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ABSTRACT

The representation of urban trajectory data plays a critical role in effectively ana-
lyzing spatial movement patterns. Despite considerable progress, the challenge of
designing trajectory representations that can capture diverse and complementary
information remains an open research problem. Existing methods struggle in incor-
porating trajectory fine-grained details and high-level summary in a single model,
limiting their ability to attend to both long-term dependencies while preserving
local nuances. To address this, we propose HiT-JEPA (Hierarchical Interactions
of Trajectory Semantics via a Joint Embedding Predictive Architecture), a uni-
fied framework for learning multi-scale urban trajectory representations across
semantic abstraction levels. HiT-JEPA adopts a three-layer hierarchy that progres-
sively captures point-level fine-grained details, intermediate patterns, and high-level
trajectory abstractions, enabling the model to integrate both local dynamics and
global semantics in one coherent structure. Extensive experiments on multiple
real-world datasets for trajectory similarity computation show that HiT-JEPA’s
hierarchical design yields richer, multi-scale representations. Code is available at:
https://anonymous.4open.science/r/HiT-JEPA.

1 INTRODUCTION

With the widespread use of location-aware devices, trajectory data is now produced at an unprece-
dented rate Zhu et al. (2024); Qian et al. (2024). Effectively representing trajectory data powers
critical applications ranging from urban computing applications, such as travel time estimation Chen
et al. (2022b; 2021); Lin et al. (2023), trajectory clustering Fang et al. (2021); Yao et al. (2024); Bai
et al. (2020), and traffic analysis Yu et al. (2017). Trajectories exhibit multi-scale attributes, ranging
from short-term local transitions (e.g., turns and stops) to long-term strategic pathways or routines,
whereas capturing both the fine-grained point-level details of individual trajectories and higher-level
semantic patterns of mobility behavior within a unified framework is challenging. This necessitates a
representation learning model that accommodates this complexity.

Early trajectory analysis methods (heuristic methods) Alt & Godau (1995); Chen & Ng (2004); Chen
et al. (2005); Yi et al. (1998) relied on handcrafted similarity measures and point-matching heuristics.
Recently, deep-learning-based approaches have been applied to learn low-dimensional trajectory
embeddings, alleviating the need for manual feature engineering Yang et al. (2024); Yao et al. (2019);
Yang et al. (2021). Self-supervised learning frameworks Li et al. (2018); Cao et al. (2021), especially
contrastive learning (as shown in Fig. 1, left), further advanced trajectory representation learning by
leveraging large unlabeled datasets Chang et al. (2023); Liu et al. (2022); Li et al. (2024a). However,
these deep learning models usually generate a single scale embedding of an entire trajectory and can-
not integrate different semantic levels, i.e., they often neglect fine-grained point-level information in
favor of broader trajectory-level features. On the other hand, most representation frameworks Chang
et al. (2023); Li et al. (2018) are restricted to a single form of trajectory data encoding and lack a mech-
anism to incorporate global context or higher-level information. Recent work Li et al. (2024b) (as
shown in Fig. 1, middle) explores alternative self-supervised paradigms that capture higher-level se-
mantic information without manual augmentation. Nevertheless, a flexible and semantically aware rep-
resentation architecture that unifies multiple levels of trajectory information remains an open question.
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Figure 1: Structural comparisons among Contrastive Learning, JEPA, and Hierarchical JEPA.
Sequence models Vaswani et al. (2017); Hochreiter & Schmidhuber (1997), such as recurrent neural
networks (RNNs) and Transformers, are a natural choice for trajectory representation due to their
ability to process temporally ordered data. However, they exhibit inherent limitations when repre-
senting hierarchical semantics of trajectory data. Specifically, these models often operate at a single
temporal granularity: they either overemphasize point-level nuances, making them susceptible to
noise, or focus too heavily on coarse trajectory-level summaries and thus oversimplify critical details.
This single-scale bias in sequential models prevents them from integrating complementary informa-
tion across abstraction levels and inhibits explicit semantic interactions between local (point-level),
intermediate (segment-level), and global (trajectory-level) representations, making it challenging for
sequence models to capture long-term dependencies while maintaining the detailed local nuances.
Besides, different from uniformly sampled time series data without spatial topology, trajectories are
more capricious due to their irregular, geometry-aware, and network-constrained characteristics.

A new framework is thus required to facilitate the model’s understanding of various levels of trajectory
representation information, to allow predictions to be grounded on more extensive, multi-dimensional
knowledge. In this paper, we propose HiT-JEPA (as shown in Fig. 1, right), a hierarchical framework
for urban trajectory representation learning, which is designed to address the gaps mentioned above
by integrating trajectory semantics across three levels of granularity. Its three-layer architecture
that explicitly captures (1) point-level details, modeling fine-grained spatial-temporal features of
consecutive points; (2) intermediate-level patterns, learning representations of local displacement
patterns that reflect mesoscopic movement structures; and (3) high-level abstractions, distilling
the overall semantic context as summarized moving behaviors of an entire trajectory. The model
unifies multiple information scales within a single representation framework through this hierarchy.
Moreover, HiT-JEPA enables interactions between adjacent levels to enrich and align the learned
trajectory embeddings across scales. By leveraging a joint embedding predictive architecture, the
framework learns to predict and align latent representations between these semantic levels, facilitating
semantic integration in a self-supervised manner. For clarity, we summarize our contributions as
follows:

• We propose HiT-JEPA, a novel hierarchical trajectory representation learning architecture
that encapsulates movement information across different semantic levels inside a cohesive
framework. HiT-JEPA is the first architecture to explicitly unify both fine-grained and
abstract trajectory patterns within a single model.

• HiT-JEPA introduces a joint embedding predictive architecture that unifies the entire tra-
jectory across multiple levels of abstraction, resulting in a flexible representation that can
seamlessly incorporate local trajectory nuances and global semantic context. By striking
a balance between coarse-to-fine trajectory representations by our proposed hierarchical
interaction module, we address the limitations of single-scale or single-view models.

• We conduct extensive experiments on real-world urban trajectory datasets spanning diverse
cities and movement patterns, demonstrating that HiT-JEPA’s semantically enriched, hierar-
chical embeddings exhibit comparative trajectory similarity search and remarkably superior
zero-shot performance across heterogeneous urban and maritime datasets.
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2 RELATED WORK

Urban Trajectory Representation Learning on Similarity Computation. Self-supervised learning
methods for trajectory similarity computation are proposed to cope with robust and generalizable
trajectory representation learning on large, unlabeled datasets. t2vec Li et al. (2018) divides spatial
regions into rectangular grids and applies Skip-gram Mikolov et al. (2013) models to convert grid cells
into word tokens, then leverages an encoder-decoder framework to learn trajectory representations.
TrajCL Chang et al. (2023) applies contrastive learning on multiple augmentation schemes with a dual-
feature attention module to learn both structural and spatial information in trajectories. CLEAR Li
et al. (2024a) proposes a ranked multi-positive contrastive learning method by ordering the similarities
of positive trajectories to the anchor trajectories. Recently, T-JEPA Li et al. (2024b) employs a Joint
Embedding Predictive Architecture that shifts learning from trajectory data into representation
space, establishing a novel self-supervised paradigm for trajectory representation learning. It is also
worth noting that robust trajectory representations are often the prerequisite for effective trajectory
clustering Yao et al. (2017); Wang et al. (2022); Fang et al. (2021), which focuses on uncovering
latent behavioral patterns by grouping trajectories with high semantic affinity. However, none of
the above methods manages to explicitly capture hierarchical trajectory information. We propose
HiT-JEPA to support coarse-to-fine, multi-scale trajectory abstraction extraction in a hierarchical
JEPA structure.

