
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROCESS-SUPERVISED REINFORCEMENT LEARNING
FOR INTERACTIVE MULTIMODAL TOOL-USE AGENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Effective interactive tool use requires agents to master Tool Integrated Reason-
ing: a complex process involving multi-turn planning and long-context dialogue
management. To train agents for this dynamic process, particularly in multimodal
contexts, we introduce a sandbox environment for reinforcement learning (RL)
that supports tool calling and speech-based user simulation. Our core strategy,
Turn-level Adjudicated Reinforcement Learning (TARL), addresses the challenge
of credit assignment in long-horizon tasks by employing a Large Language Model
(LLM) as a judge to provide turn-level evaluation. To enhance exploration, we in-
tegrate a mixed-task training curriculum with mathematical reasoning problems.
This unified approach boosts the task pass rate on the text-based τ -BENCH by over
6% compared to strong RL baselines. Moreover, we demonstrate our framework’s
suitability for fine-tuning a multimodal LLM for agentic tasks. By training a base
multimodal LLM on interleaved speech-text rollouts, we equip it with tool-use
abilities, paving the way for more natural, voice-driven interactive agents.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI, 2024; AI, 2024; Anthropic.; Team, 2025a; Yang et al.,
2025) have demonstrated remarkable understanding and reasoning capabilities across diverse do-
mains. As these models advance, enabling them to interact seamlessly with real-world tools and
services has emerged as a promising direction. We aim to create agents that can understand and
act upon not just text commands, but also spoken language, which requires a new paradigm for
agent training. While interactions can span web interfaces, programming systems, and APIs, the
fundamental challenge remains: the agent must interpret complex, often multi-turn user requests
and execute appropriate actions, whether the input is typed or spoken.

To tackle this challenge, we focus on interactive tool-use agents. We build upon the experimental
setup from τ -BENCH, where an agent assists a simulated user with complex tasks by strategically
calling tools. This multi-turn conversational format mirrors real-world applications and presents
complex reasoning challenges even for state-of-the-art models. Unlike prior approaches (Prabhakar
et al., 2025) that rely on static, pre-collected trajectories, we employ Reinforcement Learning (RL)
as our primary training methodology. RL allows agents to learn from dynamic model rollouts in an
online manner, which is crucial for handling the variability of real-world interactions.

To support this RL-based training paradigm, we have developed a sandbox environment that facil-
itates agent interactions with users and tools through API calls using the Model Context Protocol
(MCP). A core feature of our infrastructure is its support for both text-based and audio-based user
simulation. This allows us to train and evaluate both text-only and multimodal agents, providing a
direct path toward our primary goal of developing end-to-end voice agents that can act on spoken
commands in realistic scenarios.

However, standard RL algorithms falter in this complex setting. We observed that as training pro-
gresses, models often become overconfident, reducing their capacity for exploration. To counteract
this, we introduce a two-pronged strategy. First, we employ mixed-task training—incorporating
medium-difficulty math problems—to encourage persistent exploration and regularize the learning
process. Second, to solve the critical credit assignment challenge in our long multi-turn trajec-
tories, we propose Turn-level Adjudicated Reinforcement Learning (TARL), visualized in Fig. 1.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Sandbox Envi r onment

Task Context
(system msg, task policy,
user request...)

Turn 1

· · ·

Agent (Pol i cy LLM)

Turn 2 Turn N

· · ·
#STOP#

· · ·
#STOP#

· · ·
#STOP#

Turn-Level Trajectory-Level

Reward Aggregation

Task Context

Agent Action

Tool Execution

User Response

Reward

Figure 1: This illustration outlines our training pipeline for an iterative tool-use agent. The agent
operates within a sandbox environment, receiving results from tool executions and feedback from
users. We then evaluate and score both individual turns and the complete trajectory, which generates
the reward signal used to update the agent.

This method uses an LLM-based judge to provide fine-grained, turn-level rewards that guide pol-
icy updates. On text-based tasks, the combination of these techniques boosted the pass rate by an
additional 6% over our already strong RL baselines.

Having established our framework’s effectiveness in the text domain, we applied it to our main
objective: training a multimodal agent with real-world utility. Leveraging our sandbox environment,
we trained a base multimodal LLM on τ -BENCH tasks with speech-based user simulation. Guided
by our proposed mixed-task training and TARL strategies, our approach successfully equipped the
model with robust interactive tool-use abilities, improving the pass rate by over 20% compared to
the base model. This demonstrates a viable path for fine-tuning multimodal foundation models for
complex agentic tasks using process-supervised RL. In summary, our contributions are threefold:

• A generalizable, open-source sandbox designed for training interactive tool-use agents across both
text and speech modalities.

• An enhanced RL training strategy (TARL) that improves performance by encouraging exploration
and enabling fine-grained, turn-level credit assignment.

• The first demonstration of this framework to successfully train a multimodal voice agent through
RL on interleaved speech-text interactions, showing great performance gains.

2 PRELIMINARY

2.1 SANDBOX ENVIRONMENT FOR TOOL-USE AGENTS

Our sandbox environment is composed of three integrated components designed for training in-
teractive agents. (1) The backend application uses a relational SQLite database, adapted from the
τ -BENCH dataset, and exposes tools to the agent through RESTful APIs. (2) Our user simulator,
powered by GPT-4 and SeedTTS, generates text and speech-based user responses. (3) Finally, a
rule-based verifier evaluates the agent’s actions by comparing its database-altering tool calls against
ground-truth data, providing a binary reward to guide reinforcement learning. For more details,
please refer to our detailed description of each component in Appendix §A.

2.2 RL PRELIMINARIES

We formulate the agent training as a Markov Decision Process (MDP). The policy is an autoregres-
sive language model, pθ, which generates a sequence of tokens (actions) based on the preceding con-
versation history (state). An interaction trajectory, τ , is an alternating sequence of agent-generated
text, xi, and environment responses, ei. The objective is to learn the policy parameters θ that maxi-
mize the expected trajectory-level reward:

J(θ) = Eτ∼pθ
[R(τ)]

where R(τ) is a scalar reward assigned to the entire trajectory. To optimize this objective, we
explore a few on-policy RL algorithms.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

User Si mul at i on

Tool Appl i cat i on Backend

Tool name;
Argument

Execution ResultMCP servers

Flights

Products

User info

API EndpointsDatabase MCP Tool Servers

Hi, I just received my order and would like to exchange a couple of items.

[Tool call] Calling get _user _det ai l s tool; Argument: user _i d=xxx

Execution result: {User name: John Doe, Or der s: [#W123, #W38] ,
Addr ess: . . . }

[response to user] Which one of your item do you want to exchange?

I want to change my camera into another brand, with AI-tracking feature.

More Turns ······

···

Trajectories
Rule-based Verifier

Rul e- based Ver i f i cat i on

Ground-truth PASS, Reward = 1

Thank you. [st op_t oken]

···

Ag
en

t
Mo

de
l

Mult i-turn Conversation

Sa
nd

bo
x

En
vi

ro
nm

en
t

User specification User Simulator
Conversation history

User Response

Figure 2: Our environment setup for interactive tool-use agents.

Proximal Policy Optimization (Schulman et al., 2017, PPO) is a policy gradient algorithm that sta-
bilizes training by constraining policy updates. It uses a clipped surrogate objective that limits how
much the policy can change from one iteration to the next. The advantage function, which measures
the relative value of an action, is calculated using Generalized Advantage Estimation (GAE), where
all positions share the same reward R(τ), obtained through our rule-based verifier.

Group Relative Policy Optimization (Shao et al., 2024, GRPO) enhances PPO by introducing a
reward normalization scheme to improve training stability. For a given batch of G trajectories, it
calculates the mean (µR) and standard deviation (σR) of the rewards. The advantage for a trajectory
is then its z-score: A = (R(τ) − µR)/σR. This normalization makes the training process less
sensitive to the scale of rewards.

REINFORCE Leave-One-Out (Ahmadian et al., 2024, RLOO) is a variance reduction technique
that computes a unique baseline for each trajectory in a batch. The advantage for a specific trajectory
τn is its reward minus the average reward of all other trajectories in the batch: An = R(τn) −

1
G−1

∑
j ̸=n R(τj). This ”leave-one-out” baseline is unbiased and effectively reduces the variance

of the policy gradient estimates.

For the detailed RL formalization of our multi-turn tool-use setting, please refer to Appendix §B.

