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ABSTRACT

The representation of urban trajectory data plays a critical role in effectively ana-
lyzing spatial movement patterns. Despite considerable progress, the challenge of
designing trajectory representations that can capture diverse and complementary
information remains an open research problem. Existing methods struggle in incor-
porating trajectory fine-grained details and high-level summary in a single model,
limiting their ability to attend to both long-term dependencies while preserving
local nuances. To address this, we propose HiT-JEPA (Hierarchical Interactions
of Trajectory Semantics via a Joint Embedding Predictive Architecture), a uni-
fied framework for learning multi-scale urban trajectory representations across
semantic abstraction levels. HiIT-JEPA adopts a three-layer hierarchy that progres-
sively captures point-level fine-grained details, intermediate patterns, and high-level
trajectory abstractions, enabling the model to integrate both local dynamics and
global semantics in one coherent structure. Extensive experiments on multiple
real-world datasets for trajectory similarity computation show that HiT-JEPA’s
hierarchical design yields richer, multi-scale representations. Code is available at:
https://anonymous.4open.science/r/HiT-JEPA.

1 INTRODUCTION

With the widespread use of location-aware devices, trajectory data is now produced at an unprece-
dented rate Zhu et al.| (2024); (Qian et al|(2024). Effectively representing trajectory data powers
critical applications ranging from urban computing applications, such as travel time estimation Chen
et al.| (2022b; [2021)); [Lin et al.| (2023), trajectory clustering |Fang et al.|(2021);|Yao et al.|(2024)); Bai
et al.| (2020), and traffic analysis|Yu et al.|(2017)). Trajectories exhibit multi-scale attributes, ranging
from short-term local transitions (e.g., turns and stops) to long-term strategic pathways or routines,
whereas capturing both the fine-grained point-level details of individual trajectories and higher-level
semantic patterns of mobility behavior within a unified framework is challenging. This necessitates a
representation learning model that accommodates this complexity.

Early trajectory analysis methods (heuristic methods) |Alt & Godau| (1995));|Chen & Ng| (2004); [Chen
et al.| (2005); Y1 et al.| (1998)) relied on handcrafted similarity measures and point-matching heuristics.
Recently, deep-learning-based approaches have been applied to learn low-dimensional trajectory
embeddings, alleviating the need for manual feature engineering |Yang et al.[(2024); Yao et al.| (2019);
Yang et al|(2021). Self-supervised learning frameworks |Li et al.| (2018)); (Cao et al.| (2021), especially
contrastive learning (as shown in Fig. |1} left), further advanced trajectory representation learning by
leveraging large unlabeled datasets |Chang et al.| (2023); Liu et al.| (2022); ILi et al.| (2024a). However,
these deep learning models usually generate a single scale embedding of an entire trajectory and can-
not integrate different semantic levels, i.e., they often neglect fine-grained point-level information in
favor of broader trajectory-level features. On the other hand, most representation frameworks|Chang
et al.[(2023));|Li et al.|(2018)) are restricted to a single form of trajectory data encoding and lack a mech-
anism to incorporate global context or higher-level information. Recent work L1 et al.| (2024b) (as
shown in Fig. [I] middle) explores alternative self-supervised paradigms that capture higher-level se-
mantic information without manual augmentation. Nevertheless, a flexible and semantically aware rep-
resentation architecture that unifies multiple levels of trajectory information remains an open question.
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Figure 1: Structural comparisons among Contrastive Learning, JEPA, and Hierarchical JEPA.

Sequence models |Vaswani et al.|(2017); [Hochreiter & Schmidhuber|(1997), such as recurrent neural
networks (RNNs) and Transformers, are a natural choice for trajectory representation due to their
ability to process temporally ordered data. However, they exhibit inherent limitations when repre-
senting hierarchical semantics of trajectory data. Specifically, these models often operate at a single
temporal granularity: they either overemphasize point-level nuances, making them susceptible to
noise, or focus too heavily on coarse trajectory-level summaries and thus oversimplify critical details.
This single-scale bias in sequential models prevents them from integrating complementary informa-
tion across abstraction levels and inhibits explicit semantic interactions between local (point-level),
intermediate (segment-level), and global (trajectory-level) representations, making it challenging for
sequence models to capture long-term dependencies while maintaining the detailed local nuances.
Besides, different from uniformly sampled time series data without spatial topology, trajectories are
more capricious due to their irregular, geometry-aware, and network-constrained characteristics.

A new framework is thus required to facilitate the model’s understanding of various levels of trajectory
representation information, to allow predictions to be grounded on more extensive, multi-dimensional
knowledge. In this paper, we propose HiT-JEPA (as shown in Fig.[T] right), a hierarchical framework
for urban trajectory representation learning, which is designed to address the gaps mentioned above
by integrating trajectory semantics across three levels of granularity. Its three-layer architecture
that explicitly captures (1) point-level details, modeling fine-grained spatial-temporal features of
consecutive points; (2) intermediate-level patterns, learning representations of local displacement
patterns that reflect mesoscopic movement structures; and (3) high-level abstractions, distilling
the overall semantic context as summarized moving behaviors of an entire trajectory. The model
unifies multiple information scales within a single representation framework through this hierarchy.
Moreover, HiT-JEPA enables interactions between adjacent levels to enrich and align the learned
trajectory embeddings across scales. By leveraging a joint embedding predictive architecture, the
framework learns to predict and align latent representations between these semantic levels, facilitating
semantic integration in a self-supervised manner. For clarity, we summarize our contributions as
follows:

* We propose HiT-JEPA, a novel hierarchical trajectory representation learning architecture
that encapsulates movement information across different semantic levels inside a cohesive
framework. HiT-JEPA is the first architecture to explicitly unify both fine-grained and
abstract trajectory patterns within a single model.

» HiT-JEPA introduces a joint embedding predictive architecture that unifies the entire tra-
jectory across multiple levels of abstraction, resulting in a flexible representation that can
seamlessly incorporate local trajectory nuances and global semantic context. By striking
a balance between coarse-to-fine trajectory representations by our proposed hierarchical
interaction module, we address the limitations of single-scale or single-view models.

