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ABSTRACT

How can we measure the reasoning capabilities of intelligence systems? Visual
question answering provides a convenient framework for testing the model’s abil-
ities by interrogating the model through questions about the scene. However, de-
spite scores of various visual QA datasets and architectures, which sometimes
yield even a super-human performance, the question of whether those architec-
tures can actually reason remains open to debate. To answer this, we extend the
visual question answering framework and propose the following behavioral test in
the form of a two-player game. We consider black-box neural models of CLEVR.
These models are trained on a diagnostic dataset benchmarking reasoning. Next,
we train an adversarial player that re-configures the scene to fool the CLEVR
model. We show that CLEVR models, which otherwise could perform at a “hu-
man level”, can easily be fooled by our agent. Our results put in doubt whether
data-driven approaches can do reasoning without exploiting the numerous biases
that are often present in those datasets. Finally, we also propose a controlled ex-
periment measuring the efficiency of such models to learn and perform reasoning.

1 INTRODUCTION

Are our artificial intelligence systems capable of reasoning? Or like Clever Hans, they use var-
ious cues only tangentially related to the task and rely on rote memorization with poor general-
ization? (Pfungst, 1911; Johnson et al., 2017a) This work revisits such a question and proposes
an interactive framework with the communication channel between two players. The first player,
which reasoning capabilities we are about to test, performs visual reasoning tasks, we call it Visual-
QA Player. The second player, which we call the Adversarial Player, is manipulating the scene so
that it fools the first player even though those changes still lead to correct reasoning steps among hu-
mans. Both players interact with each other only through questions, answers and the visual scene as
shown in Figure 1. If the Adversarial Player manipulating the scene causes the Visual-QA Player to
change its answer even though the new scene is still valid for the same question and answer, it is then
the reasoning failure. It is similar to the following situation. Imagine a box is placed between two
spheres. If you ask a question, is there a box between two spheres?, the answer should be positive.
Now, if we move the box anywhere so it does not cross any of the spheres, and ask the same ques-
tion, the response should remain unchanged. In other words, we postulate that reasoning outputs of
agents need to be invariant under scene configurations that are consistent with the questions-answer
pairs. Moreover, in the spirit of generic adversarial attacks, we seek configurations that also pose
little if any reasoning challenges for humans.

We propose an automatic and agnostic pipeline to benchmark the reasoning capabilities of various
models, only assuming they can communicate by answering questions about the scene. Due to the
recent stream of research in vision-and-language (Zhang et al., 2021; Jiang et al., 2020; Guo et al.,
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2019b; Su et al., 2020; Wang et al., 2020; Kamath et al., 2021; Tan & Bansal, 2019; Chen et al.,
2020), we believe there will be an increasing number of vision models that operate through language.
Moreover, we also consider the visual question answering framework set-up as a two-player system
as an excellent benchmarking pipeline. We perform all tests by scene manipulations and observing
how a tested model behaves under such changes. The pipeline does not require any knowledge of the
internals of the tested model. It also does not manipulate the sensory information of such a model,
e.g., pixels in the images, and all the manipulations are physically meaningful. Even though our
current pipeline uses synthetic scenes as only those can easily be automatically manipulated, our
results have also real-world ramifications. If models are susceptible to semantically meaningless
changes1 in scene configurations, in a synthetic setting, there are valid concerns that real-world
robots could also be prone to manipulation of objects in a room. Finally, our work also questions the
possibility of training and benchmarking networks in a purely data-driven and offline, static manner.

Contributions. The main contributions of our work could be summarized in three points.

First, we propose a strong black-box adversarial test, which makes no assumptions about the under-
lying mechanics of a tested model, formulated as a game between two players. Our test does not
require any direct access to the tested model, even through its sensory information. In particular, it
does not require gradients, output probabilities, or any access to the perceived image. Our work also
deviates from bounded perturbations and instead focuses on global scene manipulations that are still
consistent with the task constraints, and can change the behavior of a tested model.
Second, we reformulate visual reasoning by integrating visual question answering with zero-sum
two-player game frameworks. Under our novel formulation, a visual and adversary agents compete
against each other through content manipulation. We believe that this is an initial step towards more
sophisticated frameworks that integrate computer vision with multi-agent systems.
Third, we explore the limits of the data-driven approaches in synthetic visual scenarios, and demon-
strate that current CLEVR models are lacking the efficiency to learn robust reasoning steps.

2 RELATED WORK

Our work touches upon various research directions, which we briefly describe here.
Visual QA. Introduced as a visual counter-part of the Turing Test (Malinowski & Fritz, 2014; Geman
et al., 2015), it became a computer vision task that requires a holistic visual understanding. Many
other works have extended the task to larger datasets or videos or adversarial train-test splits (An-
tol et al., 2015; Agrawal et al., 2018; Tapaswi et al., 2016; Yu et al., 2019). More recently, we
also observe the generalization of the task to become a part of the vision-plus-language suite of
benchmarks (Lu et al., 2019; Chen et al., 2019; Wang et al., 2021). Johnson et al. (2017a) have
introduced a synthetic variant of the Visual QA problem that is more focused on reasoning and the
control of the experimentation. Although it was shown that traditional methods (Yang et al., 2016)
are not enough to solve that dataset, newer methods can pass the human baseline on this task. These
methods are trained to operate on pixels and text directly (Santoro et al., 2017; Perez et al., 2018;
Hudson & Manning, 2018; Malinowski et al., 2018; Kamath et al., 2021) or they induce programs
as an intermediate representation (Johnson et al., 2017b; Mascharka et al., 2018; Yi et al., 2018).
Hudson & Manning (2019) have shown that Visual QA models lack some reasoning robustness but
their approach is mostly linguistic and still static. Some other works also observe issues with static
evaluation and proposed more dynamic benchmarks, e.g., with a human-in-the-loop (Khashabi et al.,
2021; Nie et al., 2020; Li et al., 2021; Sheng et al., 2021). We extend the line of research on Visual
QA by reformulating it as an interactive two-agents system, and show that CLEVR under such a new
setting is still an unsolved problem. Our work also differs from previous works in that it focuses on
visual reasoning, is interactive and fully automatic.
Adversarial perturbations. Szegedy et al. (2014); Goodfellow et al. (2015); Kurakin et al. (2016);
Carlini & Wagner (2016) have introduced early methods that can ‘fool’ networks by performing tiny,
visually imperceptible, perturbations of the input image. Moosavi-Dezfooli et al. (2017) have also
shown universal and untargeted adversarial perturbations that are more transferable than previous
approaches. Most methods perform white-box attacks, where an adversarial model has access to
the target model’s parameters or gradients. In black-box attacks such access is removed and, e.g.,
only output probabilities are available (Guo et al., 2019a). Other black-box attacks involve the use