2.3 BENCHMARK RL ALGORITHMS

After constructing our sandbox environment, we first benchmark RL algorithms on τ -BENCH to un-
derstand the capabilities of vanilla RL algorithms on tool-use tasks. We utilize text-based user simu-
lation with Qwen3-8B (Yang et al., 2025) as our base model with training configurations in Appendix
§D. For our training data, we use GPT-4.1 to synthesize user instruction prompts and ground-truth
tool-call annotations through publicly released trajectory data from APIGEN-MT (Prabhakar et al.,
2025)1. More details of our data preparation can be found in Appendix §C.

Since there are a very limited number of trajectories and test cases for AIRLINE, we only synthesize
RETAIL domain’s training data. For evaluation, we assess our models on both RETAIL and AIRLINE
domains. Across all our experiments, we use the passˆk metric (Yao et al., 2024) in conjunction
with our rule-based verifier. For a given task, passˆk equals 1 only when all k sampled conversation
trajectories are verified as correct by the environment.

In-Domain RL Training Shows Promise but Faces Limitations Our benchmark results in Table 1
demonstrate that all RL algorithms successfully improve Qwen3-8B’s performance on the RETAIL
domain. GRPO achieves the largest improvement, closely followed by PPO (both using n = 4
rollouts), indicating that RL training effectively enhances the model’s tool-using capabilities. The
improvement is most pronounced in single-sample scenarios (passˆ1), where GRPO delivers ap-
proximately 9% improvement over the baseline.

1 Publicly available at https://huggingface.co/datasets/Salesforce/APIGen-MT-5k

3

https://huggingface.co/datasets/Salesforce/APIGen-MT-5k

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Agent Model Retail Airline
passˆ1 passˆ2 passˆ3 passˆ4 #Wait Len passˆ1 passˆ2 passˆ3 passˆ4

Baseline Models
GPT-4.1 60.9 55.7 51.3 47.8 0.3 54 48 34 26 24
Llama-xLAM-2-8B 42.6 34.8 28.7 26.1 0.1 19 36 26 20 18
Qwen3-8B 42.6 30.4 25.2 21.7 14.6 228 32 24 20 20

Qwen3-8B + RL
GRPO (n=4) 51.3 37.4 30.4 27.0 11.7 204 28 14 8 4
RLOO (n=4) 47.0 31.3 28.7 24.3 11.1 180 36 20 16 12
PPO (n=4) 48.7 36.5 31.3 26.1 8.4 162 32 22 14 12

Table 1: passˆk results of tool-use agents trained with different RL algorithms on τ -BENCH (baseline
models–GPT4.1 (OpenAI, 2024), xLAM-2-8B (Prabhakar et al., 2025), and Qwen3-8B (Yang et al.,
2025)–are replicated with our environment setup). n denotes the number of rollouts during training.
The best RL-trained results are bolded. For RETAIL, we also report #wait (the average number of
“wait” tokens as an indicator of self-reflection) and Len (response length per turn).

However, the learned skills do not generalize to out-of-domain AIRLINE tasks, a limitation we
attribute to our small, domain-specific training dataset and the fact that AIRLINE tasks are generally
harder than the RETAIL domain. Achieving better generalization would require crafting large and
diverse environments, as demonstrated by recent work like Kimi-K2 (Team, 2025b). On the other
hand, our focus is on optimizing RL strategies for in-domain performance.

The Confidence Paradox: When More Confidence Isn’t Better While RL training is known to
enhance model confidence and sampling efficiency (Shao et al., 2024; Damani et al., 2025; Yue
et al., 2025)—indeed reflected in our improved passˆ1 results—this increased confidence comes
with gradually reduced explorations. Analysis of our sampled trajectories reveals that post-training
models exhibit reduced self-reflection and self-correction behaviors, as evidenced by the substantial
decrease in “wait” tokens (Qwen3 tends to use phrases like ‘wait, ...’ to interrupt its thinking process
and reflect on its actions) and shorter average response lengths. For example, we observe that the
model over-confidently cancels orders without confirming with users, leading to avoidable errors.

Although these behavioral changes do not necessarily translate to lower overall performance, they
significantly impact the exploration benefits of RL training once the model is confidently exploring
sub-optimal strategies. Furthermore, the vanilla use of trajectory-level rewards could be problematic
for multi-turn conversations—in our case, with contexts up to 32,768 tokens—as it creates sparse re-
ward signals that lead to suboptimal credit assignment when the model performs multiple actions per
trajectory. These challenges inspire us to design training strategies that encourage agent exploration
with fine-grained turn-level feedback in the next section.

3 METHOD

3.1 MIXED-TASK TRAINING

To encourage exploration during training, we propose incorporating medium-difficulty math prob-
lems into the training process. This strategy leverages the fact that base models like Qwen3-8B
(Yang et al., 2025) have been pre-trained on mathematical and coding problems, giving them strong
reasoning capabilities. When solving math problems, language models naturally engage in self-
reflection and make multiple self-corrections, which elongates their chain-of-thought (Wei et al.,
2023, COT) reasoning trajectories and promotes exploratory behavior. By mixing math problems
with RETAIL domain tasks, we regularize the training process to prevent the model from overfitting
to the retail domain while preserving its exploration abilities through self-reflection.

In practice, we evaluated several math datasets including GSM8K (Cobbe et al., 2021), DeepScaleR
(Luo et al., 2025), and DAPO-MATH-17K (Yu et al., 2025), ultimately selecting medium-difficulty
problems from DeepScaleR. We chose this dataset because medium-level problems provide suf-
ficient challenge to force the model to reflect on its reasoning process and generate longer CoT
trajectories, while remaining manageable difficulty for an 8B parameter model.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Turn 4Turn 1

[User
request] My
name is ... and
zip code is ...
Please look up
my pending
order and ...

Ground-truth Tool Call: modi f y_or der _i t ems; Arguments: or der _i d=#W7572, i t em_i ds=4594, new_i t em_i ds=0199, payment _met hod_i d=gi f t _car d_9075

[Tool call]
Calling f i nd_
user tool;
Argument:
zi p=xxx,
user _name=
xxx

[t
oo

l e
xe

cu
tio

n]

Su
cc

ee
de

d
 ..

...
.

[respond to
user] Your
pending order
#W7572 ... with
gift card 9075.
What would
you like to do?

[user response]
Can you change
the Bluetooth
speaker to the
variant that is
red and water
resistant?

··· ···

Turn 9

[r
es

po
nd

 t
o

us
er

]

[u
se

r
re

sp
on

se
]

##
st

op
##

Turn 7

[tool call] Calling
modi f y_or der _
i t ems;
Argument:
or der _i d=
new_i t em_i ds=
5257, payment =
... ...

[t
oo

l e
xe

cu
tio

n]

Turn-level

Trajectory-level

Turn 6

[respond to
user] I found
the variant with
ID 5257 ... It can
be covered by
your gift card.
Would you like
to proceed ...?

[user
response]
Yes, please
go ahead
and use
my gift
card

r1 = 1 r4 = 1 r5 = 1

Turn 5

[tool call]
Calling get _
pr oduct _
det ai l s;
Argument:
pr oduct _i d
=9376
......

[tool execution]
Succeeded; Products:
... {id=0199, color=red,
water resistant=True,
price=321.64},
{id=5257, color=red,
water resistant=False,
price=285.43} ...

···

r6 = -1, Major Deviat ion r 7 = 0 r 9 = 1

···

R = 0

Figure 3: The judge assesses each turn based on the full conversation history with ground-truth
annotations. Here, the agent makes a mistake by picking the wrong Bluetooth speaker variant.

3.2 TURN-LEVEL ADJUDICATED REINFORCEMENT LEARNING (TARL)

For a granular, turn-level assessment of each trajectory, we employ an LLM-based judge that evalu-
ates every conversation turn (i.e., agent’s reasoning, action, and environment feedback) against the
ground-truth annotations. Prompt details of our judge are available in Appendix §E.

The judge’s evaluation, visualized in Fig. 3, assigns one of three rewards: −1, 0, or 1, with the
constraint that at most one turn can receive −1 per trajectory. A reward of −1 indicates a major
deviation from expected behavior, typically occurring when the agent provides incorrect information
after faulty reasoning (e.g., selecting the wrong item during an exchange request) or executes tool
calls with erroneous arguments that cause irreversible database changes (e.g., canceling orders that
should not be canceled). A reward of 0 indicates minor issues that are later corrected or a by-product
of major deviation. A turn receives 1 for correct execution without issues.

