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Figure 1: Examples of our REVEL task. The streaming video manipulation results shown above—
including both Editing and Animat ion with drag effects such as object translation (“Trans”),
deformation (“Defor”), and rotation (“Rot”)—are produced by our DragStream method.

ABSTRACT

Achieving streaming, fine-grained control over the outputs of autoregressive video
diffusion models remains challenging, making it difficult to ensure that they con-
sistently align with user expectations. To bridge this gap, we propose stReaming
drag-oriEnted interactiVe vidEo manipuLation (REVEL), a new task that en-
ables users to modify generated videos anytime on anything via fine-grained, in-
teractive drag. Beyond DragVideo and SG-I2V, REVEL unifies drag-style video
manipulation as editing and animating video frames with both supporting user-
specified translation, deformation, and rotation effects, making drag operations
versatile. In resolving REVEL, we observe: i) drag-induced perturbations ac-
cumulate in latent space, causing severe latent distribution drift that halts the
drag process; ii) streaming drag is easily disturbed by context frames, thereby
yielding visually unnatural outcomes. We thus propose a training-free approach,
DragStream, comprising: i) an adaptive distribution self-rectification strategy
that leverages neighboring frames’ statistics to effectively constrain the drift of
latent embeddings; ii) a spatial-frequency selective optimization mechanism, al-
lowing the model to fully exploit contextual information while mitigating its inter-
ference via selectively propagating visual cues along generation. Our method can
be seamlessly integrated into existing autoregressive video diffusion models, and
extensive experiments firmly demonstrate the effectiveness of our DragStrea

1 INTRODUCTION

Video Diffusion Models (VDMs) have shown impressive capabilities in generating photorealistic
videos, and their success inspired a broad range of generative applications, including image anima-

tion (2025); [Hu| (2024), text-based video editing [Ceylan et al. (2023); [Liu et al. (2024),
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camera-controlled video generation Zheng et al.|(2024)); He et al.[(2024); Bai et al.|(2025)), etc. With
the progress in autoregressive VDMs |Yin et al.[(2025); [Huang et al.| (2025), researchers have been
focusing more on achieving controllable video generation in a streaming manner, thereby enabling
users to interact with VDMs and alter synthetic videos on the fly. For instance, Kodaira et al.| (2023;
20235)); ILin et al.| (2025) proposed directly finetuning VDMs to support streaming video genera-
tion conditioned on text, camera viewpoint, and human pose, whereas [Liang et al.| (2024) realized
training-free, text-guided streaming video translation by introducing a looking-back strategy.

Drag-style operations have become a crucial control signal for VDMs due to their fine-grained nature
and user-friendly interactivity Wu et al.| (2024); |[Deng et al.| (2024)); [Wang et al.| (2024)); [Namekata
et al.[(2024)); Zhou et al.| (2025)). However, it remains challenging to realize streaming, fine-grained
control over the outputs of VDMs through drag-style operations. To mitigate this dilemma, we
propose a new task, stReaming drag-oriEnted interactiVe vidEo manipuLation (REVEL). As
shown in Figure [T} REVEL aims to allow users to modify generated videos at any time and on any
content via fine-grained, interactive drag, making generated videos consistently meet users’ require-
ments. We go beyond prior methods, such as DragVideo Deng et al|(2024) and SG-12V Namekata
et al|(2024), by unifying drag-oriented video manipulation as editing and animating video frames,
with both supporting user-specified translation, deformation, and rotation effects, thereby making
drag operations versatile and establishing a standard paradigm for drag-style video manipulation.

Given the fine-grained nature and high diversity of drag-based video manipulation, solving REVEL
is non-trivial. Directly finetuning VDMs to realize REVEL usually incurs expensive training costs—
requiring training VDMs on large-scale, fine-grained drag-style data by hundreds or even thousands
of H100 GPU hours|Yin et al.|(2025));|Kodaira et al.| (2025);|Huang et al.|(2025)—making it impracti-
cal for resource-constrained scenarios. This observation naturally leads us to ask a key question:
How can high-quality REVEL be achieved without incurring prohibitive computational costs?