1Changes that are consistent with the task constraints.
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of surrogates to estimate gradients of the real target (Papernot et al., 2017; Cheng et al., 2019) or
gradient-free methods (Alzantot et al., 2018). More related to our work, Cheng et al. (2018) describe
a black-box system, which only assumes access to outputs of the network. However, all the pertur-
bations described above are continuous-based where individual pixels are changed independently.
This leads to improbable images and assumes access to the sensory inputs of the neural network.
In contrary, semantic perturbations (Joshi et al., 2019; Zeng et al., 2019), operate on semantically
meaningful chunks of the input, leading to more plausible and physically interpretable perturbations.
However, they still assume direct access to either images or ideally differentiable renderers. We can
interpret our work within the adversarial perturbations framework, where the adversarial model can
change the original scene by its manipulations, with zero access to the target model, including its
sensory information and not limited to tiny changes but instead to semantically and globally mean-
ingless modifications.
Reinforcement learning. The game between the Visual-QA Player and Adversarial Player is a
zero-sum two-player game. Conneau et al. (2017) use a conceptually similar two-player game to
find a better word alignment between two languages without parallel corpus. Inspired by such a
problem formulation, we consider our two-player game as a tool to achieve better reasoning models.
We optimize the Adversarial Player with Advantage Actor-Critic (A2C) algorithm (Sutton & Barto,
2018; Degris et al., 2012).
Probing and measuring intelligence. Turing Test (Turing, 2009) is considered to be among the ear-
liest works on measuring the intelligence of artificial systems. Crucially to us, it is also formulated
as a two-player game with an interrogation protocol. Legg (2008) systematizes and relates the no-
tion of intelligence from different fields with the main focus on ‘universality’. Johnson et al. (2017a)
have transferred the notion of intelligence onto the visual ground and emphasized reasoning rather
than universality. It seems there is no widely accepted dataset or definition that encompasses our
intuitions about intelligence. However, there are a few recent directions showing the lack thereof,
mainly highlighting bias amplification or absence of mathematical capabilities (Hendricks et al.,
2018; Bhardwaj et al., 2021; Piekos et al., 2021).

3 PRELIMINARIES

In this section, we explain briefly how the CLEVR dataset (Johnson et al., 2017a) is constructed and
introduce our notation and definitions.
CLEVR is a synthetic visual question answering dataset introduced by Johnson et al. (2017a), which
consists of about 700k training and 150k validation image-question-answer triplets. Images are ar-
tificially constructed and rendered from scene graphs – a special structure containing information
about object attributes such as position or color. Such a scene graph is also used to synthesize
the ground-truth question-answer pairs by expanding templates according to the depth-first-search
ordering. Ambiguous scenes are rejected. Each image represents an isometric view of the scene
containing from two to ten objects. There are three classes of objects, spheres, cubes and cylinders.
Each object can also be either large or small and has one color out of four (brown, purple, cyan,
yellow). It can also be either metallic or rubber-made. Every object has x and y coordinates that are
confined within the (−3,+3) range. We use the same generation process to render modified scenes.
CLEVR models. Various models have been introduced to work with the CLEVR dataset, some even
‘solving’ the dataset by achieving near perfect performance. Despite the strong offline performance,
we test if those models’ performance perpetuates in the more interactive setting where configu-
rations of the scene could be changed. Whenever possible, we use pre-trained CLEVR models.
Otherwise, we train the remaining models from scratch by making sure we achieve results similar
to published accuracy numbers on the validation set. We summarize all the models in Table 1. We
show the accuracy on the CLEVR dataset (Accuracy), indicate if an architecture is trained from
scratch (Re-trained), briefly describe how multi-modal fusion and reasoning is conducted (Reason-
ing Mechanism), and indicate any extra privileged information required during the training process
(Extra). For instance, some models require extra access to functional programs used during the
dataset generation, use scene graphs as a supervisory signal (states), or always operate on scene
graphs (input-states). Otherwise, the models were trained only from image-question-answer triples.
Mini-games. We formulate our problem as a Game between two players, Visual-QA Player and
Adversarial Player. The Visual-QA Player takes as input question-image pairs and provide an-
swers to such questions. Some models use states (scene-graphs) that replace images or require
programs (Johnson et al., 2017a). The whole game consists of all CLEVR data points. For our
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purpose, we extend the notion of the Game into Mini-games. The rules of Mini-games are identical
to the whole Game. The only difference is that each Mini-game operates on a subset of the CLEVR
dataset. We define the size of a Mini-game by the number of datapoints that are attached to that Mini-
game. We sample data points for each Mini-game randomly and mutually exclusively. Mini-games
have analogies in the adversarial perturbations literature. Mini-games of size one resemble per-
image adversarial perturbations (Goodfellow et al., 2015; Moosavi-Dezfooli et al., 2016) whereas a
Mini-game that has all data pointsis similar to universal adversarial perturbations (Moosavi-Dezfooli
et al., 2017). In this work, we investigate various Mini-game sizes but due to the sheer scale we were
unable to use the whole game as the Mini-game. Larger Mini-games make the optimization process
more difficult as the domain where the Adversarial Player needs to operate increases. The training
is also much more time-consuming and a sequential process. Instead, we can train multiple players
on different Mini-games independently and thus massively. We leave the arduous training of the
universal Adversarial Player on the whole Game as a possible future direction.

Table 1: CLEVR models that we use as Visual-QA Players.

Model Name Accuracy Re-trained Reasoning Mechanism Extra Data

SAN (Yang et al., 2016) 72.1 Attention
FiLM (Perez et al., 2018) 96.2 ✓ Feature Conditioning
RN (Santoro et al., 2017) 93.2 ✓ Relational
IEP (Johnson et al., 2017b) 96.9 Neural Program Induction Programs
TbD (Mascharka et al., 2018) 99.1 Neural Program Induction Programs
Mdetr (Kamath et al., 2021) 99.7 Multimodal Transformer Querying States
State-Input Transformer (ours) 96.8 ✓ Cross Attention Input-States

4 ENVIRONMENT

We need to ensure that Adversarial Players create valid scenes that are consistent and in-distribution.
Both properties are guaranteed by our environment enforcers.
Consistency. Since scene manipulation may change the answer for a given question, we need to
ensure this does not happen. That is, the new scene is still consistent with the question-answer pair.
The question-relevance enforcer achieves that by running functional programs associated with each
question (Johnson et al., 2017a) on the modified scene-graph. Hence, it gets the new ground-truth
answer. The enforcer rejects the new scene if that new answer differs from the previous one. In
this way, it guarantees the newly generated scenes give the same answers as the original scenes on
the same question. Thus, we can generate equivalent scenes containing the same objects that have
identical answers for the same questions. Using that enforcer, we can test if the Visual-QA Player’s
answers are invariant under such an equivalent class of scenes.
In-distribution. Even with the question-relevance enforcer, the Adversarial Player may still pro-
duce undesired outputs. For instance, it can stretch the whole scene thus violating the scene bound-
aries from the original CLEVR dataset, making, e.g., everything to look very small (Section A.9 in
the appendix). Although it is still an interesting form of adversarial scene manipulation, we focus
rather on the in-distribution scene manipulations that respect the original boundaries. To enforce
that property, we use a scene-constraint enforcer that checks the boundaries of the scene. Without
that enforcer, the Adversarial Player would quickly resort to stretching the whole scenes, achieving
a form of adversarial attack that uses distribution shifts rather than content manipulation. It does so,
e.g., by moving the camera away until objects are barely visible. We give a few such examples in
the appendix (Section A.9).