For GRPO, our final trajectory-level reward is a weighted combination of these turn-level scores (ri)
and the terminal (outcome) reward (R(τ)) from our rule-based verifier. We scale the terminal reward
R(τ) by 10× to heavily prioritize successful task completion, and multiply the major deviation score
(−1) by 5× to penalize critical mistakes strongly, and scale all other turn scores by 1/T (where T
is the number of turns) to cap their contribution and prevent longer trajectories from being unfairly
advantaged. Our reward design yields four distinct trajectory categories:

1. Perfect trajectory (15 points): 10 points for terminal success +5 points from turn-level rewards.
2. Good trajectory (10−15 points): 10 points for terminal success plus 0−5 points from turn-level

rewards, indicating some turns have minor issues.
3. Good attempt trajectory (0 − 5 points): 0 points for terminal failure but positive turn-level

rewards, occurring when the judge finds no major errors despite rule-based verification failure
(rare cases, often due to unclear or hallucinated user responses)

4. Failed trajectory (−5 to 0 points): 0 points for terminal failure plus −5 points for one major
error, with some positive reward from other turns.

Since PPO calculates advantages at the token level, we tested two reward granularities:

• Per-Turn Assignment: Applying each turn’s reward specifically to the final token of that turn to
provide more granular feedback, which will be propogated backwards by GAE (see Equation 4).

• Trajectory-Level Assignment: Calculating a single, normalized reward (using the same approach
as GRPO) for the entire trajectory and applying it uniformly across all tokens.

By default, TARL for PPO uses trajectory-level assignment as it performs better (ablation available
in §5). Beyond our core reward design, we also attempted several other strategies, including en-
couraging exploration with high-entropy token training (Wang et al., 2025) and utilizing turn-level
verifiers to interrupt the reasoning process and force self-reflection. Though these strategies did not
yield improvements, we discuss them in our analysis (§5) to provide insights for future research.

4 EXPERIMENTS

4.1 TEXT-BASED AGENT TRAINING

Training Data. We train our text-based agents on approximately 3,000 synthetic tasks derived
from APIGEN-MT (Prabhakar et al., 2025) trajectories. Each task provides: (1) a user instruction

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Agent Model Response Metrics Performance Metrics

#Wait Len passˆ1 passˆ2 passˆ3 passˆ4

Baseline Model
Qwen3-8B 14.6 228 42.6 30.4 25.2 21.7

Qwen3-8B + RL (GRPO Variants)
GRPO 11.7 204 51.3 37.4 30.4 27.0
+TARL 14.0 210 53.9 (+2.6) 40.9 (+3.5) 33.9 (+3.5) 30.4 (+3.4)
+MATH + TARL 15.8 236 57.4 (+6.1) 42.6 (+5.2) 36.5 (+6.1) 33.9 (+6.9)

Qwen3-8B + RL (PPO Variants)
PPO 8.4 162 48.7 36.5 31.3 26.1
+MATH + TARL 11.5 204 53.0 (+4.3) 40.0 (+3.5) 35.7 (+4.4) 31.3 (+5.2)

Table 2: Performance comparison of different training strategies on the τ -BENCH RETAIL domain.
We report average wait time (#Wait), average response length (Len), and passˆk metrics. Our
proposed strategies (highlighted rows) consistently achieve the best performance

to guide the simulated user, and (2) the ground-truth tool calls the agent is expected to execute.
Detailed construction process and examples are provided in Appendix §C. To ensure comprehensive
coverage, our sandbox environment is also pre-populated with all seed data from τ -BENCH. For
our mixed-task training strategy, we incorporate math problems from the DeepScaleR dataset (Luo
et al., 2025), filtering for problems with integer answers and alternating between RETAIL and math
tasks during training. We will open-source all curated task instructions and ground-truth tool calls.

Model. We use Qwen3-8B (Yang et al., 2025) as the base model for our experiments. When using
our proposed Turn-level Adjudicated Reinforcement Learning (TARL), we employ GPT-4.1 as the
LLM judge to score each turn, following the mechanism described in §3.2. For full training hyper-
parameters, please refer to Appendix §D.

Results As shown in Table 2, our proposed Turn-level Adjudicated Reinforcement Learning (TARL)
strategy, especially when augmented with mixed-task math training, consistently outperforms stan-
dard reinforcement learning baselines like GRPO and PPO2. Our optimal method (Math+TARL)
achieves a 57.4% passˆ1 score, representing a 6% relative improvement over GRPO and 15% over
the base model. This result is competitive with capable closed-source models like GPT-4.1 (see Ta-
ble 1), and the performance gains hold across different values of k, indicating enhanced reliability.
Qualitatively, our method also produces models that engage in more frequent self-correction (higher
#Wait tokens) and generate longer responses (Len), as detailed in Table 2. We provide further anal-
ysis of training statistics and alternative strategies in §5.

4.2 MULTIMODAL AGENT SETUP

Environment and Simulation To extend our framework to voice-driven interaction, we simulate
realistic user speech by first generating textual user prompts and then converting them to audio
using SeedTTS (Anastassiou et al., 2024), a high-quality text-to-speech model. This allows us to
train agents on interleaved speech-text rollouts.

For evaluation, we assess the model in both text and speech modes. For the text mode, all settings
are the same as text agents. For speech-mode evaluation, we exclude the authentication step from
the RETAIL task in τ -BENCH, as this step requires the agent to obtain user IDs in “name number”
format, which proves error-prone when processed through our TTS pipeline. Instead, we directly
provide the agent with the user profile and continue the conversation.

Model Selection and Baseline Performance Our first step was to select a suitable base model capa-
ble of processing both speech and text. We evaluated several state-of-the-art foundational models, in-
cluding Qwen2.5-Omni (Xu et al., 2025), Audio-Flamingo3 (Goel et al., 2025), and Audio-Reasoner
(Xie et al., 2025). We found that none of these models demonstrated satisfactory tool-use capabilities
out-of-the-box. While Audio-Flamingo3 and Audio-Reasoner struggled significantly, often hallu-

2 TARL uses the trajectory-level assignment for PPO. Ablations on reward granularity are conducted in §5

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Training Configuration Performance Metrics

Eval Mode Agent Train Mode passˆ1 passˆ2 passˆ3 passˆ4

Baseline Models
Text Qwen2.5-Omni-7B — 7.8 7.8 7.8 7.8
Speech Qwen2.5-Omni-7B — 14.8 8.7 5.2 5.2

Qwen2.5-Omni-7B + RL
Text GRPO + Math S & T 31.3 20.9 12.2 12.2

GRPO + Math + TARL S & T 36.5 25.2 21.7 16.5

Speech GRPO + Math S & T 34.8 25.2 21.7 16.5
GRPO + Math + TARL S & T 37.4 26.1 22.6 20.9
GRPO + Math + TARL T-only 32.2 18.3 14.8 11.3

Table 3: Performance comparison across training and evaluation modalities on τ -BENCH. Models
are trained with speech-text (S-T) or text-only (T-only) rollouts and evaluated with text or speech-
based user agent. Our proposed methods (highlighted rows) achieve the best performance.

cinating after one or two turns, Qwen2.5-Omni-7B achieved the best—though still poor—initial
performance with a passˆ1 rate of 7.8% (see Table 3). This highlights that multi-turn, interactive
tool-use remains an under-explored capability for most speech-enabled foundation models.

Curriculum Learning for Warming Up Given the models’ limited initial abilities, we adopted
a curriculum learning strategy to warm-up the multimodal agent’s tool-use abilities. Instead of
supervised fine-tuning, we applied GRPO for 30 steps using a simplified set of training tasks. These
tasks feature more detailed and specific user instructions to create a easier learning environment for
skill acquisition (see Appendix §C). Qwen2.5-Omni showed rapid improvement on this simplified
curriculum, demonstrating its ability to correctly use tools and engage in multi-turn conversations.

After the curriculum learning phase, we train the model on our normal training dataset and evalu-
ate its performance across both text and speech modalities. During training, we employ a mixed-
modality training strategy where the dataloader alternates between three types of data batches: (1)
math problems, (2) text-only RETAIL task, and (3) RETAIL task with user response in speech. The
first two batch types follow the same configuration used when post-training text agents. For the
third data type, the model explores with interleaved speech-text rollouts where the speech contents
are generated by the simulated user agent.

