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ABSTRACT

We present Franca (pronounced Fran-ka): ‘free’ one; the first fully open-
source (data, code, weights) vision foundation model that matches—and in many
cases surpasses—the performance of state-of-the-art proprietary models, e.g., DI-
NOv2, CLIP, SigLIPv2, etc. Our approach is grounded in a transparent training
pipeline inspired from Web-SSL and uses publicly available data: Imagenet-21K
and LAION-COCO (600M images). Beyond model release, we tackle critical
limitations in self-supervised learning clustering methods. While recent models
rely on assigning image features to large codebooks via clustering algorithms like
Sinkhorn-Knopp, they fail to account for the inherent ambiguity in clustering se-
mantics. To address this, we introduce a parameter-efficient, multi-head cluster-
ing projector based on nested Matryoshka representations. This design progres-
sively refines features into increasingly fine-grained clusters without increasing
the model size, enabling both performance and memory efficiency. Additionally,
we propose a novel positional disentanglement strategy that explicitly removes
positional biases from dense representations. This leads to consistent gains on
several downstream tasks, demonstrating the utility of cleaner feature spaces.
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Figure 1: Overview of Franca. Left: We learn efficient Matryoshka-style (Kusupati et al., 2022)
visual representations using a multi-head clustering projection head. The encoder produces fea-
tures z ∈ Rd, which is sliced into progressively smaller subsets of dimensions d, . . . d/8, d/16.
Each slice passes through a projection head and a corresponding clustering head with cluster counts
c, . . . , c/8, c/16, inducing a coarse-to-fine hierarchy of semantic abstraction. Middle: Unlike prior
methods trained on proprietary data like WebLI in SigLIP 2 or curated academic datasets, e.g., LVD-
142M in DINOv2, Franca is trained on open-source internet-scale minimally-curated data. Right:
It generalizes to dense tasks outperforming models trained on proprietary data.

1 INTRODUCTION

Self-supervised learning (SSL) offers a scalable approach to training Vision Foundation Models
(VFMs) by leveraging the abundance of image-only data, which far exceeds the availability of paired
image-caption data. This enables the learning of highly generalizable visual representations.

Despite the growing importance of VFMs, there is still a lack of fully open, high-performing, and
practical frameworks. Current state-of-the-art models, including DINOv2 (Oquab et al., 2024),
SEER (Goyal et al., 2021), billion-scale MAE (Singh et al., 2023), and SigLIP 2 (Tschannen et al.,
2025), rely on proprietary datasets and often withhold critical or all training code, creating a sig-
nificant barrier to reproducibility, accessibility, and scientific progress. To address this gap, we
introduce Franca, a fully open (data, weights, code) self-supervised VFM that not only matches
but often surpasses the performance of these proprietary counterparts. A key aspect of our con-
tribution is the release of intermediate checkpoints, which provide unique insight into the training
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ATTRIBUTE / MODEL METACLIP WEB-SSL SIGLIP 2 AIMV2 CLIP DINOV2 SAM OPENCLIP FRANCA

Training Code/ Checkpoints
Model Publicly Available? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Training Code Public? ✓ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✓
Intermediate Weights Public? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

Training Data
Training Data Public? ✓ ✓ ✗ ✗ ✗ ✗ ∼ ✓ ✓
Training Data Downloadable? ✗ ✗ ✗ ✗ ✗ ✗ ∼ ✓ ✓
Data Deduplication Code Public? ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Data NSFW & CSAM Filtered? ✗ ✗ ✓ ? ? ? ? ✓ ✓

Table 1: Openness of Visual Foundation Models. We analyze various models based on the public
availability of their components MetaCLIP (Xu et al., 2024), Web-SSL (Fan et al., 2025), SigLIP
2 (Tschannen et al., 2025), AIMv2 (Fini et al., 2025), CLIP (Radford et al., 2021), DINOv2 (Oquab
et al., 2024), SAM (Kirillov et al., 2023) and OpenCLIP (Cherti et al., 2023; Nezhurina et al., 2025).
Franca exemplifies a fully open-source approach, providing complete transparency from model
weights to data and processing methods. ∼: partially; ?: not specified. NSFW and CSAM are
acronyms for "Not Safe For Work" and "Child Sexual Abuse Material," respectively.

trajectory by enabling the community to analyze convergence behavior and study emergent proper-
ties. Inspired by Web-SSL’s openness, Franca provides a more accessible framework for models
of different scales, intermediate checkpoints and data, while also achieving superior performance as
detailed in our experiments. By integrating full openness, high performance, and practical accessi-
bility, Franca establishes a new standard for transparent VFM research as shown in Table 1.

The strong performance of Franca stems from two key technical innovations that overcome funda-
mental limitations in SSL. The first addresses a core shortcoming of models such as DINOv2, which
depend on optimal-transport clustering (i.e., Sinkhorn-Knopp) for pseudo-label assignment. This
process is inherently ambiguous—for instance, vehicles can be grouped by manufacturer, color, or
model year—and current methods address this by using very large codebooks (e.g., 131K in DI-
NOv2), which may not generalize well across domains. To address this, we introduce a multi-head
clustering projector using nested Matryoshka representations (Kusupati et al., 2022), where pro-
gressive neuron subsets cluster data into increasingly finer-grained groupings. This approach not
only reduces parameters compared to conventional approaches but also improves performance and
decreases memory requirements for downstream tasks such as k-nearest neighbors classification,
leading to higher performances at equal memory.

Second, we address a subtle issue with dense clustering: representations can be biased by patch
position rather than semantic content. We introduce a lightweight post-pretraining technique that
first learns linear projections to predict patch positions, then projects the latent space to an orthog-
onal subspace devoid of this positional information. The result is a dense representation space that
emphasizes semantics over spatial positioning, leading to substantial gains on challenging bench-
marks like dense in-context learning (Balazevic et al., 2023a) and unsupervised semantic segmenta-
tion (Van Gansbeke et al., 2021). In summary, our key contributions are:

• We present Franca, the first fully open-source (code, data, weights) and high-performance
VFM that often outperforms proprietary models while ensuring clear accessibility

• We introduce two technical innovations: a Matryoshka multi-head clustering approach for ef-
ficient, high-quality representations, and a spatial-semantic disentanglement post-pretraining
technique that refines representations for stronger backbones. Together, these methods signifi-
cantly advance the base SSL approach, as shown in our analysis (see Figure 2b).

• We demonstrate strong performance across diverse tasks: including in-context learning, linear
segmentation and object discovery, surpassing DINOv2-G by up to 3%, outperforming it on
OOD detection and 3D understanding, while matching its performance on classification—all
without proprietary data.

2 METHOD

We propose Franca, a scalable open-source self-supervised learning (SSL) framework built on
DINOv2 (Oquab et al., 2024) and pretrained on large public image datasets. It tackles key limita-
tions in existing vision SSL models through three main components. First, CyclicMask, inspired

2
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In-Context (mIoU) / Linear Probe (acc)

1. Baseline

2. CyclicMask

3. Matyroshka

4. High-Res FT

5. RASA
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(a) Pretraining ablation of Franca
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Figure 2: Ablation study and comparison with DINOv2 with ImageNet-21k pretraining. (a) Abla-
tion: We incrementally add CyclicMask, Matryoshka representations, RASA, and high-resolution
fine-tuning to a DINOv2-B pretrained on ImageNet-21k. Each addition yields consistent perfor-
mance gains, measured by linear probing on ImageNet-1K (outer bar) and in-context segmenta-
tion (Balazevic et al., 2023a) on Pascal VOC (inner bar). (b) Controlled Comparison: Under an
equal training setup on IN-21K (no high-resolution fine-tuning or distillation), Franca signifi-
cantly outperforms DINOv2 across ViT-B and ViT-L backbones on a suite of tasks encompassing
classification, robustness, and dense prediction.

by (Darcet et al., 2024), is a masking strategy that circularly shifts masked patches to break sim-
ple spatial continuity and promote semantic feature learning. Second, we introduce Matryoshka
Embeddings (Kusupati et al., 2022), a nested multi-head clustering approach that shares projection
layers to generate compressed multi-resolution representations; and finally RASA, a lightweight post-
pretraining step that removes feature components correlated with absolute patch positions, resulting
in spatially invariant representations. Figure 2a shows that each component provides consistent gains
in both in-context segmentation and linear classification. These cumulative gains enable Franca
to outperform DINOv2 across a suite of tasks under an equal IN-21K training setup (see Figure 2b).

Preliminaries We adopt the multi-crop training strategy from DINO (Caron et al., 2021). An
input image is transformed into multiple augmented views (global and local crops). Each view
x is then split into n non-overlapping patches, which are embedded into Rd, and a classification
token ([CLS]) ∈ Rd is prepended to form the input sequence. A Vision Transformer (ViT) back-
bone (Dosovitskiy et al., 2021) processes this sequence, producing n + 1 embeddings (n patch
embeddings and one [CLS] embedding). The same ViT architecture is shared between the student
fθ and teacher f̄θ̄, producing Zs = fθ(x) ∈ R(n+1)×d, Zt = f̄θ̄(x) ∈ R(n+1)×d, where Zs rep-
resents the student’s output embeddings and Zt represents the teacher’s embeddings. The teacher’s
parameters θ̄ are updated via exponential moving average (EMA) of the student’s parameters.

