trained speech understanding capabilities, underscor-
ing the importance of using interleaved speech-text rollouts to develop effective voice agents.

5 ANALYSIS

5.1 REWARD GRANULARITY FOR PPO-BASED TRAINING

Given that PPO supports token-level rewards, we investigate how different reward granularities af-
fect training performance. After obtaining turn-level evaluation from our judge, we experiment with
two granularities as mentioned in (1) TARL (turn-level): assigning per-turn rewards at the fi-

Under review as a conference paper at ICLR 2026

— PPO

= PPO+Math+TARL (turn-level)
7000

PPO+Math+TARL (traj-level)
08 -
2 5
g < 6500
3 3
X o7 9
E 2 6000 »
5 % 5500
S 06 g
< =)
Ed Z 5000

0.5

4500
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Training Step
Figure 4: Training time average reward and response length comparison of PPO-based strategies.
Trajectory-level assignment with turn-level eval (TARL traj-level) obtains the best performance.

nal token position of each turn and (2) TARL (trajectory-level): computing a single trajectory-level
reward (same as GRPO) and applying it uniformly across all token positions.

As illustrated in Fig.] the trajectory-level approach promotes more effective exploration and ex-
hibits stable reward growth during training, ultimately achieving a 4.3% improvement in pass”1
performance compared to vanilla PPO training (see Table[2). In contrast, assigning rewards at turn-
level granularity leads to degraded performance, with training rewards falling below even the vanilla
PPO baseline. We hypothesize that assigning turn-level rewards at different positions complicates
the credit assignment process and overly relies on the judge’s accuracy. It is also sensitive to PPO hy-
perparameters that affect the discounting behavior of GAE. On the contrary, trajectory-level reward
is much more robust as they are broadly dissected into four categories outlined in[§3.2]

5.2 STRATEGIES FOR INCENTIVIZING EXPLORATION

Data Distribution Modification: Mixed-Task Training We first examine the effectiveness of
mixed-task training with mathematical problems. As shown in Fig.[5} GRPO+MATH demonstrates
increased exploration activity during training, evidenced by longer average response lengths com-
pared to the baseline. However, despite this enhanced exploration, test set performance remains
comparable to the GRPO baseline, suggesting that exploration alone is insufficient for improved
generalization. The combination of exploration strategies with better credit assignment proves
crucial. GRPO+MATH+TARL, which incorporates both mixed-task training and turn-level re-
wards, exhibits the highest exploration levels (reflected in the longest average response lengths) and
achieves substantially better performance on test set tasks (Table |Z[) Notably, all methods—GRPO,
GRPO+MATH, and GRPO+MATH+TARL—converge to similar high reward levels during train-
ing (Fig. 3), indicating that the benefits of enhanced exploration and credit assignment primarily
manifest in generalization to unseen RETAIL tasks rather than training performance improvements.

7500 p—
09 GRPO
—— GRPO+Math
7000 GRPO+Entropy+TARL
GRPO+Math+TARL

4

©
o
a
S
S

6000

Avg. Terminal Reward
o o
o ~
?
et
; é
&
Avg. Response Length
&
8

@
1=}
S
1S}

4500

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
Training Step

Figure 5: Training time average reward and response length comparison of different strategies.
Mixed-task training with turn-level evaluation (GRPO+Math+TARL) achieves the best performance.

Loss Function Adjustment: Entropy-based Modification = We are also curious if loss func-
tion adjustment with entropy-based modification could help incentivize exploration. We follow
the recent study (Wang et al., 2025) to restrict policy gradient updates to the top 20% highest-

Under review as a conference paper at ICLR 2026

entropy tokens. While this approach shows improved exploration compared to the baseline (see
GRPO+Entropy+TARL in Fig. [3), it fails to enhance test-time performance and actually achieves
lower training rewards than other strategies. We hypothesize that though entropy-based modifi-
cation helps the model to explore, limiting updates to high-entropy positions could cause training
instability, particularly problematic for our long-horizon sequential decision-making tasks.

In Appendix we have additional analysis on the rollout intervention where we attempt to en-
courage exploration by forcing self-reflection when an erroneous tool-call is made. It turns out that
editing the rollout context during training results in unstable updates that harm the performance.

Key Takeaways: Our mixed-task training strategy, when combined with a trajectory-level assess-
ment that integrates both turn-level and terminal rewards, promotes more effective exploration and
yields higher task completion rates. In contrast, more sophisticated interventions like complex re-
ward shaping and elaborate training loss designs tend to destabilize the training process and ulti-
mately degrade performance—a finding that echoes the bitter lesson™ (Sutton, 2019).

6 RELATED WORK

Tool-Use Agent Benchmarks Numerous evaluation benchmarks have been developed for tool-
use tasks, including 7-BENCH (Yao et al., |2024), T2-BENCH (Barres et all 2025), BFCL (Patil
et al [2025), AppWorld (Trivedi et al.| 2024), ToolSandbox (Lu et al., [2025), UserBench (Qian
et al.,[2025)), and Ace-Bench (Chen et al., [2025a)). In our work, we adopt 7-BENCH for training and
evaluation as it supports realistic user-agent interactions, making it suitable for testing an end-to-end
voice agent. However, 7-BENCH has limitations, including its narrow scope of tasks (supporting
only 2 domains) and limited control over user behavior. More recent benchmarks like UserBench
have begun addressing these issues through preference-driven interactions, and we expect continued
work in this direction to provide more controllable sandboxes for interactive tool-use tasks.