4.3 MULTIMODAL TRAINING RESULTS

The results in Table 3 validate the effectiveness of our proposed training strategy. Our final model,
GRPO + MATH + TARL, consistently delivers superior performance across both text and speech
evaluation settings, achieving a pass ˆ1 improvement of over 20% compared to the baseline. While
the multimodal agent’s performance currently lags behind its text-only counterparts, we anticipate
this gap will narrow as foundational multimodal models continue to advance.

Crucially, an ablation study highlights the necessity of our mixed-modality training approach. When
a model was fine-tuned exclusively on text and then evaluated in the speech-based setting, its perfor-
mance degraded substantially (see final row of Table 3). This finding demonstrates that fine-tuning
solely on textual data can erode a model’s pre-trained speech understanding capabilities, underscor-
ing the importance of using interleaved speech-text rollouts to develop effective voice agents.

5 ANALYSIS

5.1 REWARD GRANULARITY FOR PPO-BASED TRAINING

Given that PPO supports token-level rewards, we investigate how different reward granularities af-
fect training performance. After obtaining turn-level evaluation from our judge, we experiment with
two granularities as mentioned in §3.2: (1) TARL (turn-level): assigning per-turn rewards at the fi-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300

0.5

0.6

0.7

0.8

Av
g.

 T
er

m
in

al
 R

ew
ar

d

0 50 100 150 200 250 300

4500

5000

5500

6000

6500

7000

Av
g.

 R
es

po
ns

e
Le

ng
th

PPO
PPO+Math+TARL (turn-level)
PPO+Math+TARL (traj-level)

Training Step

Figure 4: Training time average reward and response length comparison of PPO-based strategies.
Trajectory-level assignment with turn-level eval (TARL traj-level) obtains the best performance.

nal token position of each turn and (2) TARL (trajectory-level): computing a single trajectory-level
reward (same as GRPO) and applying it uniformly across all token positions.

As illustrated in Fig. 4, the trajectory-level approach promotes more effective exploration and ex-
hibits stable reward growth during training, ultimately achieving a 4.3% improvement in passˆ1
performance compared to vanilla PPO training (see Table 2). In contrast, assigning rewards at turn-
level granularity leads to degraded performance, with training rewards falling below even the vanilla
PPO baseline. We hypothesize that assigning turn-level rewards at different positions complicates
the credit assignment process and overly relies on the judge’s accuracy. It is also sensitive to PPO hy-
perparameters that affect the discounting behavior of GAE. On the contrary, trajectory-level reward
is much more robust as they are broadly dissected into four categories outlined in §3.2.

5.2 STRATEGIES FOR INCENTIVIZING EXPLORATION

Data Distribution Modification: Mixed-Task Training We first examine the effectiveness of
mixed-task training with mathematical problems. As shown in Fig. 5, GRPO+MATH demonstrates
increased exploration activity during training, evidenced by longer average response lengths com-
pared to the baseline. However, despite this enhanced exploration, test set performance remains
comparable to the GRPO baseline, suggesting that exploration alone is insufficient for improved
generalization. The combination of exploration strategies with better credit assignment proves
crucial. GRPO+MATH+TARL, which incorporates both mixed-task training and turn-level re-
wards, exhibits the highest exploration levels (reflected in the longest average response lengths) and
achieves substantially better performance on test set tasks (Table 2). Notably, all methods—GRPO,
GRPO+MATH, and GRPO+MATH+TARL—converge to similar high reward levels during train-
ing (Fig. 3), indicating that the benefits of enhanced exploration and credit assignment primarily
manifest in generalization to unseen RETAIL tasks rather than training performance improvements.

0 50 100 150 200 250 300 350

0.5

0.6

0.7

0.8

0.9

Av
g.

 T
er

m
in

al
 R

ew
ar

d

0 50 100 150 200 250 300 350

4500

5000

5500

6000

6500

7000

7500

Av
g.

 R
es

po
ns

e
Le

ng
th

GRPO
GRPO+Math
GRPO+Entropy+TARL
GRPO+Math+TARL

Training Step

Figure 5: Training time average reward and response length comparison of different strategies.
Mixed-task training with turn-level evaluation (GRPO+Math+TARL) achieves the best performance.

Loss Function Adjustment: Entropy-based Modification We are also curious if loss func-
tion adjustment with entropy-based modification could help incentivize exploration. We follow
the recent study (Wang et al., 2025) to restrict policy gradient updates to the top 20% highest-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

entropy tokens. While this approach shows improved exploration compared to the baseline (see
GRPO+Entropy+TARL in Fig. 5), it fails to enhance test-time performance and actually achieves
lower training rewards than other strategies. We hypothesize that though entropy-based modifi-
cation helps the model to explore, limiting updates to high-entropy positions could cause training
instability, particularly problematic for our long-horizon sequential decision-making tasks.

In Appendix §F, we have additional analysis on the rollout intervention where we attempt to en-
courage exploration by forcing self-reflection when an erroneous tool-call is made. It turns out that
editing the rollout context during training results in unstable updates that harm the performance.

Key Takeaways: Our mixed-task training strategy, when combined with a trajectory-level assess-
ment that integrates both turn-level and terminal rewards, promotes more effective exploration and
yields higher task completion rates. In contrast, more sophisticated interventions like complex re-
ward shaping and elaborate training loss designs tend to destabilize the training process and ulti-
mately degrade performance—a finding that echoes the ”bitter lesson” (Sutton, 2019).

6 RELATED WORK

Tool-Use Agent Benchmarks Numerous evaluation benchmarks have been developed for tool-
use tasks, including τ -BENCH (Yao et al., 2024), τ2-BENCH (Barres et al., 2025), BFCL (Patil
et al., 2025), AppWorld (Trivedi et al., 2024), ToolSandbox (Lu et al., 2025), UserBench (Qian
et al., 2025), and Ace-Bench (Chen et al., 2025a). In our work, we adopt τ -BENCH for training and
evaluation as it supports realistic user-agent interactions, making it suitable for testing an end-to-end
voice agent. However, τ -BENCH has limitations, including its narrow scope of tasks (supporting
only 2 domains) and limited control over user behavior. More recent benchmarks like UserBench
have begun addressing these issues through preference-driven interactions, and we expect continued
work in this direction to provide more controllable sandboxes for interactive tool-use tasks.

Training Tool-Use Agents Reinforcement learning (RL) algorithms have been developed and
tested on a wide spectrum of problems. Foundational work demonstrated success in classic con-
trol tasks and games, such atari games (Mnih et al., 2015), and AlphaGo (Silver et al., 2016). More
recently, RL has become a cornerstone for refining large language models (LLMs) beyond standard
pre-training. Techniques like Reinforcement Learning from Human Feedback (RLHF) were criti-
cal in aligning models to follow user instructions and enhance safety (Ouyang et al., 2022). This
paradigm has been extended to improve complex reasoning abilities, such as solving mathematical
problems by rewarding correct final outcomes (Shao et al., 2024) or verifying intermediate reason-
ing steps with process reward modeling (Lightman et al., 2023). RL has also been applied to agentic
tasks, such as WebShop (Yao et al., 2022; Zhou et al., 2024; Putta et al., 2024), AppWorld (Chen
et al., 2025b), etc., with a simulated environment.

Addressing the credit assignment challenge in multi-turn interactions is difficult when using only
final outcome-based rewards, despite their scaling potential (Shao et al., 2024; Zhang et al., 2025).
Recent studies have shown that turn-level feedback offers a more effective solution for tool-use
agents (Zhao et al., 2025; Zeng et al., 2025; Zhou et al., 2025). Building on insights from Process
Reward Modeling (PRM) (Lightman et al., 2023; Ma et al., 2023; Zhang et al., 2025; Choudhury,
2025), we implement a turn-level reward system. Unlike previous approaches that rely on structured,
rule-based evaluators (Zeng et al., 2025; Zhao et al., 2025), our method employs an LLM as a judge
to provide more nuanced feedback (such as distinguishing between small and recoverable error
versus major deviation) on an agent’s performance at each turn.