For supervision, we apply projection heads to the student embeddings Zs. The [CLS] embedding
is passed through a DINO-style head (a 3-layer MLP with softmax over prototypes) that produces
image-level prototype scores, while the patch embeddings are processed by an iBOT-style head that
produces patch-level prototype scores. For brevity, we denote both heads as hθ for the student and
h̄θ̄ for the teacher (same architecture, EMA-updated). The teacher’s projected outputs are clustered
using Sinkhorn-Knopp (Cuturi, 2013) to produce balanced target distributions. The student is trained
to match these targets via cross-entropy loss, denoted as L.

2.1 MATRYOSHKA REPRESENTATIONS FOR EFFICIENT MULTI-GRANULAR LEARNING

Standard self-supervised models produce fixed-size embeddings, limiting flexibility under different
compute or downstream constraints. To enable adaptable representations across feature granulari-
ties, we adopt Matryoshka representations (Kusupati et al., 2022), which nest progressively truncated
subspaces of a high-dimensional embedding.

Formally, let Zs = fθ(x) ∈ R(n+1)×d be the unmodified ViT’s output (patch + [CLS] embed-
dings). We define nested dimensionsM = {m1, . . . ,mk}, where m1 < · · · < mk = d, and extract
sub-embeddings Z(j)

s = Zs[:, 1 : mj ], ∀mj ∈M.

3
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Figure 3: PCA visualizations across Matryoshka slices. First three PCA components for different
feature slices mj of Franca and DINOv2. Despite Franca being trained only up to dim/16, it
maintains coherent part structure even in smaller feature dimension as compared to DINOv2.

(a) Random (b) Block (c) Inverse (d) CyclicMask

Figure 4: Masking strategies used in masked image modeling. Compared to Random (a), Block (b),
and Inverse (c) masking, our CyclicMask (d) circularly shifts the visible region across spatial axes,
preventing the model from being biased toward specific spatial locations.

Each Z
(j)
s is processed by an independent projection head h

(j)
ν , with proportionally fewer prototypes

as mj decreases. A cross-entropy loss L(j) is applied to each head’s output. The total loss is the sum
across all levels with equal weights: Ltotal =

∑k
j=1 L(j). The standard Matryoshka approach (Kusu-

pati et al., 2022) slices the whole encoder’s output along the feature dimension and applies the same
projection head to each sub-embedding. In contrast, we keep the backbone unmodified and extend
this setup by attaching a dedicated projection head and clustering objective to each subspace. This
allows each slice to produce distinct prototypes and prototype assignments, encouraging specializa-
tion across representational granularity of the features across training steps. Our framework supports
hierarchical learning: coarse heads capture global semantics, while fine heads focus on local struc-
ture akin to early clustering works (Ji et al., 2019; Asano et al., 2020; Van Gansbeke et al., 2020) and
unlike most recent representation learning works that optimize only a single feature space (Oquab
et al., 2024; Tschannen et al., 2025; Radford et al., 2021).

As shown in Figure 2a, our Matryoshka framework yields the largest gains on dense prediction tasks
and the PCA visualizations in Figure 3 show that Franca preserves coherent part-level structure
beyond trained dimensions, whereas DINOv2 loses semantic alignment.

2.2 BALANCING SPATIAL DISTRIBUTION OF VISIBLE PATCHES WITH CYCLICMASK

Masked image modeling trains models to reconstruct masked patches, typically using random or
block masking (Oquab et al., 2024; Zhou et al., 2022a;b). These strategies often produce frag-
mented visible regions with limited contextual coherence, as shown in Figure 4 (a-b). Inverse block
masking (Baevski et al., 2023) improves continuity by retaining a central visible block Figure 4 (c),
but introduces positional bias since central patches are always observed. We propose CyclicMask,
inspired by (Darcet et al., 2024), which applies random cyclic shifts to the inverse block mask along
both spatial axes. The pseudo-code for this augmentation is given in Algorithm 1. This simple mod-
ification preserves contiguous context while ensuring uniform exposure across all patch positions.
As shown in Figure 2a, CyclicMask improves baseline performance on IN-1K linear probing and
in-context segmentation (Pariza et al., 2024) by 0.2%.

2.3 RASA: REMOVAL OF ABSOLUTE SPATIAL ATTRIBUTES

ViT models often develop unintended spatial biases from their fixed patch layouts and positional
embeddings, entangling location with semantic content. Our preliminary study in Figure 5 demon-

4
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Figure 5: Entropy of patch locations per cluster. For each visual cluster out of the 65k clusters from
k-means, we compute the entropy of the 2D coordinates of its assigned patches (bottom row). Lower
Mean Entropy (B: top right) indicates positional bias in its representations. We find that DINOv2
has many low-entropy clusters firing at fixed locations (A: top left). Top right: Our RASA post-
training increases spatial entropy, thereby debiasing positional information from patch features.

strates this issue: using a frozen model on COCO images, we assigned each visual patch to 65k
clusters from k-means and computed the spatial entropy of patch locations per cluster (Figure 5:
bottom). The results show that patch clusters are frequently centered at fixed positions (Figure 5-A:
top-left), exhibiting low mean spatial entropy (Figure 5-B: top-right). These indicate that cluster
assignment is often driven more by location than by semantics. Our subsequent RASA post-training
enhances the spatial entropy (Figure 5-B: top-right), forming less location-driven clusters.

x

y

z

Positional Plane

Z
(0)
i

ur

uc

pi

Z
(1)
i

Figure 6: Each iteration of RASA projects a
patch embedding Zi onto a learned positional plane
span{ur, uc} and subtracts its projection pi.

To directly address the spatial entangle-
ment, we propose Removal of Absolute
Spatial Attributes (RASA), a post-training
method designed to disentangle spatial in-
formation from patch embeddings. After
pretraining, we process the patch features
Z (for brevity, we denote Zt as Z through-
out this section) through an alternating op-
timization procedure. At iteration t, the
input consists of the n patch embeddings
Z(t) = {Zi ∈ RD}ni=1. We first op-
timize a linear position prediction head,
parametrized by a matrix W ∈ R2×D, on
a small set of images to predict normalized
patch coordinates via a sigmoid σ(·), min-
imizing the mean squared error:

Lpos =
1
n

n∑
i=1

∥σ(WZi)− yi∥22, (1)

where yi ∈ [0, 1]2 are the normalized 2D coordinates of patch i. The row vectors of W are or-
thonormalized using Gram–Schmidt (Golub & Van Loan, 2013) to form the basis vectors ur and uc,
which span the positional subspace (visualized in gray in Figure 6). We then remove the component
of each feature vector that lies within this positional subspace. This is achieved by projecting Zi

onto the subspace and subtracting that projection, yielding a refined embedding Z
(t+1)
i that is less

aligned with positional information while retaining semantic content:

pi = ⟨Zi, ur⟩ur + ⟨Zi, uc⟩uc, (2)

Z
(t+1)
i = Z

(t)
i − p

(t)
i . (3)

This iterative refinement process, summarized in Figure 6, continues until Lpos saturates (typically
within 9 iterations), effectively removing linearly predictable spatial bias while preserving semantic

5
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METHOD
BACKBONE LIN. SEG. IN-CONTEXT

VOC ADE20K VOC ADE20K
SigLIP ViT-B/16 57.8 23.1 33.9 10.6
SigLIP 2 ViT-B/16 69.6 23.1 65.0 32.3
iBOT ViT-B/16 73.1 30.1 66.6 26.9
EVA-CLIP ViT-B/16 70.4 34.6 34.8 11.3
DINOv2† ViT-B/14 86.9 41.3 69.6 30.0
DINOv2§ ViT-B/14 90.2 49.7 77.1 37.7
Franca (ours) ViT-B/14 89.4 46.2 76.5 35.0
SigLIP 2 ViT-L/16 66.6 29.8 46.4 21.3
Web-SSL ViT-L/14 92.3 46.3 71.3 35.3
DINOv2† ViT-L/14 89.3 45.4 72.0 33.5
DINOv2§ ViT-L/14 90.3 50.7 74.6 38.6
Franca (ours) ViT-L/14 90.5 48.9 79.5 39.6
Web-SSL ViT-G/14 89.5 46.7 73.3 36.7
DINOv2 ViT-G/14 90.6 46.2 73.7 37.7
Franca (ours) ViT-G/14 90.2 46.5 76.7 36.5

(a) Linear and In-context Segmentation.

VIDEO OBJ. SEGM. TOKENCUT

METHOD ARCH. (J + F)m VOC07 VOC12
RADIOv2.5 ViT-B/16 66.7 44.6 48.1
C-RADIOv3 ViT-B/16 67.7 47.3 50.8
DINOv2§ ViT-B/14 68.5 42.9 48.3
DINOv2-R§ ViT-B/14 67.8 53.0 56.9
Franca ViT-B/14 70.6 53.2 59.1
RADIOv2.5 ViT-L/16 67.5 51.3 54.6
C-RADIOv3 ViT-L/16 67.3 – –
DINOv2§ ViT-L/14 69.1 41.3 47.2
DINOv2-R§ ViT-L/14 66.9 57.6 61.3
Franca ViT-L/14 69.1 59.5 61.0

(b) Unsupervised Video Object Segmentation on
DAVIS and Object Discovery using TokenCuT.