* We conduct extensive experiments on real-world urban trajectory datasets spanning diverse
cities and movement patterns, demonstrating that HiT-JEPA’s semantically enriched, hierar-
chical embeddings exhibit comparative trajectory similarity search and remarkably superior
zero-shot performance across heterogeneous urban and maritime datasets.
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2 RELATED WORK

Urban Trajectory Representation Learning on Similarity Computation. Self-supervised learning
methods for trajectory similarity computation are proposed to cope with robust and generalizable
trajectory representation learning on large, unlabeled datasets. t2vec|Li et al.| (2018) divides spatial
regions into rectangular grids and applies Skip-gram |Mikolov et al.|(2013) models to convert grid cells
into word tokens, then leverages an encoder-decoder framework to learn trajectory representations.
TrajCL|Chang et al.|(2023)) applies contrastive learning on multiple augmentation schemes with a dual-
feature attention module to learn both structural and spatial information in trajectories. CLEAR [Li
et al.|(2024a) proposes a ranked multi-positive contrastive learning method by ordering the similarities
of positive trajectories to the anchor trajectories. Recently, T-JEPA [Li et al.| (2024b) employs a Joint
Embedding Predictive Architecture that shifts learning from trajectory data into representation
space, establishing a novel self-supervised paradigm for trajectory representation learning. It is also
worth noting that robust trajectory representations are often the prerequisite for effective trajectory
clustering Yao et al.| (2017); [Wang et al.| (2022)); Fang et al.| (2021}), which focuses on uncovering
latent behavioral patterns by grouping trajectories with high semantic affinity. However, none of
the above methods manages to explicitly capture hierarchical trajectory information. We propose
HiT-JEPA to support coarse-to-fine, multi-scale trajectory abstraction extraction in a hierarchical
JEPA structure.

Hierarchical Self-supervised Learning (HSSL). Self-supervised learning methods have signif-
icantly advanced the capability to extract knowledge from massive amounts of unlabeled data.
Recent approaches emphasize multi-scale feature extraction to achieve a more comprehensive
understanding of complex data samples (e.g., lengthy texts or high-resolution images with
intricate details). In Computer Vision (CV), Chen et al. |Chen et al.| (2022a) stack three Vision
Transformers Dosovitskiy et al.| (2020) variants (varying patch size configurations) to learn cell, patch,
and region representations of gigapixel whole-slide images in computational pathology. Kong et
al. Kong et al.|(2023)) design a hierarchical latent variable model incorporating Masked Autoencoders
(MAE) He et al.[(2022) to encode and reconstruct multi-level image semantics. Xiao et al. |Xiao
et al.|(2022) split the hierarchical structure by video semantic levels and employ different learning
objectives to capture distinct semantic granularities. In Natural Language Processing (NLP), Zhang et
al. Zhang et al.|(2019) develop HIBERT, leveraging BERT |Devlin et al.|(2019) to learn sentence-level
and document-level text representations for document summarization. Li et al. [Li et al.| (2022)
introduce HiCLRE, a hierarchical contrastive learning framework for distantly supervised relation
extraction, utilizing Multi-Granularity Recontextualization for cross-level representation interactions
to effectively reduce the influence of noisy data. In contrast to these methods, which partition inputs
into discrete fragments and directly propagate representations across levels, HiIT-JEPA encodes the
entire trajectory at multiple abstraction levels by coupling adjacent-level attention weights from a
hierarchical JEPA to learn multi-scale urban trajectory representations.

3 METHODOLOGY

Compared to previous methods that only model trajectories at point-level, our primary goal in
designing HiT-JEPA is to bridge the gap between simultaneous modeling of local trajectory details
and global movement patterns by embedding explicit, cross-level trajectory abstractions into a JEPA
framework. To that end, as Fig. [2]illustrates, given a trajectory 7', we apply three consecutive
convolutional layers followed by max pooling operations to produce point-level representation 7°(1),
intermediate-level semantics 7®) and high-level summary 7°(®), where higher layer representations
consist of coarser but semantically richer trajectory patterns. Trajectory abstraction at layer [ is

learned by the corresponding JEPA layer J EPAWY o capture multi-scale sequential dependencies.

Spatial region representation. Considering the continuous and high-precision nature of GPS
coordinates, we partition the continuous spatial regions into fixed cells. But different from previous
approaches (Chang et al.[(2023)); |Li et al.|(2024bja)) that use grid cells, we employ Uber H3'|to map
GPS points into hexagonal grids to select the grid cell resolutions adaptively according to the study
area size. Each hexagonal cell shares six equidistant neighbors, with all neighboring centers located
at the same distance from the cell’s center. Therefore, we structurally represent the spatial regions by

'https://h3geo.org/
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Figure 2: HiT-JEPA builds a three-level JEPA hierarchy to extract multi-scale trajectory seman-
tics: (1) Level 1 encodes fine-grained, local point-level features; (2) Level 2 abstracts mesoscopic
segment-level patterns; (3) Level 3 captures coarse, global route structures. Trajectory information is
propagated from top to bottom, consecutive levels via attention weights.

a graph G = (V, E') where each node v; € V is a hexagon cell connecting to its neighboring cells
v; € V by an undirected edge e;; € E. We pretrain the spatial node embeddings H of graph G using
node2vec |Grover & Leskovec|(2016)), which produces an embedding set:

H={h eR:v, €V}, e))

where each h; encodes the relative position of node v;. For a GPS location P = (lon, lat), we first
assign it to its grid cell index via:

§: R — {1,...,|V]}, 2)
and then look up its embedding hs(,) € H.
Hierarchical trajectory abstractions. After obtaining the location embeddings, we construct trajec-
tory representations at multiple semantic levels, which are termed hierarchical trajectory abstractions.
Given a trajectory 7" with length n, we obtain its location embeddings and denote the input trajectory
as T = (hs(uy)s s(ta)s - - - > Ps(r,)) € (RY)™. Then, we create its multi-level abstractions 7'}, T2,
T®) by a set of convolutions with kernel size of 3 and stride of 2, and max pooling layers:

T = LayerNorm(MaxPool1D(ConviD(T))) € (R)™, n; =n, 3)
T = LayerNorm(MaxPool1D(ConviD(T™M))) e (R)"2, ny = L%} 4)
T®) = LayerNorm(MaxPool1D(ConviD(T®))) € (RY) "™, ny = {%J %)

where T1) in layer 1 preserves the channel dimension d and sequence length n; = n, T in layer
2 keeps the channel dimension and halves the sequence length to ng = n/2, and T®) in layer 3 also
keeps the channel dimension and halves the sequence length to ng = n/4. Higher-layer trajectory
abstractions contain aggregated, high-level trajectory semantic behaviors, while lower layers preserve
fine-grained, local dynamic details.