7 CONCLUSION

We develop an interactive tool-use agent that communicates with simulated users and tool sandboxes
to complete complex tasks. Through our carefully crafted environment, we enable the agent to
perform online exploration and train it using reinforcement learning algorithms. We further enhance
the learning process by incorporating mixed-task training to sustain exploration and employing turn-
level evaluation to improve credit assignment in long-horizon tasks. Furthermore, we extend our
framework to train multimodal voice agents, incorporating additional strategies such as curriculum
learning and mixed-modality training to enhance agent performance across different modalities.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work focuses on developing interactive tool-use agents, including multimodal voice agents ca-
pable of executing tasks based on spoken commands. While this technology holds promise for creat-
ing more natural and efficient human-computer interaction, it also introduces potential risks. Agents
that can perform actions like modifying or canceling orders through API calls could be exploited for
unauthorized or malicious purposes if not properly secured. Furthermore, the development of voice
agents that interact via synthesized speech raises the possibility of misuse for deceptive applications,
such as impersonation or social engineering. To mitigate these risks, we advocate for the implemen-
tation of robust safeguards, including strict access controls, user confirmation for critical actions,
comprehensive audit trails for agent activities, and the use of techniques like audio watermarking to
identify synthetic speech.

REPRODUCIBILITY STATEMENT

Our research is conducted using publicly available datasets, including APIGEN-MT (Prabhakar
et al., 2025) and DeepScaleR, in accordance with their respective licensing terms. The base models
used in our experiments, such as the Qwen series (Xu et al., 2025; Yang et al., 2025) and vari-
ous foundational models, are developed by third parties. Our user simulator and LLM-based judge
leverage models like GPT-4.1 (OpenAI, 2024) and SeedTTS (Anastassiou et al., 2024). We pro-
mote transparency by providing the detailed judging prompt in Appendix §E. In the spirit of repro-
ducibility and to encourage further research, we plan to open-source all synthetically generated task
instructions and ground-truth tool calls created for this work. Our hyperparameters can be found in
Appendix §D and we plan to open-source our codebase for reproducible experiments.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms, 2024. URL https://arxiv.org/abs/2402.14740.

Meta AI. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Philip Anastassiou, Jiawei Chen, Jitong Chen, Yuanzhe Chen, Zhuo Chen, Ziyi Chen, Jian Cong,
Lelai Deng, Chuang Ding, Lu Gao, Mingqing Gong, Peisong Huang, Qingqing Huang, Zhiying
Huang, Yuanyuan Huo, Dongya Jia, Chumin Li, Feiya Li, Hui Li, Jiaxin Li, Xiaoyang Li, Xingx-
ing Li, Lin Liu, Shouda Liu, Sichao Liu, Xudong Liu, Yuchen Liu, Zhengxi Liu, Lu Lu, Junjie
Pan, Xin Wang, Yuping Wang, Yuxuan Wang, Zhen Wei, Jian Wu, Chao Yao, Yifeng Yang, Yuan-
hao Yi, Junteng Zhang, Qidi Zhang, Shuo Zhang, Wenjie Zhang, Yang Zhang, Zilin Zhao, Dejian
Zhong, and Xiaobin Zhuang. Seed-tts: A family of high-quality versatile speech generation mod-
els, 2024. URL https://arxiv.org/abs/2406.02430.

Anthropic. The claude 3 model family: Opus, sonnet, haiku. URL https://api.semantic
scholar.org/CorpusID:268232499.

Victor Barres, Honghua Dong, Soham Ray, Xujie Si, and Karthik Narasimhan. τ2-bench: Evaluating
conversational agents in a dual-control environment, 2025. URL https://arxiv.org/ab
s/2506.07982.

Chen Chen, Xinlong Hao, Weiwen Liu, Xu Huang, Xingshan Zeng, Shuai Yu, Dexun Li, Shuai
Wang, Weinan Gan, Yuefeng Huang, Wulong Liu, Xinzhi Wang, Defu Lian, Baoqun Yin, Yasheng
Wang, and Wu Liu. Acebench: Who wins the match point in tool usage?, 2025a. URL https:
//arxiv.org/abs/2501.12851.

Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger,
Vladlen Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive
llm agents, 2025b. URL https://arxiv.org/abs/2502.01600.

Sanjiban Choudhury. Process reward models for llm agents: Practical framework and directions,
2025. URL https://arxiv.org/abs/2502.10325.

10

https://arxiv.org/abs/2402.14740
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.02430
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2506.07982
https://arxiv.org/abs/2501.12851
https://arxiv.org/abs/2501.12851
https://arxiv.org/abs/2502.01600
https://arxiv.org/abs/2502.10325

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.or
g/abs/2110.14168.

Mehul Damani, Isha Puri, Stewart Slocum, Idan Shenfeld, Leshem Choshen, Yoon Kim, and Jacob
Andreas. Beyond binary rewards: Training lms to reason about their uncertainty. arXiv preprint
arXiv:2507.16806, 2025.

Arushi Goel, Sreyan Ghosh, Jaehyeon Kim, Sonal Kumar, Zhifeng Kong, Sang gil Lee, Chao-
Han Huck Yang, Ramani Duraiswami, Dinesh Manocha, Rafael Valle, and Bryan Catanzaro.
Audio flamingo 3: Advancing audio intelligence with fully open large audio language models,
2025. URL https://arxiv.org/abs/2507.08128.

Hunter Lightman, Vineet Kosaraju, Yura Reask, Ashish Soni, Collin Baker, Reecha Tiwari, Tony
Jiang, Michael Laskin, Greg Brockman, Ilya Sutskever, et al. Let’s verify step by step. arXiv
preprint arXiv:2305.20050, 2023.

Jiarui Lu, Thomas Holleis, Yizhe Zhang, Bernhard Aumayer, Feng Nan, Felix Bai, Shuang Ma,
Shen Ma, Mengyu Li, Guoli Yin, Zirui Wang, and Ruoming Pang. Toolsandbox: A stateful,
conversational, interactive evaluation benchmark for llm tool use capabilities, 2025. URL http
s://arxiv.org/abs/2408.04682.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
o1-preview with a 1.5b model by scaling rl, 2025. URL https://pretty-radio-b75.n
otion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-b
y-Scaling-RL-19681902c1468005bed8ca303013a4e2. Notion Blog.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan, Pengfei Liu, Yang You, and Hongxia Yang.
Let’s reward step by step: Step-level reward model as the navigators for reasoning. arXiv preprint
arXiv:2310.10080, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/2303.176
51.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Shishir G. Patil, Huanzhi Mao, Charlie Cheng-Jie Ji, Fanjia Yan, Vishnu Suresh, Ion Stoica, and
Joseph E. Gonzalez. The berkeley function calling leaderboard (bfcl): From tool use to agen-
tic evaluation of large language models. In Forty-second International Conference on Machine
Learning, 2025.

Akshara Prabhakar, Zuxin Liu, Ming Zhu, Jianguo Zhang, Tulika Awalgaonkar, Shiyu Wang, Zhiwei
Liu, Haolin Chen, Thai Hoang, Juan Carlos Niebles, Shelby Heinecke, Weiran Yao, Huan Wang,
Silvio Savarese, and Caiming Xiong. Apigen-mt: Agentic pipeline for multi-turn data generation
via simulated agent-human interplay, 2025. URL https://arxiv.org/abs/2504.036
01.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and
Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents, 2024.
URL https://arxiv.org/abs/2408.07199.

11

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2507.08128
https://arxiv.org/abs/2408.04682
https://arxiv.org/abs/2408.04682
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2504.03601
https://arxiv.org/abs/2408.07199

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Cheng Qian, Zuxin Liu, Akshara Prabhakar, Zhiwei Liu, Jianguo Zhang, Haolin Chen, Heng Ji,
Weiran Yao, Shelby Heinecke, Silvio Savarese, Caiming Xiong, and Huan Wang. Userbench: An
interactive gym environment for user-centric agents, 2025. URL https://arxiv.org/ab
s/2507.22034.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402
.03300.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Richard S. Sutton. The Bitter Lesson. https://www.cs.utexas.edu/˜eunsol/course
s/data/bitter_lesson.pdf, 3 2019.

Gemini Team. Gemini: A family of highly capable multimodal models, 2025a. URL https:
//arxiv.org/abs/2312.11805.

Kimi Team. Kimi k2: Open agentic intelligence, 2025b. URL https://arxiv.org/abs/25
07.20534.

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable world of
apps and people for benchmarking interactive coding agents, 2024. URL https://arxiv.or
g/abs/2407.18901.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning, 2025. URL https://arxiv.org/abs/
2506.01939.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. Large language models are better reasoners with self-verification, 2023. URL https:
//arxiv.org/abs/2212.09561.