Table 2: Segmentation Benchmarks. Left: Linear and In-Context Segmentation. Right: Video object
segmentation on DAVIS2017 and Unsupervised Object Discovery using TokenCuT (VOC 07/12). †:
reproduced on IN-21K, without distillation; § : distilled from DINOv2(-R)-G on LVD-142M. bold:
best; underline: second best

content. Due to its linear construction, the entire RASA transformation for a single iteration t can
be expressed as multiplication by a single matrix L(t):

Z
(t+1)
i = Z

(t)
i L(t) = Z

(t)
i (I − p

(t)
i ) = Z

(t)
i (I − uru

⊤
r + ucu

⊤
c ), (4)

Furthermore, the complete multi-step transformation is simply the product of these matrices, L =∏T
t=1 L

(t). This final matrix L can be absorbed into the weights of the final ViT layer, resulting in
no architectural changes and zero inference overhead.

3 EXPERIMENTAL RESULTS

Training setup We train Franca using ViT-B, ViT-L, and ViT-G encoders with patch size 14
and without registers. We pretrain from scratch for 625K iterations with batch size 2048 for ViT-B
and 3072 for ViT-L and ViT-G using an image resolution 224 × 224 with Matryoshka Embeddings
and CyclicMask. ViT-L and ViT-G is pretrained on LAION-600M, while ViT-B (for ablations) uses
ImageNet-21K. We then finetune the models with batch size 1024 at 364 × 364 and 518 × 518
resolutions (for 30K and 10K iterations, respectively) on a mix of ImageNet-1K, ADE20K, COCO,
KITTI, and VOC; due to computational constraints, ViT-G skips this stage. Finally, we apply the
lightweight RASA post-training on Pascal VOC, for 8 iterations, using a learning rate of 0.002, and
a batch size of 128. More details are in Appendix C.

3.1 CONTROLLED COMPARISON WITH DINOV2 ON IMAGENET-21K

We begin by conducting a controlled comparison between Franca and DINOv2 to study the effect
of architectural differences. We use ViT-B/14 and ViT-L/14 backbones pretrained on IN-21K with
identical hyperparameters—and crucially, without high-resolution fine-tuning or distillation from
a ViT-G model—we isolate the impact of Franca’s architectural and training innovations. As
shown in Figure 2b, Franca consistently outperforms DINOv2 across a suite of tasks, with the
largest gains observed on robustness benchmarks (IN-A, IN-R, Sketch) and dense segmentation tasks
(ADE20K, TokenCut), demonstrating that the Matryoshka, CyclicMask, and RASA components
lead to more semantically aligned ViT representations that are more appropriate for dense tasks.

3.2 DENSE TASKS

In-Context Learning We evaluate Franca on the Hummingbird Benchmark (Balazevic et al.,
2023a; Pariza et al., 2024), which frames semantic segmentation as a nearest-neighbor retrieval task
using patch features, without model fine-tuning. We report mean Intersection-over-Union (mIoU)
on Pascal VOC (Everingham et al.) and ADE20K (Zhou et al., 2017) in Table 2a.
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DINOv2RDINOv2 DINOv3 RADIO Franca

Figure 7: Semantic Consistency of Dense Features. Visualization of dense features via PCA (first
three components as RGB) demonstrates that our Franca features consistently match semantic
parts with the same color, despite variations in pose, style, or even object identity (e.g., the consistent
coloring for the bikers and bikes in the last row). Images were randomly sampled from the Segment
Anything-1B dataset (Kirillov et al., 2023) (np.random.randint(seed=42)).

Franca consistently achieves strong segmentation results. For instance, with ViT-L/14, it surpasses
DINOv2-L (distilled from DINOv2-G and trained on LVD-142M) and Web-SSL by up to +5% and
+8% mIoU on Pascal VOC, and by +1% and +4% on ADE20K, respectively. Notably, DINOv2’s
pretraining data (LVD-142M) includes VOC and ADE20K, whereas Franca only uses them dur-
ing the limited high-resolution finetuning stage (which Franca’s ViT-G skips). Thus, Franca is
exposed to the training splits of these evaluation datasets far less than DINOv2 and yet produces
superior results. Also, the performance gains of Franca increase with model capacity. These re-
sults demonstrate Franca’s ability to learn spatially precise, semantically meaningful features that
transfer effectively to segmentation without fine-tuning. We also report overclustering performance,
which measures semantic alignment of spatial features in Table 8.

Linear segmentation Table 2a also evaluates Franca on semantic segmentation under a linear
probing protocol. Franca achieves strong results across all backbones. With ViT-B/14, it performs
on par with DINOv2-B, which is distilled from DINOv2-G and pretrained on LVD-142M. Crucially,
a non-distilled DINOv2-B model trained on ImageNet-21K (the same setting as Franca for ViT-
B) performs substantially worse (86.9 vs. 89.4 mIoU on VOC; 41.3 vs. 46.2 on ADE20K). This
suggests the strong performance of the official DINOv2-B is largely due to distillation. With ViT-
G/14, Francamatches DINOv2 and outperforms Web-SSL. Notably, Franca surpasses Web-SSL
on several benchmarks despite Web-SSL’s pretraining on a substantially larger dataset (2B images),
highlighting our approach’s effectiveness. Interestingly, SigLIP 2 (Tschannen et al., 2025) performs
poorly on segmentation, particularly on VOC (57.8 mIoU), suggesting limited spatial localization
capabilities despite its extended training and strong image-text alignment.

Video Object Segmentation We extend our evaluation to video object segmentation (VOS) on
DAVIS (Pont-Tuset et al., 2017), where the goal is to propagate a ground-truth mask from the
first frame through a video using feature similarity. From Table 2b, Franca achieves the best
results across all backbones. With ViT-B, it scores 70.6%, surpassing DINOv2 by 2%. With ViT-L,
Franca matches or outperforms other methods, reaching 69.1%. This shows that Franca pro-
duces temporally stable features that enable consistent tracking.

Unsupervised Object Discovery We further evaluate unsupervised object discovery using Token-
Cut (Wang et al., 2022b) in Table 2b, which segments objects by leveraging patch-level feature sim-
ilarity. On VOC07, Franca-B achieves a higher CorLoc than DINOv2. On VOC12, Franca ob-
tains 59.1% CorLoc, outperforming DINOv2 (48.3%) and DINOv2-R (56.9%). This demonstrates
that Franca provides spatially coherent features that facilitate unsupervised object segmentation.
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CLASSIFICATION ROBUSTNESS

METHOD ARCH. DATA TEXT KNN IN-VAL V2 IN-A IN-R Sketch
IBoT ViT-B/16 IN-21K ✗ 77.1 79.5 – – – –
DINOv2† ViT-B/14 IN-21K ✗ 77.0 81.2 70.9 44.1 50.1 40.8
DINOv2§ ViT-B/14 LVD-142M ✗ 82.1 84.5 75.1 55.1 63.3 50.6
Franca (ours) ViT-B/14 IN-21K ✗ 79.5 82.6 73.7 48.5 54.6 44.1
SigLIP ViT-L/16 WebLI ✓ – 80.5 74.2 76.5 95.0 73.6
SigLIP 2 ViT-L/16 WebLI ✓ – 82.5 76.8 84.3 95.7 75.5
PEcore ViT-L/16 MC-2B ✓ 83.5 83.9 77.9 89.0 95.2 73.4
Web-SSL ViT-L/16 MC-2B ✗ 76.8 82.4 71.0 67.3 68.9 54.8
DINOv2† ViT-L/14 IN-21K ✗ 82.1 84.0 75.5 61.5 61.0 45.4
DINOv2§ ViT-L/14 LVD-142M ✗ 83.5 86.3 78.0 71.3 74.4 59.3
Franca (ours) ViT-L/14 LAION-600M ✗ 81.6 84.9 76.0 66.5 64.3 56.6
OpenCLIP ViT-G/14 LAION-2B ✓ 83.2 86.2 77.2 63.8 87.8 66.4
DINOv2 ViT-G/14 LVD-142M ✗ 83.1 86.0 77.9 75.9 78.8 62.5
Web-SSL ViT-G/14 MC-2B ✗ 79.2 84.7 74.3 73.3 75.9 60.9
Franca (ours) ViT-G/14 LAION-600M ✗ 83.0 86.0 77.9 75.6 75.8 60.6

Table 3: Classification and Robustness. performance across vision-language and vision-only mod-
els. We report top-1 linear probing accuracy on IN-1K (val, ReaL, v2) and robustness benchmarks
(IN-A, IN-R, Sketch). Franca, trained without text supervision, matches or exceeds the perfor-
mance of larger text-supervised models and outperforms DINOv2 when reproduced on the same
data and training strategy. †: reproduced on IN-21K without distillation; §: distilled from DINOv2-
G on LVD-142M. Bold: Best; Underline: second best.

PCA of Patch Features We visualize patch tokens by projecting them into a 3D RGB color space
using PCA. As shown in Figure 7, the resulting color maps reveal a stark contrast. For DINOv2,
PCA highlights only a few scattered high-variance patches (outliers), failing to cover the full object
and yielding a fragmented, noisy segmentation. In contrast, Franca produces dense, coherent color
segments aligned with the actual object. Its contours are sharply delineated, and semantically simi-
lar parts (e.g., bike, body of aeroplane) receive consistent colors across instances—patterns that do
not emerge in DINOv2. Importantly, neither model was trained on the Segment Anything-1B (Kir-
illov et al., 2023) subset used for these visualizations, confirming that the segmentation patterns are
entirely emergent from the self-supervised features. We also visualize the self-attention of different
models in Figure 9, showing that Franca’s attention maps provide better object localization.