5 Adversarial Player

Meaningful scene manipulations require not only generic scene understanding, but also the ability to
distinguish which objects to displace and how. Hence, the player is a composition of a multi-modal
module, which creates input representation, and a decision maker, which decides how to control the
scene. Figure 1 illustrates the Adversarial Player and the game between both players.
Multi-modal module. We have experimented with the same multi-modal modules as those in Ta-
ble 1, but found out we have a better performance and the convergence rate if the Adversarial Player
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operates on the scene-graphs (states) instead of pixels. For that, we use state-input variant of Re-
lation Networks (Santoro et al., 2017). The model receives as the input 10 ∗ 6 object tokens, and
question tokens. Every object token represents one-out-of-ten possible objects in the scene by its
attributes such as position, color, shape, material and size. If the scene has fewer than ten objects, we
use ∅ token to indicate that, which also acts as a padding. We also have special tokens that separate
questions from the objects which we add as a latent embedding, e.g., emb(material) + emb(object).
Such an input encoding is similar to our State-Input Transformer and described in Section A.3. The
embedded vectors are given to the Relation Network (RN). Finally, we train that network on the
CLEVR visual question answering task, where we achieve 97.6% on the validation set, and use the
representation just after the last relational layer for the decision maker.
Decision maker. Inspired by the work on reinforcement learning (Mnih et al., 2016; Wu et al., 2017;
Lillicrap et al., 2016; Wang et al., 2016; Schulman et al., 2015), we use an actor-critic module that
acts on scenes. The actor is a general-purpose fully connected layer with ten object-specific heads.
Each head is randomly assigned to a unique object in the scene for its manipulation. Every head pro-
duces a displacement in x and y coordinates of the corresponding object. Although we have initially
experimented with the continuous output space, we have found out the following simple strategy is
more effective. First, we discretize all the x and y coordinates into N bins each. Now, each head
produces two N -dimensional vectors that are next projected into a probabilistic space via softmax.
Next, we sample displacements in x and y axis independently from both softmax distributions. Note
that, even though we do not model the joint distribution explicitly due to computational reasons,
both samples condition on the common head and thus are only conditionally independent of each
other. We discretize the scene where each axis has values in [−3, 3] onto N = 7 bins per axis. Our
critic is a simple three layer feed-forward network (with relu as activations) that predicts a reward
score between −1 and +1 via tanh activation (1.2 ∗ tanh for better numerical properties).
The game of scene manipulations. Due to our formulation of Adversarial Player and the envi-
ronment, we can benchmark various reasoning models purely in the black-box setting via a series
of questions about the scene. Adversarial Player manipulates the scene so that it is still consistent
with the question-answer pair. The manipulations are applied to scene-graphs, and the resulting
scene-graph is evaluated by the environment enforcers described in Section 4. Invalid scenes are
thus discarded. In this way, we ensure the in-distribution and consistency in the scene generation.
Original image-question pairs are fed to a Visual-QA Player that produces corresponding answers.
We refer to that answers as old answers. After the scene manipulation, new images paired with the
same questions are also given to the Visual-QA Player that produces new answers. We construct
rewards based on old answers, new answers and ground-truth answers.

If the Adversarial Player forces the Visual-QA Player to change the answer, i.e., an old answer is
different than a new answer, it gets Consistency Drop Reward (cr). If an old answer is the ground-
truth answer, it gets instead Accuracy Drop Reward (dr). Both rewards differentiate between simply
confusing the model and causing a drop in its performance. If Adversarial Player produces an

Figure 1: Our game between two players: Adversarial Player and Visual-QA Player. Adversarial Player
uses a multi-modal module to extract features conditioned on the visual and textual inputs. After transforming
such features with a feed-forward architecture, it samples an action using object-specific heads. Each action
corresponds to manipulating the corresponding object in the scene. In the case of missing objects, we use an
∅ token. After alternating the original scene graph, we use various environment enforcers to ensure validity of
the constructed scene. A valid scene graph is rendered and introduced to the Visual-QA Player together with
the original image. Finally, we collect responses of the Visual-QA Player and calculate suitable rewards based
on them, and we repeat the whole cycle during the training phase.
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invalid scene it gets Invalid Scene Reward (isr). This reward encourages producing scenes that pass
the environment enforcers tests. Finally, if Adversarial Player does not manage to fool the model,
it gets Fail Reward (fr). We use the following values: dr= 1, cr= 0.1, fr = −0.1, isr = −0.8.
Training algorithm. To train Adversarial Player we use the A2C algorithm with the episode length
set to one as we do not need to model long-range consequences of the decision-making mechanism.
Batches contain images, question, answers, programs and scene-graphs. We train the Adversarial
Player for each Mini-game independently using the same architecture. We experiment with the
following Mini-game sizes 10, 100, 1000. All Mini-games are constructed randomly. Under our
discretization scheme, the action space is Nk where N is the number of bins and k is the number of
objects in the scene. In practice, it is up to 4910.

6 EXPERIMENTS

We consider Adversarial Player with a multi-modal module pre-trained either on states (state-input)
or directly from pixels (pixel-input). We train Adversarial Player for each Mini-game independently.
We use different Mini-game sizes in our experiments: 10, 100 and 1000. To obtain statistically sig-
nificant results, we run each Mini-game thirty times with randomly initialized Adversarial Players,
each with different seed per trial. We report the results that are averaged over all those runs. We
compute two metrics for each Mini-game. Consistency refers to the fraction of times Adversarial
Player has changed the Visual-QA Player’s answer, regardless if that answer was correct. Drop
refers to the fraction of times Adversarial Player has changed the correct Visual-QA Player’s an-
swer. We aggregate the results using two statistics. Average Accuracy averages accuracies over
all Mini-games. Maximal Accuracy refers to the worst (best) case of a single Mini-game from the
Visual-QA Player’s (Adversarial Player’s) perspective. We also computed p-values of T-Test, with
the null hypothesis that a manipulation is unsuccessful. In almost all cases we reject the null hy-
pothesis with small p-values. The p-values are available in the appendix (Section A.11).
Quantitative results. We show our results in Table 2 for the state-input and pixel-input Adver-
sarial Players, and for each Visual-QA Player presented in Table 1. All the Visual-QA Players in
the comparison are trained from pixels, apart form our custom State-Input Transformer architecture
(Section A.3 in the appendix). When comparing both Adversarial Players, we can observe that the
state-input Adversarial Player is significantly more successful than the pixel-input one. We hypoth-
esize that this is the effect of having more structured and less ambiguous input information. It could
also be the case that multi-modal modules trained from pixels ignore features in the same way and
hence smaller discrepancy between all models operating on pixels. Moreover, as the size of Mini-
games increases, it is becoming more difficult for the Adversarial Player to successfully manipulate
the model on all examples from the Mini-game. This is an expected behavior resembling standard
adversarial perturbations (Goodfellow et al., 2015) and their universal variants (Moosavi-Dezfooli
et al., 2017). The highest performing CLEVR models, TbD and MDetr, are the most robust under
the manipulation. However, they are still susceptible to the scene manipulations in some Mini-games
as the Maximal Consistency metric indicates, especially if our Adversarial Player uses states as the
input. Section A.8 (appendix) also shows richer performance statistics. Our detailed investigation
shows that the models above are particularly sensitive to manipulations of scenes associated with
counting or existence questions. Such question are often more complex, hence, increasing the like-
lihood of the reasoning failure at some stage (Section A.6 in the appendix).
Qualitative results. Figure 3 shows qualitative results of the scene manipulations for the three high-
est performing and distinctive models from Table 1; e.g., simple feed-forward or program induction
models. For the reader’s convenience, we provide in Section A.2 (appendix) examples of CLEVR
object attributes. We can observe that the scene manipulations are surprisingly minimal and are
semantically meaningless, i.e., they should not ‘fool’ human players.
Reasoning steps and visual cues. To better understand the source of errors (reasoning steps vs
visual cues), we have conducted the following experiments. In the first experiment, shown in Sec-
tion B.4 (appendix), we visualize the attention mechanisms of Visual-QA Players before and after
the scene manipulations. We observe changes in the attention map of all models but MDetr. The
results suggest, most models’s perception is impacted by the manipulations. However, all objects are
still correctly identified by MDetr, thus suggesting some issues are also stemming from the reason-
ing steps. In the second experiment, we deployed Slot-attention object detector (Locatello, 2020),
and show that the detector identifies the same properties before and after manipulations. This re-
sult (Section B.6; appendix) shows that Adversarial Player does not produce ‘corner cases’ of the
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Table 2: Results of the games: Model dataset performance refers to models’ accuracy on the CLEVR
dataset. Model Mini-game performance refers to the model accuracy on the Mini-game examples
where the largest (maximal) performance drop was detected, before manipulations took effect. The
Average Accuracy column reports the performance of models averaged over all runs of the respec-
tive Mini-game sizes. Maximal Accuracy reports the worst model performance among the respec-
tive Mini-game size runs. We also report in brackets the relative performance drop, in percentages
X−Y
X %. Average Accuracy is compared against Model dataset performance (X = Model dataset