Hierarchical Self-supervised Learning (HSSL). Self-supervised learning methods have signif-
icantly advanced the capability to extract knowledge from massive amounts of unlabeled data.
Recent approaches emphasize multi-scale feature extraction to achieve a more comprehensive
understanding of complex data samples (e.g., lengthy texts or high-resolution images with
intricate details). In Computer Vision (CV), Chen et al. Chen et al. (2022a) stack three Vision
Transformers Dosovitskiy et al. (2020) variants (varying patch size configurations) to learn cell, patch,
and region representations of gigapixel whole-slide images in computational pathology. Kong et
al. Kong et al. (2023) design a hierarchical latent variable model incorporating Masked Autoencoders
(MAE) He et al. (2022) to encode and reconstruct multi-level image semantics. Xiao et al. Xiao
et al. (2022) split the hierarchical structure by video semantic levels and employ different learning
objectives to capture distinct semantic granularities. In Natural Language Processing (NLP), Zhang et
al. Zhang et al. (2019) develop HIBERT, leveraging BERT Devlin et al. (2019) to learn sentence-level
and document-level text representations for document summarization. Li et al. Li et al. (2022)
introduce HiCLRE, a hierarchical contrastive learning framework for distantly supervised relation
extraction, utilizing Multi-Granularity Recontextualization for cross-level representation interactions
to effectively reduce the influence of noisy data. In contrast to these methods, which partition inputs
into discrete fragments and directly propagate representations across levels, HiT-JEPA encodes the
entire trajectory at multiple abstraction levels by coupling adjacent-level attention weights from a
hierarchical JEPA to learn multi-scale urban trajectory representations.

3 METHODOLOGY

Compared to previous methods that only model trajectories at point-level, our primary goal in
designing HiT-JEPA is to bridge the gap between simultaneous modeling of local trajectory details
and global movement patterns by embedding explicit, cross-level trajectory abstractions into a JEPA
framework. To that end, as Fig. 2 illustrates, given a trajectory T , we apply three consecutive
convolutional layers followed by max pooling operations to produce point-level representation T (1),
intermediate-level semantics T (2) and high-level summary T (3), where higher layer representations
consist of coarser but semantically richer trajectory patterns. Trajectory abstraction at layer l is
learned by the corresponding JEPA layer JEPA(l) to capture multi-scale sequential dependencies.

Spatial region representation. Considering the continuous and high-precision nature of GPS
coordinates, we partition the continuous spatial regions into fixed cells. But different from previous
approaches Chang et al. (2023); Li et al. (2024b;a) that use grid cells, we employ Uber H31 to map
GPS points into hexagonal grids to select the grid cell resolutions adaptively according to the study
area size. Each hexagonal cell shares six equidistant neighbors, with all neighboring centers located
at the same distance from the cell’s center. Therefore, we structurally represent the spatial regions by

1https://h3geo.org/
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Figure 2: HiT-JEPA builds a three-level JEPA hierarchy to extract multi-scale trajectory seman-
tics: (1) Level 1 encodes fine-grained, local point-level features; (2) Level 2 abstracts mesoscopic
segment-level patterns; (3) Level 3 captures coarse, global route structures. Trajectory information is
propagated from top to bottom, consecutive levels via attention weights.

a graph G = (V,E) where each node vi ∈ V is a hexagon cell connecting to its neighboring cells
vj ∈ V by an undirected edge eij ∈ E. We pretrain the spatial node embeddings H of graph G using
node2vec Grover & Leskovec (2016), which produces an embedding set:

H =
{
hi ∈ Rd : vi ∈ V

}
, (1)

where each hi encodes the relative position of node vi. For a GPS location P = (lon, lat), we first
assign it to its grid cell index via:

δ : R2 → {1, . . . , |V |}, (2)

and then look up its embedding hδ(p) ∈ H.

Hierarchical trajectory abstractions. After obtaining the location embeddings, we construct trajec-
tory representations at multiple semantic levels, which are termed hierarchical trajectory abstractions.
Given a trajectory T with length n, we obtain its location embeddings and denote the input trajectory
as T = (hδ(t1), hδ(t2), . . . , hδ(tn)) ∈ (Rd)n. Then, we create its multi-level abstractions T (1), T (2),
T (3) by a set of convolutions with kernel size of 3 and stride of 2, and max pooling layers:

T (1) = LayerNorm(MaxPool1D(Conv1D(T ))) ∈ (Rd)n1 , n1 = n, (3)

T (2) = LayerNorm(MaxPool1D(Conv1D(T (1)))) ∈ (Rd)n2 , n2 =
⌊
n1

2

⌋
, (4)

T (3) = LayerNorm(MaxPool1D(Conv1D(T (2)))) ∈ (Rd)n3 , n3 =
⌊
n2

2

⌋
. (5)

where T (1) in layer 1 preserves the channel dimension d and sequence length n1 = n, T (2) in layer
2 keeps the channel dimension and halves the sequence length to n2 = n/2, and T (3) in layer 3 also
keeps the channel dimension and halves the sequence length to n3 = n/4. Higher-layer trajectory
abstractions contain aggregated, high-level trajectory semantic behaviors, while lower layers preserve
fine-grained, local dynamic details.

Target encoder branch. For the target encoder branch, at each level l ∈ {1, 2, 3} the target trajectory
representation is extracted by:

S(l) = E
(l)

θ̄
(T (l)) (6)

where E
(l)
θ is the target encoder at layer l. Similar to previous JEPA methods LeCun (2022); Assran

et al. (2023); Li et al. (2024b); Bardes et al. (2023), we randomly sample M times from target
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representation to create the targets, where S(l)(i) = {S(l)
j }j∈Mi

. Therefore, S(l)(i) is the i-th
sampled target and Mi is the i-th sampling mask starting from a random position. To ensure the
diversity of learning targets, we follow T-JEPA Li et al. (2024b) and introduce a set of masking
ratios r = {r1, r2, r3, r4, r5} where each ratio value specifies the fraction of the representation to
mask. At each sampling step, we uniformly draw one ratio from r. We also introduce a probability
p: with probability p, we apply successive masking, and with probability 1 − p, we scatter the
masks randomly. Successive masking encourages the encoder to learn both local and long-range
dependencies.

Context encoder branch. For the context encoder branch, we initially sample a trajectory context
C(l) from T (l) at level l by a mask CT at with sampling ratio pγ . Next, to prevent any information
leakage, we remove from C(l) all positions that overlap with the targets S(l) to obtain the context
input T ′(l). The context trajectory representation S′(l) at level l is extracted by:

S′(l) = E
(l)
θ (T ′(l)) (7)

where E
(l)
θ is the context encoder at level l. During inference, we use S′(1) from E

(1)
θ , enriched

by the full hierarchy of multi-scale abstractions, as the final output of trajectory representations for
similarity comparison or downstream fine-tuning.

Predictions. Once we have both context representations S′(l) and targets S(l) at level l, we apply
JEPA predictor D(l)

ϕ on S′(l) to approximate S(l) with the help of the mask tokens z(l):

S̃′(l)(i) = D
(l)
ϕ (CONCAT(S′(l),PE(i)⊕ (z(l)))) (8)

where CONCATE(·) denotes concatenation and PE(i) refers to the positional embedding after
applying the target sampling mask Mi. ⊕ is element-wise addition between these masked positional
embeddings and the mask tokens. Then, we concatenate the mask tokens with positional information
with the context representations to guide the predictor in approximating the missing components in
the targets at the representation space.