Target encoder branch. For the target encoder branch, at each level [ € {1, 2, 3} the target trajectory
representation is extracted by:
l
SO — Eé—)(T(l)) (6)
where E(Sl) is the target encoder at layer [. Similar to previous JEPA methods|LeCun| (2022)); |Assran
et al.| (2023); L1 et al.| (2024b); Bardes et al.| (2023), we randomly sample M times from target
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representation to create the targets, where S (i) = {S’j(-l)}je M, Therefore, S()(4) is the i-th
sampled target and M is the i-th sampling mask starting from a random position. To ensure the
diversity of learning targets, we follow T-JEPA [Li et al.| (2024b) and introduce a set of masking
ratios r = {ry, 79,73, 74, 75} Where each ratio value specifies the fraction of the representation to
mask. At each sampling step, we uniformly draw one ratio from r. We also introduce a probability
p: with probability p, we apply successive masking, and with probability 1 — p, we scatter the
masks randomly. Successive masking encourages the encoder to learn both local and long-range
dependencies.

Context encoder branch. For the context encoder branch, we initially sample a trajectory context
C® from TW at level [ by a mask C at with sampling ratio p~- Next, to prevent any information
leakage, we remove from C') all positions that overlap with the targets S() to obtain the context
input 7" ) The context trajectory representation S’ @ at level [ is extracted by:

S/(l) _ Eél) (T/(l)) @)

where Eé(,l) is the context encoder at level . During inference, we use S’ ) from E (1), enriched
by the full hierarchy of multi-scale abstractions, as the final output of trajectory representations for
similarity comparison or downstream fine-tuning.

Predictions. Once we have both context representations S’ @ and targets S() at level I, we apply
JEPA predictor Dg) on 'Y 1o approximate SV with the help of the mask tokens z(!):

5" (i) = DY (CONCAT(S""  PE() @ (=1))) ®)

where CONCATE(-) denotes concatenation and PE(4) refers to the positional embedding after
applying the target sampling mask M,. @ is element-wise addition between these masked positional
embeddings and the mask tokens. Then, we concatenate the mask tokens with positional information
with the context representations to guide the predictor in approximating the missing components in
the targets at the representation space.

Hierarchical interactions. By applying JEPA independently at each level, we learn trajectory
representations at multiple scales of abstractions. However, the encoders at each level remain siloed
and retain only their scale-specific information without leveraging insights from other layers. To
enable hierarchical and multi-scale feature extraction, we propagate high-level information down to
the next lower abstraction layer.

We adopt Transformer encoders |Vaswani et al.| (2017) for both context and target encoders as their
self-attention module is proven highly effective in sequential modeling. Therefore, for both branches,
we inject attention weights to the next lower level as a “top-down spotlight” where the high-level
encoder casts its attention maps to the lower layer, lighting up where the lower-level encoder should
attend. For clarity, we illustrate the process using the target encoder branch as an example. At level

1, given the query and key matrices Q") and K of an input trajectory abstraction T, we first
retrieve the attention coefficient by:

AV 0 o0 @ ) _ ) g 40 QUENTY
di = S, Q) = QU WAV, K = kO w0, Al —softmax<T), i=1,....,H (9
where H is the number of attention heads, WiQ’(l) and WiK’(l) are head-i projections, d® is the
channel dimension, and Agl) is the attention coefficient of the head-:. The multi-head attention
coefficient A(Y) are concatenated and projected by:

AD = Concat (AP, ..., AWy wo-® (10)

where W () is the multi-head projection. To construct the output representation S at level I, we
simply apply the value matrix V) by:

SO — AO O (11)
Since the dimension of A® is:

(1-1)
AW 0,1 O = V’TJ (12)
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where n(!) is the length of trajectory abstractions at level I, which is half of n(*~1) at level | — 1 due
to Eq.[dand Eq.[5] We need to upsample the attention coefficients:

AD = Tnterpolateyjjien (AV) € [0,1]™" 7 (13)
where we adopt bilinear interpolation to upsample the attention weights at level [. To propagate the
upsampled A® to the next lower level, We refer to Chang et al.[(2023) to calculate a weighted sum

between A and lower level attention coefficient AU—1). Therefore, we obtain the updated attention
coefficient AU—1) at level [ — 1 by:

AD = (A 4 (1 - 6)AD) (14)

where o is a learnable scale factor weighting the importance of A(). Attention coefficient A’ @ from

the context encoders follows an identical procedure. This way, the coarse, global insights guide the
fine-grained feature extraction in the next layer to focus on the most semantically important trajectory
segments. This alignment sharpens local feature extraction so it stays consistent with the overall
context.

Loss function. After obtaining the predicted representation g () and the i-th target representation
S®(4) at level I, we apply SmoothL1 to calculate the loss £ between them:

M B NO g1

,C(l) = — Z Z SmOOthLl (Sw(l) (i)b,n,m S(l) (i)b,n,k)
k=1

i=1 b=1 n=1k=

JEPA (15)

+ VarLoss (zt(;)r) + VarLoss(z{1.) + CovLoss(zL.) + CovLoss(z{)) .

L:g/lI)CReg
where we sum over the channel and sequence length dimension d¥) and NV, and average over the

batch and number of target masks dimension B and M to obtain JEPA loss ES%P A~ We also add
VICReg Bardes et al.|(2021) to prevent representation collapse, yielding more discriminative repre-

sentations. We obtain the regularization term Eg%CReg by summing up the variance loss VarLoss(-)

and covariance loss CovLoss(-) of both expanded context representation zﬁ& = MLP(S’ (l)) and

0 — MLP(S®) via a single-layer MLP. Afterwards, Eg%CReg is

expanded target representation z; .

added to the loss £ at level [.
For level [ € {1,2,3}, we calculate a weighted sum to obtain the final loss L:
L=XAxLD 4 s« L 4 psrB (16)

where A, i1 and v are the scale factors for loss at each level.

4 EXPERIMENTS

We conduct experiments on three real-world urban GPS trajectory datasets: Portoﬂ T-Drive|Yuan et al.
(20115 [2010) and GeoLife Zheng et al.| (2008} 20095 2010), two FourSquare datasets: FourSquare-
TKY and FourSquare-NYC |Yang et al. (2014), and one vessel trajectory dataset: Vessel Tracking
Data Australia, which we call “AIS(AU)” [’} The dataset details can be found in Appendices
We compare HiT-JEPA with the three most recent self-supervised methods on trajectory similarity
computation: TrajCL |Chang et al. (2023), CLEAR [Li et al.| (2024a)) and T-JEPA |Li et al.| (2024b)).
The details of these methods are listed in Appendices

4.1 QUANTITATIVE EVALUATION

In this section, we evaluate HiT-JEPA and compare it to baselines in three experiments: most similar
trajectory search, robustness of learn representations, and generalization with downstream fine-tuning.
‘We combine the first two experiments as “Self-similarity”.