We propose solving the above question from a training-free perspective in this paper, so as to ef-
fectively reduce training expenses. However, we observe that there exist two key challenges: i)
perturbations induced by drag operations easily accumulate in latent space, thereby causing severe
latent distribution drift that totally halts the drag process; ii) streaming drag is easily disturbed by
context frames, resulting in visually unnatural content. Therefore, we propose a new DragStream
approach. Specifically, we first design an Adaptive Distribution Self-Rectification (ADSR) strategy
that suppresses the distribution drift of latent code by considering statistics from neighboring frames,
thereby effectively overcoming drag interruption. We also introduce a Spatial-Frequency Selective
Optimization (SFSO) mechanism, which propagates visual cues from preceding video frames se-
lectively in both spatial and frequency domains. As a result, we can fully exploit the information
of context frames while relieving their interference. ADSR and SFSO enable our DragStream to
achieve high-quality results on REVEL without incurring prohibitive training costs, while allowing
it to be seamlessly integrated into existing autoregressive VDMs. Extensive experiments provided
in Section[5|and the appendix consistently demonstrate the superiority of our proposed approach.

Here, we summarize the main contributions of this paper:

* We propose stReaming drag-oriEnted interactiVe vidEo manipuLation (REVEL), a
new task that enables users to drag anything anytime during video generation, thus achiev-
ing streaming, fine-grained control over the outputs of VDMs via drag-style operations.

* We identify two key challenges in solving REVEL within a training-free paradigm: 7) drag-
induced perturbations cause severe latent distribution drift and halt the drag process; and ii)
streaming drag is disturbed by context frames, resulting in visually unnatural outcomes.

* We propose DragStream, which incorporates a Spatial-Frequency Selective Optimization
(SFSO) mechanism and an Adaptive Distribution Self-Rectification (ADSR) strategy to
effectively suppress context interference and mitigate distribution drift in latent code.

* Extensive experiments clearly demonstrate the effectiveness of our approach in addressing
REVEL, showing that it achieves high-quality streaming drag-style manipulation, remains
training-free, and offers plug-and-play integration with existing autoregressive VDMs.

2 RELATED WORK

Streaming Video Generation. StreamDiffusion Kodaira et al.| (2023, SVDiff |Chen et al.| (2024),
and StreamDiT |[Kodaira et al.| (2025)) are recent representative streaming text-guided video genera-
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tion models, in which VDMs are either trained from scratch or finetuned to enable streaming control
via text prompts. Lin et al.| (2025) proposed an autoregressive adversarial post-training strategy
that enables VDMs to operate as one-step autoregressive generators, supporting conditions on hu-
man pose, camera viewpoint, and text. [Liang et al|(2024)) designed a text-based streaming video
translation model by preserving historical information across video frames using a feature bank.

Drag-Based Video Generation and Editing. Wu et al.| (2024);|Wang et al.|(2024) proposed finetun-
ing bidirectional VDMs with trajectory conditions, thereby realizing trajectory-guided video gener-
ation. |Zhang et al.| (2025a) proposed unifying text, image, and trajectory conditions into a DiT
framework [Peebles & Xie| (2023)), while |Geng et al.| (2025); Zhang et al| (2025b) further trained
VDMs on dense trajectories. Namekata et al.[(2024); |Q1u et al.| (2024)); Jain et al.|(2024); Deng et al.
(2024) resorted to training-free frameworks. |Deng et al. (2024) introduced a drag-based latent opti-
mization strategy to realize drag-oriented video editing. [Namekata et al.| (2024) proposed to further
consider semantically aligned visual features during dragging, whereas |Qiu et al.| (2024) achieved
trajectory-guided video generation by imposing guidance on both attention and noise construction.

REMARK 1. i) Despite the progress in streaming video generation, current models rarely support
highly flexible, fine-grained drag-style operations in a streaming manner—a key challenge our work
aims to address. ii) Existing drag-based video generation and editing methods are not tailored
for streaming tasks, making them unsuitable for achieving fine-grained, streaming control over the
outputs of autoregressive VDMSs. iii) Directly finetuning VDMs for realizing streaming drag-style
manipulation is computationally expensive, usually requiring training VDMs on large-scale drag-
style data by hundreds or even thousands of HI00 GPU hours, which is unacceptable for resource-
constrained scenarios. Different from finetuning-based methods, our DragStream is training-free
and can be seamlessly integrated into existing autoregressive VDMs. iv) Beyond previous works,
we unify drag-style video manipulation as editing and animating video frames with both supporting
user-specified translation, deformation, and rotation effects, thus making drag operations versatile.