Hierarchical interactions. By applying JEPA independently at each level, we learn trajectory
representations at multiple scales of abstractions. However, the encoders at each level remain siloed
and retain only their scale-specific information without leveraging insights from other layers. To
enable hierarchical and multi-scale feature extraction, we propagate high-level information down to
the next lower abstraction layer.

We adopt Transformer encoders Vaswani et al. (2017) for both context and target encoders as their
self-attention module is proven highly effective in sequential modeling. Therefore, for both branches,
we inject attention weights to the next lower level as a “top-down spotlight” where the high-level
encoder casts its attention maps to the lower layer, lighting up where the lower-level encoder should
attend. For clarity, we illustrate the process using the target encoder branch as an example. At level
l, given the query and key matrices Q(l) and K(l) of an input trajectory abstraction T (l), we first
retrieve the attention coefficient by:

dk =
d(l)

H
,Q

(l)
i = Q(l) W

Q,(l)
i , K

(l)
i = K(l) W

K,(l)
i , A

(l)
i = softmax

(Q(l)
i K

(l)⊤
i√

dk

)
, i = 1, . . . , H (9)

where H is the number of attention heads, WQ,(l)
i and W

K,(l)
i are head-i projections, d(l) is the

channel dimension, and A
(l)
i is the attention coefficient of the head-i. The multi-head attention

coefficient A(l) are concatenated and projected by:

A(l) = Concat
(
A

(l)
1 , . . . , A

(l)
H

)
WO,(l) (10)

where WO,(l) is the multi-head projection. To construct the output representation S(l) at level l, we
simply apply the value matrix V (l) by:

S(l) = A(l) V (l) (11)

Since the dimension of A(l) is:

A(l) ∈ [0, 1]n
(l)×n(l)

, n(l) =
⌊n(l−1)

2

⌋
(12)
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where n(l) is the length of trajectory abstractions at level l, which is half of n(l−1) at level l − 1 due
to Eq. 4 and Eq. 5. We need to upsample the attention coefficients:

Ã(l) = Interpolatebilinear
(
A(l)

)
∈ [0, 1]n

(l−1)×n(l−1)

(13)

where we adopt bilinear interpolation to upsample the attention weights at level l. To propagate the
upsampled Ã(l) to the next lower level, We refer to Chang et al. (2023) to calculate a weighted sum
between Ã(l) and lower level attention coefficient A(l−1). Therefore, we obtain the updated attention
coefficient A(l−1) at level l − 1 by:

A(l−1) = (σA(l−1) + (1− σ)Ã(l)) (14)

where σ is a learnable scale factor weighting the importance of A(l). Attention coefficient A′(l) from
the context encoders follows an identical procedure. This way, the coarse, global insights guide the
fine-grained feature extraction in the next layer to focus on the most semantically important trajectory
segments. This alignment sharpens local feature extraction so it stays consistent with the overall
context.

Loss function. After obtaining the predicted representation S̃′(l)(i) and the i-th target representation
S(l)(i) at level l, we apply SmoothL1 to calculate the loss L(l) between them:

L(l) =
1

M B

M∑
i=1

B∑
b=1

N(l)∑
n=1

d(l)∑
k=1

SmoothL1
(
S̃′(l)(i)b,n,k, S

(l)(i)b,n,k

)
︸ ︷︷ ︸

L(l)
JEPA

+VarLoss
(
z
(l)
tar

)
+VarLoss

(
z
(l)
ctx

)
+CovLoss

(
z
(l)
tar

)
+CovLoss

(
z
(l)
ctx

)︸ ︷︷ ︸
L(l)

VICReg

.

(15)

where we sum over the channel and sequence length dimension d(l) and N (l), and average over the
batch and number of target masks dimension B and M to obtain JEPA loss L(l)

JEPA. We also add
VICReg Bardes et al. (2021) to prevent representation collapse, yielding more discriminative repre-
sentations. We obtain the regularization term L(l)

VICReg by summing up the variance loss VarLoss(·)
and covariance loss CovLoss(·) of both expanded context representation z

(l)
ctx = MLP(S′(l)) and

expanded target representation z
(l)
tar = MLP(S(l)) via a single-layer MLP. Afterwards, L(l)

VICReg is
added to the loss L(l) at level l.

For level l ∈ {1, 2, 3}, we calculate a weighted sum to obtain the final loss L:

L = λ ∗ L(1) + µ ∗ L(2) + ν ∗ L(3) (16)

where λ, µ and ν are the scale factors for loss at each level.

4 EXPERIMENTS
We conduct experiments on three real-world urban GPS trajectory datasets: Porto 2, T-Drive Yuan et al.
(2011; 2010) and GeoLife Zheng et al. (2008; 2009; 2010), two FourSquare datasets: FourSquare-
TKY and FourSquare-NYC Yang et al. (2014), and one vessel trajectory dataset: Vessel Tracking
Data Australia, which we call “AIS(AU)” 3. The dataset details can be found in Appendices A.1.
We compare HiT-JEPA with the three most recent self-supervised methods on trajectory similarity
computation: TrajCL Chang et al. (2023), CLEAR Li et al. (2024a) and T-JEPA Li et al. (2024b).
The details of these methods are listed in Appendices A.2

4.1 QUANTITATIVE EVALUATION

In this section, we evaluate HiT-JEPA and compare it to baselines in three experiments: most similar
trajectory search, robustness of learn representations, and generalization with downstream fine-tuning.
We combine the first two experiments as “Self-similarity”.

2https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
3https://www.operations.amsa.gov.au/spatial/DataServices/DigitalData
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4.1.1 SELF-SIMILARITY

Following similar experimental settings of previous work Chang et al. (2023); Li et al. (2024b), we
construct a Query trajectory set Q and a database trajectory D for the testing set given a trajectory.
Q has 1,000 trajectories for Porto, T-Drive, and GeoLife, 600 for TKY, 140 for NYC, and 1400 for
AIS(AU). And D has 100,000 trajectories for Porto, 10,000 for T-Drive and Geolife, 3000 for TKY,
700 for NYC, and 7000 for AIS(AU). Detailed experimental settings can be found in Appendices A.4.

Table 1: Mean-rank comparison of methods across meta ratios R1∼R5. For each meta ratio, we
report the mean ranks under varying DB size |D|, downsampling rate ρs, and distortion rate ρd. Bold
value are the lowest mean ranks and underlined values are the second lowest.

Dataset Method R1 R2 R3 R4 R5

|D| ρs ρd |D| ρs ρd |D| ρs ρd |D| ρs ρd |D| ρs ρd

Porto

TrajCL 1.004 1.047 1.017 1.007 1.170 1.029 1.008 1.905 1.036 1.011 6.529 1.060 1.014 68.557 1.022
TrjSR 3.240 12.553 12.509 5.321 16.945 15.401 7.073 37.150 15.901 8.740 65.413 28.914 10.192 149.950 32.730
CLEAR 3.235 7.796 4.250 4.012 13.323 4.442 4.088 22.814 4.284 4.137 44.865 4.438 4.204 123.921 4.399
T-JEPA 1.029 1.455 1.097 1.048 2.304 1.084 1.053 4.413 1.115 1.061 9.599 1.110 1.074 23.900 1.123
HiT-JEPA 1.026 1.369 1.074 1.043 2.624 1.077 1.048 5.541 1.085 1.058 13.773 1.093 1.065 28.806 1.119

