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ABSTRACT

Federated reinforcement learning (FRL) methods usually share the encrypted local
state or policy information and help each client to learn from others while preserv-
ing everyone’s privacy. In this work, we propose that sharing the approximated
behavior metric-based state projection function is a promising way to enhance the
performance of FRL and concurrently provides an effective protection of sensitive
information. We introduce FedRAG, a FRL framework to learn a computationally
practical projection function of states for each client and aggregating the parame-
ters of projection functions at a central server. The FedRAG approach shares no
sensitive task-specific information, yet provides information gain for each client.
We conduct extensive experiments on the DeepMind Control Suite to demonstrate
insightful results.

1 INTRODUCTION

In recent years, federated learning has emerged as a new approach to enable data owners to collab-
oratively train each one’s improved local model with the help of the privacy preserved information
from others (Yang et al., 2019a;b; Li et al., 2020a; Wei et al., 2020; Lyu et al., 2020). Federated
reinforcement learning (FRL) applies federated learning principles to reinforcement learning (Zhuo
et al., 2019). In FRL, multiple clients, each with their own local environments, collaborate to learn
a collective optimal policy (Qi et al., 2021).

Aggregating knowledge from clients in non-identical environments allows FRL to explore a huge
state-action space, enhance sample efficiency and accelerate the learning process (Wang et al., 2020).
However, FRL faces unique challenges primarily due to the different local environments and diverse
data distributions among clients. In FRL, clients may experience very different states and rewards in
their own environment, resulting in diverse data distribution. This diversity may lead to significant
differences in the learning model, making it difficult for clients to converge to a robust common pol-
icy (Zhao et al., 2018). Additionally, FRL must ensure that sensitive information remains protected
from exposure to other clients or the central server (Zhu et al., 2019; Anwar & Raychowdhury,
2021).

Previous researches found that learning representation based behavioral metric can significantly ac-
celerate the reinforcement learning process and enhance the generality of policy (Zhang et al., 2020;
Agarwal et al., 2021; Kemertas & Aumentado-Armstrong, 2021). This method involves learning a
state projection function by evaluating the behavioral similarities between states, which are mea-
sured in terms of rewards and state transition probabilities. The state projection function is valuable
to the learning process, yet it does not reveal any sensitive task-specific information. In the FRL
settings, clients would not directly share the rewards and state information because of the privacy
issues. Therefore, sharing the parameters of the state projection function could be a promising re-
search direction for FRL.

In this work, we propose the Federated Reinforcement Learning with Reducing Approximation
Gap (FedRAG), a novel FRL framework to share parameters of state projection functions and to
learn a local behavioral metric-based state projection function for each client. We detail FedRAG’s
network architecture in Figure 1, emphasizing how client collaboration is achieved through shared
state projection functions. The global state projection function is formed by aggregating local state
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Figure 1: Framework of FedRAG. Periodically, the local state projection function parameters are
synchronized to a central server. Then the central server distributes the averaged parameters to the
clients. For each client, a regularization term is incorporated to ensure that the client’s local state
projection parameters follow the global updates.

projection functions, each trained with behavioral metrics to capture the unique transition dynamics
and rewards of its respective environment. By integrating these locally learned features, the global
state projection function reflects the diverse dynamics and rewards across different environments.
Periodically, each client’s local state projection function is replaced with the global state projection
function, while the L2 regularization is continuously applied to maintain alignment throughout the
learning process. Together, these mechanisms improve local state projection function and strategies
that are robust and adaptable across varied environments. The main contributions are as follows:

• We propose FedRAG, a novel federated reinforcement learning framework to share the
projection function of states, instead of traditionally sharing the encrypted states informa-
tion. Subsequent analysis show that our method is beneficial to privacy-preserving as a
side-effect.

• Under the FedRAG framework, we introduce a behavioral metric-based state projection
function and develop its practical approximation algorithm in Federated Learning settings.
Empirical results demonstrate our method is effective.

2 RELATED WORK

Federated Learning Federated Learning (FL) was first introduced in FedAvg by McMahan et al.
(2017), where training data remains distributed across mobile devices, and a shared model is learned
by aggregating locally computed updates through iterative model averaging. Subsequently, FedProx,
proposed by Li et al. (2020b), addresses system heterogeneity and statistical variability in federated
networks. It incorporates a proximal term into local optimizations, allowing for variable compu-
tational efforts across devices, which helps stabilize diverse local updates. To accommodate the
inherent heterogeneity in FL, Per-FedAvg, introduced by Fallah et al. (2020), was developed as a
personalized approach. This method adapts Model-Agnostic Meta-Learning (MAML) to provide a
suitable initial model that quickly adapts to each user’s local data after training. Another innovation,
pFedMe, proposed by T Dinh et al. (2020), tackles the statistical diversity among clients by utilizing
Moreau envelopes as client-specific regularized loss functions, effectively decoupling personalized
model optimization from global model learning.

Federated Representation Learning Recently, federated representation learning, which focuses
on training models to extract effective feature representations directly from raw data, has become
increasingly popular. LG-FedAvg, proposed by Liang et al. (2020), optimizes for compact local rep-
resentations on each device alongside a global model spanning all devices. Collins et al. (2021) in-
troduced FedRep, which learns a shared data representation among clients while maintaining unique
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local heads to enhance each client’s model quality. Model Contrastive Learning (MOON), presented
by Li et al. (2021), improves local update consistency by maximizing alignment between represen-
tations learned from local and global models. Additionally, Tan et al. (2022) introduces a novel
Federated Prototype-wise Contrastive Learning (FedPCL) approach that uses pre-trained neural net-
works as backbones, facilitating knowledge sharing through class prototypes and building client-
specific representations via prototype-wise contrastive learning. FedCA, proposed by Zhang et al.
(2023), aggregates representations from each client, aligning them with a base model trained on
public data to mitigate inconsistencies and misalignment in the representation space across clients.
TurboSVM-FL, introduced by Wang et al. (2024), accelerates convergence in federated classifica-
tion tasks by employing support vector machines for selective aggregation and applying max-margin
spread-out regularization on class embeddings. Despite these advancements, research in federated
representation learning specific to reinforcement learning remains limited.