performance / Y = State/Pixel-Input). Maximal Accuracy is compared against Model Mini-game
performance (X = Model Mini-game performance, Y = State/Pixel-Input). Note that in the case of
state-input and pixel-input Adversarial Player the worst Mini-game might not come from the same
Mini-game instance.

Average Accuracy Maximal Accuracy

Model
Mini-
game
size

Model
dataset
performance

State-Input Pixel-Input Model
Mini-game
performance

State-Input Pixel-Input

SAN 10 61.8 (-14.2%) 63.8 (-11.4%) 80.0 / 80.0 28.0 (-65.0%) 43.0 (-46.2%)
100 72.1 66.1 (-8.3%) 69.2 (-3.9%) 74.0 / 75.0 47.6 (-35.6%) 66.3 (-11.5%)
1000 70.2 (-2.5%) 71.0 (-1.4%) 72.3 / 72.3 68.4 (-5.3%) 70.8 (-1.9%)

FiLM 10 83.9 (-12.7%) 93.6 (-2.6%) 100.0 / 100.0 48.0 (-52.0%) 86.0 (-14.0%)
100 96.2 89.1 (-7.3%) 94.8 (-1.4%) 98.0 / 100.0 75.6 (-22.8%) 92.4 (-7.5%)
1000 93.8 (-2.4%) 95.8 (-0.4%) 96.4 / 96.1 90.8 (-5.7%) 94.7 (-1.4%)

RN 10 80.5 (-13.6%) 86.4 (-7.2%) 100.0 / 100.0 47.0 (-53.0%) 74.0 (-26.0%)
100 93.2 85.5 (-8.2%) 90.8 (-2.5%) 94.0 / 95.0 63.2 (-32.6%) 87.4 (-7.9%)
1000 90.5 (-2.8%) 91.6 (-1.7%) 93.1 / 93.3 90.0 (-3.2%) 91.0 (-2.4%)

IEP 10 84.3 (-13.0%) 94.4 (-2.5%) 100.0 / 100.0 48.0 (-52.0%) 87.0 (-13.0%)
100 96.9 90.3 (-6.8%) 95.6 (-1.3%) 98.0 / 96.0 74.4 (-24.0%) 93.5 (-2.6%)
1000 94.1 (-2.8%) 96.6 (-0.3%) 97.1 / 97.3 93.9 (-3.2%) 95.7 (-1.6%)

TbD 10 94.0 (-5.1%) 99.1 (-0.0%) 100.0 / 100.0 69.0 (-31.0%) 99.0 (-1.0%)
100 99.1 96.6 (-2.5%) 98.7 (-0.4%) 100.0 / 100.0 91.1 (-8.8%) 98.0 (-2.0%)
1000 98.0 (-1.1%) 99.0 (-0.1%) 99.4 / 99.7 95.5 (-3.9%) 98.8 (-0.9%)

Mdetr 10 93.7 (-6.0%) 99.7 (-0.0%) 100.0 / 100.0 60.0 (-40.0%) 99.0 (-1.0%)
100 99.7 96.1 (-3.6%) 98.6 (-1.1%) 100.0 / 100.0 86.4 (-13.5%) 97.8 (-2.2%)
1000 98.5 (-1.2%) 99.4 (-0.3%) 99.5 / 100.0 94.5 (-5.0%) 99.1 (-0.9%)

State 10 89.3 (-7.7%) 96.0 (-0.8%) 100.0 / 100.0 77.0 (-23.0%) 91.0 (-9.0%)
Input 100 96.8 94.7 (-2.1%) 96.1 (-0.7%) 97.0 / 99.0 92.6 (-4.5%) 95.0 (-3.9%)
Transf. 1000 95.7 (-1.1%) 96.5 (-0.3%) 97.2 / 96.4 95.1 (-2.1%) 95.8 (-0.5%)

perceptual system. We also have similar conclusions based on our small-scale human experiment
(Section B.5; appendix).
Adversarial training. We have adapted a widely used adversarial training schema (Goodfellow
et al., 2018), and included manipulated scenes in the training protocol of a Visual-QA Player. We
use pixel-input RN (Santoro et al., 2017) as the Visual-QA Player. Using this method, we have
obtained only marginal improvements in robustness at the cost of a slight performance degradation
on the original CLEVR dataset.
Limitations of data-driven reasoning models. Due to the data-driven nature of our Visual-QA
Players, we pose the following question, How many examples of Adversarial Player manipulations
would be enough for a visual reasoning model to train on, in order for it to be robust against any
unseen ones? Intuitively, if the network has enough capacity, and was trained on all possible data
points (or its manipulations), it could rely on a look-up strategy to solve the problem accurately.
We propose the following experiment to address such a question. We created a series of datasets as
follows. We treat a scene as a discrete 7 × 7 grid (manipulations are restricted only to this grid).
Thus each dataset contains 492 = 2401, 493 = 117649, 494 = 5764801 scene combinations, cov-
ering all possible scene manipulations with two, three, and four objects respectively. In the case of
four objects, due to computational reasons, we keep a single object stationary (thus it also has 493
scene manipulations). The set of questions associated with each image dataset requires the model
to perform either one reasoning step (Onehop), two reasoning steps (Twohop) or are a mixture of
both (Mixhop). We use RN, FiLM and TbD as Visual-QA Players. We train them on X% data and
next evaluate on (100−X)% remaining, unseen data. We have conducted ten trials by forming X%
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training data randomly. We notice that the behavior of all tested models is similar so we report a
joint average. Results are presented in Figure 2. As the number of objects and diversity of question
increases, so does the amount of training examples needed in order to achieve robustness.

Figure 2: Data-driven limitation experiment: Unseen perturbation accuracy depends heavily on the number
and complexity of introduced questions, followed by the number of objects in the dataset examples/scenes. A
model could be considered robust when achieving close to 100% test accuracy.