T-Drive

TrajCL 1.111 1.203 1.267 1.128 1.348 3.320 1.146 1.668 1.355 1.177 1.936 1.513 1.201 3.356 1.179
TrjSR 110.726 674.16 581.776 223.841 795.331 572.944 356.941 870.73 566.816 475.872 960.404 545.278 592.146 1033.404 566.696
CLEAR 1.047 1.305 1.111 1.062 1.484 1.110 1.077 1.964 1.171 1.088 3.497 1.152 1.104 3.902 1.172
T-JEPA 1.032 1.088 1.054 1.034 1.225 1.061 1.036 1.617 1.069 1.045 3.226 1.067 1.049 4.115 1.078
HiT-JEPA 1.040 1.057 1.035 1.040 1.085 1.029 1.040 1.172 1.039 1.040 1.389 1.033 1.040 2.222 1.034

GeoLife

TrajCL 1.130 1.440 7.973 1.168 1.435 19.266 1.195 1.720 12.397 1.234 1.616 10.560 1.256 2.675 11.035
TrjSR 6.765 8.332 7.747 7.393 8.594 7.942 7.661 8.688 7.648 7.767 8.566 8.534 8.350 8.770 9.460
CLEAR 1.110 1.196 1.212 1.124 1.318 1.211 1.144 1.818 1.189 1.145 2.237 1.239 1.155 3.712 1.333
T-JEPA 1.019 1.052 1.047 1.034 1.030 1.093 1.036 1.103 1.101 1.040 1.150 1.154 1.047 1.218 1.197
HiT-JEPA 1.033 1.061 1.170 1.033 1.111 1.370 1.033 1.247 1.357 1.033 1.377 1.509 1.033 1.573 1.511

TKY
(zero-shot)

TrajCL 17.590 66.963 75.397 32.377 67.835 79.228 46.958 116.677 59.222 62.145 170.460 69.642 78.722 211.487 65.258
TrjSR 8.673 31.770 27.505 17.120 37.070 30.758 22.310 48.985 30.923 26.820 64.380 33.113 29.318 84.302 34.043
CLEAR 119.561 591.345 583.863 242.493 626.075 591.460 349.132 646.160 587.138 456.525 662.553 588.212 577.238 709.903 591.107
T-JEPA 1.948 3.060 3.245 2.272 4.227 3.165 2.617 7.975 3.313 2.913 18.173 3.202 3.275 19.135 3.127
HiT-JEPA 1.508 2.490 2.060 1.707 2.962 2.002 1.835 4.985 2.067 1.930 10.268 2.045 2.057 14.755 1.988

NYC
(zero-shot)

TrajCL 4.336 16.886 15.093 6.457 18.857 16.971 9.129 22.007 16.443 12.350 37.579 11.236 15.071 36.650 6.543
TrjSR 3.929 5.457 6.307 4.793 5.171 7.950 5.457 8.350 6.679 5.821 12.757 7.443 6.007 14.329 7.907
CLEAR 19.693 68.843 68.057 32.171 74.964 68.321 43.214 75.121 69.221 55.507 79.514 70.507 67.207 84.421 65.914
T-JEPA 1.450 1.950 1.714 1.514 3.050 1.736 1.571 2.400 1.679 1.636 2.457 1.771 1.714 5.850 1.807
HiT-JEPA 1.343 1.743 1.493 1.364 2.143 1.500 1.414 1.636 1.500 1.457 2.407 1.550 1.500 3.343 1.471

AIS(AU)
(zero-shot)

TrajCL 9.057 37.721 37.866 18.771 9.878 37.879 26.538 41.068 37.862 33.004 45.352 37.911 37.866 48.651 38.399
TrjSR 692.000 3658.400 3649.450 1390.364 3661.421 3649.407 2136.271 3675.043 3649.150 2942.586 3714.564 3649.086 2892.264 3700.221 3649.371
CLEAR 38.042 188.171 184.600 73.164 187.914 184.579 112.371 192.571 184.600 150.050 191.629 184.871 184.600 198.843 184.593
T-JEPA 2.156 5.661 4.753 3.176 6.849 4.753 3.889 9.486 4.755 4.364 13.055 4.758 4.754 16.986 4.749
HiT-JEPA 1.483 4.119 2.759 1.954 6.357 2.759 2.311 10.233 2.758 2.579 15.180 2.757 2.758 20.267 2.755

Table 1 shows the mean ranks of all methods. HiT-JEPA achieves the overall lowest mean ranks
across five of the six datasets. For urban GPS datasets, Porto, T-Drive, and GeoLife, we have the
lowest ranks in the T-Drive dataset. For example, the mean ranks of DB size |D| across 20%∼100%
and distortion rates ρd across 0.1∼0.5 remains very steady (1.040∼1.041 and 1.031∼1.038). This
dataset has taxi trajectories with much longer irregular sampling intervals (3.1 minutes on average).
By leveraging a hierarchical structure to capture the global and high-level trajectory abstractions,
HiT-JEPA learns features that remain invariant against noise and sparse sampling, resulting in more
robust and accurate representations against low and irregularly sampled trajectories with limited
training samples. We achieve comparative mean ranks (only 2.8% higher) with T-JEPA on GeoLife,
and overall, the second best on Porto. This is because Porto trajectories inhabit an especially dense
spatial region, so TrajCL can exploit auxiliary cues such as movement speed and orientations to tease
apart nearly identical paths. However, relying on these features undermines the generalization ability
in lower-quality trajectories (e.g., in T-Drive) and knowledge transfer into other cities.

Next, we evaluate zero-shot performance on TKY, NYC, and AIS(AU). HiT-JEPA consistently
achieves the lowest mean ranks across all database sizes, downsampling, and distortion rates. Both
TKY and NYC consist of highly sparse and coarse check-in sequences, lacking trajectory waypoints,
which challenge the summarization ability of the models. Benefiting from the hierarchical structure,
HiT-JEPA first summarizes the mobility patterns at a coarse level, then refines the check-in details
at finer levels. Crucially, the summarization knowledge is transferred from dense urban trajectories in
Porto, demonstrating that HiT-JEPA learns more generalizable representations than TrajCL in Porto
with more essential spatiotemporal information captured in trajectories. Even on AIS(AU) with trajec-
tories across the ocean-wide scales, HiT-JEPA maintains overall the lowest mean ranks, demonstrating
its ability to handle multiple forms of trajectories that spread over various regional scales. We find that
even though CLEAR outperforms TrajCL on T-Drive and GeoLife, it exhibits weak generalization
in zero-shot experiments on TKY, NYC, and AIS(AU). TrjSR showed the weakest overall perfor-
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Table 2: Comparisons with fine-tuning 2-layer MLP decoder. Bold value are the lowest mean ranks
and underlined values are the second lowest.