Federated Reinforcement Learning Federated Reinforcement Learning enables clients to collab-
oratively learn a unified policy while preserving privacy by avoiding the exchange of raw trajectories.
Notably, Fan et al. (2021) proposed Federated Policy Gradient with Byzantine Resilience (FedPG-
BR), which addresses convergence and fault tolerance against adversarial attacks or random failures
in homogeneous environments using variance-reduced policy gradient methods. However, it does
not consider the challenges posed by heterogeneous environments, which is the focus of our work.
To address environmental heterogeneity, Jin et al. (2022) introduced QAvg and PAvg algorithms,
employing value function-based and policy gradient methods. They further proposed personalized
policies that embed environment-specific state transitions into low-dimensional vectors, improv-
ing both generalization and training efficiency. Similarly, Tang et al. (2022) developed FeSAC, a
method based on the soft actor-critic framework. FeSAC isolates local policies from global integra-
tion and employs trend models to adapt to regional disparities. Building on these advancements, our
work focuses on learning federated behavioral metric-based state projection function to effectively
generalize across diverse environments. This approach enhances both policy robustness and value
function generalization. To clearly differentiate our contributions, we provide a detailed comparison
in Appendix B, outlining the distinctions in objectives, methodologies, and heterogeneity-handling
mechanisms between FedRAG and prior works. This highlights how FedRAG advances generaliza-
tion capabilities and cross-environment adaptability beyond existing methods.

Behavioral Metrics-based Representation Learning Behavioral metric-based representation
learning aims to create an embedding space that preserves behavioral similarities based on tran-
sitions and immediate rewards. Ferns et al. (2011) proposes using bisimulation metrics to measure
state behavioral similarities in probabilistic transition systems for continuous state-space Markov
Decision Processes (MDPs). On-policy bisimulation metrics introduced by Castro (2020) focus on
behaviors specific to a given policy π, incorporating a reward difference term and the Wasserstein
distance between dynamics models. To address the computational challenges associated with the
Wasserstein distance, the MICo distance proposed by Castro et al. (2021) was developed to compare
dynamics model distributions by measuring the distance between sampled subsequent states. The
Conservative State-Action Discrepancy presented by Liao et al. (2023) separates the learning of the
RL policy from the metric itself, focusing on the most divergent reward outcomes between states
taking the same actions to define similarity in the embedding space. Chen & Pan (2022) propose
the Reducing Approximation Gap distance to recursively measure expected states over dynamics
models, focusing on sampling from the policy π rather than the dynamics models. This approach re-
duces approximation errors and is particularly effective for representation learning. In our work, we
apply approximation behavior metric-based representation learning to develop local state projection
functions, capturing task-relevant behavioral similarities within each client’s environment. Feder-
ated Learning then allows for sharing the parameters of these local projection function, enabling
clients to benefit from generalized state representations across diverse environments.

3 PRELIMINARIES

This section highlights the Federated Soft Actor-Critic (FeSAC) variant central to our research.
Soft Actor-Critic (SAC) is an off-policy actor-critic algorithm based on the maximum entropy RL
framework (Haarnoja et al., 2018a). It aims to maximize future cumulative rewards and maximum
entropy to increase robustness and exploration capabilities while avoiding policy convergence to
suboptimal solutions. FeSAC is a federated variant of SAC, designed to facilitate collaborative
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training among clients distributed across diverse environments, while ensuring the privacy of their
respective data. The global environment E = {E1, E2, . . . , EN} is composed of N distinct local
environments, and each client k operates within its own unique local environmentEk. The transition
probabilities differ across local environments, i.e., P (sit+1|sit, a) ̸= P (sjt+1|s

j
t , a), i ̸= j.

As the primary focus of our study is to investigate the application of approximated behavioral metric-
based representation learning in federated reinforcement learning, we introduce the state projection
function when discussing FeSAC. In the scope of representation learning for deep RL, a state projec-
tion function ϕωk maps a high-dimensional state to low-dimensional vector, from which the policy
πψk(a|ϕωk(s)) is learned. We configure all critic networks, target critic networks, and action net-
works to take the state representation ϕωk(s) as input instead of the raw state s.

Unlike traditional FRL, the objective of FeSAC is to derive a set of maximum entropy policies that
are specifically optimized for their respective local environments. The target policy π̃k for client k
in its local environment Ek is as follows:

π̃k = argmax
πk

T∑
t=0

E(skt ,a
k
t )∼τπk

[
γtr(skt , a

k
t ) + αkH(πk(·|ϕωk(skt )))

]
, (1)

where skt and akt represent the state and action made by client k in its local environmentEk at time t;
τπk refers to the trajectory generated by the policy πk of client k, which encompasses the sequence
of states and actions over time; γk is the discount rate; αk is the entropy regularization coefficient
used to control the importance of entropy; H(πk(·|ϕωk(skt ))) = E[−logπk(·|ϕωk(skt ))] represents
the entropy of the policy.