Zhttps://www.kaggle.com/c/pkdd- 15-predict-taxi-service-trajectory-i/data
3https://www.operations.amsa.gov.au/spatial/DataServices/DigitalData
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4.1.1 SELF-SIMILARITY

Following similar experimental settings of previous work |Chang et al.[(2023)); L1 et al.[{(2024b), we
construct a Query trajectory set () and a database trajectory D for the testing set given a trajectory.
@ has 1,000 trajectories for Porto, T-Drive, and GeoLife, 600 for TKY, 140 for NYC, and 1400 for
AIS(AU). And D has 100,000 trajectories for Porto, 10,000 for T-Drive and Geolife, 3000 for TKY,
700 for NYC, and 7000 for AIS(AU). Detailed experimental settings can be found in Appendices[A.4]

Table 1: Mean-rank comparison of methods across meta ratios R;~Rs5. For each meta ratio, we
report the mean ranks under varying DB size | D|, downsampling rate p, and distortion rate py. Bold
value are the lowest mean ranks and underlined values are the second lowest.

Dataset | Method Ry Ry R3 | Ry | Rs
| |D| ps Pd |D| ps Pd |D]| s pa__| 1DI ps pa__| D] ps Pd
TrajCL 1.004 1.047 1.017 1.007 1.170 1.029 1.008 1.905 1.036 1.011 6.529 1.060 1.014 68.557 1.022
TrjSR 3.240 12.553 12.509 5321 16.945 15.401 7.073 37.150 15.901 8.740 65.413 28914 10.192 149.950 32.730
Porto CLEAR | 3235 7796 4250 4012 13323 4442 4088 22814 4284 4137 44865 4438 4204 123921 4399
T-JEPA 1.029 1.455 1.097 1.048 2304 1.084 1.053 4413 1.115 1.061 9.599 1.110 1.074 23.900 1.123
HIiT-JEPA | 1026 1369 1074 | 1043 2624 1077 | L048 5541 1085 | 1058 13773 1.093 | 1065 28806  L119
TrajCL 1.111 1.203 1.267 1.128 1.348 3.320 1.146 1.668 1.355 1.177 1.936 1.513 1.201 3.356 1.179
TrSR 110726 674.16 581776 | 223.841 795331 572944 | 356941  870.73  566.816 | 475.872 960404 545278 | 592.146 1033.404 566.696
T-Drive CLEAR 1.047 1.305 1111 1.062 1.484 1.110 1.077 1.964 1.171 1.088 3.497 1.152 1.104 3.902 1.172
T-JEPA 1032 1088 1054 1.034 1.225 1.061 1036 1617 1069 | 1045 3226 1067 | 1049 4115 1078
HiT-JEPA | 1.040 1.057 1.035 1.040 1.085 1.029 1.040 1.172 1.039 1.040 1.389 1.033 1.040 2222 1.034
TrajCL 1130 1440 7973 1.168 1435 19266 | 1.195 1720 12397 1234 1616 10.560 | 1256 2675 11035
GeoLife TrjSR 6.765 8.332 7747 7.393 8.594 7.942 7.661 8.688 7.648 7.767 8.566 8.534 8.350 8.770 9.460
CLEAR 1110 1.196 1212 1124 1318 1211 1.144 1.818 1.189 1.145 2237 1239 1155 3712 1333
T-JEPA 1.019 1.052 1.047 1.034 1.030 1.093 1.036 1.103 1.101 1.040 1.150 1.154 1.047 1.218 1.197
HIiT-JEPA | 1033 1061 1170 1033 LI 1370 1033 1247 1357 1033 1377 1509 1033 1573 1511
TrajCL 17.590 66.963 75.397 32377 67.835 79.228 46.958 116.677 59.222 62.145 170.460 69.642 78.722 211.487 65.258
Ky | TSR 8673 31770 27505 | 17.120  37.070 30758 | 22310 48985 30923 | 26820 64380  33.113 | 29318 84302  34.043
(zero-shot) CLEAR 119.561  591.345  583.863 | 242493  626.075 591.460 | 349.132 646.160 587.138 | 456.525 662.553 588212 | 577.238  709.903  591.107
T-JEPA 1948 3.060  3.245 2272 4.227 3.165 2617 17975 3313 | 2913 18173 3.202 | 3275 19435  3.127
HiT-JEPA | 1.508 2.490 2.060 1.707 2.962 2.002 1.835 4.985 2.067 1.930 10.268 2.045 2.057 14.755 1.988
TrajCL 4336 16886 15093 | 6457 18857 16971 | 9.129 22007 16443 | 12350  37.579 11236 | 15071  36.650  6.543
NYC TrjSR 3.929 5.457 6.307 4.793 5.171 7.950 5.457 8.350 6.679 5.821 12.757 7.443 6.007 14.329 7.907
(ero-shoty | CLEAR | 19.693 68843 68057 | 32171 74964 68321 | 43214 75121 69221 | 55507 79514 70507 | 67207 84421 65914
T-JEPA 1450 1950 1714 | 1514 3.050 L1736 L1571 2400 L1679 1636 2457 1771 | L1714 5850 1807
HIiT-JEPA | 1.343 1.743 1.493 1.364 2.143 1.500 1.414 1.636 1.500 1.457 2.407 1.550 1.500 3.343 1.471
TrajCL 9.057 37.721 37.866 18.771 9.878 37.879 26.538 41.068 37.862 33.004 45.352 37.911 37.866 48.651 38.399
AISAU) | TSR 692.000 3658.400 3649.450 | 1390.364 3661.421 3649.407 | 2136.271 3675.043 3649.150 | 2942.586 3714.564 3649.086 | 2892.264 3700.221 3649.371
(zero-shot) CLEAR 38.042 188.171 184.600 73.164 187.914  184.579 112.371 192571 184.600 | 150.050 191.629  184.871 184.600  198.843  184.593
! T-JEPA 2156 5661 4753 3176 6849 4753 3.880 9486 4755 | 4364  13.055 4758 | 4754 16986  4.749
HiT-JEPA | 1.483 4.119 2.759 1.954 6.357 2.759 2311 10.233 2.758 2.579 15.180 2757 2758 20.267 2.755

Table [Tl shows the mean ranks of all methods. HiT-JEPA achieves the overall lowest mean ranks
across five of the six datasets. For urban GPS datasets, Porto, T-Drive, and GeoLife, we have the
lowest ranks in the T-Drive dataset. For example, the mean ranks of DB size | D| across 20%~100%
and distortion rates pg across 0.1~0.5 remains very steady (1.040~1.041 and 1.031~1.038). This
dataset has taxi trajectories with much longer irregular sampling intervals (3.1 minutes on average).
By leveraging a hierarchical structure to capture the global and high-level trajectory abstractions,
HiT-JEPA learns features that remain invariant against noise and sparse sampling, resulting in more
robust and accurate representations against low and irregularly sampled trajectories with limited
training samples. We achieve comparative mean ranks (only 2.8% higher) with T-JEPA on GeoLife,
and overall, the second best on Porto. This is because Porto trajectories inhabit an especially dense
spatial region, so TrajCL can exploit auxiliary cues such as movement speed and orientations to tease
apart nearly identical paths. However, relying on these features undermines the generalization ability
in lower-quality trajectories (e.g., in T-Drive) and knowledge transfer into other cities.