3.3 CLASSIFICATION AND ROBUSTNESS

Image Classification We evaluate the global image representations learned by Franca for im-
age classification using nearest-neighbor (KNN) and linear probing protocols on ImageNet-1K.
For linear probing, we report results on both the standard validation set and ImageNet-v2 (Recht
et al., 2019). As shown in Table 3, Franca achieves performance comparable to DINOv2, even
for ViT-B and ViT-L despite the fact that for these variants Franca does not use distillation
from a ViT-G teacher (as DINOv2 does), and the ViT-B model is trained only on the 13M im-
ages of IN-21K. Franca also outperforms Web-SSL (Fan et al., 2025), which uses a much larger
dataset (MetaCLIP-2B). Notably, our Franca-G model matches the linear accuracy of Web-SSL-
7B (85.9% vs. 86.0%) with 7× fewer parameters.

To ensure a fair comparison, Table 3 and Figure 2b include DINOv2 models (ViT-B/14, ViT-L/14)
re-trained on IN-21K without distillation from a ViT-G teacher, using our training setup. These
models perform significantly worse than the original DINOv2, indicating that the ViT-G distillation
contributes substantially to their performance. In contrast, Franca achieves strong results without
such distillation or extra supervision, matching or surpassing these reproduced DINOv2 versions.

Robustness We assess robustness by applying the linear classification heads to the validation sets
of ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a), and Sketch (Wang
et al., 2019), which introduce semantic or stylistic variations. From Table 3, Franca demonstrates
strong robustness, where Franca-G matches DINOv2-G across all three datasets and outperforms
OpenCLIP-G by 9% on ImageNet-A, despite OpenCLIP being trained on over 30× more data.

Out-of-Distribution Detection We further evaluate Franca on out-of-distribution (OOD) detec-
tion using the OpenOOD benchmark (Zhang et al., 2024) reporting the Area under the ROC curve
(AuROC) metric across five datasets. Results in Figure 8 show that Franca consistently outper-
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Figure 8: Out-of-Distribution Detection across five robustness-benchmarks: SSB-Hard (Vaze et al.,
2022), NINCO (Bitterwolf et al., 2023), iNaturalist (Huang & Li, 2021), OpenImage-O (Wang et al.,
2022a), and Texture (Kylberg, 2011). Franca consistently outperforms DINOv2, at larger scales,
demonstrating its robustness across distribution shifts. DINOv2-B and DINOv2-L are distilled from
DINOv2-G and trained on LVD 142M, while neither variants of Franca are distilled.

MODEL GEOMETRY TEXTURE GEOMETRY+TEXTURE

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
EVA-CLIP 19.01 0.62 0.35 18.02 0.60 0.32 18.85 0.63 0.38
CLIP 19.47 0.64 0.33 18.04 0.60 0.32 19.42 0.64 0.39
SigLIP 2 19.39 0.64 0.33 18.11 0.60 0.31 19.36 0.64 0.41
AIMv2 19.16 0.62 0.35 18.05 0.60 0.32 19.04 0.63 0.39
WebSSL 19.56 0.64 0.33 18.05 0.60 0.32 19.43 0.64 0.37
DINOv2 19.34 0.63 0.34 17.96 0.60 0.33 19.31 0.64 0.36
Franca 19.58 0.65 0.32 17.97 0.62 0.32 19.53 0.65 0.37

Table 4: Probing with Gaussian Splatting, Normalized average metrics using Feat2GS (Chen et al.,
2025) across six datasets for two probing schemes: Geometry, Texture and All: Geometry + Tex-
ture with ViT-L backbone. We measure PSNR, SSIM (higher is better) and LPIPS (lower is bet-
ter). Franca outperforms SoTA VFMs suggesting strong geometrical awareness.

forms DINOv2 across large and giant model variants, demonstrating strong robustness to distribution
shifts and effective scaling for OOD detection.

3.4 PROBING 3D AWARENESS

We evaluate texture and geometry awareness using the Feat2GS framework (Chen et al., 2025),
which leverages novel view synthesis as a proxy for 3D understanding. Features from visual founda-
tion models are mapped into 3D Gaussians through a lightweight readout trained with a photometric
loss. For fair comparison, inputs are resized to 512, feature maps are upsampled to 512, and PCA
reduces dimensionality to 256. Evaluation uses PSNR, SSIM, and LPIPS under three setups: (a)
Geometry—features predict geometric parameters while texture is optimized; (b) Texture—features
predict texture while geometry is optimized; and (c) All—features predict both geometry and tex-
ture. We compare Francawith DINOv2, WebSSL, AIMv2, EVA-CLIP, SigLIP 2, and CLIP across
six datasets, averaging results over five runs. From Table 4, Franca achieves the best performance
in Geometry and All, indicating strong 3D geometric awareness, while all methods perform simi-
larly on Texture, with SigLIP 2 slightly ahead. We also show the results on dense keypoint matching
and depth prediction in Table 7.

4 CONCLUSION

In this work, we present Franca, a new Vision Foundation Model that is open-weight, open-data
and open-code. We build this model using a novel Matryoshka-nested clustering self-supervised
loss that allows for learning hierarchical representations and have introduced RASA, a simple post-
pretraining method to remove overtly spatial biases in the final representations. Across evaluations
in image recognition, segmentation, robustness, OOD detection and 3D understanding, we find that
it matches and frequently outperforms DINOv2 and other state-of-the-art models such as SigLIP
2. The recent release of DINOv3 (Siméoni et al., 2025) is a concurrent development. While it
represents a significant advance, initial analysis (Figure 5, Figure 7) suggests that positional bias
remains a challenge, indicating the continued relevance of our technical contributions like RASA.
Integrating our innovations into frameworks like DINOv3 is a promising direction for future work.
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A APPENDIX

B RELATED WORK

Our work builds on and contributes to four major areas of prior research: self-supervised learning
for visual representation learning, scaling strategies for data and model capacity in vision models,
open-source foundation models, and techniques for disentangling semantic content from positional
or representational biases.

Self-Supervised Learning (SSL) for Vision. Self-supervised learning has emerged as a powerful
paradigm for visual representation learning without any manual annotations. By designing pretext
tasks that utilize image structure as supervision signals, SSL methods enable models to learn trans-
ferable features. Early approaches used handcrafted objectives such as context prediction (Doersch
et al., 2015), patch reordering (Noroozi & Favaro, 2016), colorization (Zhang et al., 2016; 2017),
inpainting (Pathak et al., 2016), geometric transformation prediction (Gidaris & Komodakis, 2018),
and instance discrimination (Dosovitskiy et al., 2014; Wu et al., 2018). Modern SSL methods pri-
marily focus on learning invariances across augmented data views. While early approaches leverage
contrastive learning (Oord et al., 2018; Misra & Maaten, 2020; Chen et al., 2020a; He et al., 2020;
Chen et al., 2020b; 2021) by aligning positive pairs and separating negatives, bootstrap-based (Grill
et al., 2020; Chen & He, 2021; Gidaris et al., 2021) and distillation-based methods (Caron et al.,
2021; Oquab et al., 2024) refine targets through teacher-student networks, often removing the need
for negative pairs. More recently, Masked Image Modeling (MIM) has emerged as a dominant SSL
strategy, where models learn to reconstruct masked patches (He et al., 2022; Zhou et al., 2022a;
Kakogeorgiou et al., 2022; Bao et al., 2022; Wei et al., 2022). Beyond these, clustering-based
methods (Caron et al., 2018; 2020; Ji et al., 2019; Sirko-Galouchenko et al., 2025) have gained
prominence, assigning pseudo-labels through algorithms like K-means or Sinkhorn-Knopp. The
combination of MIM with clustering has shown particular promise, as exemplified by recent works
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such as MOCA (Gidaris et al., 2024) and CAPI (Darcet et al., 2025). This hybrid approach leverages
the strengths of both paradigms.

While current vision foundation models often fall into categories like vision-language or MAE-like
architectures, which have their own strengths and limitations (e.g., reliance on text supervision or
need for task-specific adaptations), DINOv2 (Oquab et al., 2024) stands out as a powerful pretrained
model employing a clustering-based approach. However, DINOv2 has two key limitations: as a
clustering method, it doesn’t inherently capture the ambiguity often present in assignments at a fixed
granularity, nor does it explicitly incorporate the benefits of modern hierarchical masking strategies.
Our work addresses these concerns by integrating nested Matryoshka projections (Kusupati et al.,
2022) directly into its objective. This allows each subspace to perform clustering at a different
granularity, yielding diverse pseudo-labels efficiently (see Figure 1). Combined with an improved
input masking strategy, our approach enables the joint learning of coarse-to-fine semantics without
increasing model size, leading to strongly improved performances and reduction in memory.