3 STREAMING DRAG-ORIENTED INTERACTIVE VIDEO MANIPULATION

We first give the definition of our stReaming drag-oriEnted interactiVe vidEo manipuLation
(REVEL) task in Definition[I} For the summary of the main notations, please refer to Section

Definition 1 (REVEL) Let T’y denote the k-th video frame produced by autoregressive VDMs.
REVEL aims to enable users to utilize drag-style operations Uy, to modify video frames for Vk € 7
and ensures that subsequently nearby frames are consistent to T'y, so as to realize streaming, fine-
grained control over outputs of VDMs and make generated videos always meet users’ requirements.

We argue that there exist a major limitation in current drag-based video manipulation, namely the
lack of a unified definition of drag-style manipulation operations. Existing drag-based video edit-
ing methods focus on dragging objects in generated videos, with the goal of yielding the effects of
translation, deformation, and rotation |Deng et al.| (2024])); also, these methods are generally unable
to allow users to animate video frames via dragging. By contrast, trajectory-guided video gener-
ation models are designed to generate video clips by moving objects along trajectories, with their
motion rendered by VDMs; however, they are not flexible enough to specifically allow users to
determine the type of drag operations, e.g., deforming object shape, translating objects, or rotating
them around a center point Namekata et al.|(2024); Zhang et al.|(2025a). Since both of these settings
are incomplete, we propose unifying drag-style video manipulation operations in Proposition 1}

Proposition 1 (Unifying Drag-Style Video Manipulation Operations) We unify drag-style video
manipulation as enabling users to perform editing and animation on video frames via drag-style op-
erations, with both supporting user-specified translation, deformation, and 2D/3D rotation effects.
Here, editing refers to directly modifying the content of generated video frames, whereas animation
represents generating a video clip from an existing frame according to user-given drag instructions.

REMARK 2. Here, we clarify how our REVEL task differs from prior works on drag-based video
editing and generation. DragVideo|Deng et al.|(2024) is a recent typical drag-based video editing
approach. Different from our REVEL, it only supports drag-based editing and does not allow users
to animate video frames. Moreover, DragVideo does not support the 2D object rotation operation.
SG-12V |Namekata et al.| (2024)) and Tora Zhang et al.|(2025a) are two typical trajectory-guided
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video generation approaches. Both of them focus solely on animating images by moving objects
along trajectories with VDM-rendered motion, without allowing users to flexibly achieve more fine-
grained drag-style effects, such as editing object shape or rotating objects around a center point
by a specific angle. Most importantly, these methods are all incapable of achievinbg drag-oriented
video editing and animation in a streaming manner.

We propose addressing REVEL from a training-free perspective, and identify that there exist two
key challenges, summarized in Challenge [T]and Challenge 2] respectively.

Challenge 1 (Latent Distribution Drift) Perturbations induced by drag-style operations easily ac-
cumulate in the latent space of autoregressive VDMs, which leads to severe distribution drift of latent
code and thus interrupts the drag process.

We show Challenge[T]in Figure 2] (a). The figure shows that the mean and variance of latent embed-
dings change significantly once drag operations are applied, while the maximum and minimum val-
ues exhibit obvious fluctuations. This instability drives the latent embeddings (“w/o ADSR+drag”)
to drift away from the original distribution (“Ref: w/o Drag”), thereby disrupting the drag process.
We find that latent distribution drift may cause undesirable change of object attributes, such as color
and category, as shown in the second row of Figure 2| (a). The use of our ADSR strategy (“w/
ADSR+Drag”) can effectively suppress the distribution drift. We will introduce it in Section[4.2.2}

Challenge 2 (Context Interference) Streaming drag is easily disturbed by context frames, mis-
leading VDMs to produce visually unnatural content and thus substantially degrading video quality.