To evaluate the impact of the policy on local environments, the soft state value is defined as:

V (skt ) = E
akt∼πψk

[
Qθk(ϕωk(s

k
t ), a

k
t )− αk log πψk(akt |ϕωk(skt )

]
, (2)

where Qθk denote the local critic Q network for client k. Each client adjusts its local Q-network
to approximate the global Q-network, thus leveraging global knowledge while retaining its own
characteristics:

LQ(θ
k) = E(skt ,a

k
t ,r

k
t ,s

k
t+1)∼Dk

[(
Qθk(ϕωk(s

k
t ), a

k
t )−

(
rkt + γVθ̄(s

k
t+1)

))2]
, (3)

where Vθ̄ denotes use the target critic Q networks to calculate the soft state value. In FeSAC, the
target critic Q network refers to the global critic Q network, which is broadcasted by the server to all
clients. The global critic Q network Qθ̄ is formed by aggregating the local critic Q networks of each
client through soft updates, considering the reward differences of state-action pairs in each client’s
environment to obtain a value estimation in a global context:

Qθ̄ ← ϵQθk + (1− ϵ)Qθ̄, k ∈ {1, 2, . . . , N}, (4)
where ϵ is the aggregation factor.

The updated local Q-network then guides the update of the local policy, which keeps the local
variability as well as learning the implicit trend of the global environment:

Lπ(ψ
k) = E

skt∼Dk

[
Eakt∼πψk (·|ϕωk (skt ))

[
αk log πψk(a

k
t |ϕωk(skt ))−Qθk(ϕωk(skt ), akt )

]]
. (5)

The temperature parameter αk is adapted to balance exploration and exploitation by controlling the
relative importance of the entropy term in the policy’s objective. The update objective for αk in
client k is as follows (Haarnoja et al., 2018b):

Lα(α
k) = E

skt∼Dk

[
Eakt∼πψk (·|ϕωk (skt ))[α

k log πψk(a
k
t |ϕωk(skt ))− αkH̄]

]
, (6)

where H̄ is a target entropy level to tune the degree of exploration and H̄ = −|A|.

4 METHODOLOGY

In this section, we present the problem formulation for federated reinforcement learning with hetero-
geneous environments, introduce the approximated behavioral metric-based state projection func-
tion, propose the FedRAG framework and provide a theoretical analysis of its privacy preserving.
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4.1 PROBLEM FORMULATION

In federated reinforcement learning with heterogeneous environments, N clients each interact with
their own unique local environmentEk, each modeled as a unique Markov Decision Process (MDP):
{Sk, A, rk, P k, γ}. Each client has a unique state space Sk, reward function rk(s, a), and state tran-
sition dynamics P k(s′|s, a), reflecting the diversity of their environments, while sharing a common
action space A and discount factor γ. A central server facilitates collaboration by periodically ag-
gregating and distributing shared model parameters, specifically the state projection function ϕω in
FedRAG. This function maps local states to a shared embedding space, enabling clients to bene-
fit from collective learning while preserving privacy. FedRAG optimizes local policies πk(s|a) by
sharing a state projection function ϕω , aiming to maximize cumulative reward and entropy:

π̃k = argmax
πk

1

N

n∑
i=1

{ ∞∑
t=0

E(skt ,a
k
t )∼τπk

[
γtRk(skt , a

k
t ) + αkH(πk(·|ϕωk(skt )))

]}
, (7)

where akt ∼ πk(· |skt ), skt+1 ∼ P k(· |skt , akt ) and k ∈ {1, 2, . . . , N}. To preserve data privacy,
only the parameters of the state projection function ω are shared between clients and the server.
Raw states, rewards, and transition dynamics remain local to each client, ensuring that sensitive
information is not exchanged while still enabling effective federated learning.

4.2 CLIENT RAG DISTANCE

In FeSAC, clients in different environments share knowledge by aligning their local Q networks
with the global Q network. This enables them to learn optimal local policies while adapting to
network changes. However, as environments become complex, clients may struggle to capture task-
relevant information, as shown in Section 5.2. Consequently, the global perception after federation
becomes unclear, hindering effective adaptation to environmental changes. To enhance general-
ization in complex environments, we introduce behavior metric-based representation learning into
FeSAC. This approach learns robust state representations that filter out task-irrelevant background
information, speeding up the learning process and improving policy generalization across diverse
environments.

For each client k, behavioral metric-based representation learning is to learn a local state encoding
network ϕωk : Sk → Rn with parameters ωk, which can be cast as a minimization problem of the
loss between the distance on the embedding space, d̂(ϕωk

(
ski
)
, ϕωk

(
skj
)
), and the corresponding

behavior metric, dπ(ski , s
k
j ) , between any pair of states ski and skj :

Lϕ(ω
k) = E

[(
d̂(ϕωk(s

k
i ), ϕωk(s

k
j ))− dπ(ski , skj )

)2
]
. (8)

The Reducing Approximation Gap (RAG) distance is a behavioral metric that measures the absolute
difference between the reward expectations of two states and the distance between the next state
expectations of dynamics models. And it is defined as follows:

dπ(ski , s
k
j ) =

∣∣∣∣Eaki∼πkrskiaki − Eakj∼πkr
skj
akj

∣∣∣∣+ γEaki∼πk,akj∼πkd(E[s
k
i+1],E[skj+1]), (9)

where Eaki∼πkr
ski
aki

represents the expected reward obtained by taking action aki in state ski under the

policy πk of client k, E[ski+1] = E
ski+1∼P

sk
i

ak
i

[ski+1] is the expectation value of next state over the

dynamics model P (ski , a
k
i ).