Open Foundation Vision Models. The reliance on proprietary datasets in the training of current
vision foundation models raises critical concerns regarding transparency, reproducibility, and the
disentanglement of contributions. Models such as SEER (Goyal et al., 2019), DINOv2 (Oquab
et al., 2024), CLIP (Radford et al., 2021), and billion-scale MAE (Singh et al., 2023) are all trained
on proprietary data. This practice makes it challenging for the research community to isolate the
true impact of model’s novelty and training strategies from the unique characteristics and biases of
the datasets themselves. The lack of access to these datasets hinders independent verification, fair
comparison, and a comprehensive understanding of what truly drives model performance. Inspired
by the success and large-scale utilization of CLIP, OpenCLIP (Ilharco et al., 2021; Cherti et al.,
2023) and MetaCLIP (Xu et al., 2024; Chuang et al., 2025) are the first to release models trained
on public data. OpenCLIP (Cherti et al., 2023; Nezhurina et al., 2025) stands out with the fully
reproducible pipeline leveraging the ready-to-use LAION dataset (Schuhmann et al., 2022; LAION,
2024), study of scaling laws and release of intermediate checkpoints. On vision-only foundation
models, the performance of DINOv2 has proven difficult to match by public data models. Web-
SSL (Fan et al., 2025) extends the study of large-scale self-supervised pretraining by training models
on publicly available MetaCLIP-2B (Xu et al., 2024) dataset, showing that models trained on open
data can approach the performance of those trained on proprietary data on VLM tasks, but still below
DINOv2 on visual perception tasks.

Building on this, we present a fully open-source vision foundation model using publicly available
datasets, ReLAION (LAION, 2024), as it represents the most popular and safe public dataset for
large-scale vision model training.

Spatial correlations in learned representations. A common issue in dense self-supervised learn-
ing is the entanglement of semantic content with positional cues, causing models to rely on location
rather than object identity. For instance, a model trained on “cows in grassy fields” and “camels
in deserts” may misclassify a cow on a beach as a camel, due to learned associations with back-
ground context (Arjovsky et al., 2019). Such spatial biases reduce generalization and can hinder
performance when objects appear in atypical locations (e.g., a cow in the sky) (Singh et al., 2020).

Several works have addressed this by proposing methods invariant to positional information. Lenc
& Vedaldi (2015) enforce equivariance to geometric transformations; Wang et al. (2023) disentangle
representations into orthogonal subspaces for content and style. Invariant Risk Minimization (Ar-
jovsky et al., 2019) seeks features stable across environments, minimizing reliance on spurious cues.
We propose a simple post-training strategy that learns a linear projection to identify and remove spa-
tial information from features. Since, we use it as a post-training strategy, it requires no architectural
changes and can be easily adapted to any pretrained model to reduce spatial bias.

C IMPLEMENTATION DETAILS

A summary of the different datasets used at different training stage in given in Table 5

Pretraining Datasets We pretrain Franca on large-scale, publicly available image-only datasets
to ensure full reproducibility. We use the ImageNet-21K (Ridnik et al., 2021), which contains ap-
proximately 13.1M high-quality, hierarchically labeled images across 21,841 classes. This dataset
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TRAINING TYPE ARCHITECTURE DATASET #IMAGES

Pretraining ViT-B ImageNet-21K 13,153,000
Pretraining ViT-L LAION-COCO 599,187,600
Pretraining ViT-G LAION-COCO 599,187,600
High-Res Finetuning ViT-B, ViT-L IN-1K, ADE20K, COCO, VOC, KITTI 1,444,270
RASA Post-training ViT-B/L/G Pascal VOC 17,125

Table 5: Summary of training setup across architectures, datasets, and image counts.

Algorithm 1 Pseudo-code for CYCLICMASK

Require: input size (H,W ), masking ratio m ∈ [0, 1], roll flag roll, aspect ratio range
[rmin, rmax]

1: T ← H ×W ▷ total number of patches
2: n← ⌊m · T ⌋ ▷ number of masking patches
3: c← max(1, T − n) ▷ number of complement patches
4: r ∼ exp (U [log rmin, log rmax]) ▷ sample aspect ratio
5: h← min (H, ⌈

√
c · r⌉)

6: w ← min (W, ⌈
√

c/r⌉)
7: top ∼ U{0, H − h}, left ∼ U{0, W − w}
8: mask← torch.zeros( H , W , , dtype=bool)
9: mask[top:top + h, left:left + w]← True

10: mask←¬ mask ▷ invert block to mask everything else
11: if roll = True then
12: shift_x ∼ U{0, H − 1}, shift_y ∼ U{0, W − 1}
13: mask← torch.roll(mask, (shift_x, shift_y), dims=(0,1))
14: end if
15: return mask of size H ×W

offers broad visual coverage and is widely used in foundation model pretraining. To further scale up
training and improve generalization, we also leverage LAION-600M1, a subset of ReLAION-2B,
which is a research-safe version of the LAION-5B dataset (Schuhmann et al., 2022; LAION, 2024).
While LAION-5B is originally paired image-text data, we discard the text and use only the image
modality.

Training Franca’s architecture follows DINOv2 (Oquab et al., 2024) without registers, using
Vision Transformers (Dosovitskiy et al., 2021) of varying model capacities: ViT-B with 86M pa-
rameters, ViT-L with 300M, and ViT-G with 1.1B. All models are trained from scratch for 625K
iterations without distillation from larger models, unlike DINOv2, which distills from ViT-G into
smaller variants. We use CyclicMask (pseudo-code in Algorithm 1) and employ Matryoshka (Kusu-
pati et al., 2022) with five nested heads with feature dimensions [d, d

2 , . . . ,
d
16 ] on top of the normal

ViT backbone.

For LAION-600M, we use global crops scale of [0.48, 1.0], following DINOv2-style augmentations.
Stochastic depth regularization is set to 0.1 for ViT-B and 0.4 for ViT-L and ViT-G. We use a total
batch size of 2048 for ViT-B and 3072 for both ViT-L and ViT-G, distributed across 32, 64 and 128
H100 GPUs for ViT-B, ViT-L and ViT-G respectively. The learning rate is set to 1 × 10−3 for the
Base model and 3.5× 10−4 for the Large and Giant variants, using a cosine schedule with warmup
of 100K iterations.

We train RASA on top of our frozen backbone on Pascal VOC using crops of resolution 518 ×
518, batch size of 128, with AdamW (Loshchilov & Hutter, 2019) optimizer. For each of the 8
incremental head training iterations, we used a dual-head linear projection (one for predictings and
the other the y-axis patch positions) with sigmoid activation. In every iteration, only the top head
was trained for 5 epochs with no weight decay and an initial learning rate of 2 × 10−3, while all
heads from previous iterations are absorbed into the weights of the final ViT layer, for iteratively
removing the positional information from the features of the last ViT layer.

1https://huggingface.co/datasets/laion/laion-coco
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High-resolution adaptation We initialize the model with pretrained weights and perform incre-
mental high-resolution finetuning. First, we finetune the model at input resolution 364 × 364 with
a local crop resolution of 112 × 112, using a base learning rate of 1.25 × 10−5 for 30K iterations.
The resulting checkpoint is then used to initialize the model for a second finetuning stage at input
resolution 518× 518 with a local crop size of 168× 168, again with the same learning rate, for 10K
iterations. All schedules are preserved but temporally compressed to fit within the shorter training
horizons. The teacher network undergoes a warmup phase during the first 10K iterations of the
initial 364-resolution stage to stabilize early training dynamics. We use a dataset mix comprising
only the training set of ImageNet-1K, ADE20K, COCO, KITTI, and VOC. Due to computational
constraints, high-resolution finetuning is performed only for the ViT-B and ViT-L model.

D EVALUATION DETAILS

Overclustering In the overclustering setting, we follow the protocol of (Ziegler & Asano, 2022).
Specifically, we perform K-Means clustering (via faiss (Johnson et al., 2019)) on the spatial tokens
extracted from the backbone, discarding the projection head. To align clusters with ground-truth
semantic labels, we first apply greedy matching based on pixel-level precision and then refine the
assignment with Hungarian matching (Kuhn, 1955), ensuring permutation-invariant evaluation as
in (Ji et al., 2019). Inputs are cropped to 448×448, while clustering operates on downsampled
100×100 masks to reduce the computational cost of Hungarian matching. Results are reported as
the mean Intersection-over-Union (mIoU), averaged over five seeds, across twp datasets: COCO-
Thing, and Pascal VOC 2012 (Everingham et al.).

Visual In-Context Learning The Dense Nearest Neighbor Retrieval Evaluation, introduced
by (Balazevic et al., 2023b) and openly implemented by (Pariza et al., 2024), is designed to measure
the scene understanding ability of dense image encoders through a retrieval-based protocol. The
evaluation proceeds in three stages:

1. Memory Bank Construction: Given a training dataset with dense annotations, two mem-
ory banks are built. The first stores patch-level features obtained from the spatial outputs
of a dense encoder, while the second stores the corresponding patch-level labels.

2. Query Processing: For each validation image, we extract patch embeddings from the en-
coder’s spatial output. Each query patch searches for its k nearest neighbors in the feature
memory bank, and the associated labels of these neighbors are aggregated to infer the query
patch label.

3. Evaluation: After generating a predicted dense annotation for the full image, the result is
compared against ground-truth labels to compute performance.