7 CONCLUSIONS

We present a novel approach to isolate and benchmark the reasoning capabilities of visual models by
formulating a game between two players. Both players are independent and can only communicate
through a common interface, an environment and question-answer pairs. One player, named Adver-
sarial Player, is trying to manipulate the environment so that the second player, named Visual-QA
Player, can’t answer the given question anymore. We show that popular models with solid results
on CLEVR are susceptible to scene manipulations, and their performance may degrade significantly.
Moreover, we also conducted a controlled study on the generalization capabilities of such models.
We did so by creating synthetic and simplified datasets of all possible scene manipulations. We
show that the existing models are susceptible to reasoning gaps and require extra data, proportional
to their task complexity in order to generalize to all possible configurations. One possible direction
to increase efficiency could be the use of stronger inductive biases. Another to change the training
paradigm into a more interactive one. However, the environment is synthetic, and it could be that
learning from real-world and multi-modal data is somewhat more efficient. Finally, we believe that
melding two-player games with the visual question answering framework is both natural and bene-
ficial for testing the reasoning capabilities and potentially can also be generalized to other settings.
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A APPENDIX

A.1 URLS OF CLEVR MODELS

Table 3 shows the URLs to models used in our investigations (also Table 1 in the main paper). We
also report if we re-trained a model from scratch (type Architecture) or used already trained models
(type Model). Please note that the latter type proves that our testing procedure is fully black-box.

Model Name Link Type

SAN (Yang et al., 2016) https://github.com/facebookresearch/clevr-iep Model
IEP (Johnson et al., 2017b) https://github.com/facebookresearch/clevr-iep Model
FiLM (Perez et al., 2018) https://github.com/ethanjperez/film Architecture
RN (Santoro et al., 2017) https://github.com/mesnico/RelationNetworks-CLEVR Architecture
TbD (Mascharka et al., 2018) https://github.com/davidmascharka/tbd-nets Model
Mdetr (Kamath et al., 2021) https://github.com/ashkamath/mdetr Model

Table 3: URLs to Models. Architecture denotes that we use the code but re-trained the model on
CLEVR. Model refers to already trained models.

A.2 OBJECT CATEGORIES

Figure 4 shows a made-up image that contains all available CLEVR object categories: shapes, sizes,
and materials. Small objects are rendered at approximately 40% of the size of their large counter-
parts. Metallic materials can be identified by the high albedo property and ‘shininess’ of the object.
We provide it as the reference point for a reader to make it easier to compare our qualitative results.

Figure 4: Object categories in the CLEVR dataset.
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A.3 STATE-INPUT TRANSFORMER

To test our two-player game against a state-input Visual-QA Player, we have designed a transformer-
based architecture (Vaswani et al., 2017) that receives six types of input features – object sizes,
object shapes, object materials, object colors, object positions, and question tokens – and uses a
cross-modal attention mechanism. In that mechanism, queries from one modality attend to keys
and values from the other modality. Each data point contains variable-length inputs, describing all
objects in the scene. It also contains question tokens that compose the question itself. Hence, we
do padding with a special token ∅ to the maximal input length. We set the maximal length for the
objects tokens to be 10∗6 = 60 and 50 for the question tokens. All in all, we have 110 input tokens.
Each token type is projected into a different embedding space and a learnable type embedding is
added to it, separately for object and question tokens. For instance, emb(material) + emb(object).
Furthermore, three special learnable embeddings are used as an additional input. We use them
as queries to reduce the overall computational costs of the cross-attention mechanism. The same
mechanism is also used in Perceiver (Jaegle et al., 2021). The input tokens (concatenated object
and question tokens) form keys and values. In every transformer block, we apply cross-attention
between all input embeddings and those three special tokens. This is repeated five times. As the
final block, a feed-forward network (classifier) receives as inputs the three latent tokens and outputs
answer probabilities. We show that architecture in Figure 5.

Figure 5: Our State-Input Transformer that operates on the graph scene (states).

A.4 MANIPULATIONS OF State-Input Visual-QA Player

Figures 6 and 7 show manipulations of Visual-QA Player that is trained to take states instead of
pixels as the input. Such a state-input Visual-QA Player receives a direct overview of the scene,
bypassing any need for any image renderings. We use State-Input Transformer (Section A.3) as the
multi-modal component of that player. Since such a model gets the perfect visual information as the
input, it makes it more robust under scene manipulations. As a consequence, our Adversarial Player
tends to manipulate the scene so that objects are placed closely together.
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Figure 6: Qualitative results on state-input Visual-QA Player. For each example, a top-down view of the scene
is presented. The eye at the bottom right of each view represents the rendering camera. It corresponds to the
Visual-QA Player’s viewpoint. Each scene is also rendered and presented side-by-side for comparison.
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Figure 7: Qualitative results on state-input Visual-QA Player. For each example, a top-down view of the scene
is presented. The eye at the bottom right of each view represents the rendering camera. It corresponds to the
Visual-QA Player’s viewpoint. Each scene is also rendered and presented side-by-side for comparison.
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A.5 ALGORITHMS

We show pseudo-algorithms that we use to (Algorithm 1) calculate rewards, (Algorithm 2) train
Adversarial Player, (Algorithm 3) and play a game.

Algorithm 1 Calculate Rewards

1: new answer : Answer produced by Visual Agent on perturbed image
2: old answer : Answer produced by Visual Agent on original image
3: gt answer : Ground Truth Answer
4: dr : Drop Reward
5: cr : Consistency Reward
6: fr : Fail Reward
7: reward← 0
8: if new answer ̸= old answer then
9: if old answer ̸= gt answer then

10: reward = reward+ cr
11: else
12: reward = reward+ dr
13: end if
14: else
15: reward = reward+ fr
16: end if
17: return reward

Algorithm 2 Training Pipeline

1: M : Minigames
2: V a : Visual Agent, Fe : Feature Extractor
3: A : Actor, C : Critic
4: Qre : Question Relevance Enforcer, Sce : Scene Constraint Enforcer
5: for batch in M do
6: rewards, state values, logprobs← DataGame(M,V a, Fe,A,C,Qre, Sce)
7: n← |rewards|
8: advantage← rewards− state values
9: ploss← −logprobs× advantage

10: vloss← (state values− stop grad(rewards))2/n
11: loss← ploss+ vloss
12: backprop(loss,A,C)
13: end for
14: return
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Algorithm 3 Game between players (Game)

1: M : Mini-game
2: PVQA : Visual Agent, Sk : Multi-modal Backbone
3: A : Actor, C : Critic
4: Qre : Question Relevance Enforcer, Sce : Scene Constraint Enforcer
5: isr : Invalid Scene Reward
6: for batch in M do
7: rewards← {}
8: state values← {}
9: logprobs← {}

10: for (image, scene, question, program, gt answer) in batch do
11: old answer ← PVQA(image, question)
12: extracted features← Sk(scene, question)
13: dx probs, dy probs← A(extracted features)
14: CatX ← Categorical(dx probs)
15: CatY ← Categorical(dy probs)
16: state value← C(extracted features)
17: dx← sample CatX
18: dy ← sample CatY
19: new scene← Perturbate(scene, dx, dy)
20: check scene← Sce(new scene)
21: check question← Qre(new scene, program, gt answer)
22: if check scene ∧ check question = True then
23: new image← Render(new scene)
24: new answer ← PVQA(new image, question)
25: rewards← rewards ||CalcRewards(new answer, old answer, gt answer)
26: else
27: rewards← rewards || isr
28: end if
29: state values← state values || state value
30: logprob← logprob|| log(p(dx|CatX))) + log(p(dy|CatY )))
31: end for
32: end for
33: return rewards, state values, logprobs
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A.6 SENSITIVITY TO QUESTION TYPES

Figure 8 shows the susceptibility of CLEVR models to scene manipulations of Adversarial Player.
We observe that especially counting and existence questions are the ‘back-doors‘ for our scene ma-
nipulations. Questions of those two types typically involve multiple steps of reasoning. Adversarial
Player’s scene manipulations make them more likely that reasoning will fail at some stage.