Training Tool-Use Agents Reinforcement learning (RL) algorithms have been developed and
tested on a wide spectrum of problems. Foundational work demonstrated success in classic con-
trol tasks and games, such atari games (Mnih et al.,|2015), and AlphaGo (Silver et al., 2016). More
recently, RL has become a cornerstone for refining large language models (LLMs) beyond standard
pre-training. Techniques like Reinforcement Learning from Human Feedback (RLHF) were criti-
cal in aligning models to follow user instructions and enhance safety (Ouyang et al.l 2022). This
paradigm has been extended to improve complex reasoning abilities, such as solving mathematical
problems by rewarding correct final outcomes (Shao et al., 2024) or verifying intermediate reason-
ing steps with process reward modeling (Lightman et al.,2023)). RL has also been applied to agentic
tasks, such as WebShop (Yao et al.l [2022; |Zhou et al. [2024; |Putta et al., 2024), AppWorld (Chen
et al.l |2025b), etc., with a simulated environment.

Addressing the credit assignment challenge in multi-turn interactions is difficult when using only
final outcome-based rewards, despite their scaling potential (Shao et al.l [2024; Zhang et al., [2025).
Recent studies have shown that turn-level feedback offers a more effective solution for tool-use
agents (Zhao et al., 2025; [Zeng et al.| 2025} Zhou et al.| 2025). Building on insights from Process
Reward Modeling (PRM) (Lightman et al.| 2023} Ma et al.| 2023} Zhang et al.| |2025}; |Choudhury,
2025)), we implement a turn-level reward system. Unlike previous approaches that rely on structured,
rule-based evaluators (Zeng et al.,[2025; Zhao et al.} 2025)), our method employs an LLM as a judge
to provide more nuanced feedback (such as distinguishing between small and recoverable error
versus major deviation) on an agent’s performance at each turn.

7 CONCLUSION

We develop an interactive tool-use agent that communicates with simulated users and tool sandboxes
to complete complex tasks. Through our carefully crafted environment, we enable the agent to
perform online exploration and train it using reinforcement learning algorithms. We further enhance
the learning process by incorporating mixed-task training to sustain exploration and employing turn-
level evaluation to improve credit assignment in long-horizon tasks. Furthermore, we extend our
framework to train multimodal voice agents, incorporating additional strategies such as curriculum
learning and mixed-modality training to enhance agent performance across different modalities.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work focuses on developing interactive tool-use agents, including multimodal voice agents ca-
pable of executing tasks based on spoken commands. While this technology holds promise for creat-
ing more natural and efficient human-computer interaction, it also introduces potential risks. Agents
that can perform actions like modifying or canceling orders through API calls could be exploited for
unauthorized or malicious purposes if not properly secured. Furthermore, the development of voice
agents that interact via synthesized speech raises the possibility of misuse for deceptive applications,
such as impersonation or social engineering. To mitigate these risks, we advocate for the implemen-
tation of robust safeguards, including strict access controls, user confirmation for critical actions,
comprehensive audit trails for agent activities, and the use of techniques like audio watermarking to
identify synthetic speech.

REPRODUCIBILITY STATEMENT

Our research is conducted using publicly available datasets, including APIGEN-MT (Prabhakar
et al.,[2025) and DeepScaleR, in accordance with their respective licensing terms. The base models
used in our experiments, such as the Qwen series (Xu et al., 2025 Yang et al., 2025) and vari-
ous foundational models, are developed by third parties. Our user simulator and LLM-based judge
leverage models like GPT-4.1 (OpenAll 2024) and SeedTTS (Anastassiou et al., [2024). We pro-
mote transparency by providing the detailed judging prompt in Appendix [§E] In the spirit of repro-
ducibility and to encourage further research, we plan to open-source all synthetically generated task
instructions and ground-truth tool calls created for this work. Our hyperparameters can be found in
Appendix [§D]and we plan to open-source our codebase for reproducible experiments.