Since the original implementation of (Balazevic et al., 2023b) is not publicly available, we rely on
the open-source reimplementation from (Pariza et al., 2024), which follows the authors’ description
and allows leveraging either the ScaNN library (Guo et al., 2020) or the faiss library (Johnson et al.,
2019) for efficient nearest-neighbor search. In our experiments, we adhere closely to this setup but
make two modifications: (1) instead of restricting memory to a fixed capacity of 10,240,000 entries,
we index all patch embeddings extracted from images resized to 518 × 518; and (2) we employ
GPU-accelerated FAISS for nearest-neighbor retrieval, configured to approximate the ScaNN setup
used in the original evaluation (e.g., with k = 30 neighbors).

We report results as mean Intersection-over-Union (mIoU) on two benchmark datasets: Pascal VOC
2012 (Everingham et al.) and ADE20K (Zhou et al., 2017), averaging over five random seeds.

Linear Segmentation Linear segmentation is a common protocol to assess the linear separability
of learned spatial representations. The setup freezes the encoder and trains a lightweight segmen-
tation head, typically a single linear layer with batch normalization, using pixel-wise cross-entropy
loss. In practice, the spatial patch embeddings produced by the backbone are bilinearly upsampled
to match the resolution of the ground-truth masks, and the linear head is trained on top. This pro-
cedure is implemented in mmsegmentation and was used in the DINOv2 paper (Oquab et al.,
2023) for evaluating Pascal VOC and ADE20K, where the backbone is kept frozen and only the
linear head is optimized.
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In this paper, we adopt the DINOv2 setup as a baseline and introduce a few modifications tailored
to our experimental needs:

• General changes (both datasets): We switch from iteration-based training (max_iters
= 40000) to epoch-based training with a maximum of 50 epochs. The crop size is in-
creased from 512 × 512 to 518 × 518, and the stride is adjusted accordingly to half the
crop size. Data augmentation uses RandomResize instead of Resize. The learning
rate schedule is also defined by epoch rather than iteration.

• Pascal VOC 2012 (Everingham et al.): We replace the AdamW optimizer (used in DI-
NOv2) with SGD (lr = 0.001, momentum = 0.9, weight decay = 5 × 10−4). The resize
target is set to (2048, 518) with a ratio range of (0.5, 2.0), consistent with the crop size
change.

• ADE20K (Zhou et al., 2017): We keep AdamW as the optimizer but wrap it with an
OptimWrapper. The random resize ratio range is expanded from (0.5, 2.0) to (1.0, 3.0),
making the scale augmentation more aggressive. At test time, instead of single-scale eval-
uation, we adopt multi-scale testing with image ratios [1.0, 1.32, 1.73].

These modifications preserve the core linear segmentation evaluation protocol of DINOv2 while
adapting it for our framework and experimental goals. We generally have seen the modifications to
work better and improve further the results of all the models we tested.

Evaluation Datasets Pascal VOC 2012 (Everingham et al.). We use the most recent trainaug
split, which contains 10,582 annotated images across 21 categories, including one background class.
The validation set includes 1,449 images. We exclude unlabeled objects and the boundary class from
evaluation. For hyperparameter tuning of the fully unsupervised segmentation method of (Ziegler &
Asano, 2022), we rely on the original train split (1,464 images).

COCO-Stuff 164K (Caesar et al., 2018). The full COCO-Stuff dataset provides semantic annota-
tions for both “stuff” (background, amorphous regions) and “thing” (foreground, countable objects)
categories, with 91 stuff and 80 thing classes, respectively. It contains 118,000 training images and
5,000 validation images. In prior work (Ziegler & Asano, 2022; Pariza et al., 2025), two variants of
this dataset are considered:

1. COCO-Stuff, where the 91 stuff categories are grouped into 15 broader classes (with all
thing categories collapsed into a single “other” label that is ignored during evaluation).

2. COCO-Thing, where the 80 thing categories are consolidated into 12 broader object classes,
and background regions are excluded from evaluation.

In this work, we only make use of the COCO-Thing variant. Specifically, we follow (Kirillov et al.,
2019) to obtain panoptic instance annotations, which are then merged into object-level categories
using the official conversion script. The resulting 12-class setup emphasizes object-level reasoning
in cluttered natural scenes and serves as our benchmark for overclustering experiments. Although
we refer to the dataset as “COCO-Stuff 164K” for consistency with the literature, only the COCO-
Thing portion is used in our evaluations.

ADE20K (Zhou et al., 2017). ADE20K is a large-scale scene parsing benchmark with 150 semantic
categories, ranging from background classes (e.g., sky, grass) to fine-grained objects (e.g., person,
car). The dataset contains 20,210 training images and 2,000 validation images with detailed anno-
tations. Due to its diversity and fine-grained structure, ADE20K is widely regarded as one of the
most challenging datasets for dense prediction tasks. In our experiments, we use the full dataset but
ignore the others label during evaluation.

E ADDITIONAL RESULTS

E.1 FINE-GRAINED CLASSIFICATION

We evaluate the transferability of the learned representations on 11 classification benchmarks intro-
duced in SimCLR (Chen et al., 2020a). These benchmarks cover a variety of tasks, including scene
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Method Arch Food C10 C100 SUN Cars Aircr DTD Pets Cal Flwrs CUB Avg
MAE ViT-H/14 78.4 96.1 83.9 63.9 56.1 63.4 75.4 89.4 95.9 92.3 57.2 77.5
DINOv2† ViT-L/14 93.4 99.2 93.9 78.1 89.9 81.7 82.9 95.2 87.2 99.6 90.3 90.1
DINOv2§ ViT-L/14 94.3 99.3 93.4 78.7 89.9 81.5 84.0 96.5 97.5 99.7 90.5 91.4
Web-SSL ViT-L/14 91.0 98.9 90.7 77.5 88.9 80.2 83.6 93.1 95.1 98.8 90.9 89.9
DINOv2 ViT-G/14 94.7 99.5 94.4 78.7 91.4 87.2 84.5 96.7 97.6 99.7 91.6 92.3
Web-SSL ViT-G/14 94.1 99.4 93.1 78.0 90.3 83.7 84.7 92.4 96.8 99.4 91.2 91.2
OpenCLIP ViT-G/14 94.5 98.7 91.0 84.0 96.1 80.2 86.0 95.7 98.1 99.5 89.9 92.2
Franca (ours) ViT-B/14 90.6 98.7 90.9 77.0 88.7 75.2 81.7 94.1 96.2 99.7 86.2 88.9
Franca (ours) ViT-L/14 94.3 99.4 94.1 79.9 89.5 81.3 84.1 95.1 97.4 99.8 91.1 91.5
Franca (ours) ViT-G/14 95.0 99.5 95.1 78.9 91.3 85.5 85.0 97.2 97.5 99.7 91.3 92.3

Table 6: Linear evaluation of frozen features on fine-grained datasets. top-1 accuracy measured
across 11 benchmarks across objects, scenes, and textures, following (Chen et al., 2020a); †: repro-
duced on IN-21K without distillation; §: distilled from DINOv2-G on LVD-142M.

Image DINOv2 DINOv2-R Franca Image DINOv2 DINOv2-R Franca

Figure 9: Self-attention maps utilizing 14×14 patches. These maps are visualized using the [CLS]
token on the last layer’s heads on the validation set of ImageNet-1K (Russakovsky et al., 2015).
Franca has better localization than DINOv2 with registers (Darcet et al., 2024) without requir-
ing the use of registers, where the nested Matryoshka clustering captures fine-grained details, e.g.,
feathers, beaks of bird.

recognition, fine-grained object classification (such as food, cars, and aircraft), and texture recogni-
tion. Following (Oquab et al., 2024), we train a logistic regression classifier on features extracted
from a frozen backbone. This approach focuses solely on the quality of the visual features and pro-
vides a fair way to compare performance across different tasks. Although some of these benchmarks
tend to favor models trained with text supervision, our features perform strongly and competitively
across many categories.

As shown in Table 6, our method, Franca, transfers well across a wide range of downstream tasks.
Our ViT-G/14 model (Franca-G) achieves the same performance as DINOv2-G and outperforms
Web-SSL-G by 1.1% despite being trained on much less data. It also matches the performance
of larger models like OpenCLIP-G. On datasets such as CIFAR-100 and Oxford Pets, Franca-G
achieves 0.7% and 0.5% gains over DINOv2G respectively, demonstrating Franca’s strong gener-
alization ability across both natural and fine-grained classification tasks.