Then the approximation of RAG relax the computationally intractable reward difference term with-
out introducing any approximate gap, as shown below:

dπ(ski , s
k
j ) =

√√√√Eaki∼πk,akj∼πk

[(
r
ski
aki
− rs

k
j

akj

)2
]
− Var[rski ]− Var[rskj ]

+ γEaki∼πk,akj∼πkd
π

E
ski+1∼P

sk
i

ak
i

[ski+1],E
skj+1∼P

sk
j

ak
j

[skj+1]

 .

(10)
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For each client, because the reward variance Var[rski ] is computationally intractable, we can learn a
neural network approximator to estimate it by assuming that the reward rsk on state sk is Gaussian
distributed. Let Rξk be the learned reward function approximation parameterized by ξk, which
outputs a Gaussian distribution, Rξk(sk) = {µ̂(rsk), σ̂(rsk)}.These loss functions are as follows:

LR(ξ
k) = E(sk,rk)∼Dk

[
(rk − µ̂(rsk))2

2σ̂(rsk)

]
, (11)

where µ̂ and σ̂ are the mean and the standard deviation, respectively.

Similarly, in order to estimate the expected next states E
ski+1∼P

sk
i

ak
i

[ski+1] for each client k, we learn a

dynamics model P̂ (ϕωk(s), a) = {µ̂(P̂ aϕ
ωk

(s)), σ̂(P̂
a
ϕ
ωk

(s))} for each client, which outputs a Gaus-
sian distribution over the next state embedding:

LP̂ (η
k) = E(s,a,s′)∼Dk


ϕωk(s

′)− µ̂(P̂ aϕ
ωk

(s))

2σ̂(P̂ aϕ
ωk

(s))

2
 . (12)

Based on the above approximation, the RAG loss for each client can be defined as:

LRAG(ϕωk) = EDk
[(
d̂(ϕωk(s

k
i ), ϕωk(s

k
j ))− γd̂(µ̂(P̂

aki
ϕ
ωk

(ski ))
, µ̂(P̂

akj
ϕ
ωk

(skj )
))
)2

−
(∣∣∣rski

aki
− rs

k
j

akj

∣∣∣2 − (σ̂(rski ))
2 − (σ̂(rskj ))

2

)]2
,

(13)

where Dk represents the replay buffer or the set of data collected from environment k by the RL
algorithm, e.g. SAC. Considering that the behavior metric has non-zero self-distance, the distance
on the Embedding space adopts the approximate form proposed in MICo (Castro et al., 2021), which
produces a non-zero self-distance and helps in maintaining proximity between similar states rather
than pushing them apart:

d̂(ϕ(ski ), ϕ(s
k
j )) = ∥ϕ(ski )∥2 + ∥ϕ(skj )∥2 +Kφ(ϕ(ski ), ϕ(s

k
j )), (14)

while φ is absolute angle distance and K is a hyper-parameter. The relevant properties and proofs
of the RAG distance are displayed in Appendix C and Appendix D.

4.3 FEDRAG FRAMEWORK

Under the federated learning framework, we share the parameter ω of the state projection function
ϕω . The FedRAG framework operates with multiple clients and a federated central node. Each client
k generates local parameters ωk for the state projection function and updates policy networks based
on their local environment. The federated central node collects these local parameters ωk from all
clients, aggregates them into a global distribution, and then distributes the updated global parameters
back to the clients. Specifically, each client uses the state projection ϕωk(s) as input for both the
actor and critic networks. We assume that global ω follows a Gaussian distribution,with each client
learning only a portion of the overall distribution. Therefore, we add a Gaussian regularization term
after the RAG regression function Eq. 13, leading to the new loss formulation:

LFedRAG(ϕωk) = EDk
[(
d̂(ϕωk(s

k
i ), ϕωk(s

k
j ))− γd̂(µ̂(P̂

aki
ϕ
ωk

(ski ))
, µ̂(P̂

akj
ϕ
ωk

(skj )
))
)2

−
(∣∣∣rski

aki
− rs

k
j

akj

∣∣∣2 − (σ̂(rski ))
2 − (σ̂(rskj ))

2

)]2
+
λ

2
∥ωk − ωG∥22,

(15)

where ωG represents the expectation of the global Gaussian distribution.

Through the federated learning process, we upload ωk to the server periodically. According to the
central limit theorem, we approximate the global Gaussian distribution by summing the mean of all
local ωk at the server. Then server distributes result to each client, so that the local learning results
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Algorithm 1 FedRAG Algorithm

1: Initialize ϕωk : S → Φ, ϕω̄k : S → Φ, Qθk : Φ × A → R, Qθ̄k : Φ × A → R, πψk : Φ →
[0, 1]|A|, Rξk : S → R× R+, P̂ηk : Φ×A→ RdΦ × RdΦ+ , for k ∈ {1, 2, . . . , N}. ▷ Initialize
local network parameters

2: Initialize ϕωG : S → Φ. ▷ Initialize global network parameters at the federated center node
3: ωk ← ωG, ω̄k ← ωG for k ∈ {1, 2, . . . , N}. ▷ Equalize global state projection network

parameters and local projection network parameters
4: Dk ← ∅ for k ∈ {1, 2, . . . , N}. ▷ Initialize an empty replay memory
5: while running do
6: for each client k ∈ {1, 2, . . . , N} do
7: Get state st from the environment Ek
8: at ∼ π(at|ϕωk(st)). ▷ Sample action from the client k
9: st+1 ∼ P (st+1|st, at). ▷ Sample transition from the environment Ek