(a) FiLM (b) TbD

(c) Mdetr

Figure 8: Histograms of the model’s susceptibility to scene manipulations conditioned on a question type.
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A.7 CONVERGENCE

Figure 9 shows convergence plots of Adversarial Player during training against FiLM, TbD and
MDetr. We use different initialization seeds and 30 trials. Adversarial Player is trained either from
states or pixels. The former yields higher performance and sometimes better convergence. We use
the Drop metric that measures the accuracy drop after the Visual-QA Player is manipulated. The
higher Drop, the more successful manipulations are.

Mini-game size 100 Mini-game size 1000

Fi
lm

T
bD

M
D

et
r

Figure 9: Performance of Adversarial Player for different training snapshots. We show the mean and variance
over thirty trials. Adversarial Player is either trained from states (blue) or pixels (orange).
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A.8 PERFORMANCE DISTRIBUTION PLOTS

Figures 10 and 11 show the distribution of the Adversarial Player performance, where we show how
often (y-axis) the given Drop score is achieved (x-axis). The Drop metric measures the accuracy drop
after the Visual-QA Player is manipulated. The higher Drop, the more successful manipulations
are. Larger Mini-games lead to more consistent (narrower distributions) but lower performance.
This behavior suggests that scene diversity present in larger Mini-games leads to more stable scene
manipulations. However, they do so at the cost of increasing the complexity of the optimization
problem.

Mini-game size 100 Mini-game size 1000
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Figure 10: Mini-games performance distribution for state-input Adversarial Player.
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Mini-game size 100 Mini-game size 1000
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Figure 11: Mini-games performance distribution for pixel-input Adversarial Player.
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A.9 OUT-OF-DISTRIBUTION MANIPULATIONS

If we do not provide extra constraints on the scene generation process with our environment en-
forcers, Adversarial Player may find an easy manipulation that changes the camera pose or loca-
tion, effectively ‘zooming out’ the whole scene. It does so by stretching all the object coordinates
in the scene. Figure 12 illustrates that. For instance, large objects look much smaller than typical
examples. As such constructed scenes are quite different from the ones that Visual-QA Player has
observed during training, we categorize such manipulations to be out-of-distribution. Note that, due
to our in-distribution environment enforcers, such scenes are prohibited in our pipeline.

(a) Shape of the blue cube is misclassified as sphere. (b) Large, brown cylinder is misclassified as small.

(c) Large, yellow cube is misclassified as small.

Figure 12: Out-of-distribution examples.
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A.10 ADDITIONAL QUALITATIVE RESULTS

In Figures 13-21, we provide more qualitative results.

Is the number of small cubes that What is the color of the metallic thing
are right of the blue rubber block greater that is on the right side of

than the number of small balls that the shiny thing behind
are in front of the cyan object? the large gray object?

SA
N

-B
ef

or
e

Yes Gray

SA
N

-A
ft

er

No Green
Figure 13: Manipulations of CLEVR models. We show results before and after scene manipulations.
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There is a cube on the left What shape is the thing that
side of the brown object is in front of the small yellow

that is behind the red ball; cylinder and to the right
what size is it? of the rubber thing?

SA
N

-B
ef

or
e

Large Cylinder

SA
N

-A
ft

er

Small Sphere
Figure 14: Manipulations of CLEVR models. We show results before and after scene manipulations.
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How big is the shiny cylinder There is a thing that is the
that is behind the same color as the cube;
rubber cylinder? what is it made of?

IE
P

-B
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or
e

Large Rubber

IE
P

-A
ft

er

Small Metal
Figure 15: Manipulations of CLEVR models. We show results before and after scene manipulations.
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Does the cyan metal object that What is the big thing that is behind
is behind the tiny gray block have the large red shiny sphere
the same size as the block behind made of?

the small cyan metallic objec?

IE
P

-B
ef

or
e

No Rubber

IE
P

-A
ft

er

Yes Metal
Figure 16: Manipulations of CLEVR models. We show results before and after scene manipulations.
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There is a metallic object; How many other small shiny objects
does it have the same size as are the same shape as the
the rubber block right of the red object?

tiny shiny cube?

R
N
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or
e

No 1

R
N

-A
ft

er

Yes 2
Figure 17: Manipulations of CLEVR models. We show results before and after scene manipulations.
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Are there any other things
Are there any other things that are the same shape as the

that are the same size big metallic object?
as the ball?
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N
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or
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No No
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N
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er

Yes Yes
Figure 18: Manipulations of CLEVR models. We show results before and after scene manipulations.
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How many objects are there There is another object that is the
of the same size as same size as the blue
the brown object? rubber object; What is it

made of?
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er

0 Metal
Figure 19: Manipulations of CLEVR models. We show results before and after scene manipulations.

31



Published as a conference paper at ICLR 2022

What number of other objects What number of metal objects
are the same color are small objects or

as the block ? big cyan objects?
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0 1
Figure 20: Manipulations of CLEVR models. We show results before and after scene manipulations.
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Is there an equal number of cubes Are there less matte objects
in front of the large shiny thing on the left of the green block

behind the cyan block than metal things?
and behind the yellow cube?

T
bD
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or
e

No Yes

T
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er

Yes No
Figure 21: Manipulations of CLEVR models. We show results before and after scene manipulations.
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A.11 QUANTITATIVE RESULTS WITH P-VALUES

We extend the quantitative results of the main paper by also reporting p-values of the one-sample
hypothesis testing. We use the Accuracy Drop metric that measures the accuracy drop after the
Visual-QA Player is manipulated, and the Consistency Drop that measures how many times the
manipulated Visual-QA Player changes its answer, independently if that is a correct or wrong an-
swer. The higher Drop Accuracy or Consistency Drop, the more successful manipulations are.
We use T-Test (Helmert, 1876; Lüroth, 1876) for each metric all the runs. Our null hypothe-
sis is that the population mean of all the games is zero, indicating that a manipulation is unsuc-
cessful, and the results of our Adversarial Players are extreme cases of a good performance, i.e,
H0 : µl = 0, l ∈ [Drop,Consistency]. As an alternative hypothesis, we assume that the population
mean is greater than zero, i.e., HA : µl > 0, l ∈ [Drop,Consistency]. The same setup stands for both
the Consistency and the Drop metric. Tables 4 and 5 show the full table with p-values computed.
Note that only in two cases, Adversarial Player does not manipulate the scene convincingly (TbD
and Mdetr for the pixel-input Adversarial Player).

Table 4: Results of the game with the state-input Adversarial Player.

Average p-value
Model Mini-game

size
Consistency
Drop %

Accuracy
Drop %

Consistency
Drop

Accuracy
Drop

SAN 10 -23.9 -14.2 0.000 0.000
100 -10.7 -8.3 0.000 0.000
1000 -3.5 -2.5 0.001 0.000

FiLM 10 -14.8 -12.7 0.003 0.006
100 -7.8 -7.3 0.000 0.000
1000 -3.1 -2.4 0.000 0.000

RN 10 -20.9 -13.6 0.000 0.000
100 -10.5 -8.2 0.000 0.000
1000 -3.3 -2.8 0.000 0.000

IEP 10 -13.9 -13.0 0.001 0.003
100 -6.9 -6.8 0.000 0.000
1000 -2.9 -2.8 0.000 0.000

TbD 10 -5.3 -5.1 0.011 0.012
100 3.8 -2.5 0.000 0.000
1000 -1.1 -1.1 0.000 0.000

Mdetr 10 -6.6 -6.0 0.018 0.021
100 -4.9 -3.6 0.000 0.000
1000 -1.3 -1.2 0.000 0.000

State 10 -8.5 -7.7 0.020 0.034
Input 100 -2.3 -2.1 0.000 0.000
Model 1000 -1.2 -1.1 0.000 0.000
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Table 5: Results of the game with the pixel-input Adversarial Player.