E.2 ATTENTION MAPS VISUALIZATIONS

We compare self-attention maps from the final layer’s [CLS] token of DINOv2, DINOv2R (with
registers) (Darcet et al., 2024) and Franca in Figure 9. DINOv2 often fails to localize objects,
especially under clutter or occlusion, while DINOv2R offers only minor improvements. In con-
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MODEL ARCH. DATA d=0 d=1 d=2 All SI-RMSE ↓
IMAGE RESOLUTION 800 × 800 (SPAIR-71K) AND 480 × 480 (NYUV2)

OpenCLIP ViT-B/14 LAION-2B 18.31 16.78 17.05 17.63 0.39
SigLIP2 ViT-B/14 WebLI 9.29 5.96 5.82 7.83 0.56
DINOv2† ViT-B/14 IN-21K 42.82 33.38 34.82 38.71 0.33
DINOv2§ ViT-B/14 LVD-142M 63.04 51.09 48.76 55.98 0.25
Franca (ours) ViT-B/14 IN-21K 53.46 41.9 44.2 45.6 0.30

OpenCLIP ViT-L/14 LAION-2B 22.73 20.18 20.37 21.26 0.37
SigLIP2 ViT-L/14 WebLI 8.66 5.38 5.05 6.88 0.55
DINOv2† ViT-L/14 IN-21K 57.60 42.91 44.17 50.68 0.31
DINOv2§ ViT-L/14 LVD-142M 63.91 53.11 51.91 56.92 0.23
Franca (ours) ViT-L/14 LAION-600M 58.50 46.74 48.28 51.76 0.25

Table 7: Probing 3D understanding via keypoint matching on SPair-71K and monocular depth esti-
mation on NYUv2. We report correspondence accuracy (higher is better) under increasing viewpoint
changes (d=0, 1, 2, and overall) on SPair-71K, and scale-invariant RMSE (lower is better) for depth
estimation on NYUv2. Results are shown for high (8002) resolution SPair-71K input. †: reproduced
on IN-21K without distillation; §: distilled from DINOv2-G.

trast, Franca yields sharply focused attention maps aligned with object boundaries, even for small
or partially occluded instances. This suggests that our Matryoshka-style multi-head clustering pro-
motes semantically rich features and finer-grained representations.

E.3 PROBING 3D UNDERSTANDING

We evaluate the geometric understanding of Franca on two tasks: keypoint correspondence (SPair-
71k (Min et al., 2019)) and monocular depth estimation (NYUv2 (Silberman et al., 2012)). For
SPair-71k, the goal is to establish dense keypoint correspondences under varying viewpoint changes,
where we report accuracy across all keypoints and under increasing viewpoint disparity. For depth
estimation, we follow the AdaBins protocol (Bhat et al., 2021) and measure performance using the
scale-invariant root-mean-square error (SI-RMSE). All evaluations are conducted at high resolution:
800× 800 for SPair-71k and 480× 480 for NYUv2.

As shown in Table 7, Franca achieves strong performance across both tasks. On SPair-71k,
it outperforms DINOv2 trained on the ImageNet-21K dataset, both at ViT-B and ViT-L models.
On NYUv2, Franca achieves comparable performance as DINOv2 distilled from larger DINOv2
model. This is also due to the fact that DINOv2 uses NYU Depth v2 during pretraining (as part of
LVD 142M). These results indicate that Franca learns a spatial representation that captures both
fine-grained 2D alignment and coarse 3D structure, generalizing well from object-centric pretraining
to downstream geometric tasks.

E.4 OVERCLUSTERING

We evaluate Franca using the overclustering protocol from (Ziegler & Asano, 2022), which mea-
sures semantic alignment of spatial features in a label-free setting. Patch embeddings are clustered
with K-Means and matched to ground-truth segmentation masks via Hungarian matching (Kuhn,
1955), and performance is reported as mean IoU (mIoU). This task highlights the ability of rep-
resentations to capture fine-grained structure, which is crucial for dense prediction tasks such as
semantic segmentation and object detection.

As shown in Table 8, Franca consistently outperforms strong baselines across backbones and
clustering granularities. On ViT-B/14, it achieves the highest VOC performance at K = 300 (56.4
mIoU), surpassing DINOv2-B§ (52.5) while remaining competitive on COCO-Things. With ViT-
L/14, Franca delivers its strongest results: it reaches 47.4 and 58.9 mIoU on VOC (K = 100/K =
300), and 49.6 and 54.4 on COCO-Things, outperforming DINOv2-L§, Web-SSL, and SigLIP 2. At
ViT-G/14 scale, Franca maintains a clear lead over DINOv2-G and Web-SSL, reaching 49.2 on
VOC (K = 300) and 31.9 on COCO-Things (K = 300), despite the challenging scaling regime.

These results underscore that Franca not only scales effectively to larger backbones but also de-
livers robust gains on both coarse (VOC) and complex (COCO-Things) datasets. Importantly, it
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METHOD BACKBONE
OVERCLUSTERING

VOC COCO-THINGS

K = 100 K = 300 K = 100 K = 300

SigLIP ViT-B/16 29.5 36.9 41.5 53.4
iBOT ViT-B/16 21.2 29.1 18.3 26.3
EVA-CLIP ViT-B/16 43.3 49.1 41.3 52.0
DINOv2† ViT-B/14 25.9 34.7 20.5 28.7
DINOv2§ ViT-B/14 39.2 52.5 46.5 54.0
Franca (ours) ViT-B/14 37.5 56.4 38.8 51.1

SigLIP 2 ViT-L/16 24.3 40.4 43.5 50.7
Web-SSL ViT-L/14 28.2 37.7 26.3 33.1
DINOv2† ViT-L/14 25.9 34.7 24.1 35.1
DINOv2§ ViT-L/14 26.5 43.0 34.8 45.7
Franca (ours) ViT-L/14 47.4 58.9 49.6 54.4

Web-SSL ViT-G/14 26.0 33.4 15.5 21.5
DINOv2 ViT-G/14 19.5 27.7 20.7 29.2
Franca (ours) ViT-G/14 39.4 49.2 25.8 31.9

Table 8: OverClustering Performance. Comparison of overclustering performance (mIoU) on Pascal
VOC and COCO-Things datasets with K = 100 and K = 300. †: reproduced on IN-21K, without
distillation; § : distilled from DINOv2-G on LVD-142M.

Table 9: Ablating the Dataset Size used for Training RASA Head

IN-CONTEXT LIN. SEG.
Fraction VOC ADE20K VOC ADE20K
0.1 76.6 35.2 89.3 46.2
0.2 76.7 35.3 89.4 46.2
0.3 76.7 35.3 89.3 46.0
0.4 76.7 35.3 89.3 46.1
0.5 76.7 35.3 89.3 46.2
0.6 76.7 35.3 89.3 46.1
0.8 76.7 35.3 89.3 46.2

(a) Fractions of the COCO Dataset

IN-CONTEXT LIN. SEG.
Fraction VOC ADE20K VOC ADE20K
0.1 76.7 35.3 89.4 46.1
0.2 76.7 35.4 89.4 45.9
0.3 76.7 35.4 89.3 46.0
0.4 76.7 35.4 89.4 46.0
0.5 76.7 35.4 89.4 45.9
0.6 76.7 35.4 89.3 46.0
0.8 76.7 35.4 89.4 45.9

(b) Fractions of the Imagenet Dataset

rivals or surpasses multimodal baselines like EVA-CLIP and SigLIP 2, highlighting its strength as a
unimodal self-supervised learner for dense prediction settings.

E.5 ABLATING RASA

E.5.1 DATASET SIZE REQUIREMENTS FOR TRAINING THE RASA HEAD

We ablate the dataset size required for training the RASA head by varying the fraction of images
sampled from COCO (scene-centric) and IMAGENET100 (object-centric). Tables 9a and 9b sum-
marize the results across in-context segmentation and linear segmentation.

Observations. On COCO, as little as 10%–20% of the data suffices to reach peak performance,
with VOC and ADE20K scores saturating at 76.6–76.7 and 35.2–35.3 (in-context), and 89.3–89.4
and 46.2 (linear segmentation). Increasing the fraction up to 80% yields no further improvements,
indicating that performance plateaus once ∼10k images are used.

A similar trend is observed on IMAGENET100, where 10%–20% of the dataset again provides opti-
mal results (76.7 VOC / 35.3–35.4 ADE20K in-context, 89.4 VOC / 45.9–46.1 ADE20K for linear
segmentation). Larger fractions show negligible variation, well within noise levels.

Conclusion. These findings demonstrate two key points. First, training the RASA head is highly
data-efficient: roughly 10k images are sufficient to achieve strong disentanglement. Second, the
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type of dataset—COCO (scene-oriented) vs. IMAGENET100 (object-oriented)—does not materi-
ally affect downstream performance. This indicates that RASA is largely agnostic to the semantic
bias of the training distribution and can be reliably trained with minimal data.

Based on these observations, we adopt PASCAL VOC as our default choice for training the RASA
head, since it is compact yet sufficient to reach optimal performance. With this setup, we achieve
strong results across multiple benchmarks (Table 10). This confirms that a lightweight dataset such
as Pascal VOC is adequate for effective training, while maintaining competitive performance across
diverse tasks.

Table 10: Training the RASA head on top of VIT-BASE of Franca on Pascal VOC.

SETUP
IN-CONTEXT LIN. SEG.

VOC ADE20K VOC ADE20K
Franca 76.2 35.0 89.4 46.0
Franca + RASA 76.7 35.3 89.4 46.0

E.5.2 LEARNING RATE FOR TRAINING THE DUAL-LINEAR POSITION PREDICTOR

We also ablate the learning rate used when training each dual-linear position predictor in the RASA
head. Results are reported on both PASCAL VOC and COCO in Tables 11a and 11b respectively.

Observations. On PASCAL VOC in Table 11a, the optimal performance is achieved with a learning
rate of 0.002, reaching 76.7 VOC / 35.3 ADE20K for in-context and 89.4 VOC / 46.0 ADE20K
for linear segmentation. Larger learning rates such as 0.005 yield slightly reduced segmentation
accuracy, while very small rates (0.0001) underperform across both tasks. Interestingly, 0.0005
produces a competitive ADE20K score (46.0) but is less stable overall.