Zhifei Xie, Mingbao Lin, Zihang Liu, Pengcheng Wu, Shuicheng Yan, and Chunyan Miao. Audio-
reasoner: Improving reasoning capability in large audio language models, 2025. URL https:
//arxiv.org/abs/2503.02318.

Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-omni technical
report, 2025. URL https://arxiv.org/abs/2503.20215.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

12

https://arxiv.org/abs/2507.22034
https://arxiv.org/abs/2507.22034
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf
https://www.cs.utexas.edu/~eunsol/courses/data/bitter_lesson.pdf
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2507.20534
https://arxiv.org/abs/2407.18901
https://arxiv.org/abs/2407.18901
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2212.09561
https://arxiv.org/abs/2212.09561
https://arxiv.org/abs/2503.02318
https://arxiv.org/abs/2503.02318
https://arxiv.org/abs/2503.20215
https://arxiv.org/abs/2505.09388

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-
world web interaction with grounded language agents. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 20744–20757. Curran Associates, Inc., 2022. URL https://proceedings.
neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb9181
4fd7b8c-Paper-Conference.pdf.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing
Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang.
Dapo: An open-source llm reinforcement learning system at scale, 2025. URL https:
//arxiv.org/abs/2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
base model?, 2025. URL https://arxiv.org/abs/2504.13837.

Siliang Zeng, Quan Wei, William Brown, Oana Frunza, Yuriy Nevmyvaka, and Mingyi Hong.
Reinforcing multi-turn reasoning in llm agents via turn-level credit assignment, 2025. URL
https://arxiv.org/abs/2505.11821.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning, 2025. URL https://arxiv.org/abs/2501.07301.

Weikang Zhao, Xili Wang, Chengdi Ma, Lingbin Kong, Zhaohua Yang, Mingxiang Tuo, Xiaowei
Shi, Yitao Zhai, and Xunliang Cai. Mua-rl: Multi-turn user-interacting agent reinforcement learn-
ing for agentic tool use, 2025. URL https://arxiv.org/abs/2508.18669.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl, 2024. URL https://arxiv.org/abs/2402
.19446.

Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, and
Xian Li. Sweet-rl: Training multi-turn llm agents on collaborative reasoning tasks, 2025. URL
https://arxiv.org/abs/2503.15478.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82ad13ec01f9fe44c01cb91814fd7b8c-Paper-Conference.pdf
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2505.11821
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2508.18669
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2503.15478

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A SANDBOX ENVIRONMENT

Our sandbox environment, illustrated in Fig. 2, comprises three components, including (1) a backend
application with a pre-configured database and API endpoints for MCP server communication; (2) a
user simulator that leverages LLM capabilities to generate realistic user requests and responses; and
(3) a rule-based verifier that evaluates interaction trajectories and provides binary rewards. Below,
we detail each component’s implementation and functionality.

Backend Application. We implement a SQLite database to store the comprehensive dataset from
τ -BENCH, encompassing various data tables such as Products, Orders, and Users. Rather than re-
lying on static JSON files for seed data storage, we construct a proper relational database schema
with well-defined table structures and database operations. This design choice enables our back-
end application to be easily extended and adapted for other tasks. We expose the available tools
as RESTful API endpoints through application routers and register them as MCP tools, providing
seamless integration for agent interactions.

User Simulator. Our user simulator employs GPT-4 (OpenAI, 2024) to role-play as human users,
generating contextually appropriate requests and responses based on the task instructions from τ -
BENCH. We adopt the ReACT (Yao et al., 2023) reasoning framework using a consistent prompt
with τ -BENCH, which compels the user model to engage in structured thinking processes before
formulating responses to agent queries. For speech-based user simulation, we use SeedTTS (Anas-
tassiou et al., 2024) to convert the text responses to into natural speech.

Rule-based Verifier. We implement a rule-based verifier that systematically inspects successful
write operations—specifically, tool calls that alter the database state, such as those involved in order
modifications, exchanges, reservations, and cancellations. This verifier cross-references the argu-
ments from the agent’s tool calls with ground-truth annotations and outputs a binary reward: 1 for a
complete match and 0 otherwise.

Notably, τ -BENCH includes an additional verification step that checks for expected outputs in the
agent’s responses. However, we observe that this criterion is highly sensitive to variations in how
user responses are phrased, so we exclude it from our reinforcement learning (RL) training and
evaluation protocols. For the sake of consistency, though, we also report results incorporating this
output check in Appendix §G.

B RL ALGORITHMS

In this section, we provide more detailed and formal description of the RL algorithms we adopted
in our interactive tool-use scenario:

We formulate the interactive tool-use agent training as a Markov Decision Process (MDP). Given
an autoregressive language model as the policy backbone, the state at any point in the interaction
is simply the token sequence observed so far. The interaction follows an alternating pattern: when
the agent is responding (calling tools with arguments), it takes actions by sampling the next token
from the policy distribution pθ and appending the token to the existing trajectory. When the agent
stops talking, the environment generates feedback (through simulated user agent or tool execution
results) and appends a sequence of tokens (denoting user response or tool execution result) to the
existing trajectory. More formally, let xi = (xi

1, x
i
2, . . .) denote the i-th agent token sequence and

ei = (ei1, e
i
2, . . .) denote the i-th environment token sequence. When the environment response is

from tool execution or text-based user simulation, ei is a sequence of text tokens. When we use
speech-based user simulation, ei is a sequence of speech tokens (or their placeholder tokens). The
complete trajectory is an interleaved sequence: τ = (x1, e1,x2, e2, . . . ,xT , eT). Here T is the
total number of interaction steps, reached when user agent replied special token ##STOP## or when
the maximum number of interaction steps is reached. In our case, T ∈ [1, 30] as we set a maximum
of 30 interaction steps. Our objective is to maximize the expected reward over complete trajectories:

J(θ) = Eτ∼pθ
[R(τ)] (1)

where R(τ) is a trajectory-level reward function that evaluates the quality of the generated trajectory
using the rule-based verifier described in §2.1. To optimize this objective, we experiment with the
following widely-used RL algorithms:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

PPO (Proximal Policy Optimization): We begin with PPO (Schulman et al., 2017), which
constrains policy updates to prevent large deviations from the current policy through a clip-
ping mechanism. For brevity, we denote the conversation history up to token xi

j as hi
j =

[c;x1, e1, . . . ,xi−1, ei−1, xi
1, . . . , x

i
j−1]. PPO operates at the token level using policy gradient ra-

tios. Given a current policy θold and a new policy θ, the probability ratio for each token is:

rij(θ) =
pθ(x

i
j |hi

j)

pθold(x
i
j |hi

j)
(2)

The PPO objective function applies clipping to this ratio (we omit the KL divergence term here):

LPPO(θ) = Eτ∼pθold

 1∑T
i=1 |xi|

T∑
i=1

|xi|∑
j=1

min
(
rij(θ)A

i
j , clip(rij(θ), 1− ϵ, 1 + ϵ)Ai

j

) (3)

where Ai
j is the advantage function and ϵ is the clipping parameter. PPO uses the Generalized

Advantage Estimate (GAE):

Ai
j =

∞∑
l=0

(γλ)lδij+l, where δij = Ri
j+1 + γV (sij+1)− V (sij) (4)

This formula relies on several key terms. The calculation is driven by the Temporal Difference (TD)
error (δij), which measures the one-step prediction error of the value function. The TD error itself is
found using the immediate reward (Ri

j+1) and the value function’s estimate for the current and next
states. This calculation is weighted by two parameters: the discount factor (γ), which determines
how much future rewards are valued, and the GAE parameter (λ), which balances the trade-off
between bias and variance in the final advantage estimate3. Since we use a trajectory-level verifiable
reward, we simply have Ri

j+1 = R(τ), i.e., the token-level reward is the same across all positions.
Note that throughout our RL training, we compute loss only over agent sampled tokens x and mask
the loss over all environment tokens e to avoid unstable updates.