10: Dk ← Dk ∪ {(st, at, r(st, at), st+1)}. ▷ Store the transition in replay memory
11: θk ← θk − λQ∇̂θkLQ(θk). ▷ Update local Q networks using Eq.(3)
12: ψk ← ϕk − λπ∇̂ψkLπ(ψk). ▷ Update policy networks using Eq.(5)
13: αk ← αk − λα∇̂αkJ(αk). ▷ Update temperature using Eq.(6)
14: ηk ← ηk − λη∇̂ηkLP̂ (ηk). ▷ Update dynamics model using Eq.(12)
15: ξk ← ξk − λξ∇̂ξkLR(ξk). ▷ Update reward function using Eq.(11)
16: ωk ← ωk − λω∇̂ωkLϕ(ωk). ▷ Update state projection network using Eq.(15)
17: θ̄k ← τQθ

k + (1− τQ)θ̄ ▷ Softly update target Q network
18: ω̄k ← τϕω

k + (1− τϕ)ω̄k ▷ Softly update target state projection network
19: if running n iterations then
20: Upload ωk to federated center node
21: end if
22: end for
23: if in federated center node then
24: ωG ← 1

N

∑N
k=1 ω

k. ▷ Update global state projection network
25: ωk ← ωG, ω̄k ← ωG ▷ Send global state projection network to clients
26: end if
27: end while

are closer to the global distribution. Each client can maintain its own local training advantages while
incorporating the global nature, and perform better when dealing with data outside of its own.

The proposed FedRAG is detailed in Algorithm 1. Initially, each client synchronizes its local state
projection network with the global state projection network and preserves a global backup. Concur-
rently, each client initializes its other local networks such as critic network, target critic network,
actor network, predictive transition dynamics model and predictive reward function. Clients operate
individually with an empty replay buffer, interacting with their environments, to collect states, ac-
tions, rewards and next states, which are stored in the buffer. Once the buffer reaches a set number
of transitions, the main phase begins. During this phase, clients continue collecting data and up-
date their local networks and temperature parameters α independently. After a specified number of
local updates, each client k uploads their local state projection function parameters ωk to a feder-
ated central node. The central node aggregates these parameters to update the global state projection
function parameters ωG, which are then distributed back to update each client’s local parameters and
global backups. This allows clients to enhance their local state projection function by incorporating
insights gained from the global environment.

4.4 EFFECTIVENESS OF ANTI-ATTACK

One of the major issues in federated learning is preserving privacy. In our analysis, we consider
the existence of semi-honest adversaries. The adversaries may launch privacy attacks to snoop on
the training data of other participants by analyzing periodic updates (e.g., gradients) of the joint
model during training (Zhu et al., 2019). Such kind of attacks is referred to as Bayesian inference
attack (Zhang et al., 2022).
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A Bayesian inference attack is an optimization process that aims to infer the private variable Dk to
best fit client k protected exposed information WS

k as

d∗ = argmax
d

log(fDk|WS
k
(d|w))

= argmax
d

log(
fWS

k |Dk(w|d)fDk(d)
fWS

k
(w)

)

= argmax
d

[log fWS
k |Dk(w|d) + log fDk(d)]

(16)

where fDk|WS
k
(d|w) is the posterior of Dk given the protected variable WS

k . According to Bayes’s
theorem, maximizing the log-posterior fDk|WS

k
(d|w) on Dk involves maximizing summation of

log (fWS
k |Dk(d|w)) and log (fDk(d)). The former one aims to find Dk to best match WS

k , and
the latter one aims to make the prior of Dk more significant. The learned conditional distribution
fDk|WS

k
from the Bayesian inference attack reflects the dependency between WS

k and Dk, which
determines the amount of information that adversaries may infer about Dk after observing WS

k .
However, in our approach, the parameter ω that we participate in federated learning is related to the
representation function ϕ of the state. From the loss LFedRAG(ϕω) in Equation 15, we can also see
that ω is only related to the mapped state and reward, and has nothing to do with our private data
state. Therefore, our proposed FedRAG protects the privacy of local state information to a certain
extent.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

In this section, we evaluate the utility and generalization ability of FedRAG with DeepMind Control
Suite (DMC). The DMC is a benchmark for control tasks in continuous action spaces with visual
input (Tassa et al., 2018). We evaluate our method on several tasks, such as cartpole-swing, cheetah-
run, finger-spin and walker-walk. As shown in Appendix A.5, we simulated different environments
by altering key physical parameters for each task. We render 84×84 pixels and stack 3 frames
as observation at each time step. As described in the previous section, each client projects state
observation to embedding space by using local state projection network, and updates local SAC
network for policy evaluation and improvement. Local state projection function is also updated by
using the approximated behavioral metric.

To evaluate the effectiveness and generalization of our method, we firstly perform experiments on
2 settings: 1)Local: clients can only interact and update local network in their own different envi-
ronments without information sharing; 2)Federated: clients interact with their respective environ-
ments, update local network with information sharing according to federated methods, and upload
local information to the central server every 4 episodes.

In our study, we set an episode to consist of 125 environment steps, training over a total of 4000
episodes, which equates to 500,000 steps. For each setting, we evaluate the performance of each
clients on all environments every 16 local update episodes. In the federated learning scenario, every
4 episodes, clients upload their local parameters, which the server then aggregates and redistributes
as global parameters.