Dataset Method EDR LCSS Hausdorff Fréchet AverageHR@5↑ HR@20↑ R5@20↑ HR@5↑ HR@20↑ R5@20↑ HR@5↑ HR@20↑ R5@20↑ HR@5↑ HR@20↑ R5@20↑

Porto

TrajCL 0.137 0.179 0.301 0.329 0.508 0.663 0.456 0.574 0.803 0.412 0.526 0.734 0.468
TrjSR 0.085 0.083 0.157 0.162 0.197 0.292 0.166 0.192 0.304 0.157 0.173 0.288 0.188
CLEAR 0.078 0.075 0.142 0.164 0.198 0.293 0.152 0.131 0.232 0.192 0.165 0.316 0.178
T-JEPA 0.154 0.194 0.336 0.365 0.551 0.713 0.525 0.633 0.869 0.433 0.565 0.771 0.509
HiT-JEPA 0.163 0.197 0.337 0.369 0.558 0.720 0.466 0.599 0.835 0.450 0.587 0.810 0.508

T-Drive

TrajCL 0.094 0.131 0.191 0.159 0.289 0.366 0.173 0.256 0.356 0.138 0.187 0.274 0.218
TrjSR 0.076 0.068 0.114 0.076 0.080 0.118 0.095 0.090 0.143 0.098 0.094 0.145 0.100
CLEAR 0.093 0.084 0.143 0.126 0.166 0.216 0.142 0.158 0.243 0.135 0.170 0.283 0.163
T-JEPA 0.094 0.147 0.215 0.205 0.366 0.469 0.158 0.229 0.329 0.125 0.159 0.249 0.229
HiT-JEPA 0.112 0.170 0.260 0.221 0.384 0.493 0.222 0.316 0.456 0.158 0.219 0.325 0.278

GeoLife

TrajCL 0.193 0.363 0.512 0.232 0.484 0.584 0.479 0.536 0.745 0.398 0.463 0.708 0.475
TrjSR 0.138 0.246 0.443 0.229 0.330 0.479 0.492 0.439 0.692 0.383 0.362 0.614 0.404
CLEAR 0.175 0.164 0.311 0.224 0.224 0.342 0.347 0.308 0.499 0.397 0.273 0.539 0.320
T-JEPA 0.195 0.383 0.527 0.242 0.515 0.586 0.606 0.656 0.857 0.488 0.406 0.731 0.516
HiT-JEPA 0.183 0.414 0.564 0.250 0.525 0.609 0.643 0.700 0.885 0.467 0.555 0.842 0.553

mance across all datasets. This is because image-based representations have difficulty distinguishing
fine-grained trajectory differences, a challenge exacerbated by lower data quality (e.g., T-Drive).

4.1.2 DOWNSTREAM FINE-TUNING

To evaluate the generalization ability of HiT-JPEA, we conduct downstream fine-tuning on its learned
representations. Specifically, we retrieve and freeze the encoder of HiT-JEPA and other baselines,
concatenated with a 2-layer MLP decoder, then train the decoder to approximate the computed
trajectory similarities by heuristic approaches. This setting is first proposed by TrajCL Chang et al.
(2023), then followed by T-JEPA Li et al. (2024b), to quantitatively assess whether the learned
representations can generalize to approach the computational processes underlying each heuristic
measure. In real applications, fine-tuned models can act as efficient, “fast” approximations of
traditional heuristic measures, alleviating their quadratic time-complexity bottleneck. We report hit
ratios HR@5 and HR@20 to evaluate the correct matches between top-5 predictions and each of the
top-5 and top-20 ground truths. We also report the recall R5@20 to evaluate the correct matches of
top-5 ground truths from predicted top-20 predictions. We approximate all model representations to
4 heuristic measures: EDR, LCSS, Hausdorff and Discret Fréchet. We do not include TrjSR here as
its results are proven to be less competitive in Chang et al. (2023).
From Table 2, we can observe that HiT-JEPA achieves the highest overall performance. In the column
“Average”, we calculate the average of all reported results for each model on each dataset. HiT-JEPA
outperforms T-JEPA on T-Drive and GeoLife for 12.6% and 6.4%, with only 3.7% lower on Porto.
For results on T-Drive, HiT-JEPA consistently outperforms the T-JEPA across all measures, especially
in Hausdorff and Discret Fréchet measures, where we achieve relative average improvements of
14.7% and 19.9%, respectively. For GeoLife, even though we have some cases that achieve slightly
lower results than T-JEPA in EDR and Hausdorff, we are overall 6.1% and 1.8% higher on average in
these two measures. For Porto, although our results are 3.7% lower than T-JEPA on average across
all measures, we have successfully made minor improvements in LCSS measure. Visualizations of
predictions can be found in Fig. 12 and Fig. 13 in Appendices A.8.

4.2 VISUALIZATIONS OF HIT-JEPA EMBEDDINGS.

HiT-JEPA encodes and predicts trajectory information only in the representation space, making
it more difficult than generative models such as MAE He et al. (2022) to evaluate the learned
representation quality at the data level. To assess and gauge the validity of the representations of
HiT-JEPA, we project the encoded S′(1) from E

(1)
θ (on full trajectories) and predicted S̃′(1) from

D
(1)
ϕ (on masked trajectories) back onto the hexagonal grid at their GPS coordinates for visual

comparisons.

First, we freeze the context encoders and predictors across all levels in a pre-trained HiT-JEPA. Then
we encode and predict the masked trajectory representations to simulate the training process, and
encode the full trajectory representations to simulate the inference process. Next, we concatenate and
tune a 2-layer MLP for each of the representations to decode to the hexagonal grid cell embeddings
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to which they belong. We denote the decoded predicted masked trajectory representations as S1 and
the decoded encoded full trajectory representations as S2. Finally, for each trajectory position, we
search for the k most similar embeddings in the spatial region embedding set H and retrieve their
hexagonal cell IDs. We choose k = 3 in our visualizations.

(a) Predicted masked points (b) Encoded full trajectory

Figure 3: Visualizations of decoded learned trajectory representations by HiT-JEPA on hexagonal
cells: (a) blue points are sampled trajectory points, gray points are masked trajectory points labeled
with ”target”, and orange hexagons are projected predictions. (b) blue points are full trajectory points,
green hexagons are projected encoded representations.

Origin attention

Stay point/pattern 
change attention

Destination intent 
attention

Figure 4: A case study of hierarchical semantic information captured by HiT-JEPA. (Top-Left) The
raw attention map visualizes the absolute attention weights, showing the overall intensity distribution.
(Top-Mid) The deviation heatmap by displaying areas of active focus (red) versus suppression (blue)
relative to the mean attention value. (Top-Right) The statistical profiles quantify the peak attention
intensity at each time step. Bottom The corresponding physical trajectory with index labeled every
10 steps, where colored boxes spatially ground the salient attention regions identified in the top row.

Fig. 3a shows the comparisons between decoded cells (orange hexagons) and masked points (gray
points) labeled as “targets”. The decoded locations lie in close proximity to their corresponding
masked targets, confirming that the model effectively learns accurate representations for masked
points during training. Fig. 3b overlays the decoded cells green hexagons) on each blue trajectory
point, demonstrating that the model can encode each point with even greater accuracy with access to
the full trajectory during inference.

4.3 INTERPRETATION OF HIERARCHICAL ATTENTION WEIGHTS.
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Figure 5: Averaged attention weight visualizations at each JEPA layer. Left to right: A(3) to A(1).

From Fig. 4, by corroborating the raw attention map, deviation heatmap, and statistical profiles, we
identify three distinct semantic phases localized within the bottom-left, top-right, and middle regions
around the 20th trajectory point. These phases correspond to the peak intensity of attention allocated
to specific trajectory segments: the origin anchoring (red boxes), the local attention peak triggered
by a pattern change (orange boxes), and the destination intent (green boxes). This spatial-semantic
alignment confirms that HiT-JEPA successfully learns the critical semantic waypoints from raw GPS
tracks and verifies the interpretability of its learned representations. By comparing the raw attention
weights across 3 JEPA layers in Fig. 5, it is obvious to discern a coarse-to-fine attention evolution,
where the A3 layer highly summarizes the trajectory origin-destination patterns and is fused into lower
layers with more smoothed local details. This validates that HiT-JEPA learns consistent trajectory
semantics through the hierarchical interactions while preserving distinct layer-specific granularity.
We further visualize the attention map for each head in Appendices A.6.
4.4 ABLATION STUDY