REFERENCES

Arash Ahn}adian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Ustiin, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms, 2024. URL https://arxiv.org/abs/2402.14740!,

Meta Al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783\l

Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong,
Lelai Deng, Chuang Ding, Lu Gao, Mingqing Gong, Peisong Huang, Qingqing Huang, Zhiying
Huang, Yuanyuan Huo, Dongya Jia, Chumin Li, Feiya Li, Hui Li, Jiaxin Li, Xiaoyang Li, Xingx-
ing Li, Lin Liu, Shouda Liu, Sichao Liu, Xudong Liu, Yuchen Liu, Zhengxi Liu, Lu Lu, Junjie
Pan, Xin Wang, Yuping Wang, Yuxuan Wang, Zhen Wei, Jian Wu, Chao Yao, Yifeng Yang, Yuan-
hao Yi, Junteng Zhang, Qidi Zhang, Shuo Zhang, Wenjie Zhang, Yang Zhang, Zilin Zhao, Dejian
Zhong, and Xiaobin Zhuang. Seed-tts: A family of high-quality versatile speech generation mod-
els, 2024. URL https://arxiv.org/abs/2406.02430.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. URL https://api.semantic
scholar.org/CorpusID:2682324909.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. 72-bench: Evaluating
conversational agents in a dual-control environment, 2025. URL https://arxiv.org/ab
s/2506.07982.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, Wulong Liu, Xinzhi Wang, Defu Lian, Baoqun Yin, Yasheng
Wang, and Wu Liu. Acebench: Who wins the match point in tool usage?, 2025a. URL https:
//arxiv.org/abs/2501.12851.

Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger,
Vladlen Koltun, and Philipp Kridhenbiihl. Reinforcement learning for long-horizon interactive
IIm agents, 2025b. URL https://arxiv.org/abs/2502.01600.

Sanjiban Choudhury. Process reward models for 1lm agents: Practical framework and directions,
2025. URL https://arxiv.org/abs/2502.10325.

10

https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.02430
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2501.12851
https://arxiv.org/abs/2501.12851
https://arxiv.org/abs/2502.01600
https://arxiv.org/abs/2502.10325

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.or
g/abs/2110.14168.

Mehul Damani, Isha Puri, Stewart Slocum, Idan Shenfeld, Leshem Choshen, Yoon Kim, and Jacob
Andreas. Beyond binary rewards: Training Ims to reason about their uncertainty. arXiv preprint

arXiv:2507.16806, 2025.

Arushi Goel, Sreyan Ghosh, Jaehyeon Kim, Sonal Kumar, Zhifeng Kong, Sang gil Lee, Chao-
Han Huck Yang, Ramani Duraiswami, Dinesh Manocha, Rafael Valle, and Bryan Catanzaro.
Audio flamingo 3: Advancing audio intelligence with fully open large audio language models,
2025. URL https://arxiv.org/abs/2507.08128.

Hunter Lightman, Vineet Kosaraju, Yura Reask, Ashish Soni, Collin Baker, Reecha Tiwari, Tony
Jiang, Michael Laskin, Greg Brockman, Ilya Sutskever, et al. Let’s verify step by step. arXiv
preprint arXiv:2305.20050, 2023.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma,
Shen Ma, Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming Pang. Toolsandbox: A stateful,
conversational, interactive evaluation benchmark for 1lm tool use capabilities, 2025. URL |http
s://arxiv.org/abs/2408.04682.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
ol-preview with a 1.5b model by scaling 11, 2025. URL https://pretty-radio-b75.n
otion.site/DeepScaleR-Surpassing-0l-Preview—-with-a-1-5B-Model-b
v—Scaling-RL-19681902c1468005bed8ca303013a4e2. Notion Blog.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. arXiv preprint
arXiv:2310.10080, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.176
51l

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

OpenAl. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774l

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
2773027744, 2022.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, Shelby Heinecke, Weiran Yao, Huan Wang,
Silvio Savarese, and Caiming Xiong. Apigen-mt: Agentic pipeline for multi-turn data generation
via simulated agent-human interplay, 2025. URL https://arxiv.org/abs/2504.036
01l

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents, 2024.
URL https://arxiv.org/abs/2408.07199.

11

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2507.08128
https://arxiv.org/abs/2408.04682
https://arxiv.org/abs/2408.04682
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2408.07199

Under review as a conference paper at ICLR 2026

Cheng Qian, Zuxin Liu, Akshara Prabhakar, Zhiwei Liu, Jianguo Zhang, Haolin Chen, Heng Ji,
Weiran Yao, Shelby Heinecke, Silvio Savarese, Caiming Xiong, and Huan Wang. Userbench: An
interactive gym environment for user-centric agents, 2025. URL https://arxiv.org/ab
s/2507.22034.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL |https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402
.03300.

David Silver, Aja Huang, Chris J] Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484—489, 2016.

Richard S. Sutton. The Bitter Lesson. https://www.cs.utexas.edu/~eunsol/course
s/data/bitter_lesson.pdf, 3 2019.

Gemini Team. Gemini: A family of highly capable multimodal models, 2025a. URL https:
//arxiv.org/abs/2312.11805.

Kimi Team. Kimi k2: Open agentic intelligence, 2025b. URL https://arxiv.org/abs/25
07.20534.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents, 2024. URL https://arxiv.or
g/abs/2407.18901.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning, 2025. URL https://arxiv.org/abs/
2506.01939.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. Large language models are better reasoners with self-verification, 2023. URL https:
//arxiv.orqg/abs/2212.09561.

Zhifei Xie, Mingbao Lin, Zihang Liu, Pengcheng Wu, Shuicheng Yan, and Chunyan Miao. Audio-
reasoner: Improving reasoning capability in large audio language models, 2025. URL https:
//arxiv.orqg/abs/2503.02318.

Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-omni technical
report, 2025. URL https://arxiv.org/abs/2503.20215,

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

12

https://arxiv.org/abs/2507.22034
https://arxiv.org/abs/2507.22034
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf
https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2407.18901
https://arxiv.org/abs/2407.18901
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2212.09561
https://arxiv.org/abs/2212.09561
https://arxiv.org/abs/2503.02318
https://arxiv.org/abs/2503.02318
https://arxiv.org/abs/2503.20215
https://arxiv.org/abs/2505.09388

Under review as a conference paper at ICLR 2026

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-
world web interaction with grounded language agents. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 20744-20757. Curran Associates, Inc., 2022. URL https://proceedings.
neurips.cc/paper_files/paper/2022/file/82adl3ec01f9fed44c01cb9181
4fd7b8c-Paper-Conference.pdf.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.036209.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing
Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang.
Dapo: An open-source llm reinforcement learning system at scale, 2025. URL https:
//arxiv.org/abs/2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
base model?, 2025. URL https://arxiv.org/abs/2504.13837.

Siliang Zeng, Quan Wei, William Brown, Oana Frunza, Yuriy Nevmyvaka, and Mingyi Hong.
Reinforcing multi-turn reasoning in llm agents via turn-level credit assignment, 2025. URL
https://arxiv.org/abs/2505.11821.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning, 2025. URL https://arxiv.org/abs/2501.07301}

Weikang Zhao, Xili Wang, Chengdi Ma, Lingbin Kong, Zhaohua Yang, Mingxiang Tuo, Xiaowei
Shi, Yitao Zhai, and Xunliang Cai. Mua-rl: Multi-turn user-interacting agent reinforcement learn-
ing for agentic tool use, 2025. URL https://arxiv.org/abs/2508.18669.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl, 2024. URL https://arxiv.org/abs/2402
.194406|

Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, and
Xian Li. Sweet-rl: Training multi-turn 1lm agents on collaborative reasoning tasks, 2025. URL
https://arxiv.org/abs/2503.15478.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2505.11821
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2508.18669
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2503.15478

Under review as a conference paper at ICLR 2026

A SANDBOX ENVIRONMENT

Our sandbox environment, illustrated in Fig.[2] comprises three components, including (1) a backend
application with a pre-configured database and API endpoints for MCP server communication; (2) a
user simulator that leverages LLM capabilities to generate realistic user requests and responses; and
(3) a rule-based verifier that evaluates interaction trajectories and provides binary rewards. Below,
we detail each component’s implementation and functionality.

Backend Application. We implement a SQLite database to store the comprehensive dataset from
T-BENCH, encompassing various data tables such as Products, Orders, and Users. Rather than re-
lying on static JSON files for seed data storage, we construct a proper relational database schema
with well-defined table structures and database operations. This design choice enables our back-
end application to be easily extended and adapted for other tasks. We expose the available tools
as RESTful API endpoints through application routers and register them as MCP tools, providing
seamless integration for agent interactions.

User Simulator. Our user simulator employs GPT-4 (OpenAl, 2024) to role-play as human users,
generating contextually appropriate requests and responses based on the task instructions from 7-
BENCH. We adopt the ReACT (Yao et al., 2023) reasoning framework using a consistent prompt
with 7-BENCH, which compels the user model to engage in structured thinking processes before
formulating responses to agent queries. For speech-based user simulation, we use SeedTTS (Anas-
tassiou et al.,[2024) to convert the text responses to into natural speech.

Rule-based Verifier. We implement a rule-based verifier that systematically inspects successful
write operations—specifically, tool calls that alter the database state, such as those involved in order
modifications, exchanges, reservations, and cancellations. This verifier cross-references the argu-
ments from the agent’s tool calls with ground-truth annotations and outputs a binary reward: 1 for a
complete match and 0 otherwise.

Notably, 7-BENCH includes an additional verification step that checks for expected outputs in the
agent’s responses. However, we observe that this criterion is highly sensitive to variations in how
user responses are phrased, so we exclude it from our reinforcement learning (RL) training and
evaluation protocols. For the sake of consistency, though, we also report results incorporating this
output check in Appendix §G|

B RL ALGORITHMS

In this section, we provide more detailed and formal description of the RL algorithms we adopted
in our interactive tool-use scenario:

We formulate the interactive tool-use agent training as a Markov Decision Process (MDP). Given
an autoregressive language model as the policy backbone, the state at any point in the interaction
is simply the token sequence observed so far. The interaction follows an alternating pattern: when
the agent is responding (calling tools with arguments), it takes actions by sampling the next token
from the policy distribution py and appending the token to the existing trajectory. When the agent
stops talking, the environment generates feedback (through simulated user agent or tool execution
results) and appends a sequence of tokens (denoting user response or tool execution result) to the
existing trajectory. More formally, let ' = (2%, x%,...) denote the i-th agent token sequence and
e’ = (e, el,...) denote the i-th environment token sequence. When the environment response is
from tool execution or text-based user simulation, e’ is a sequence of text tokens. When we use
speech-based user simulation, e’ is a sequence of speech tokens (or their placeholder tokens). The
complete trajectory is an interleaved sequence: T = (x',e!,x? e2,..., 27 e”). Here T is the
total number of interaction steps, reached when user agent replied special token ##STOP## or when
the maximum number of interaction steps is reached. In our case, T’ € [1, 30] as we set a maximum
of 30 interaction steps. Our objective is to maximize the expected reward over complete trajectories:

J(0) = Ernpy [R(7T)] (D

where R(7) is a trajectory-level reward function that evaluates the quality of the generated trajectory
using the rule-based verifier described in [§2.1} To optimize this objective, we experiment with the
following widely-used RL algorithms:

14

Under review as a conference paper at ICLR 2026

PPO (Proximal Policy Optimization): We begin with PPO (Schulman et al.l [2017), which
constrains policy updates to prevent large deviations from the current policy through a clip-

ping mechanism. For brev1ty, we denote the conversation history up to token % as hz =

J
[c;xt,el,. .., xi~l et i ... ,x; 1]. PPO operates at the token level using policy gradlent ra-

tios. Given a current pohcy .14 and a new policy 6, the probability ratio for each token is:
; po(z;|h})
ri(0) = AT AN
P (LC j | j)

The PPO objective function applies clipping to this ratio (we omit the KL divergence term here):

2)

T ||
Z Z min (clip(rj—(@), 1—¢1+4 e)Aé-) (3)
Z'L 1 |xz| =1 j=1

where A is the advantage function and ¢ is the clipping parameter. PPO uses the Generalized
Advantage Estimate (GAE):

o0

Al = Z(’y/\) 85y, where &5 =Rl +V (sl) - V(sh) 4)
1=0

LFFO(0) = Errp,,

This formula relies on several key terms. The calculation is driven by the Temporal Difference (TD)
error ((5}), which measures the one-step prediction error of the value function. The TD error itself is
found using the immediate reward (R; 1 1) and the value function’s estimate for the current and next
states. This calculation is weighted by two parameters: the discount factor (), which determines
how much future rewards are valued, and the GAE parameter (\), which balances the trade-off
between bias and variance in the final advantage estimateﬂ Since we use a trajectory-level verifiable
reward, we simply have R; 1= R(T), i.e., the token-level reward is the same across all positions.
Note that throughout our RL training, we compute loss only over agent sampled tokens & and mask
the loss over all environment tokens e to avoid unstable updates.

GRPO (Group Relative Policy Optimization): GRPO (Shao et al. 2024) also shares the same
clipping mechanism but introduces a group-based relative policy optimization approach that nor-
malizes rewards within each group to improve training stability. Given a group of G trajectories

{71, 72,...,7c}, GRPO computes the mean and standard deviation of rewards:
1 &
PR =G ; R(m), or=\|lG Z (Ta) — pr)?)

The advantage for trajectory n is then computed as A,, = (R(7,,) — pr)/or. The GRPO objective
function is:

||
old Z |.§Ul| Z Z min < mChP(T;"n(@), 1—¢€1+ E)An)
=1 j5=1
(6)

is the probability ratio for token j in turn ¢ of trajectory n. This

LGRPO (9)]E{q-n} P,

n=1

; b R

where 7" (0) = %
7 Pogq (@5 " [R5™)

normalization approach helps stabilize training by reducing reward scale variations across different

batches and tasks.

RLOO (REINFORCE Leave-One-Out): RLOO (Ahmadian et al.,[2024) is similar to GRPO but
uses a different baseline computation. Given a group of G trajectories {71, T2, . . . , T }, the baseline
for each trajectory T, is computed using all other trajectories in the group:

Z R(Tj) (7)

J;ﬁn

Then the advantage function is computed as A,, = R(7,) — b,, for the n-th trajectory. This leave-
one-out approach ensures that the baseline is unbiased while significantly reducing the variance of
gradient estimates compared to standard REINFORCE.

3 In practice, we set ¥ = 1, A = 1 given our long-horizon trajectories

15

Under review as a conference paper at ICLR 2026

C TRAINING DATA

User Specification Ground-Truth Tool-Calls

Your email is noah.brown7922@example.com.
You are a customer who recently received an or- | [... (other tool-calls),
der and want to exchange two items: the green | f

"name": "exchange_delivered_order",

small polyester laptop-compartment backpack for Warguments": {
a navy large polyester laptop-compartment back- "order_id": "#W7678072",
pack, and the black wired laser gaming mouse for e L
a black wireless optical gaming mouse ... De- "5193628750"
scribe the items you want to exchange and the 1,

: "new_item_ids": [
ne.w.optlons you want, and confirm the us§ of your "8084436579",
original payment method for any price difference "8214883393"
only after the agent identifies it. Respond to the 3 ¢ method idns w . "
Al agent to complete your exchange request. . paymentuerhodar: Thaybas s

Table 4: Example of synthetic training data showing user specification and corresponding ground-
truth tool calls for an item exchange scenario.