5.2 COMPARISON OF FEDRAG AND BASELINE PERFORMANCE

As illustrated in Figure 2, we compared our proposed FedRAG method (λ = 0.001) with FedAVG
(equivalent to FedRAG with λ = 0), FeSAC, and Local methods in the CartPole task with varying
pole lengths. We assessed the average episode reward and standard deviation achieved by the clients
in other environments. The results show that clients in the Local group, trained exclusively in their
own environment without federated learning, struggled to adapt to other environments, resulting in
the lowest performance. FeSAC had limited effectiveness in capturing task-relevant information in
complex states, leading to only modest performance improvements. In contrast, FedRAG outper-
formed FedAVG by effectively integrating the global state projection function during local updates,
resulting in significant performance gains in other environments.
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Figure 2: Comparison of FedRAG and Baseline in other environments.

5.3 TUNE THE PARAMETER λ

Figure 3: The results of varying lambda. In the left experiment, the training data and testing data
are from environments with same setting, while in the right experiment, they are come from envi-
ronments with different settings.

In the local update process of FedRAG, the regularization term in Equation 15 guides the local state
projection function to align more closely with the global state projection function. We adjusted the
regularization coefficient λ; a higher λ enhances the consistency of local updates with the global
network, while a lower λ imposes fewer constraints. Setting λ to zero simplifies the method to Fe-
dAvg. As shown in Figure 3, we compared the FedRAG method across various λ values (0, 0.0001,
0.001, 0.01, 0.1, 0.15) with a non-federated approach to evaluate their impact on performance in
both same and other environments. Increasing λ enhances the effect of parameter sharing, clients
obtain a global optimal state projection function more applicable to both the same environment and
other environments, instead of focusing only on the same environment. In experiments focused on
the same environment, both training and testing data came from same settings, revealing only minor
fluctuations in performance among the federated methods, which underscores the robustness of our
approach. For experiments involving other environments, increasing λ enhanced the weight of the
regularization term, allowing the locally learned state projection function to better align with the
global state projection function and thus improving performance in other environments. The opti-
mal performance was achieved at λ = 0.001. However, a large λ may keep local updates too close
to their initial global state, restricting parameter updates and slowing convergence. Overall, while
performance remained stable in the same environment across all λ values, notable improvements
were observed in other environments, confirming the effectiveness of our federated approach.

5.4 PERFORMANCE IMPROVEMENT FOR FEDERATED LEARNING

In Figure 4, we compare the performance of the FedRAG method (λ = 0.1/0.001) with the Local
approach by evaluating average episode rewards in both the same and other environments. The Local
approach limits clients to their own environments, resulting in local optimal policies that poorly
generalize. In contrast, FedRAG aggregates local state projection functions on a central server to
create a global state projection function. By sharing this global function during local updates, clients
benefit from cross-environment knowledge sharing while maintaining data privacy. With λ = 0.1,
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Figure 4: Comparison of Local and FedRAG with λ = 0.1/0.001 in same or other environments.

FedRAG enhances local performance by leveraging shared knowledge to overcome local optima,
while also improving performance in other environments. At λ = 0.001, FedRAG achieves the
best results in other environments with minimal loss in the same environment, demonstrating strong
generalization and robustness across diverse settings.

5.5 FEDRAG PERFORMANCE ON VARIOUS DEEPMIND CONTROL TASKS

Figure 5: Experimental results on various DMC tasks.

To evaluate the robustness and effectiveness of our method, we conducted experiments on several
tasks from DMC and compared the average episode rewards of clients using our FedRAG method
with λ = 0.001 and the non-federated Local method in both same and other environments, as
illustrated in Figure 5. In cartpole-swing and finger-spin tasks, FedRAG significantly outperformed
the Local method in other environments while maintaining near-optimal performance in the same
environment. This success stems from its federated approach, which integrates global knowledge
while preserving local training advantages. In cheetah-run task, Local clients trained only on their
own environments exhibited declining performance in other environments over time. In contrast,
FedRAG maintained stable performance in other environments, benefiting from global knowledge.
By the end of training, FedRAG outperformed the Local method in cross-environment evaluations.
In walker-walk task, FedRAG demonstrated faster convergence and higher episode rewards across
all environments, benefiting from federated state projection functions that enhanced task-relevant
feature extraction and generalization. These results confirm the robustness and generalization of
FedRAG across diverse tasks and environments.

The Appendix A presents additional experiments, including an ablation study on FedRAG com-
ponents, evaluations under complex background distractions and generalization tests in unseen en-
vironments. These experiments demonstrate FedRAG’s robustness, improved cross-environment
adaptability, and strong generalization capability to new tasks.

6 CONCLUSION

Sharing the parameters of the approximated behavior metric-based state projection function en-
hances the performance of FRL and protects sensitive local information. In this work, we propose
FedRAG, a FRL framework that shares the parameters of the state projections among clients. Un-
der the FedRAG framework, we introduce a behavioral metric-based state projection function and
develop its practical approximation algorithm in Federated Learning settings. We conduct empirical
studies on several reinforcement learning tasks to verify the effectiveness of our proposed method.
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A EXPERIMENTAL DETAILS

A.1 Q NETWORKS AND HYPERPARAMETERS

Table 1: Networks hyperparameters

Hyperparameter Value
Episode length 1000
Training steps 500,000
Replay buffer capacity 20,000
Batch size 128
Discount factor γ 0.99
Optimizer Adam
Networks learning rate 5× 10−4

log α learning rate 1× 10−4

τϕ 0.05
τQ 0.01
Target Q-network update frequency 2
Actor network update frequency 2
αRAP 0.5
αP 1× 10−4

Actor log std bound [-10, 2]
Action repeat for cartpole/cheetah 8/4
Action repeat for finger and walker 2

Each client’s Q networks include a state encoder ϕω , which consists of stacked convolutional layers
and a fully connected layer. It processes 3 stacked frames to produce the state representation ϕω(s)
with input dimensions of 9 × 84 × 84, convolutional kernels [3, 3, 3, 3], 32 channels, and strides
[2, 1, 1, 1], resulting in an output dimension of 100. The Q-network has three fully connected layers
with 1024 hidden units, taking input from ϕω(s) and action a. The actor network also consists of
three fully connected layers that output the policy π. Both the dynamics model P̂ and the reward
function Rξ are two-layer MLPs with 512 hidden units, using ReLU activation. This architecture
efficiently generates policies and Q-values from state inputs. Other hyperparameters are listed in
Table 1.