Next, we evaluate zero-shot performance on TKY, NYC, and AIS(AU). HiT-JEPA consistently
achieves the lowest mean ranks across all database sizes, downsampling, and distortion rates. Both
TKY and NYC consist of highly sparse and coarse check-in sequences, lacking trajectory waypoints,
which challenge the summarization ability of the models. Benefiting from the hierarchical structure,
HiT-JEPA first summarizes the mobility patterns at a coarse level, then refines the check-in details
at finer levels. Crucially, the summarization knowledge is transferred from dense urban trajectories in
Porto, demonstrating that HiT-JEPA learns more generalizable representations than TrajCL in Porto
with more essential spatiotemporal information captured in trajectories. Even on AIS(AU) with trajec-
tories across the ocean-wide scales, HIT-JEPA maintains overall the lowest mean ranks, demonstrating
its ability to handle multiple forms of trajectories that spread over various regional scales. We find that
even though CLEAR outperforms TrajCL on T-Drive and GeoLife, it exhibits weak generalization
in zero-shot experiments on TKY, NYC, and AIS(AU). TrjSR showed the weakest overall perfor-
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Table 2: Comparisons with fine-tuning 2-layer MLP decoder. Bold value are the lowest mean ranks
and underlined values are the second lowest.

[ EDR [ LCSS [ Hausdorff [ Fréchet [
| HR@5T HR@20T R5@207 [ HR@5T HR@20T R5@20T | HR@5T HR@20T R5@207 [ HR@5T HR@20T R5@20T |

TrajCL | 0.137 0.179 0301 | 0329 0508 0663 | 0456 0574 0803 | 0412 0526 0.734 | 0468
TrjSR 0085 0083 0.57 | 0162 0.97 0292 | 0.166 0192 0304 | 0157 0173 0288 | 0.I88
Porto | CLEAR | 0078 0075 0142 | 0164 0.198 0293 | 0152 0.31 0232 | 0192 0.165 0316 | 0.178
TJEPA | 0154 0194 0336 | 0365 0551 0713 | 0525 0633 0869 | 0433 0565 0771 | 0.509
HIiT-JEPA| 0.163 0197 0337 | 0369 0558 0720 | 0466 0599 0.835 | 0450 0587 0.810 | 0.508
TrajCL | 0.094 0.131 _ 0.191 | 0.159 0280 0366 | 0.73 0256 0356 | 0.138 0.187 0274 | 0218
TrjSR 0076 0068 0114 | 0076 0080 0118 | 0095 0090 0143 | 0098 0094 0145 | 0.100
T-Drive | CLEAR | 0093 0084 0143 | 0126 0.166 0216 | 0.142 0.158 0243 | 0135 0170 0283 | 0.163
TJEPA | 0094 0147 0215 | 0205 0366 0469 | 0.158 0229 0329 | 0.125 0159 0249 | 0229
HiT-JEPA| 0112 0170 0260 | 0.221 0384 0493 | 0222 0316 0456 | 0158 0219 0325 | 0278
TrajCL | 0.193 0363 0512 | 0232 0484 0584 | 0479 0536 0./45 | 0398 0463 0./08 | 0475

Dataset | Method Average

GeoLife| TSR 0.133 0246 0443 | 0229 0330 0479 | 0492 0439 0692 | 0383 0362 0614 | 0404
CLEAR | 0.75 0164 0311 | 0224 0224 0342 | 0347 0308 0499 | 0397 0273 0539 | 0320
T-JEPA | 0195 0383 0527 | 0.242 0515 0586 | 0606 0.656 0857 | 0488 0406 0731 | 0516
HiT-JEPA| 0.183 0414 0564 | 0250 0525  0.609 | 0.643 0.700  0.885 | 0467 0555  0.842 | 0.553

mance across all datasets. This is because image-based representations have difficulty distinguishing
fine-grained trajectory differences, a challenge exacerbated by lower data quality (e.g., T-Drive).

4.1.2 DOWNSTREAM FINE-TUNING

To evaluate the generalization ability of HiT-JPEA, we conduct downstream fine-tuning on its learned
representations. Specifically, we retrieve and freeze the encoder of HiT-JEPA and other baselines,
concatenated with a 2-layer MLP decoder, then train the decoder to approximate the computed
trajectory similarities by heuristic approaches. This setting is first proposed by TrajCL |Chang et al.
(2023), then followed by T-JEPA [Li et al.| (2024b)), to quantitatively assess whether the learned
representations can generalize to approach the computational processes underlying each heuristic
measure. In real applications, fine-tuned models can act as efficient, “fast” approximations of
traditional heuristic measures, alleviating their quadratic time-complexity bottleneck. We report hit
ratios HR@5 and HR@20 to evaluate the correct matches between top-5 predictions and each of the
top-5 and top-20 ground truths. We also report the recall R5@20 to evaluate the correct matches of
top-5 ground truths from predicted top-20 predictions. We approximate all model representations to
4 heuristic measures: EDR, LCSS, Hausdorff and Discret Fréchet. We do not include TrjSR here as
its results are proven to be less competitive in [Chang et al.|(2023).

From Table[2] we can observe that HIT-JEPA achieves the highest overall performance. In the column
“Average”, we calculate the average of all reported results for each model on each dataset. HiT-JEPA
outperforms T-JEPA on T-Drive and GeoLife for 12.6% and 6.4%, with only 3.7% lower on Porto.
For results on T-Drive, HiT-JEPA consistently outperforms the T-JEPA across all measures, especially
in Hausdorff and Discret Fréchet measures, where we achieve relative average improvements of
14.7% and 19.9%, respectively. For GeoLife, even though we have some cases that achieve slightly
lower results than T-JEPA in EDR and Hausdorff, we are overall 6.1% and 1.8% higher on average in
these two measures. For Porto, although our results are 3.7% lower than T-JEPA on average across
all measures, we have successfully made minor improvements in LCSS measure. Visualizations of
predictions can be found in Fig. [T2]and Fig. [13|in Appendices

4.2 VISUALIZATIONS OF HIT-JEPA EMBEDDINGS.

HiT-JEPA encodes and predicts trajectory information only in the representation space, making
it more difficult than generative models such as MAE |He et al.| (2022) to evaluate the learned
representation quality at the data level. To assess and gauge the validity of the representations of
HiT-JEPA, we project the encoded S’ ™ from Eél) (on full trajectories) and predicted S’ ™ from

D((;) (on masked trajectories) back onto the hexagonal grid at their GPS coordinates for visual
comparisons.