We generate synthetic training tasks by leveraging conversation trajectories from APIGEN-MT
(Prabhakar et al [2025) and using large language models to synthesize corresponding user speci-
fications (instructions) with the prompt below. An illustrative example of this process is presented
in Table] In practice, we employ GPT-4.1 to extract user specifications from the conversation
trajectories provided by APIGEN-MT. The prompt to craft such specifications is shown below:

User Specification Synthesis Prompt Template

Role & Objective: You are an expert in analyzing human-A
< t the core instruction or task that t

T

Your t is to infer

led to their interact

Analysis Framework:

attention to:
1. Initial Request: he
2. Response Patterns: How
AI Actions: Function

ipt, paying cl

intent
Conversation Flow:

tion

Output Requirements: B:
inst tion that, if i

I >rmulate
11d result in tt

r the tas

- Key c traints or requirements

Output Format Template: "

1] nd to AT’
Input: [CONVERSATION_TRANSCRIPT]
Expected Output: [SYNTHESIZED_-USER_-INSTRUCTION]

While the template above enables us to synthesize high-quality user instructions for each task, these
instructions tend to conform to a similar format due to our structured “output format template”. To
introduce greater diversity and increase the exploration challenge for the model, we rewrite the syn-
thesized instructions using the following template. We rewrite the instruction to be more challenging
for the agent to complete, while ensuring that the tasks remain solvable. The re-writing prompt is
shown below:

16

Under review as a conference paper at ICLR 2026

:2: User Instruction Rewriting Prompt Template

866 You will be provided with a user-agent conversation trajectory and a user instruction.

867 You job is to re-write the user instruction following the steps below:

868

869

870 1. You should first read through the conversation between user and agent, understanding

871 the user’s intention and from the AI agent’s reply, you will have detailed information
such as the user’s information and order details. Pay special attention to the function

872 calls and the arguments in each function call.

873

874 2. You should then read through current user instruction, the insturction already

provides necessary and detailed information to the user to complete the conversation
875 with the agent.

876

3. Now your job is to re-write the user instruction so that the user withhold certain
877 information from the agent, but the task should still be possible to complete even
878 without those withheld information, because such information might be retrieved from
879 other function calls.
880 For example, get_user._details will show not only user information but also payment_methods
881 and the user’s current order ids. Therefore, even if the user forgets order ID, it

can be retrieved and confirmed by the agent. Similarly, get_order.details will return
882 order_id, user_id, user_address, order items, as well payment_history, payment status, and
883 fulfillments. These information can then be used to help process the order even if the

user forgets some details about their order or address.
884

ere are some ways to re-write e instruction and make i arder for e agent:

885 H t ite th i t ti d k it hard f th t

- You can ask the user not to provide order details (say that you do not remember it)
886 but ask the agent to derive it from its user profile

- You can ask the user not to provide payment metho say that you do not remember it
887 Y k th P ide pay! hod (say that you d ber it)

but only to confirm after agent replies with options
888 - You can ask the user not to provide details they want (say that you do not remember

i ut only expose em after such items/products are provide y e agent as options
889 it) b 1 th ft h it / duct ided by th t i

— Be creative and think of any other ways to make the instruction harder (but please
890 make sure that the task is possible to complete)
891
892 Do not make the task too hard, only randomly apply one or two withholding strategies

above in your re-write process. Also, please ensure that the user instruction contains
893 necessary information (order ids, payment methods, etc.,) even if the user does not
894 provide it explicitly. The agent will always authenticate the user’s identity first so

please make sure that the user information is provided in the instruction:
895 — User information could be user.id, user name + zipcode or user email.
- You can modify the instruction so that user withholh some of their user

896 information, but at least one of these information should be possible to be obtained
897 by the agent (e.g., user can forget user.id and zipcode but provide email for
898 authentication)
899 4. When you re-write the instruction to be more challenging for the agent, please
900 make sure the original information necessary for the user to complete the task is still
provided to user. For example, even if you ask the user to withhold their user-id,
901 address, payment-method, order details, etc., you should still provide these information
902 in the instruction (so that user still knows about them even if they will not provide
903 information explicitly to the agent).
904
905
906 Output Requirements:
907 <think>
908 You should conduct an evaluation of the user instruction and think about how to re-write
909 the instruction based on my rules above inside this block
</think>
910
911 Then you need to output a json object with the following fields:
{
912 "rewrite_instruction": <your re-written instruction>
913 t
914
915
916
917

17

Under review as a conference paper at ICLR 2026

Note that in section [§4.3] we mentioned that for multimodal warm-up training, we use a simpler
version of the training tasks. To create this simple version, we use the following prompt template:

Simplification Prompt Template for Multimodal LLM Warm-up Training

You will be provided with a
You job is to re-write the u

r-agent conversation trajectory and a user instruction.
instruction following the steps belo

1. You should first read through the conversation betw jent, understanding
the user’s intention and from the AI agent’s reply, you wi iled information
such as the user’s information and order details.

2. You should then read through current user instruction, ! if it provides

S information for the user to complete the conversation with the agent. Pay

Spe 311 attention to the conversation where the agent is asking for user’s information
or confirmation about choices.