A.2 ABLATION STUDY ON FEDRAG CLIENT UPDATES

The FedRAG client update formula in Equation 15 has two key components for data sharing: re-
placing local parameters with global ones during distribution and applying L2 regularization to align
local updates with global parameters.

To evaluate the impact of these components, we conducted ablation experiments, as shown in Fig-
ure 6. We compared four approaches: Local (no federated learning), Only Replace (global param-
eters replace local ones without L2 regularization), Only L2 (L2 regularization without replacing
local parameters), and FedRAG (both global replacement and L2 regularization). The metrics mea-
sured were the average episode reward and standard deviation in different environments.

The results show that replacing local parameters with global ones improves generalization by lever-
aging shared knowledge, while L2 regularization enhances robustness by preventing overfitting.
Omitting either component resulted in significant performance declines, confirming their essential
role in our federated learning approach.
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Figure 6: Performance comparison of FedRAG and variants in other environments.

A.3 DISTRACTING DEEPMIND CONTROL SUITE

(a) original background (b) natural video background

Figure 7: Illustrations of observations in DMC cartpole-swingup task for pole lengths 1.0 and 0.9.

Figure 8: Performance comparison of FedRAG and FedAVG with background distraction.

To evaluate the generalization and robustness of our method, we conducted experiments using the
CartPole task in the DeepMind Control Suite, with background distractions and varying pole lengths
to simulate different environments, as shown in Figure 7. We replaced the background with clips
from the Kinetics dataset, which serves as a distraction for the RL algorithm. We selected 1,000 con-
tinuous frames from the video dataset for training the reinforcement learning clients and evaluated
them using another 1,000 frames.

The results presented in Figure 8 demonstrate that FedRAG outperforms FedAVG in both the same
and other environments, confirming that our method is more effective at learning generalizable state
representations and better at capturing task-relevant information, even in complex settings.

A.4 GENERALIZATION EVALUATION IN UNSEEN ENVIRONMENTS

To further evaluate the generalization ability of our proposed FedRAG method, we took the clients
trained in Appendix 5.2 and tested them in a completely unseen environment, where none of the
clients had prior exposure. We assessed their average episode reward, and the results are shown
in Figure 9. Our method outperformed FeAVG and Local, achieving performance close to that of
the client trained directly in the unseen environment. In contrast, FedSAC methods demonstrated
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Figure 9: Comparison of FedRAG and Baseline in unseen environment.

poor performance, indicating that our approach enables clients to generalize more effectively to new,
previously unseen environments.

A.5 ILLUSTRATIONS OF OBSERVATIONS IN VARIOUS DMC TASKS

(a) cartpole-swing (b) cheetah-run (c) finger-spin (d) walker-walk

Figure 10: Illustrations of observations in DMC tasks for pole lengths (1.0 and 0.9), cheetah torso
lengths (1.0 and 0.9), finger distal lengths (0.16 and 0.18), and walker torso lengths (0.3 and 0.35)

As shown in Figure 10, we simulated different environments by modifying key physical parameters
for several tasks from the DeepMind Control Suite, including cartpole-swing, cheetah-run, finger-
spin, and walker-walk. Each task has a unique goal: balancing a swinging pole in cartpole-swing,
maximizing speed in cheetah-run, rotating a finger in finger-spin, and simulating bipedal locomotion
in walker-walk.

B COMPARISON WITH RELATED WORK

To better position our work, we provide a detailed comparison with Fan et al. (2021) and Jin et al.
(2022), highlighting the differences in objectives, methodologies, and contributions.

B.1 COMPARISON WITH FAN ET AL. (2021)

Objective: Fan et al. (2021) proposed Federated Policy Gradient with Byzantine Resilience (FedPG-
BR) to address convergence guarantees and fault tolerance in homogeneous FRL settings. Their
focus is on filtering adversarial gradients and ensuring system robustness against Byzantine agents.

Methodology: The framework employs a variance-reduced federated policy gradient method. The
server aggregates gradients sent by clients, applies a two-step Byzantine filtering rule, and updates
the global policy. Clients compute gradients directly from their local trajectories without performing
local updates.

Limitations: Fan et al.’s method assumes homogeneous environments and does not address hetero-
geneity among clients. It is tailored for variance-reduced policy gradients and lacks personalization
mechanisms.

Our Differences:

• Objective: Unlike Fan et al., our work focuses on generalization across heterogeneous
environments, enabling shared state projection functions to adapt to diverse dynamics.
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Table 2: Comparison of FedRAG with related works

Aspect Fan et al. (2021) Jin et al. (2022) FedRAG (Our
Work)

Objective Convergence guaran-
tees and fault toler-
ance in homogeneous
environments.

Optimizing global
policy across het-
erogeneous en-
vironments with
personalization.

Generalization
across heterogeneous
environments via be-
havioral metric-based
state representations.

Methodology Variance-reduced
federated policy gra-
dient with Byzantine
filtering.