First, we freeze the context encoders and predictors across all levels in a pre-trained HiT-JEPA. Then
we encode and predict the masked trajectory representations to simulate the training process, and
encode the full trajectory representations to simulate the inference process. Next, we concatenate and
tune a 2-layer MLP for each of the representations to decode to the hexagonal grid cell embeddings
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to which they belong. We denote the decoded predicted masked trajectory representations as S7 and
the decoded encoded full trajectory representations as .So. Finally, for each trajectory position, we
search for the k£ most similar embeddings in the spatial region embedding set / and retrieve their
hexagonal cell IDs. We choose k£ = 3 in our visualizations.

aget

(a) Predicted masked points (b) Encoded full trajectory

Figure 3: Visualizations of decoded learned trajectory representations by HiT-JEPA on hexagonal
cells: (a) blue points are sampled trajectory points, gray points are masked trajectory points labeled
with “target”, and orange hexagons are projected predictions. (b) blue points are full trajectory points,
green hexagons are projected encoded representations.
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Figure 4: A case study of hierarchical semantic information captured by HiT-JEPA. (Top-Left) The
raw attention map visualizes the absolute attention weights, showing the overall intensity distribution.
(Top-Mid) The deviation heatmap by displaying areas of active focus (red) versus suppression (blue)
relative to the mean attention value. (Top-Right) The statistical profiles quantify the peak attention
intensity at each time step. Bottom The corresponding physical trajectory with index labeled every
10 steps, where colored boxes spatially ground the salient attention regions identified in the top row.

Fig. [3a]shows the comparisons between decoded cells (orange hexagons) and masked points (gray
points) labeled as “targets”. The decoded locations lie in close proximity to their corresponding
masked targets, confirming that the model effectively learns accurate representations for masked
points during training. Fig. [3boverlays the decoded cells green hexagons) on each blue trajectory
point, demonstrating that the model can encode each point with even greater accuracy with access to
the full trajectory during inference.

4.3 INTERPRETATION OF HIERARCHICAL ATTENTION WEIGHTS.
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Figure 5: Averaged attention weight visualizations at each JEPA layer. Left to right: A®) to A().

From Fig. [ by corroborating the raw attention map, deviation heatmap, and statistical profiles, we
identify three distinct semantic phases localized within the bottom-left, top-right, and middle regions
around the 20™ trajectory point. These phases correspond to the peak intensity of attention allocated
to specific trajectory segments: the origin anchoring (red boxes), the local attention peak triggered
by a pattern change (orange boxes), and the destination intent (green boxes). This spatial-semantic
alignment confirms that HiT-JEPA successfully learns the critical semantic waypoints from raw GPS
tracks and verifies the interpretability of its learned representations. By comparing the raw attention
weights across 3 JEPA layers in Fig. [ it is obvious to discern a coarse-to-fine attention evolution,
where the A2 layer highly summarizes the trajectory origin-destination patterns and is fused into lower
layers with more smoothed local details. This validates that HiT-JEPA learns consistent trajectory
semantics through the hierarchical interactions while preserving distinct layer-specific granularity.
We further visualize the attention map for each head in Appendices[A.6]

4.4 ABLATION STUDY

We study the effect of removing the key designs in
HiT-JEPA. We compare HiT-JEPA with 4 vari-  Taple 3: Ablation Study of HiT-JEPA on Porto
ants: 1) HiT_emb which replaces the hierar-

chical interaction method from attention upsam- Varying DB Size |D)|

pling to directly concatenate the upsampled en-  Model 20%  40%  60%  80%  100%

coder embeddings between S/(l) and Sl(l_l)‘ 2) HiT_emb 106.568 209.746 297919 394.111 497.064
. . HiT_single_layer  1.031 1.061 1.066 1.077 1.091

HiT single_layer where we only level /| = 1 t0  HiTo.atn 1026 1049 1054 1062 1.069
: : ; : iopar.  HiT-rect 1032 1062 1069 1080 1093

train and predict. 3) HiT_no_attn with no hierar- ~ Jii-=¢ Lo26 1043 1048 1058 1063

chical interactions between each pair of successive

. . . . . Downsampling Rate p,
layers. 4) HiT _rect with spatial location tokeniza-

N N Model 0.1 0.2 0.3 0.4 0.5
tion method changed to rectangular grid cells. We = 569322 706831 1004246 2047.699 2171331
train these variants and conduct self-similarity ex-  HiTsinglelayer 1378 2659 5626 14123 26.875

. HiT no_attn 1405 2867 5761 17143 27.324
periments on Porto. HT rect 1508  3.054 7735 18912 36768
. . HHT-JEPA 1369 2.624 5541 13773 28806
Tab1§:|3| shows the comparisons between HiT-JEPA Distortion Rate s
and its variants. The performance drops without ;.4 o1 oz 03 04 05
any key demgns? especially f01_' HiT_emb, as d!' HiT_emb 502259 503.876 506.333 507.738  507.082
rectly concatenating the embedding from the previ-  HiTsingleJayer 1088~ 1.099 1120 1100 1137
. HiT _no_attn 1.079 1.095 1.105 1.093 1.120
ous layers causes representation collapse. Results i1 rec( 1095 Lill 1123 1122 114
from the other two variants demonstrate that in our ~_HT-JEPA 1074 1077 1085 1093 1119

model design, even though each layer of J EPA!
can learn individually, the hierarchical interactions
bind different levels into a cohesive multi-scale structure.

5 CONCLUSION

In summary, HiT-JEPA introduces a unified three-layer hierarchy that captures point-level fine-
grained details, intermediate trajectory patterns, and high-level trajectory semantics within a single
self-supervised framework. By leveraging a Hierarchical JEPA, it enables a more powerful trajectory
feature extraction in the representation space and produces cohesive multi-granular embeddings.
Extensive evaluations on diverse urban and maritime trajectory datasets show that HiT-JEPA
outperforms single-scale self-supervised methods in trajectory similarity computation, especially
zero-shot generalization and downstream fine-tuning. These results validate its effectiveness and
robustness for real-world, large-scale trajectory modeling.