Table 3: Ablation Study of HiT-JEPA on Porto

Varying DB Size |D|
Model 20% 40% 60% 80% 100%

HiT emb 106.568 209.746 297.919 394.111 497.064
HiT single layer 1.031 1.061 1.066 1.077 1.091
HiT no attn 1.026 1.049 1.054 1.062 1.069
HiT rect 1.032 1.062 1.069 1.080 1.093
HiT-JEPA 1.026 1.043 1.048 1.058 1.065

Downsampling Rate ρs

Model 0.1 0.2 0.3 0.4 0.5

HiT emb 569.322 706.831 1004.246 2047.699 2171.331
HiT single layer 1.378 2.659 5.626 14.123 26.875
HiT no attn 1.405 2.867 5.761 17.143 27.324
HiT rect 1.508 3.054 7.735 18.912 36.768
HiT-JEPA 1.369 2.624 5.541 13.773 28.806

Distortion Rate ρd

Model 0.1 0.2 0.3 0.4 0.5

HiT emb 502.259 503.876 506.333 507.738 507.082
HiT single layer 1.088 1.099 1.120 1.100 1.137
HiT no attn 1.079 1.095 1.105 1.093 1.120
HiT rect 1.095 1.111 1.123 1.122 1.124
HiT-JEPA 1.074 1.077 1.085 1.093 1.119

We study the effect of removing the key designs in
HiT-JEPA. We compare HiT-JEPA with 4 vari-
ants: 1) HiT emb which replaces the hierar-
chical interaction method from attention upsam-
pling to directly concatenate the upsampled en-
coder embeddings between S′(l) and S′(l−1). 2)
HiT single layer where we only level l = 1 to
train and predict. 3) HiT no attn with no hierar-
chical interactions between each pair of successive
layers. 4) HiT rect with spatial location tokeniza-
tion method changed to rectangular grid cells. We
train these variants and conduct self-similarity ex-
periments on Porto.

Table 3 shows the comparisons between HiT-JEPA
and its variants. The performance drops without
any key designs, especially for HiT emb, as di-
rectly concatenating the embedding from the previ-
ous layers causes representation collapse. Results
from the other two variants demonstrate that in our
model design, even though each layer of JEPAl

can learn individually, the hierarchical interactions
bind different levels into a cohesive multi-scale structure.

5 CONCLUSION
In summary, HiT-JEPA introduces a unified three-layer hierarchy that captures point-level fine-
grained details, intermediate trajectory patterns, and high-level trajectory semantics within a single
self-supervised framework. By leveraging a Hierarchical JEPA, it enables a more powerful trajectory
feature extraction in the representation space and produces cohesive multi-granular embeddings.
Extensive evaluations on diverse urban and maritime trajectory datasets show that HiT-JEPA
outperforms single-scale self-supervised methods in trajectory similarity computation, especially
zero-shot generalization and downstream fine-tuning. These results validate its effectiveness and
robustness for real-world, large-scale trajectory modeling.
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6 ETHICS STATEMENT

We claim that we adhere to the ICLR Code of Ethics. All the datasets used in the manuscript are
publicly available with no user information revealed. HiT-JEPA encodes the trajectory location
information in hexagonal cell tokens, where exact GPS traces are blurred. And such tokens are the
only input to our model, thereby preventing any leakage of precise location data. The code for all
baselines is publicly available and used under their respective licenses.

7 REPRODUCIBILITY STATEMENT

We provide an anonymous GitHub link https://anonymous.4open.science/r/
HiT-JEPA to prove that our work is reproducible. This repository contains the code for the
HiT-JEPA method implementation in Section 3 and any data processing and evaluation files in
Section 4. The details, such as dataset statistics A.1, implementation configurations A.3, and further
experiment details A.4, can also be found in the repository.
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Lei Chen, M Tamer Özsu, and Vincent Oria. Robust and fast similarity search for moving object
trajectories. In Proceedings of the 2005 ACM SIGMOD international conference on Management
of data, pp. 491–502, 2005.

Richard J Chen, Chengkuan Chen, Yicong Li, Tiffany Y Chen, Andrew D Trister, Rahul G Krishnan,
and Faisal Mahmood. Scaling vision transformers to gigapixel images via hierarchical self-
supervised learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 16144–16155, 2022a.

Yile Chen, Xiucheng Li, Gao Cong, Zhifeng Bao, Cheng Long, Yiding Liu, Arun Kumar Chandran,
and Richard Ellison. Robust road network representation learning: When traffic patterns meet
traveling semantics. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, pp. 211–220, 2021.

11

https://anonymous.4open.science/r/HiT-JEPA
https://anonymous.4open.science/r/HiT-JEPA


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zebin Chen, Xiaolin Xiao, Yue-Jiao Gong, Jun Fang, Nan Ma, Hua Chai, and Zhiguang Cao.
Interpreting trajectories from multiple views: A hierarchical self-attention network for estimating
the time of arrival. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 2771–2779, 2022b.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Ziquan Fang, Yuntao Du, Lu Chen, Yujia Hu, Yunjun Gao, and Gang Chen. E 2 dtc: An end to end
deep trajectory clustering framework via self-training. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE), pp. 696–707. IEEE, 2021.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Lingjing Kong, Martin Q Ma, Guangyi Chen, Eric P Xing, Yuejie Chi, Louis-Philippe Morency,
and Kun Zhang. Understanding masked autoencoders via hierarchical latent variable models.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7918–7928, 2023.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open
Review, 62(1):1–62, 2022.

Dongyang Li, Taolin Zhang, Nan Hu, Chengyu Wang, and Xiaofeng He. Hiclre: A hierarchi-
cal contrastive learning framework for distantly supervised relation extraction. arXiv preprint
arXiv:2202.13352, 2022.

Jialiang Li, Tiantian Liu, and Hua Lu. Clear: Ranked multi-positive contrastive representation
learning for robust trajectory similarity computation. In 2024 25th IEEE International Conference
on Mobile Data Management (MDM), pp. 21–30. IEEE, 2024a.

Lihuan Li, Hao Xue, Yang Song, and Flora Salim. T-jepa: A joint-embedding predictive architecture
for trajectory similarity computation. In Proceedings of the 32nd ACM International Conference
on Advances in Geographic Information Systems, pp. 569–572, 2024b.

Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S Jensen, and Wei Wei. Deep representation
learning for trajectory similarity computation. In 2018 IEEE 34th international conference on data
engineering (ICDE), pp. 617–628. IEEE, 2018.

Yan Lin, Huaiyu Wan, Shengnan Guo, Jilin Hu, Christian S Jensen, and Youfang Lin. Pre-training
general trajectory embeddings with maximum multi-view entropy coding. IEEE Transactions on
Knowledge and Data Engineering, 36(12):9037–9050, 2023.

Xiang Liu, Xiaoying Tan, Yuchun Guo, Yishuai Chen, and Zhe Zhang. Cstrm: Contrastive self-
supervised trajectory representation model for trajectory similarity computation. Computer Com-
munications, 185:159–167, 2022.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tangwen Qian, Junhe Li, Yile Chen, Gao Cong, Tao Sun, Fei Wang, and Yongjun Xu. Context-
enhanced multi-view trajectory representation learning: Bridging the gap through self-supervised
models. arXiv preprint arXiv:2410.13196, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Chao Wang, Fangzheng Lyu, Sensen Wu, Yuanyuan Wang, Liuchang Xu, Feng Zhang, Shaowen
Wang, Yongheng Wang, and Zhenhong Du. A deep trajectory clustering method based on sequence-
to-sequence autoencoder model. Transactions in GIS, 26(4):1801–1820, 2022.

Fanyi Xiao, Kaustav Kundu, Joseph Tighe, and Davide Modolo. Hierarchical self-supervised
representation learning for movie understanding. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9727–9736, 2022.