On COCO in Table 11b, the trend differs: the best results are obtained at the much smaller learning
rate of 0.0001 (76.7 VOC / 35.3 ADE20K in-context, 89.4 VOC / 46.2 ADE20K linear segmen-
tation). Higher learning rates (0.002, 0.005) still maintain strong performance but introduce minor
drops or fluctuations, particularly in VOC segmentation. The consistency of 0.0001 across all met-
rics suggests that COCO benefits from more conservative updates during training.

Conclusion. These results indicate that while the RASA head is generally robust to a wide range
of learning rates, the optimal configuration is dataset-dependent. For PASCAL VOC, a moderately
large learning rate (0.002) works best, while for COCO, a smaller learning rate (0.0001) provides
the most stable and accurate results. Overall, this highlights that tuning the learning rate can provide
small but measurable gains, though the model remains relatively stable across settings.

E.5.3 NUMBER OF EPOCHS FOR TRAINING THE DUAL-LINEAR POSITION PREDICTOR

We further ablate the effect of the number of training epochs used for each dual-linear position
predictor in the RASA head. Results on both COCO and PASCAL VOC are reported in Tables 12a
and 12b.

Observations. Across both datasets, performance improves gradually from 1 to 3 epochs, with
the most consistent gains observed when training for 5 epochs. On COCO in Table 12a, 5 epochs
achieves the strongest overall performance (76.7 VOC / 35.3 ADE20K for in-context, 89.4 VOC /
46.2 ADE20K for linear segmentation). Beyond this point, additional training (7 or 10 epochs) does
not yield further benefits and in some cases slightly reduces performance, particularly on ADE20K
segmentation.

A similar trend is evident when training on PASCAL VOC in Table 12b. The 5-epoch configuration
again provides the best balance across both metrics (76.7 VOC / 35.3 ADE20K in-context, 89.4
VOC / 46.0 ADE20K linear segmentation). Extending to 7 or 10 epochs produces only marginal
changes, with scores fluctuating around the same plateau. Interestingly, ADE20K segmentation
shows a minor uptick at 10 epochs (46.1), but the difference relative to 5 epochs is negligible and
within noise.
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Table 11: Ablating the learning rate used to train each dual linear position predictor.

IN-CONTEXT LIN. SEG.
lr VOC ADE20K VOC ADE20K
0.002 76.7 35.3 89.4 46.0
0.005 76.7 35.3 89.4 45.7
0.0001 76.3 34.7 89.4 45.8
0.0005 76.6 35.2 93.9 46.0

(a) Learning Rates on the Pascal VOC

IN-CONTEXT LIN. SEG.
lr VOC ADE20K VOC ADE20K
0.002 76.7 35.3 89.4 45.9
0.005 76.5 35.0 89.4 46.1
0.0001 76.7 35.3 89.4 46.2
0.0005 76.6 35.2 89.4 45.9

(b) Learning Rates on the COCO Dataset

Table 12: Ablating the number of Epochs used to train each dual linear position predictor.

IN-CONTEXT LIN. SEG.
Epochs VOC ADE20K VOC ADE20K
1 76.6 35.2 89.4 46.1
2 76.6 35.3 89.4 45.8
3 76.7 35.3 89.4 46.0
5 76.7 35.3 89.4 46.2
7 76.6 35.2 89.4 45.9
10 76.7 35.3 89.3 45.8

(a) Number of Epochs on COCO Dataset

IN-CONTEXT LIN. SEG.
Epochs VOC ADE20K VOC ADE20K
1 76.1 34.5 89.4 45.9
2 76.3 34.6 89.3 46.2
3 76.4 34.9 89.4 45.8
5 76.7 35.3 89.4 46.0
7 76.5 35.0 89.3 46.0
10 76.6 35.0 89.3 46.1

(b) Number of Epochs on Pascal VOC

Conclusion. These results highlight that training the dual-linear position predictor is computation-
ally efficient, requiring only around 5 epochs to converge. Extending beyond 5 epochs yields no
meaningful improvements and may even slightly degrade results. Moreover, the stability of the
trends across both COCO (scene-centric) and PASCAL VOC (object-centric) datasets reinforces the
robustness of this setting. In practice, we adopt 5 epochs as the default configuration for RASA
training.

E.5.4 NUMBER OF ITERATIONS FOR TRAINING THE RASA HEAD

Finally, we ablate the number of iterations used to train the RASA head, where each iteration corre-
sponds to training an additional dual-linear position predictor and integrating the previously trained
predictors into the final ViT block. Results on PASCAL VOC and COCO are reported in Tables 13a
and 13b.

Observations. Even a small number of iterations (1–2) produces competitive results across both
datasets, suggesting that the RASA head can already provide strong positional disentanglement
with minimal overhead. For example, with only 2 iterations we obtain 76.2 VOC / 34.5 ADE20K
(in-context) and 89.4 VOC / 46.1 ADE20K (linear segmentation) on PASCAL VOC, which is close
to the final performance.

However, performance steadily improves as the number of iterations increases, with the most notable
gains occurring between 2 and 8 iterations. At 8 iterations, results peak at 76.7 VOC / 35.3 ADE20K
in-context and 89.4 VOC / 46.0 ADE20K for segmentation on PASCAL VOC (in Table 13a), and
76.7 VOC / 35.3 ADE20K in-context and 89.4 VOC / 46.2 ADE20K on COCO (in Table 13b). Be-
yond this point (10 iterations), performance saturates and in some cases slightly declines, suggesting
diminishing returns from further iterative training.

Interestingly, across both datasets, the segmentation metrics appear to plateau earlier (around 4–6
iterations), while in-context segmentation continues to benefit until iteration 8. This indicates that
additional iterations primarily refine segmentation-related representations, even though these could
be sort of learned by the linear layer used in linear segmentation.

Conclusion. These experiments demonstrate that the RASA head achieves strong results even with
a small number of iterations, but the optimal trade-off between performance and compute is obtained
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Table 13: Ablating the number of dual predictor layers used for training RASA head (i.e., the number
of iterations).

IN-CONTEXT LIN. SEG.
Iters VOC ADE20K VOC ADE20K
1 76.2 34.2 89.3 46.1
2 76.2 34.5 89.4 46.1
3 76.4 34.5 89.3 45.9
4 76.5 34.6 89.3 45.9
5 76.3 34.5 89.3 46.0
6 76.4 34.8 89.4 45.8
8 76.7 35.3 89.4 46.0
10 76.3 35.1 89.3 46.0
(a) Number of Iterations with Pascal VOC

IN-CONTEXT LIN. SEG.
Iters VOC ADE20K VOC ADE20K
1 76.1 34.2 89.3 45.9
2 76.2 34.5 89.4 46.1
3 76.3 34.5 89.4 46.0
4 76.5 34.5 89.4 46.2
5 76.3 34.5 89.4 46.0
6 76.4 34.8 89.4 46.0
8 76.7 35.3 89.4 46.2
10 76.6 35.2 89.4 46.0

(b) Number of Iterations with Coco

at 8 iterations. Beyond this, additional predictors provide no meaningful improvements, confirming
that the gains saturate after moderate iterative refinement.

E.6 COMPUTATIONAL COST

We report the computational cost of both pretraining and incremental high-resolution finetuning
in terms of GPU-hours. For ViT-B, ViT-L, and ViT-G, we provide estimates covering the entire
training pipeline, including the staged finetuning at 364× 364 and 518× 518 resolutions. The total
GPU-hours for each model are summarized in Table 14.

A few observations can be drawn from these numbers. First, the compute cost scales linearly with
model size: Franca-G requires roughly ∼13× the GPU-hours of Franca-B, while Franca-L
lies in between with ∼4× Franca-B. This reflects both the higher per-step cost of larger mod-
els and the greater degree of parallelism (more GPUs per run) needed to sustain efficient training
throughput. Second, compared to prior large-scale self-supervised training efforts such as Meta-
CLIP and DINOv2-G, our Franca models are trained with significantly lower total GPU budgets,
highlighting the efficiency benefits of our setup. For example, Franca-G was trained with only
∼20K GPU-hours on H100s, which is an order of magnitude smaller than the 368K GPU-hours
reported for MetaCLIP despite comparable training horizons.

Importantly, the reported numbers include practical overheads such as hyper-parameter searches,
checkpoint restarts, and failed runs. This makes our accounting closer to the actual wall-clock com-
pute footprint of the project, rather than an idealized lower bound. We note that high-resolution fine-
tuning contributes a non-negligible fraction of the total cost, especially for Franca-L and Franca-
G, underscoring the importance of carefully balancing resolution scaling against available compute
resources.

Model Arch. GPU type # GPUs Iterations (Pretrain+ Finetune) GPU hours
MetaCLIP A100 256 390K 368,640
DINOv2-G A100 128 625K + 20K 22,016
Franca-B H100 32 625K + 40K 1,504
Franca-L H100 64 625K + 40K 5,952
Franca-G H100 128 625K + 40K 19,992

Table 14: Compute cost in GPU-hours for pretraining and high-resolution finetuning. We estimate
the overall GPU hours for our project, including hyper-parameter search, restarts from checkpoints,
and failed runs, amounting to a total of 160K GPU-hours on NVIDIA H100 GPUs (80GB, NVLink
interconnect). The table provides a breakdown across model scales (ViT-B, ViT-L, ViT-G) and
training phases (pretraining vs. finetuning). Reported values reflect actual wall-clock consumption
rather than idealized FLOP counts.
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