10
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6 ETHICS STATEMENT

We claim that we adhere to the ICLR Code of Ethics. All the datasets used in the manuscript are
publicly available with no user information revealed. HiT-JEPA encodes the trajectory location
information in hexagonal cell tokens, where exact GPS traces are blurred. And such tokens are the
only input to our model, thereby preventing any leakage of precise location data. The code for all
baselines is publicly available and used under their respective licenses.

7 REPRODUCIBILITY STATEMENT

We provide an anonymous GitHub link https://anonymous.4open.science/r/
HiT-JEPA to prove that our work is reproducible. This repository contains the code for the
HiT-JEPA method implementation in Section [3| and any data processing and evaluation files in
Section[d The details, such as dataset statistics[A.T] implementation configurations[A.3] and further
experiment details can also be found in the repository.
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A APPENDIX

A.1 DATASETS
Here we list the details of the datasets:

* Porto includes 1.7 million trajectories from 442 taxis in Porto, Portugal. The dataset was
collected from July 2013 to June 2014.

* T-Drive contains trajectories of 10,357 taxis in Beijing, China from Feb. 2 to Feb. 8, 2008.
The average sampling interval is 3.1 minutes.

* GeoLife contains trajectories of 182 users in Beijing, China from April 2007 to August
2012. There are 17,6212 trajectories in total with most of them sampled in 1-5 seconds.

* Foursquare-TKY is collected for 11 months from April 2012 to February 2013 in Tokyo,
Japan, with 573,703 check-ins in total.

* Foursquare-NYC is collected for 11 months from April 2012 to February 2013 in New
York City, USA, with 227,428 check-ins in total.

* AIS(AU) comprises vessel traffic records collected by the Craft Tracking System (CTS) of
Australia. In this paper, we use vessel trajectories in February 2025.

Table 4: Statistics of Datasets after preprocessing.

Data type |Dataset |  #points #trajectories
Porto 65,913,828 1,372,725

Urban trajectories | T-Drive 5,579,067 101,842
GeoLife | 8,987,488 50,693

Check-in sequences TKY 106,480 3,048
NYC 28,858 734

Vessel trajectories | AIS(AU) 485,424 7,095

We first keep trajectories in urban areas with the number of points ranging from 20 to 200, where
the statistics of the datasets after preprocessing are shown in Table ] We use 200,000 trajectories
for Porto, 70,000 for T-Drive, and 35000 for GeoLife as training sets. Each dataset has 10% of
data used for validation. As there are many fewer trajectories in TKY, NYC, and AIS(AU), we use
all trajectories in these datasets for testing. For the testing set, we select 100,000 trajectories for
Porto, 10,000 for T-Drive and GeoLife, 3000 for TKY, 700 for NYC, and 7000 for AIS(AU). For
the downstream fine-tuning task, we select 10,000 trajectories for Porto and T-Drive, and 5000 for
GeoLife, where the selected trajectories are split by 7:1:2 for training, validation, and testing. We
train Hit-JEPA and all baselines from scratch for Porto, T-Drive, and GeoLife datasets. Then, we
load the pre-trained weights from Porto and conduct zero-shot self-similarity experiments on each of
the TKY, NYC, and AIS(AU) to evaluate the generalization ability of all models.

A.2 BASELINES

We compare HiT-JEPA with four most recent self-supervised free space trajectory similarity
computation methods: TrajCL|Chang et al.| (2023), TrjSR |Cao et al.|(2021), CLEAR [Li et al.| (2024a)),
and T-JEPA [Li et al.| (2024b). TrajCL is a contrastive learning method that adopts a dual-feature
attention module to capture the trajectory details, which has achieved impactful performance on
trajectory similarity computation in multiple datasets and experimental settings. TrjSR is a generative
model that converts trajectories into gray-scale images. This method reconstructs the high-resolution
trajectory image from the low-resolution image by leveraging single-image super-resolution to
learn better spatial trajectory representations. CLEAR improves the contrastive learning process
by ranking the positive trajectory samples based on their similarities to anchor samples, capturing
detailed differences from similar trajectories. T-JEPA is the most recent method utilizing Joint
Embedding Predictive Architecture to encode and predict trajectory information in the representation
space, which effectively captures necessary trajectory information. We run these two models from
their open-source code repositories with default parameters.
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A.3 IMPLEMENTATION DETAILS

We use Adam Optimizer for training and optimizing the model parameters across all levels, except
for the target encoders. The target encoder at each level [ updates its parameters via the exponential
moving average of the parameters of the context encoder at the same level. The maximum number
of training epochs is 20, and the learning rate is 0.0001, decaying by half every 5 epochs. The
embedding dimension d is 256, and the batch size is 64. We apply 1-layer Transformer Encoders for
both context and target encoders at each level, with the number of attention heads set to 8 and hidden
layer dimension to 1024. We use a 1-layer Transformer Decoder as the predictor at each level [ with
the number of attention heads set to 8. We use learnable positional encoding for all the encoders and
decoders. We set the resampling masking ratio to be selected from r = {10%, 15%, 20%, 25%, 30%}
and the number of sampled targets M to 4 for each trajectory at each model level [. The successive
sampling probability p is set to 50%, and the initial context sampling ratio p, is set to range from
85% to 100%. The scale factors for the final loss are A = 0.05, 4 = 0.15, and v = 0.8. We use a
hexagonal cell resolution of 11 for Porto, resolution 10 for T-Drive, GeoLife, TKY, and NYC, and
resolution 4 for AIS(AU). All experiments are conducted on servers with Nvidia AS000 GPUs, 24GB
of memory, and 250GB of RAM.

A.4 EXPERIMENTAL SETTINGS
A.4.1 SELF-SIMILARITY

For each query trajectory ¢ € @, we create two sub-trajectories ¢, = {p1, p3, D5, - . .} containing
the odd-indexed points and g, = {p2, p4, Ps, - - -} even-indexed points of g. We separate them by
putting g, into the query set () and putting g, into the database D, with the rest of the trajectories
in D randomly filled from the testing set. Each g, and ¢; pair exhibits similar overall patterns in
terms of shape, length, and sampling rate. We apply HiT-JEPA context-encoders to both query and
database trajectories, compute pairwise similarities, and sort the results in descending order. Next,
we report the mean rank of each g, when retrieved by its corresponding query q,: ideally, the true
match appears at rank one. We choose {20%, 40%.60%, 80%, 100%} of the total database size | D|
for evaluation. To further evaluate the robustness of learned trajectory representations, we also apply
down-sampling and distortion on @) and D. Specifically, we randomly mask points (with start and
end points kept) with down-sampling probability ps and shift the point coordinates with distortion
probability p,. Both ps and pg represent the number of points to be down-sampled or distorted,
ranging from {0.1,0.2,0.3,0.4,0.5}.