3. Try to re-write the user instruction to be more detailed. Pay special atte

to the arguments in each function ling. User information, order number a

payment information should all be included in the instruction if available.

Output Requirements:

<think>

You should conduct an evaluation of the user instruction and think about how to re-wri
truction based on my rules above inside this block

</think>

Then you need to output a json object with the following fields:
"rewrite_instruction": <your re-written instruction>

D TRAINING DETAILS

We adopt Verﬂ and RL FactoryEl as our framework to support RL training with multi-turn conversa-
tion. We train the model with a batch size of 128 (e.g., 32 distinct tasks with 4 rollouts per task). We
train the agent model until convergence (performance normally plateaus after 200-300 steps) with
hyperparameters shown in Table[3]

Hyperparameter Value Hyperparameter Value
grad_clip 1.0 max_prompt_length 4096
clip._ratio 0.2 max_response_length 1024
ppo-epochs 1 kl_coef 0.001
num_rollout 4 kl_loss_coef 0.003
top_p 0.95 actor_lr 1x10°
temperature 0.7 critic.lr 1x107°
max_turns 30

Table 5: Hyperparameter settings used in our experiments.

E LLM JUDGE SETUP FOR TURN-LEVEL EVALUATION

To assess the multi-turn trajectory, the LLM-based Judge will receive the complete trajectory and
ground-truth tool-call annotations to output a score for each turn. Below is the prompt that we use
to provide turn-level rewards:

*nttps://github.com/volcengine/verl
Shttps://github.com/Simple-Efficient/RL-Factory

18

https://github.com/volcengine/verl
https://github.com/Simple-Efficient/RL-Factory

Under review as a conference paper at ICLR 2026

gre Role: Task Execution Evaluation Judge
973

Your core responsibility is to thoroughly and precisely evaluate multi-turn conversations
974
between a user and an agent. You must carefully read each conversation to pinpoint where
g y pinp
975 the agent’s decisions lead to deviations from the ground-truth function-call trajectories.
Information Provided for Your Evaluation
976
977 You will be given four key pieces of information to guide your assessment:
978 1. Policy: This document outlines the strict rules the agent must adhere towhen
making tool calls. If an agent’s action violates this policy, you must
979 immediately halt its current action and instruct it to reconsider and correct
980 its approach.
981 2. Task Instruction: This is the specific instruction provided to the user.The
user’s requests and responses should always align with this instruction. The
982 agent does not have access to this instruction.
983 3. Ground-Truth Function Call Trajectories: This serves as the definitive standard
984 for assessing the accuracy of the agent’s tool calls.
985 — The agent doesn’t need to follow the exact order of this trajectory.
986 — It’s acceptable for the agent to call information-gathering functions (e.g.,
get_order_details) multiple times, but the agent’s write operation (modifying,
987 exchanging, returning, or canceling orders) needs to match exactly with the
round-truth function calls.
988 &
989 4. Conversation Trajectories: This provides the detailed record of the multi-turn
conversation between the user and the agent. You will use these conversations to
990 identify executed tools and evaluate the correctness of the agent’s processing of
results. Each agent’s reasoning and action within a turn will be preceded by a
991
label like [Turn NJ.
992 Evaluation Process
993
Deviations from the ground truth typically arise due to:
g yp Yy
994

e The agent failing to gather sufficient or correct information, either through function
995 calls or by asking the user.

996 e Incorrect reasoning or understanding by the agent based on the results of tool
execution.
997
098 e The agent not following policy, resulting in wrong execution of tools.
999 Pay exceptionally close attention to operations involving modifying, exchanging,
returning, or canceling orders. The agent’s calling for these function should match
1000 exactly with the ground-truth. These are critical evaluation points and frequent sources
1001 of error. Three kinds of error are possible with write operation:
1002 (1) The agent might call the function with wrong arguments that do not match with
ground-truth.
1003
(2) The agent calls unnecessary write operation that should never be called.
1004 (3) The agent did not call the write operation which is listed in the ground-truth.
1005
If any of the three cases above occurs, you need to carefully read the conversation and
1006 identify the turns where the agent deviates from the ground-truth.
1007 For each turn in the conversation (identified by the [Turn N] tag), ou should evaluate
Yy g Yy
1008 whether agent’s reasoning and action in that turn is the primary cause of a deviation from
1009 the ground-truth function call. Assign a score for each turn. You have three kinds of
score to assign:
1010 e If the turn is correct, assign a score of 1.
1011 ¢ If the turn is the primary reason for a deviation, assign a score of -1. This can only
1012 be assigned to at most one of the conversation turns if deviation is found.
1013 e If the turn has issue (e.g., not following the policy or function call formats), assign
a score of 0.
1014
Your Response Format
1015
1016 You must first conduct your evaluation process within a <think></think> block.
1017 After completing your thinking process, you must output only a single JSON object. No
other text, commentary, or explanation should be included outside of the JSON block. The
1018 JSON object must adhere strictly to the following format, including all turn’s scores from
1019 score.0 up to score.n (where n is the total number of turns).
1020 {
"score.0": <turn 0’'s score>,
1021 "score_1": <turn 1’s score>,
1022 /] ... (include all turns up to 'n’
"scoren": <turn n’s score>
1023 }
1024
1025