Chuang Yang, Renhe Jiang, Xiaohang Xu, Chuan Xiao, and Kaoru Sezaki. Simformer: Single-layer
vanilla transformer can learn free-space trajectory similarity. arXiv preprint arXiv:2410.14629,
2024.

Dingqi Yang, Daqing Zhang, Vincent W Zheng, and Zhiyong Yu. Modeling user activity preference
by leveraging user spatial temporal characteristics in lbsns. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 45(1):129–142, 2014.

Peilun Yang, Hanchen Wang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. T3s: Effective
representation learning for trajectory similarity computation. In 2021 IEEE 37th international
conference on data engineering (ICDE), pp. 2183–2188. IEEE, 2021.

Di Yao, Chao Zhang, Zhihua Zhu, Jianhui Huang, and Jingping Bi. Trajectory clustering via deep
representation learning. In 2017 international joint conference on neural networks (IJCNN), pp.
3880–3887. IEEE, 2017.

Di Yao, Gao Cong, Chao Zhang, and Jingping Bi. Computing trajectory similarity in linear time: A
generic seed-guided neural metric learning approach. In 2019 IEEE 35th international conference
on data engineering (ICDE), pp. 1358–1369. IEEE, 2019.

Di Yao, Jin Wang, Wenjie Chen, Fangda Guo, Peng Han, and Jingping Bi. Deep dirichlet process mix-
ture model for non-parametric trajectory clustering. In 2024 IEEE 40th International Conference
on Data Engineering (ICDE), pp. 4449–4462. IEEE, 2024.

Byoung-Kee Yi, Hosagrahar V Jagadish, and Christos Faloutsos. Efficient retrieval of similar time
sequences under time warping. In Proceedings 14th International Conference on Data Engineering,
pp. 201–208. IEEE, 1998.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun, and Yan Huang.
T-drive: driving directions based on taxi trajectories. In Proceedings of the 18th SIGSPATIAL
International conference on advances in geographic information systems, pp. 99–108, 2010.

Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowledge from the physical
world. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 316–324, 2011.

Xingxing Zhang, Furu Wei, and Ming Zhou. Hibert: Document level pre-training of hierarchical
bidirectional transformers for document summarization. arXiv preprint arXiv:1905.06566, 2019.

Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Understanding mobility based
on gps data. In Proceedings of the 10th international conference on Ubiquitous computing, pp.
312–321, 2008.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting locations and travel
sequences from gps trajectories. In Proceedings of the 18th international conference on World
wide web, pp. 791–800, 2009.

Yu Zheng, Xing Xie, Wei-Ying Ma, et al. Geolife: A collaborative social networking service among
user, location and trajectory. IEEE Data Eng. Bull., 33(2):32–39, 2010.

Yuanshao Zhu, James Jianqiao Yu, Xiangyu Zhao, Xuetao Wei, and Yuxuan Liang. Unitraj: Learning
a universal trajectory foundation model from billion-scale worldwide traces. CoRR, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DATASETS

Here we list the details of the datasets:

• Porto includes 1.7 million trajectories from 442 taxis in Porto, Portugal. The dataset was
collected from July 2013 to June 2014.

• T-Drive contains trajectories of 10,357 taxis in Beijing, China from Feb. 2 to Feb. 8, 2008.
The average sampling interval is 3.1 minutes.

• GeoLife contains trajectories of 182 users in Beijing, China from April 2007 to August
2012. There are 17,6212 trajectories in total with most of them sampled in 1–5 seconds.

• Foursquare-TKY is collected for 11 months from April 2012 to February 2013 in Tokyo,
Japan, with 573,703 check-ins in total.

• Foursquare-NYC is collected for 11 months from April 2012 to February 2013 in New
York City, USA, with 227,428 check-ins in total.

• AIS(AU) comprises vessel traffic records collected by the Craft Tracking System (CTS) of
Australia. In this paper, we use vessel trajectories in February 2025.

Table 4: Statistics of Datasets after preprocessing.

Data type Dataset #points #trajectories

Urban trajectories
Porto 65,913,828 1,372,725
T-Drive 5,579,067 101,842
GeoLife 8,987,488 50,693

Check-in sequences TKY 106,480 3,048
NYC 28,858 734

Vessel trajectories AIS(AU) 485,424 7,095

We first keep trajectories in urban areas with the number of points ranging from 20 to 200, where
the statistics of the datasets after preprocessing are shown in Table 4. We use 200,000 trajectories
for Porto, 70,000 for T-Drive, and 35000 for GeoLife as training sets. Each dataset has 10% of
data used for validation. As there are many fewer trajectories in TKY, NYC, and AIS(AU), we use
all trajectories in these datasets for testing. For the testing set, we select 100,000 trajectories for
Porto, 10,000 for T-Drive and GeoLife, 3000 for TKY, 700 for NYC, and 7000 for AIS(AU). For
the downstream fine-tuning task, we select 10,000 trajectories for Porto and T-Drive, and 5000 for
GeoLife, where the selected trajectories are split by 7:1:2 for training, validation, and testing. We
train Hit-JEPA and all baselines from scratch for Porto, T-Drive, and GeoLife datasets. Then, we
load the pre-trained weights from Porto and conduct zero-shot self-similarity experiments on each of
the TKY, NYC, and AIS(AU) to evaluate the generalization ability of all models.

A.2 BASELINES

We compare HiT-JEPA with four most recent self-supervised free space trajectory similarity
computation methods: TrajCL Chang et al. (2023), TrjSR Cao et al. (2021), CLEAR Li et al. (2024a),
and T-JEPA Li et al. (2024b). TrajCL is a contrastive learning method that adopts a dual-feature
attention module to capture the trajectory details, which has achieved impactful performance on
trajectory similarity computation in multiple datasets and experimental settings. TrjSR is a generative
model that converts trajectories into gray-scale images. This method reconstructs the high-resolution
trajectory image from the low-resolution image by leveraging single-image super-resolution to
learn better spatial trajectory representations. CLEAR improves the contrastive learning process
by ranking the positive trajectory samples based on their similarities to anchor samples, capturing
detailed differences from similar trajectories. T-JEPA is the most recent method utilizing Joint
Embedding Predictive Architecture to encode and predict trajectory information in the representation
space, which effectively captures necessary trajectory information. We run these two models from
their open-source code repositories with default parameters.
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A.3 IMPLEMENTATION DETAILS

We use Adam Optimizer for training and optimizing the model parameters across all levels, except
for the target encoders. The target encoder at each level l updates its parameters via the exponential
moving average of the parameters of the context encoder at the same level. The maximum number
of training epochs is 20, and the learning rate is 0.0001, decaying by half every 5 epochs. The
embedding dimension d is 256, and the batch size is 64. We apply 1-layer Transformer Encoders for
both context and target encoders at each level, with the number of attention heads set to 8 and hidden
layer dimension to 1024. We use a 1-layer Transformer Decoder as the predictor at each level l with
the number of attention heads set to 8. We use learnable positional encoding for all the encoders and
decoders. We set the resampling masking ratio to be selected from r = {10%, 15%, 20%, 25%, 30%}
and the number of sampled targets M to 4 for each trajectory at each model level l. The successive
sampling probability p is set to 50%, and the initial context sampling ratio pγ is set to range from
85% to 100%. The scale factors for the final loss are λ = 0.05, µ = 0.15, and ν = 0.8. We use a
hexagonal cell resolution of 11 for Porto, resolution 10 for T-Drive, GeoLife, TKY, and NYC, and
resolution 4 for AIS(AU). All experiments are conducted on servers with Nvidia A5000 GPUs, 24GB
of memory, and 250GB of RAM.