Average p-value
Model Mini-game

size
Consistency
Drop %

Accuracy
Drop %

Consistency
Drop

Accuracy
Drop

SAN 10 -12.8 -11.4 0.008 0.018
100 -6.4 -3.9 0.000 0.001
1000 -2.3 -1.4 0.000 0.000

FiLM 10 -3.62 -2.6 0.056 0.154
100 -1.7 -1.4 0.000 0.000
1000 -0.6 -0.4 0.000 0.000

RN 10 -9.4 -7.2 0.021 0.065
100 -3.2 -2.5 0.000 0.000
1000 -2.3 -1.7 0.000 0.000

IEP 10 -2.9 -2.5 0.111 0.171
100 -1.5 -1.3 0.001 0.004
1000 -0.4 -0.3 0.000 0.000

TbD 10 0.0 0.0 1.000 1.000
100 -0.6 -0.4 0.017 0.078
1000 -0.2 -0.1 0.000 0.000

Mdetr 10 0.0 0.0 1.000 1.000
100 -1.2 -1.1 0.002 0.003
1000 -0.4 -0.3 0.000 0.000

State 10 -0.9 -0.8 0.033 0.038
Input 100 -0.7 -0.7 0.031 0.031
Model 1000 -0.3 -0.3 0.000 0.000
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B APPENDIX B

B.1 MODEL PERFORMANCE ON MAXIMAL DROP MINIGAMES.

In the table below, we present model accuracy on each of the Mini-games where the maximal perfor-
mance drop was observed. The third and fourth columns (Original Data section) refer to the model
accuracy on unmanipulated image-question pairs of the respective Mini-game. The fifth and sixth
columns (Manipulated Data section) refer to the model accuracy in those Mini-game examples after
the Adversarial Player manipulation.

Original Data Manipulated Data

Model Mini-game size Mini-game
Accuracy
(State)

Mini-game
Accuracy
(Pixel)

Mini-game
Accuracy
(State)

Mini-game
Accuracy
(Pixel)

SAN 10 80.00 80.00 28.84 43.26
100 74.00 75.00 47.65 66.32
1000 72.30 72.20 68.42 70.87

FiLM 10 100.0 100.0 48.10 86.58
100 98.00 100.0 75.61 92.44
1000 96.40 96.10 90.81 94.75

RN 10 100.0 100.0 46.60 74.56
100 94.00 95.00 63.28 87.42
1000 93.10 93.30 90.03 91.05

IEP 10 100.0 100.0 48.45 87.21
100 98.00 96.00 74.41 93.50
1000 97.10 97.30 93.99 95.73

TbD 10 100.0 100.0 69.37 99.10
100 100.0 100.0 91.17 98.00
1000 99.40 99.70 95.53 98.80

Mdetr 10 100.0 100.0 59.82 99.70
100 100.0 100.0 86.43 97.80
1000 99.50 100.0 94.51 99.10

State 10 100.0 100.0 77.44 91.96
Input 100 97.00 99.00 92.63 95.05
Transf. 1000 97.20 96.40 95.15 95.83

B.2 GENERATING ‘VISUALLY FAIR’ SCENES.

We define a scene as visually fair if there are no occlusions and all objects are within the field-of-
view. The ground truth answer of a posed question on a visually fair scene remains the same before
and after object manipulation.

For the generation of new images/scenes we use the open-source Blender Graphics Engine 2

(v2.79b), and the original 3D models of the CLEVR dataset. Scenes suggested by our Adversarial
Player, are encoded in the form of arguments for Blender, which renders the new images according
to those directives. In order to guarantee visual fairness, and question validity, we employ two mod-
ules (scene-constraint enforcer / question relevance enforcer), presented briefly - in Section 4 in the
Consistency and In-Distribution paragraphs.

The scene-constraint enforcer is responsible for ensuring the creation of a scene/image that respects
all constraints and statistical properties of the original dataset. This piece of code is borrowed from
the original CLEVR codebase3 and as in the original CLEVR paper the following constraints are
checked (Lines 66-83 in the python code):

2Blender - a 3D modeling and rendering package. https://www.blender.org
3https://github.com/facebookresearch/clevr-dataset-gen/blob/main/image_

generation/render_images.py
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1. Minimum / Maximum Number of Objects: 3 / 10.
2. Minimum allowed distance between object centers: 0.25
3. Margin along with cardinal directions: 0.4 (This ensures lack of ambiguity by keeping

objects at least 0.4 points of distance apart. This distance is a Blender-specific measure that
spans from -3 to +3.)

4. Min pixels per object: 200 ( This ensures that an object will not be occluded, by requiring
at least 200 pixels of it being visible.)

The question-relevance enforcer checks if the newly generated scene is indeed answerable and has
the same “ground truth” answer as the old scene. By not enforcing this, every manipulation will be
falsely “successful” as the question (which is kept the same before and after the attack) will have a
different answer in the newly generated scene.

This is also resolved by using the same question engine module provided by the CLEVR authors in
their codebase4. The module receives a question and a scene and calculates the ground truth answer
based on a set of functional programs that are apriori known and used to generate the questions.
(Supplementary Material A in the CLEVR paper (Johnson et al., 2017a))

We use the following pipeline. Our Adversarial Player initially receives an input image-question
pair. Then, it suggests a new scene, that passes through the scene-constraint enforcer. If the new
scene respects all boundaries and constraints it is then evaluated alongside the question by the
question-relevance enforcer. If the new ground truth answer to the suggested scene/image is the
same as the original answer, the image-question pair is marked as in-distribution and valid. Other-
wise, it is removed from the training pipeline.

4https://github.com/facebookresearch/clevr-dataset-gen/blob/main/
question_generation/question_engine.py
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B.3 COMPARISON WITH RANDOMLY SAMPLED EQUIVALENT SCENES.

Arguably, out of the semantically equivalent space of images given a question and an accompany-
ing answer, the Adversarial Player effectively discovers cases for which the model under the test
can be fooled. This, however, does not indicate how rare those examples are, neither the degree of
robustness of the model against other examples in this space. Let us limit ourselves on a specific
image-question pair. Then, a tractable estimate of how rare ”fooling examples” are would be the
number of manipulated scenes (F ) that are able to fool the model, divided by all the possible per-
mutations of available objects (N ) in our discrete 7x7 grid. Rarity = F

49N
, N ∈ [3, 10]. A scene of

only 3 objects and 1 discovered successful manipulation would make it 0.00085% possible to find it
by chance and would indicate 99.9915% robustness against that sphere of equivalent image-question
pairs.

Of course not all of those configurations are valid due to scene constraint violations, as well as
objects can theoretically move freely on the scene. As a way to approach this question, we compare
our Adversarial Player against a random scene generator (RSG). The random scene generator is
able to manipulate any object freely, under the constraint that the resulting scene is valid under the
scene constraint enforcer as well as the question relevance enforcer. Manipulations of lighting or
camera angles, as well as addition or removal of objects is not permitted. In order to reduce the huge
rendering times needed for each random search, we allow the RSG to operate on a 10 length Mini-
game where scene manipulations that cause accuracy drop have been discovered by the Adversarial
Player. For each image-question pair the RSG has a budget of 5000 queries, and if not successful it
proceeds to the next Mini-game entry.