GRPO (Group Relative Policy Optimization): GRPO (Shao et al., 2024) also shares the same
clipping mechanism but introduces a group-based relative policy optimization approach that nor-
malizes rewards within each group to improve training stability. Given a group of G trajectories
{τ1, τ2, . . . , τG}, GRPO computes the mean and standard deviation of rewards:

µR =
1

G

G∑
n=1

R(τn), σR =

√√√√ 1

G

G∑
n=1

(R(τn)− µR)2 (5)

The advantage for trajectory n is then computed as An = (R(τn)− µR)/σR. The GRPO objective
function is:

LGRPO(θ) = E{τn}G
n=1∼Pθold

 1∑Tn

i=1 |xi|

Tn∑
i=1

|xi|∑
j=1

min
(
ri,nj (θ)An, clip(ri,nj (θ), 1− ϵ, 1 + ϵ)An

)
(6)

where ri,nj (θ) =
pθ(x

i,n
j |hi,n

j)

pθold (x
i,n
j |hi,n

j)
is the probability ratio for token j in turn i of trajectory n. This

normalization approach helps stabilize training by reducing reward scale variations across different
batches and tasks.

RLOO (REINFORCE Leave-One-Out): RLOO (Ahmadian et al., 2024) is similar to GRPO but
uses a different baseline computation. Given a group of G trajectories {τ1, τ2, . . . , τG}, the baseline
for each trajectory τn is computed using all other trajectories in the group:

bn =
1

G− 1

∑
j ̸=n

R(τj) (7)

Then the advantage function is computed as An = R(τn) − bn for the n-th trajectory. This leave-
one-out approach ensures that the baseline is unbiased while significantly reducing the variance of
gradient estimates compared to standard REINFORCE.

3 In practice, we set γ = 1, λ = 1 given our long-horizon trajectories

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C TRAINING DATA

User Specification Ground-Truth Tool-Calls
Your email is noah.brown7922@example.com.
You are a customer who recently received an or-
der and want to exchange two items: the green
small polyester laptop-compartment backpack for
a navy large polyester laptop-compartment back-
pack, and the black wired laser gaming mouse for
a black wireless optical gaming mouse ... De-
scribe the items you want to exchange and the
new options you want, and confirm the use of your
original payment method for any price difference
only after the agent identifies it. Respond to the
AI agent to complete your exchange request.

[...(other tool-calls),
{
"name": "exchange_delivered_order",
"arguments": {
"order_id": "#W7678072",
"item_ids": [

"3557711149",
"2193628750"

],
"new_item_ids": [

"8084436579",
"8214883393"

],
"payment_method_id": "paypal_xxx"}

}]

Table 4: Example of synthetic training data showing user specification and corresponding ground-
truth tool calls for an item exchange scenario.

We generate synthetic training tasks by leveraging conversation trajectories from APIGEN-MT
(Prabhakar et al., 2025) and using large language models to synthesize corresponding user speci-
fications (instructions) with the prompt below. An illustrative example of this process is presented
in Table 4. In practice, we employ GPT-4.1 to extract user specifications from the conversation
trajectories provided by APIGEN-MT. The prompt to craft such specifications is shown below:

User Specification Synthesis Prompt Template

Role & Objective: You are an expert in analyzing human-AI conversation trajectories.
Your task is to infer the core instruction or task that the human user was given, which
led to their interaction with the AI.

Analysis Framework: Analyze the provided conversation transcript, paying close
attention to:
1. Initial Request: The human’s opening statement or question
2. Response Patterns: How the human responds to AI queries
3. AI Actions: Function calls, observations, and AI responses that reflect user

intent
4. Conversation Flow: Overall progression and resolution

Output Requirements: Based on your analysis, formulate a concise, direct, and clear
instruction that, if given to a human, would result in the conversation you observe.
The instruction must capture:
- User’s role/identity
- User’s objective/task
- Reason/context for the task
- Key constraints or requirements

Output Format Template: "Your user id is [user id or email if available in
conversation]. You are [User’s Role/Identity] and you are trying to [User’s
Objective/Task] because [Reason/Context]. You need to provide [Key Information
Required] and respond to the AI’s prompts to achieve your goal."

Input: [CONVERSATION TRANSCRIPT]

Expected Output: [SYNTHESIZED USER INSTRUCTION]

While the template above enables us to synthesize high-quality user instructions for each task, these
instructions tend to conform to a similar format due to our structured ”output format template”. To
introduce greater diversity and increase the exploration challenge for the model, we rewrite the syn-
thesized instructions using the following template. We rewrite the instruction to be more challenging
for the agent to complete, while ensuring that the tasks remain solvable. The re-writing prompt is
shown below:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

User Instruction Rewriting Prompt Template

You will be provided with a user-agent conversation trajectory and a user instruction.
You job is to re-write the user instruction following the steps below:

1. You should first read through the conversation between user and agent, understanding
the user’s intention and from the AI agent’s reply, you will have detailed information
such as the user’s information and order details. Pay special attention to the function
calls and the arguments in each function call.

2. You should then read through current user instruction, the insturction already
provides necessary and detailed information to the user to complete the conversation
with the agent.

3. Now your job is to re-write the user instruction so that the user withhold certain
information from the agent, but the task should still be possible to complete even
without those withheld information, because such information might be retrieved from
other function calls.

For example, get user details will show not only user information but also payment methods
and the user’s current order ids. Therefore, even if the user forgets order ID, it
can be retrieved and confirmed by the agent. Similarly, get order details will return
order id, user id, user address, order items, as well payment history, payment status, and
fulfillments. These information can then be used to help process the order even if the
user forgets some details about their order or address.

Here are some ways to re-write the instruction and make it harder for the agent:
- You can ask the user not to provide order details (say that you do not remember it)
but ask the agent to derive it from its user profile
- You can ask the user not to provide payment method (say that you do not remember it)
but only to confirm after agent replies with options
- You can ask the user not to provide details they want (say that you do not remember
it) but only expose them after such items/products are provided by the agent as options
- Be creative and think of any other ways to make the instruction harder (but please
make sure that the task is possible to complete)

Do not make the task too hard, only randomly apply one or two withholding strategies
above in your re-write process. Also, please ensure that the user instruction contains
necessary information (order ids, payment methods, etc.,) even if the user does not
provide it explicitly. The agent will always authenticate the user’s identity first so
please make sure that the user information is provided in the instruction:

- User information could be user id, user name + zipcode or user email.
- You can modify the instruction so that user withholh some of their user

information, but at least one of these information should be possible to be obtained
by the agent (e.g., user can forget user id and zipcode but provide email for
authentication)

4. When you re-write the instruction to be more challenging for the agent, please
make sure the original information necessary for the user to complete the task is still
provided to user. For example, even if you ask the user to withhold their user id,
address, payment method, order details, etc., you should still provide these information
in the instruction (so that user still knows about them even if they will not provide
information explicitly to the agent).

Output Requirements:

<think>
You should conduct an evaluation of the user instruction and think about how to re-write
the instruction based on my rules above inside this block
</think>

Then you need to output a json object with the following fields:
{

"rewrite instruction": <your re-written instruction>
}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Note that in section §4.3, we mentioned that for multimodal warm-up training, we use a simpler
version of the training tasks. To create this simple version, we use the following prompt template:

Simplification Prompt Template for Multimodal LLM Warm-up Training

You will be provided with a user-agent conversation trajectory and a user instruction.
You job is to re-write the user instruction following the steps below:

1. You should first read through the conversation between user and agent, understanding
the user’s intention and from the AI agent’s reply, you will have detailed information
such as the user’s information and order details.
2. You should then read through current user instruction, and check if it provides
enough information for the user to complete the conversation with the agent. Pay
special attention to the conversation where the agent is asking for user’s information
or confirmation about choices.
3. Try to re-write the user instruction to be more detailed. Pay special attention
to the arguments in each function calling. User information, order number and details,
payment information should all be included in the instruction if available.

Output Requirements:

<think>
You should conduct an evaluation of the user instruction and think about how to re-write
the instruction based on my rules above inside this block
</think>

Then you need to output a json object with the following fields:
{

"rewrite instruction": <your re-written instruction>
}

D TRAINING DETAILS

We adopt verl4 and RL Factory 5 as our framework to support RL training with multi-turn conversa-
tion. We train the model with a batch size of 128 (e.g., 32 distinct tasks with 4 rollouts per task). We
train the agent model until convergence (performance normally plateaus after 200-300 steps) with
hyperparameters shown in Table 5.

Hyperparameter Value Hyperparameter Value
grad clip 1.0 max prompt length 4096
clip ratio 0.2 max response length 1024
ppo epochs 1 kl coef 0.001
num rollout 4 kl loss coef 0.003
top p 0.95 actor lr 1× 10−6

temperature 0.7 critic lr 1× 10−5

max turns 30

Table 5: Hyperparameter settings used in our experiments.