For the convenience of comparing results under these settings together, we denote meta ratio
R; = {|D|;, ps;» pa; } and compare the mean rank of all models at each R; on each dataset, smaller
values are better.

A.5 HYPERPARAMETER ANALYSIS

We analyze the impact of two sets of hyperparameters with the implementation and experimental
settings in the Appendices section [A.3]and

Number of attention layers at each abstraction level. We change the number of Transformer
encoder layers for each level to 2 and 3, then compare them with the default setting (1 layer) for
self-similarity search with varying | D|, ps and p4 on Porto. From Fig. @ we can find that with only 1
attention layer, we can achieve the lowest mean ranks for all settings. This is due to higher chances
of overfitting with more attention layers.

1.14
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1.12{ ~®- attn. 2 = attn. 2
A attn. 3 . 10 1175{ 4 attn.3 ‘
£ 110 & ¥’ x . .
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E 1.08 * % 4 21130 " x
s
2 é 3 $112s
104 ¥ 2 1.100 /
. 1.075
20 40 60 80 160 01 02 03 04 05 01 02 03 04 05
DB size (%) Downsampling rate ps Distortion rate pg
(a) DB size (20%~100%) (b) Downsampling rate (0.1~0.5) (c) Distortion rate(0.1~0.5)

Figure 6: Effect of different numbers of attention layers at each abstraction level.
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Figure 7: Effect of different batch sizes.

Weighting coefficient for the multi-level loss £. The values of the loss weighting coefficients A, p,
and v are carefully tuned. In Table[5] [f] and[7] we compare our selected coefficients with other 3 sets
of parameters in a wide range on the Porto dataset. From the tables, we can see that HiT-JEPA is
robust against various loss combinations. Even though the loss coefficients with A, 1, and v equal to
0.33, 0.33, and 0.33 perform better on the downsampling experiment, our selected combination with
A =0.05, u = 0.15, and v = 0.8 still learns overall the most accurate, stable, and consistent results
across all experimental settings.

A I v 20% 40% 60% 80% 100%

0.1 0.2 0.7 1.026 1.050 1.056 1.067 1.079
0.33 0.33 0.33 1.036 1.072 1.080 1.102 1.120
06 03 0.1 1.035 1.063 1.066 1.079 1.099
0.05 0.15 0.8 1.026 1.043 1.048 1.058 1.065

Table 5: Loss weighting coefficients for varying DB sizes |D].

A m v 01 02 03 0.4 0.5

0.1 02 0.7 1334 2.844 5868 13.864 25.009
0.33 0.33 0.33 1.393 2.664 4.616 11.210 20.730
06 03 0.1 1449 2763 5.629 14.104 23.985
0.05 0.15 0.8 1.369 2.624 5.541 13.773 28.806

Table 6: Loss weighting coefficients for varying downsampling rates ps.

A.6 ATTENTION HEADS VISUALIZATIONS

The attention weights in Fig. [8|demonstrate functional specialization among attention heads. For
example, Head 3 focuses on local kinematics, while Heads 2, 4, 6, and 8 act as global anchors that
attend to long-term trajectory semantics. This diversity ensures a comprehensive representation that
integrates fine-grained motion dynamics with high-level trip intent.

A.7 TRAINING EFFICIENCY

We compare HiT-JEPA with baselines in terms of training time per iteration in Table[8] While TrajCL
and CLEAR achieve lower training time due to their lightweight structures, HiT-JEPA remains highly
competitive at rank 3 among 5 methods. Moreover, by incorporating convolution-based trajectory
semantics aggregation and learning on multi-level trajectory abstractions with 1-layer Transformer
backbones, HiT-JEPA remains efficient while achieving generalizable and robust performance.

A.8 VISUALIZATIONS
We visualize two sets of comparisons of 5-NN queries after fine-tuning by Hausdorff measure

in Fig. [I2b] and Fig. [T3b] where each row shows the rank 1 to 5 matched trajectories from left to
right, given red query trajectories. The rightmost figures are the indices of the query and matched

17
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Ao v 01 02 03 04 05

0.1 02 0.7 1081 1.109 1.095 1.115 1.135
0.33 0.33 0.33 1.130 1.138 1.133 1.152 1.196
06 03 0.1 1.092 1.107 1.133 1.117 1.191
0.05 0.15 0.8 1.074 1.077 1.085 1.093 1.119

Table 7: Loss weighting coefficients for varying distortion rates pg.

Table 8: Comparison of training efficiency (seconds per iteration).

Method  Time (s)

TrajCL  0.196
TrjSR 0.476
CLEAR  0.292
TJEPA  1.022
HiT-JEPA 0.341

trajectories. We can find that the improvements of HiT-JEPA can find more similar trajectories on
ranks 4 and 5, resulting in a higher average HR@5 than T-JEPA.
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Figure 8: Visualization of each of the 8 attention heads at the JEPA layer A(!),

A.9 REPRESENTATION VISUALIZATION VIA CLUSTERING

We cluster and visualize the embedding of 3000 random trajectories in Porto in Fig. [0] We use a
K-Means Clusterer with a number of cluster centers K = 6 acquired from the Elbow Method. We
can find that, although the boundaries between clusters are soft without a specific self-clustering
design in recent clustering methods [Yao et al.| (2017); [Fang et al.| (2021), distinct semantic groups are
clearly visually discernible. This demonstrates the strong potential of HiT-JEPA, which is trained on
regression loss, to be fine-tuned to generalize to multiple trajectory tasks.
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Trajectory-Level Clustering (t-SNE, K=6)
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Figure 9: t-SNE Visualization of Trajectories.

A.10 LIMITATIONS AND FUTURE WORK

By upsampling and fusing attention weights across adjacent layers, HIT-JEPA demonstrates one form
of hierarchical interaction common to Transformer-based JEPA models. Therefore, one extension
could be developing a unified hierarchical interaction framework for all kinds of learning architectures
(e.g., CNNs, Mambas, LSTMs, etc.). This will enable each architecture to plug in its customized
hierarchy module while preserving a consistent multi-level learning paradigm.

‘!
H

Figure 10: Visualization of predicted masked trajectories.
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Figure 11: Visualization of encoded full trajectories.
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(a) T-JEPA Visualizations
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(b) HiT-JEPA Visualizations

Figure 12: Comparisons of 5-NN search between T-JEPA and HiT-JEPA on Porto after being fine-
tuned by Hausdorff measure.
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(b) HiT-JEPA Visualizations

Figure 13: Comparisons of 5-NN search between T-JEPA and HiT-JEPA on GeoLife after being
fine-tuned by Hausdorff measure.
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