Model CLEVR Accuracy Adv.Player Accuracy (Drop %) RSG Accuracy (Drop %)
SAN 72.1 61.86 (-14.2%) 71.59 (-0.7%)
FiLM 96.2 83.98 (-12.7%) 95.81 (-0.4%)
RN 93.2 80.52 (-13.6%) 92.73 (-0.5%)
IEP 96.9 84.30 (-13.0%) 96.70 (-0.2%)
TbD 99.1 94.04 (-5.1%) 99.10 (-0.0%)
MDetr 99.7 93.71 (-6.0%) 99.70 (-0.0%)
ST 96.8 89.34 (-7.7%) 96.50 (-0.3%)

As it can be seen, randomly question-uninformed suggested object placements do not seem to be
effective into fooling the models under test. This further supports the argument that models un-
der test theoretically and statistically seem robust, but nevertheless have vulnerabilities that can be
effectively exploited by our Adversarial Player.
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B.4 VISUALIZATIONS.

Here, we try to isolate reasoning gaps from visual causes after the scene manipulations; with the
following setup. Each Visual-QA Player is introduced with two image-question pairs. The first
consists of the original image and the second of a scene created by our Adversarial Player that
successfully fools the Visual-QA Player. We then inspect the visualization of the Visual-QA Player’s
inner-workings in both pairs. We are especially interested in patterns that suggest the root of failure.
As each Visual-QA Player operates under different assumptions and architectural designs, we choose
to visualize :

1. The attention maps of Stack-Attention Networks.
2. The gradient-weighted activations of the pre-ultimate and ultimate convolutional blocks of

FiLM.
3. The programs that are synthesized alongside their soft-attention maps of each module block

in TbD network.
4. The objects that were detected during the computation steps of a MDetr model.

In Figure 22, we visualize the pre-ultimate (column 2) and ultimate (column 3) attention maps of the
Stack-Attention Network. We observe that the model focuses on a single final object in manipulated
examples. In the original ones, the relational jumps required for the answer are still visible on the
attention map. The final attention map that is presented (column 3) is passed to a fully-connected
classifier in order for the answer to be created. We observe limited focus to all the necessary objects
/ locations that creates a lack of necessary features for the correct answer derivation.

In the case of FiLM model in Figure 23, we observe a similar scenario. In the first example, (rows
1 and 2) the gradient-weighted activations of the model seem to be focusing on multiple irrelevant
objects regarding the final answer, while in the second example (rows 3 and 4) the model seems to
include the purple cube mistakenly as one of the possible spheres of the image. In both cases above
it is difficult to exactly pin down the root of (reasoning or visual) failures.

MDetr model can be seen in Figure 24 and Figure 25. Here, a specific pattern could not be identified.
All objects were correctly classified. It suggests that the cause of failures stem rather from the
reasoning steps.

Tbd is presented in Figure 26. In both the original and manipulated scenes the programs that the
model generates are exactly the same. This is to no surprise since the program generator module
is using exclusively the question as input. Nevertheless, a similar pattern of scattered model focus
is presented here as well. The attention maps in both examples are the same between the original
and manipulated scenes, in all but the final reasoning step. In the first example (rows 1 and 2) the
attention is leaked towards the gray cube that has nothing to do with the correct answer, while in
the second (rows 3 and 4) the attention is spread among many matte objects but peaks near the big
yellow ball. This is wrong since the word ”other” that exists in the question should drive the model
focus exclusively to other objects apart from the starting point of the reasoning chain.
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Is the number of small cubes that are right of the blue rubber block greater than the number of small balls that
are in front of the cyan object? Yes −→ No
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What shape is the thing that is in front of the small
yellow cylinder and to the right of the rubber thing? Cylinder −→ Sphere
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Figure 22: Visualization of attention maps in SAN model on original and manipulated scenes.
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How many other objects are the same shape as
the big gray matte object? 1 −→ 0
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How many other things are the same shape as
the big metallic thing? 1 −→ 2
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Figure 23: Gradient weighted activation visualization of FiLM model’s pre-ultimate and ultimate blocks on
original and manipulated scenes
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The red thing that is the same material
as the brown cube is what size? Large −→ Small
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Figure 24: Visualization of MDetr model’s detection stages on original and manipulated scenes.
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Do the object behind the big matte sphere and the
thing on the right side of the red thing
have the same material? Yes −→ No

O
ri

gi
na

lS
ce

ne
M

an
ip

ul
at

ed
Sc

en
e

Figure 25: Visualization of MDetr model’s detection stages on original and manipulated scenes.
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Is there a big brown object of the same shape as the green thing? Yes −→ No
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Are there any other things that have the same material as the big yellow ball? Yes −→ No
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Figure 26: Visualization of TbD model’s program generation and attention map visualization on original and
manipulated scenes
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B.5 HUMAN-IN-THE-LOOP EXPERIMENT

Can our Adversarial Player ‘fool’ a human-agent? The perceptual abilities of human observers
have been previously measured (92.6%) on this dataset, however, human robustness is a different
question. We, hence, decided to assess human robustness by a simple experiment. In our setting, a
human observer is presented with a set of two images and a question. Then the observer is required
to answer to each image question pair, (image before - question / image after - question), and report
whether the answer has changed or remained the same. Participants were first made familiar with the
concepts of the CLEVR dataset (colors / shapes / materials / sizes) and then were left unsupervised
to answer a set of 20 such examples. Each contained one CLEVR question and two CLEVR scenes,
before and after the Adversarial Player manipulations. Half of those scenes successfully fooled
models and half of those did not. An example of what a survey question looks like is given in
Figure 27, together with the confusion matrix Figure 28 (results of our survey).

Figure 27: Questionnaire example: The observer is presented with two images and a question. Then they have
to pick if their answer would remain the same if the question referred to each image respectively.

As we can see in Figure 28, human observers exhibit 91% precision in identifying cases where scene
manipulations are not causing changes to the questions answer, and 95% precision in identifying
cases where the manipulations do cause a change. While this small scale experiment may not reflect
a universal truth about human robustness in VQA scenarios, it is a suggestion that human observation
is still reliable after our agent’s manipulations.
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Figure 28: Confusion matrix of human experiment: Participants identified 91% of cases where manipulations
were not causing a change in the ground-truth answer. All of these managed to fool Visual-QA Players and
made up half of the survey. When faced with manipulations that changed the ground-truth answer (the other
half of the survey), they identified 95% of them.

B.6 OBJECT DETECTION EXPERIMENT

As an extra test to confirm the visual fairness (see section B.2) of Adversarial Player manipulations
we run the following experiment. We employed an unsupervised object discovery model, called
Slot Attention (Locatello, 2020), pre-trained on CLEVR, together with a classifier trained to iden-
tify object attributes. Next, we used that model to identify objects and attributes on original and
manipulated scenes. Ultimately, we could not find any pairs in which the number of objects or their
attributes were different before and after the manipulations. The results for two pairs can be seen
in Figure 29 and Figure 30. We thus conclude that our Adversarial Player manipulations create
‘visually fair’ scenes, without producing any corner cases of perceptual system.
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Figure 29: Visualization of Slot Attention model’s detection results
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Figure 30: Visualization of Slot Attention model’s detection results
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