E LLM JUDGE SETUP FOR TURN-LEVEL EVALUATION

To assess the multi-turn trajectory, the LLM-based Judge will receive the complete trajectory and
ground-truth tool-call annotations to output a score for each turn. Below is the prompt that we use
to provide turn-level rewards:

4https://github.com/volcengine/verl
5https://github.com/Simple-Efficient/RL-Factory

18

https://github.com/volcengine/verl
https://github.com/Simple-Efficient/RL-Factory

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Role: Task Execution Evaluation Judge

Your core responsibility is to thoroughly and precisely evaluate multi-turn conversations
between a user and an agent. You must carefully read each conversation to pinpoint where
the agent’s decisions lead to deviations from the ground-truth function-call trajectories.
Information Provided for Your Evaluation

You will be given four key pieces of information to guide your assessment:

1. Policy: This document outlines the strict rules the agent must adhere towhen
making tool calls. If an agent’s action violates this policy, you must
immediately halt its current action and instruct it to reconsider and correct
its approach.

2. Task Instruction: This is the specific instruction provided to the user.The
user’s requests and responses should always align with this instruction. The
agent does not have access to this instruction.

3. Ground-Truth Function Call Trajectories: This serves as the definitive standard
for assessing the accuracy of the agent’s tool calls.

– The agent doesn’t need to follow the exact order of this trajectory.

– It’s acceptable for the agent to call information-gathering functions (e.g.,
get order details) multiple times, but the agent’s write operation (modifying,
exchanging, returning, or canceling orders) needs to match exactly with the
ground-truth function calls.

4. Conversation Trajectories: This provides the detailed record of the multi-turn
conversation between the user and the agent. You will use these conversations to
identify executed tools and evaluate the correctness of the agent’s processing of
results. Each agent’s reasoning and action within a turn will be preceded by a
label like [Turn N].

Evaluation Process

Deviations from the ground truth typically arise due to:

• The agent failing to gather sufficient or correct information, either through function
calls or by asking the user.

• Incorrect reasoning or understanding by the agent based on the results of tool
execution.

• The agent not following policy, resulting in wrong execution of tools.

Pay exceptionally close attention to operations involving modifying, exchanging,
returning, or canceling orders. The agent’s calling for these function should match
exactly with the ground-truth. These are critical evaluation points and frequent sources
of error. Three kinds of error are possible with write operation:

(1) The agent might call the function with wrong arguments that do not match with
ground-truth.

(2) The agent calls unnecessary write operation that should never be called.

(3) The agent did not call the write operation which is listed in the ground-truth.

If any of the three cases above occurs, you need to carefully read the conversation and
identify the turns where the agent deviates from the ground-truth.

For each turn in the conversation (identified by the [Turn N] tag), you should evaluate
whether agent’s reasoning and action in that turn is the primary cause of a deviation from
the ground-truth function call. Assign a score for each turn. You have three kinds of
score to assign:

• If the turn is correct, assign a score of 1.

• If the turn is the primary reason for a deviation, assign a score of -1. This can only
be assigned to at most one of the conversation turns if deviation is found.

• If the turn has issue (e.g., not following the policy or function call formats), assign
a score of 0.

Your Response Format

You must first conduct your evaluation process within a <think></think> block.

After completing your thinking process, you must output only a single JSON object. No
other text, commentary, or explanation should be included outside of the JSON block. The
JSON object must adhere strictly to the following format, including all turn’s scores from
score 0 up to score n (where n is the total number of turns).

{
"score 0": <turn 0’s score>,
"score 1": <turn 1’s score>,
// ... (include all turns up to ’n’)
"score n": <turn n’s score>

}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F FORCING EXPLORATION WITH ROLLOUT INTERVENTION

Inspired by self-refinement techniques (Weng et al., 2023; Madaan et al., 2023), we also explored
whether real-time intervention from a verifier could improve the agent’s exploration through forcing
self-reflections. We deployed an LLM-based verifier to continuously monitor the agent’s action, as
visualized in Fig. 6.

Task
Context

Agent
Action

Environment
Output

 force reflections

N

× N turns until conversation is finished

LLM Judge
Interrupt?

Y

Figure 6: Rollout intervention with an LLM-based
judge. When major deviations from expected ground-
truth tool calls are detected, the judge will force the
agent to think and act again.

By comparing the agent’s actions to
ground-truth tool calls, the verifier can
identify suboptimal reasoning as it hap-
pens. When a mistake is detected, it
triggers a self-correction mechanism by
interrupting the generation and adding a
corrective prompt to the reasoning trace:
“Wait, my previous reasoning might be
wrong, let me try again.” This prompts
the model to find a better approach, with
a limit of two interventions per reasoning
step to avoid infinite loops. This real-time guidance is a more dynamic version of our turn-level
reward system, which only provides feedback after a task is complete. However, this strategy ul-
timately backfired, destabilizing training without improving performance. As shown in Fig. 7, the
rapid decrease in entropy loss, paired with a significant rise in KL divergence, suggests the model
began to overfit the unusual data patterns created by the interruptions. We attribute this failure to
the disruption of the model’s natural thought process, which led to confusion and worse results than
even the standard baseline.

0 50 100 150 200 250

0.4

0.5

0.6

0.7

0.8

Av
g.

 T
er

m
in

al
 R

ew
ar

d

0 50 100 150 200 250

0.12

0.14

0.16

0.18

E
nt

ro
py

 L
os

s

0 50 100 150 200 250

0.0

0.1

0.2

0.3

0.4

0.5

0.6
K

L
Lo

ss
GRPO
GRPO+Intervention

Training Step

Figure 7: Training time average reward, entropy loss, and KL loss comparison between GRPO and
GRPO+Intervention.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G MORE EXPERIMENTAL RESULTS

Agent Model Retail Airline
pass ˆ1 pass ˆ2 pass ˆ3 pass ˆ4 pass ˆ1 pass ˆ2 pass ˆ3 pass ˆ4

Baseline Models
GPT-4.1 58.3 53.0 49.6 46.1 48 34 26 24
xLAM-2-8B 41.7 30.4 25.2 22.6 32 24 18 16
Qwen3-8B 40.0 27.8 22.6 18.3 30 20 18 18

Qwen3-8B + RL
GRPO (n=4) 47.0 35.7 27.8 24.3 28 12 6 2
RLOO (n=4) 44.3 29.6 26.1 21.7 34 18 14 10
PPO (n=4) 47.0 33.9 28.7 22.6 30 20 12 10
PPO (n=1) 47.0 26.1 18.3 15.7 30 16 8 6

Table 6: Results of tool-use agents trained with different RL algorithms on τ -BENCH with output
check.

Agent Model Avg. Wait Resp. Len passˆ1 passˆ2 passˆ3 passˆ4

Qwen3-8B 14.6 228 40.0 27.8 22.6 18.3

GRPO 11.7 204 47.0 35.7 27.8 24.3
+Turn-Level Reward 14.0 210 52.2 39.1 29.6 26.1
+MATH + Turn-Level Reward 15.8 236 53.9 40.0 34.8 30.4

PPO 8.4 162 47.0 33.9 28.7 22.6
+MATH + Turn-Level Reward 11.5 204 52.2 39.1 34.8 30.4

Table 7: Performance comparison of different training strategies on the τ -BENCH RETAIL domain
(with output check). We report average wait time, response length, and passˆk metrics. Best results
are highlighted in bold.

H THE USE OF LARGE LANGUAGE MODELS

We also acknowledge the use of AI assistants (e.g., GitHub Copilot, ChatGPT) to aid in the research
process. These tools were utilized for tasks such as code implementation, debugging, and refining
the manuscript. All core conceptual contributions, experimental design, and final analyses were
conducted and validated by the authors to ensure scientific rigor and originality, in adherence with
academic integrity standards.

21

	Introduction
	Preliminary
	Sandbox Environment for Tool-Use Agents
	RL Preliminaries
	Benchmark RL Algorithms

	Method
	Mixed-Task Training
	Turn-level Adjudicated Reinforcement Learning (TARL)

	Experiments
	Text-based Agent Training
	Multimodal Agent Setup
	Multimodal Training Results

	Analysis
	Reward Granularity for PPO-based Training
	Strategies for Incentivizing Exploration

	Related Work
	Conclusion
	Sandbox Environment
	RL Algorithms
	Training Data
	Training Details
	LLM Judge Setup for Turn-Level Evaluation
	Forcing Exploration with Rollout Intervention
	More Experimental Results
	The Use of Large Language Models