A.4 EXPERIMENTAL SETTINGS

A.4.1 SELF-SIMILARITY

For each query trajectory q ∈ Q, we create two sub-trajectories qa = {p1, p3, p5, . . .} containing
the odd-indexed points and qb = {p2, p4, p6, . . .} even-indexed points of q. We separate them by
putting qa into the query set Q and putting qb into the database D, with the rest of the trajectories
in D randomly filled from the testing set. Each qa and qb pair exhibits similar overall patterns in
terms of shape, length, and sampling rate. We apply HiT-JEPA context-encoders to both query and
database trajectories, compute pairwise similarities, and sort the results in descending order. Next,
we report the mean rank of each qb when retrieved by its corresponding query qa: ideally, the true
match appears at rank one. We choose {20%, 40%.60%, 80%, 100%} of the total database size |D|
for evaluation. To further evaluate the robustness of learned trajectory representations, we also apply
down-sampling and distortion on Q and D. Specifically, we randomly mask points (with start and
end points kept) with down-sampling probability ρs and shift the point coordinates with distortion
probability ρd. Both ρs and ρd represent the number of points to be down-sampled or distorted,
ranging from {0.1, 0.2, 0.3, 0.4, 0.5}.

For the convenience of comparing results under these settings together, we denote meta ratio
Ri = {|D|i, ρsi, ρdi} and compare the mean rank of all models at each Ri on each dataset, smaller
values are better.

A.5 HYPERPARAMETER ANALYSIS

We analyze the impact of two sets of hyperparameters with the implementation and experimental
settings in the Appendices section A.3 and A.4.

Number of attention layers at each abstraction level. We change the number of Transformer
encoder layers for each level to 2 and 3, then compare them with the default setting (1 layer) for
self-similarity search with varying |D|, ρs and ρd on Porto. From Fig. 6, we can find that with only 1
attention layer, we can achieve the lowest mean ranks for all settings. This is due to higher chances
of overfitting with more attention layers.

(a) DB size (20%∼100%) (b) Downsampling rate (0.1∼0.5) (c) Distortion rate(0.1∼0.5)

Figure 6: Effect of different numbers of attention layers at each abstraction level.
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(a) DB size (20%∼100%) (b) Downsampling rate (0.1∼0.5) (c) Distortion rate(0.1∼0.5)

Figure 7: Effect of different batch sizes.
Weighting coefficient for the multi-level loss L. The values of the loss weighting coefficients λ, µ,
and ν are carefully tuned. In Table 5, 6, and 7, we compare our selected coefficients with other 3 sets
of parameters in a wide range on the Porto dataset. From the tables, we can see that HiT-JEPA is
robust against various loss combinations. Even though the loss coefficients with λ, µ, and ν equal to
0.33, 0.33, and 0.33 perform better on the downsampling experiment, our selected combination with
λ = 0.05, µ = 0.15, and ν = 0.8 still learns overall the most accurate, stable, and consistent results
across all experimental settings.

λ µ ν 20% 40% 60% 80% 100%

0.1 0.2 0.7 1.026 1.050 1.056 1.067 1.079
0.33 0.33 0.33 1.036 1.072 1.080 1.102 1.120
0.6 0.3 0.1 1.035 1.063 1.066 1.079 1.099
0.05 0.15 0.8 1.026 1.043 1.048 1.058 1.065

Table 5: Loss weighting coefficients for varying DB sizes |D|.

λ µ ν 0.1 0.2 0.3 0.4 0.5

0.1 0.2 0.7 1.334 2.844 5.868 13.864 25.009
0.33 0.33 0.33 1.393 2.664 4.616 11.210 20.730
0.6 0.3 0.1 1.449 2.763 5.629 14.104 23.985
0.05 0.15 0.8 1.369 2.624 5.541 13.773 28.806

Table 6: Loss weighting coefficients for varying downsampling rates ρs.

A.6 ATTENTION HEADS VISUALIZATIONS

The attention weights in Fig. 8 demonstrate functional specialization among attention heads. For
example, Head 3 focuses on local kinematics, while Heads 2, 4, 6, and 8 act as global anchors that
attend to long-term trajectory semantics. This diversity ensures a comprehensive representation that
integrates fine-grained motion dynamics with high-level trip intent.

A.7 TRAINING EFFICIENCY

We compare HiT-JEPA with baselines in terms of training time per iteration in Table 8. While TrajCL
and CLEAR achieve lower training time due to their lightweight structures, HiT-JEPA remains highly
competitive at rank 3 among 5 methods. Moreover, by incorporating convolution-based trajectory
semantics aggregation and learning on multi-level trajectory abstractions with 1-layer Transformer
backbones, HiT-JEPA remains efficient while achieving generalizable and robust performance.

A.8 VISUALIZATIONS

We visualize two sets of comparisons of 5-NN queries after fine-tuning by Hausdorff measure
in Fig. 12b and Fig. 13b, where each row shows the rank 1 to 5 matched trajectories from left to
right, given red query trajectories. The rightmost figures are the indices of the query and matched
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λ µ ν 0.1 0.2 0.3 0.4 0.5

0.1 0.2 0.7 1.081 1.109 1.095 1.115 1.135
0.33 0.33 0.33 1.130 1.138 1.133 1.152 1.196
0.6 0.3 0.1 1.092 1.107 1.133 1.117 1.191
0.05 0.15 0.8 1.074 1.077 1.085 1.093 1.119

Table 7: Loss weighting coefficients for varying distortion rates ρd.

Table 8: Comparison of training efficiency (seconds per iteration).

Method Time (s)

TrajCL 0.196
TrjSR 0.476
CLEAR 0.292
T-JEPA 1.022
HiT-JEPA 0.341

trajectories. We can find that the improvements of HiT-JEPA can find more similar trajectories on
ranks 4 and 5, resulting in a higher average HR@5 than T-JEPA.

Figure 8: Visualization of each of the 8 attention heads at the JEPA layer A(1).

A.9 REPRESENTATION VISUALIZATION VIA CLUSTERING

We cluster and visualize the embedding of 3000 random trajectories in Porto in Fig. 9. We use a
K-Means Clusterer with a number of cluster centers K = 6 acquired from the Elbow Method. We
can find that, although the boundaries between clusters are soft without a specific self-clustering
design in recent clustering methods Yao et al. (2017); Fang et al. (2021), distinct semantic groups are
clearly visually discernible. This demonstrates the strong potential of HiT-JEPA, which is trained on
regression loss, to be fine-tuned to generalize to multiple trajectory tasks.
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Figure 9: t-SNE Visualization of Trajectories.

A.10 LIMITATIONS AND FUTURE WORK

By upsampling and fusing attention weights across adjacent layers, HiT-JEPA demonstrates one form
of hierarchical interaction common to Transformer-based JEPA models. Therefore, one extension
could be developing a unified hierarchical interaction framework for all kinds of learning architectures
(e.g., CNNs, Mambas, LSTMs, etc.). This will enable each architecture to plug in its customized
hierarchy module while preserving a consistent multi-level learning paradigm.

Figure 10: Visualization of predicted masked trajectories.
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Figure 11: Visualization of encoded full trajectories.

(a) T-JEPA Visualizations

(b) HiT-JEPA Visualizations

Figure 12: Comparisons of 5-NN search between T-JEPA and HiT-JEPA on Porto after being fine-
tuned by Hausdorff measure.

(a) T-JEPA Visualizations

(b) HiT-JEPA Visualizations

Figure 13: Comparisons of 5-NN search between T-JEPA and HiT-JEPA on GeoLife after being
fine-tuned by Hausdorff measure.
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