Federated Q-network
(QAvg) and policy
network (PAvg) aver-
aging, with environ-
ment embeddings.

Federating state
projection parameters
and updating local
models with regular-
ization.

Handling Hetero-
geneity

Assumes homoge-
neous environments.

Addresses hetero-
geneity via averaging
and embeddings.

Tackles heterogeneity
through shared state
projection functions
and behavioral met-
rics.

Personalization Not addressed. Environment
embedding-based
personalization for
local policies.

Implicit personaliza-
tion through regular-
ized state projection
updates.

Contributions Theoretical guaran-
tees for Byzantine-
resilient FRL.

Suboptimality analy-
sis under heterogene-
ity; embedding-based
generalization.

Enhances policy
robustness and gener-
alization with behav-
ioral metric-driven
representations.

• Methodology: FedRAG federates state projection parameters rather than policy gradients.
Clients update their Q-networks and policy networks locally, regularized by the L2 norm
between local and global parameters.

• Others: Instead of addressing Byzantine faults, our work tackles the challenges of hetero-
geneity and semi-honest adversaries, ensuring privacy and adaptability.

B.2 COMPARISON WITH JIN ET AL. (2022)

Objective: Jin et al. (2022) tackled environmental heterogeneity by optimizing a global Q or policy
while enabling personalization. They proposed QAvg and PAvg algorithms, along with a heuristic
embedding-based personalization method.

Methodology: In QAvg and PAvg, agents perform local updates on Q or policy networks and share
these updates with the server for aggregation. For personalization, they introduced embedding layers
to capture unique environmental characteristics, enabling generalization to unseen environments
through few-shot learning.

Limitations: While effective, Jin et al.’s approach relies heavily on averaging Q or policy parame-
ters, which may not generalize well to environments with high variability.

Our Differences:

• Objective: While Jin et al. aim to optimize Q or policy networks, our focus is on behav-
ioral metric-based state projection functions that enhance policy robustness across diverse
environments.

• Methodology: Instead of federating Q or policy parameters, FedRAG aggregates state pro-
jection parameters, reducing sensitivity to environment-specific noise and improving cross-
environment adaptability.
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• Others: FedRAG’s approach directly mitigates heterogeneity through shared projection
functions, ensuring both generalization and robustness.

B.3 NOVELTY OF FEDRAG

FedRAG introduces a novel perspective on federated reinforcement learning by:

• Developing approximated behavioral metric-based state projection functions for general-
ization across heterogeneous environments.

• Federating projection parameters to reduce communication overhead and enhance scalabil-
ity.

• Balancing global consistency and local adaptability through regularized updates, enabling
robust performance even in highly diverse settings.

These innovations bridge gaps in prior work, advancing the field of federated reinforcement learning.

C PROOF OF EQUATION 10

Proof. We first analyze the difference between Eaki∼πk,akj∼πk

[∣∣∣∣rskiaki − rskjakj
∣∣∣∣2
]

and
∣∣∣∣Eaki∼πkrskiaki − Eakj∼πkr

skj
akj

∣∣∣∣2 . The difference is given by:

Eaki∼πk,akj∼πk

[∣∣∣∣rskiaki − rskjakj
∣∣∣∣2
]
−

∣∣∣∣Eaki∼πkrskiaki − Eakj∼πkr
skj
akj

∣∣∣∣2
= Eaki∼πk
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)2
]
+ Eakj∼πk
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)2
]
− 2Eaki∼πkEakj∼πk
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]

−
[
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]2
−
[
Eakj∼πkr

skj
akj

]2
+ 2

[
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] [
Eakj∼πkr
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akj

]
= Eaki∼πk

[(
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)2
]
−
[
Eaki∼πkr
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]2
+ Eakj∼πk

[(
r
skj
akj

)2
]
−

[
Eakj∼πkr

skj
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]2
− 2Eaki∼πk,akj∼πk

[
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r
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]
+ 2

[
Eaki∼πkr

ski
aki

] [
Eakj∼πkr

skj
akj

]
= Var[rski ] + Var[rskj ]− 2Cov[rski , rskj ].

Since rski and rskj are independent, Cov[rski , rskj ] = 0. Therefore, we have the reward difference
term:

∣∣∣∣Eaki∼πkrskiaki − Eakj∼πkr
skj
akj

∣∣∣∣ =
√√√√Eaki∼πk,akj∼πk

[∣∣∣∣rskiaki − rskjakj
∣∣∣∣2
]
− Var[rski ]− Var[rskj ].

D PROPERTIES AND PROOFS OF THE RAG DISTANCE

Theorem 1. dπ is a contraction mapping w.r.t. the L∞ norm and has a unique fixed-point Dπ .

Proof. Let D,D′ ∈M. We have

|dπ(D)(si, sj)− dπ(D′)(si, sj)| =

∣∣∣∣∣∣γ
∑
ai,aj

π(ai|si)π(aj |sj)(D −D′)(E[s′i],E[s′j ])

∣∣∣∣∣∣ ≤ γ||D −D′||∞.
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Therefore, dπ is a contraction mapping w.r.t. the L∞ norm and there exists a unique fixed-point for
dπ due to Banach’s fixed-point theorem. This completes the proof.

Theorem 1 provides a convergence guarantee for the RAG distance that by iterating dπ , distance D
will converge to the fixed-point Dπ .

Theorem 2 (Value function difference bound). Given states si and state sj , and a policy π, we have

|V π(si)− V π(sj)| ≤ Dπ(si, sj).

Theorem 2 demonstrates that the RAG distance between states upper-bounds the difference of their
states values.
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