19

Under review as a conference paper at ICLR 2026

F FORCING EXPLORATION WITH ROLLOUT INTERVENTION

Inspired by self-refinement techniques (Weng et al., |2023; Madaan et al., [2023), we also explored
whether real-time intervention from a verifier could improve the agent’s exploration through forcing
self-reflections. We deployed an LLM-based verifier to continuously monitor the agent’s action, as

visualized in Fig. 6]

By comparing the agent’s actions to
ground-truth tool calls, the verifier can
identify suboptimal reasoning as it hap-
pens. When a mistake is detected, it
triggers a self-correction mechanism by
interrupting the generation and adding a
corrective prompt to the reasoning trace:
“Wait, my previous reasoning might be
wrong, let me try again.” This prompts
the model to find a better approach, with
a limit of two interventions per reasoning

x N turns until conversation is finished

Environment

I

W |
Output |
I

I

Task Agent
Context | Action

judge. When major deviations from expected ground-
truth tool calls are detected, the judge will force the
agent to think and act again.

step to avoid infinite loops. This real-time guidance is a more dynamic version of our turn-level
reward system, which only provides feedback after a task is complete. However, this strategy ul-
timately backfired, destabilizing training without improving performance. As shown in Fig. [/} the
rapid decrease in entropy loss, paired with a significant rise in KL divergence, suggests the model
began to overfit the unusual data patterns created by the interruptions. We attribute this failure to
the disruption of the model’s natural thought process, which led to confusion and worse results than

even the standard baseline.

—— GRPO

kel °

@ GRPO+Int ti
g 0.8 0.18 . 0.5 ntervention
i3 ; 2 i v 0.4
o7 d , 8 1 w0
= . — 016 7oA e 2

© > o
£ 3 2 . So03

€06 o _|

@ £ 014 X 02
i)

0.5 w " a
o Y- -
2 { 042 0.1 ,»-—"VM

0.4 0.0 | et
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

Training Step

Figure 7: Training time average reward, entropy loss, and KL loss comparison between GRPO and

GRPO-+Intervention.

20

Under review as a conference paper at ICLR 2026

G MORE EXPERIMENTAL RESULTS

Retail Airline
Agent Model — —~ — ~ — ~ — —
pass”l pass”2 pass”3 pass™4 | pass”l pass”2 pass”3 pass4
Baseline Models
GPT-4.1 58.3 53.0 49.6 46.1 48 34 26 24
xLAM-2-8B 41.7 304 25.2 22.6 32 24 18 16
Qwen3-8B 40.0 27.8 22.6 18.3 30 20 18 18
QOwen3-8B + RL
GRPO (n=4) 47.0 35.7 27.8 24.3 28 12 6 2
RLOO (n=4) 443 29.6 26.1 21.7 34 18 14 10
PPO (n=4) 47.0 33.9 28.7 22.6 30 20 12 10
PPO (n=1) 47.0 26.1 18.3 15.7 30 16 8 6

Table 6: Results of tool-use agents trained with different RL algorithms on 7-BENCH with output

check.
Agent Model ‘ Avg. Wait Resp. Len pass’1 pass™2 pass™3 pass™4
Qwen3-8B ‘ 14.6 228 40.0 27.8 22.6 18.3
GRPO 11.7 204 47.0 35.7 27.8 24.3
+Turn-Level Reward 14.0 210 522 390.1 29.6 26.1
+MATH + Turn-Level Reward 15.8 236 53.9 40.0 34.8 30.4
PPO 8.4 162 47.0 339 28.7 22.6
+MATH + Turn-Level Reward 11.5 204 522 39.1 34.8 304

Table 7: Performance comparison of different training strategies on the 7-BENCH RETAIL domain
(with output check). We report average wait time, response length, and pass”k metrics. Best results
are highlighted in bold.

H THE USE OF LARGE LANGUAGE MODELS

We also acknowledge the use of Al assistants (e.g., GitHub Copilot, ChatGPT) to aid in the research
process. These tools were utilized for tasks such as code implementation, debugging, and refining
the manuscript. All core conceptual contributions, experimental design, and final analyses were
conducted and validated by the authors to ensure scientific rigor and originality, in adherence with

academic integrity standards.

21

	Introduction
	Preliminary
	Sandbox Environment for Tool-Use Agents
	RL Preliminaries
	Benchmark RL Algorithms

	Method
	Mixed-Task Training
	Turn-level Adjudicated Reinforcement Learning (TARL)

	Experiments
	Text-based Agent Training
	Multimodal Agent Setup
	Multimodal Training Results

	Analysis
	Reward Granularity for PPO-based Training
	Strategies for Incentivizing Exploration

	Related Work
	Conclusion
	Sandbox Environment
	RL Algorithms
	Training Data
	Training Details
	LLM Judge Setup for Turn-Level Evaluation
	Forcing Exploration with Rollout Intervention
	More Experimental Results
	The Use of Large Language Models