We show Challenge [2]in Figure [2] (b). The results in Figure 2] (b) clearly indicate that visual cues
from previous frames may mislead the subsequent generation severely, e.g., the features around the
handle points spuriously guide the model to produce duplicated ears on the rabbit and artifacts on
the car (“w/o SFSO”), which obviously lowers the quality of generated videos. We will introduce
how to overcome context interference by using our SFSO strategy in Section [F.2.3]

4 METHODOLOGY

4.1 PRELIMINARIES

Autoregressive Video Diffusion Models. Autoregressive VDMs refer to a hybrid generative frame-
work that integrates diffusion models with chain-rule decomposition, i.e., P(T'}*) = Hle P(T |
{7} —max(i—L.,0):i—1), where P(T" | {TV},_ i (i—L.,0):i—1) is modeled by iteratively denoising
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Figure 3: Schematic illustration of our DragStream, where an Adaptive Distribution Self-
Rectification (ADSR) strategy and a Spatial-Frequency Selective Optimization (SFSO) mechanism
are designed to suppress latent distribution drift and context interference, respectively.

a Gaussian latent code 2. € N (0, I') conditioned on the proceeding frames {I'V } j=max(i—Le,0)i—1>
and L, represents the length of the context window. Generally, a KV caching strategy is employed
during inference to accelerate autoregressive generation Huang et al.|(2025); Yin et al.| (2025).

Drag-Style Operation Formats. We use U* = {E* C*} to represent drag-style operations for
a video frame T'*, where E¥ = {HZF};_,., indicates a set of user-specified handle regions that
require to be dragged, and C* = {n* (¥ OF},_,., represents the corresponding drag instruc-
tions. The indictor n* = Editing or Animation determines whether the video frame T'* is to
be edited or animated, whereas ¢ indicates the type of each drag operation. For animation, OF =
{hf, {pf/ et =kt 1kt cf}, if Cf = Rotation; otherwise, Of = {hé‘?, {pf' b =k+1:k+m |- Here,
h¥ represents a handle point, {pf' }ir=k-+1:.k+m represents m discrete target points sampled along a
drag trajectory, assigned to subsequent m video frames, and ¢ denotes a rotation center of the han-
dle region HF. For editing, OF = {h¥ p¥ cF},if (¥ = Rotation; otherwise, OF = {h¥ p*}.
Here, each drag operation considers only one target point, since the editing task ignores intermediate
drag states. Also, a binary mask M is utilized to specify the non-editable region of the frame I'*.

4.2 DRAGSTREAM: DRAG ANYTHING, ANYTIME IN A TRAINING-FREE PARADIGM

4.2.1 OVERALL PIPELINE

We first introduce the overall pipeline of our DragStream. Suppose that users observe the video
frame T'* during streaming generation and intend to manipulate I'* by giving the instructions
U* = {E*, C*}, where E¥ = {H!},_,., indicates handle regions, and C* = {n*, (¥ OF},—1.,
denotes the corresponding drag instructions. We use I'* to represent a video frame produced during
dragging, where k' = k if n* = Editing; otherwise, k' > k since new frames are animated during
Animation.

We take the handle region HY as an example to illustrate our method. As exhibited in Figure [3]

we first denoise z? to z%l,, and extract the features F (z%) by concatenating features from the
multiple layers of the DiT denoiser eg (-|[{ K*, V' }ick/— 1, :k'—1), Where { K", V" }, /L _.r—1 are
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the cached keys and values of context frames. We then estimate the position of the handle region
HY after being dragged within the features F(2%,) according to the user-given drag instruction:

}fiklanch_,Yik’ = g(k/aHikankaCzk7Ozk)’ (1)
Rot (HF,cF 0 = /p¥ cFpl), if (¥ =Rotation

i 70

t,G(K HY 0", (F,0f) = :
st 6K, Hi, ™, 67 O7) Trans(HF, 9 =pl —pl), else.

Here, Rot (HF, cF, §) denotes rotating the handle region H¥ around the center point cF by an angle

K2 (2
0, and Trans(HF, ) indicates translating HF by an offset 9. Yik/ is a binary mask that indicates
the target position of HY in the extracted features F (zéi', ), and IT HESY ) is the coordinate mapping
from HY to Y;*'. Finally, the latent code 2%, is iteratively optimized. In each iteration, the features
of 2%, are also extracted and detached as reference features, F,.¢(2%,) = F(z%,).detach ().
Moreover, we interventionally adjust the reference features according to the coordinate mapping,
Fres(2) [T H —>Y1.’V"L thereby perturbing the original latent code and transforming the handle re-

gion features to the target position Yf’. The latent code zé“«,, of the new frame I'*" can be updated
by reconstructing the features from the original handle region at the target position of F (zéil/)

: ;0L
2K, 2k, - 22

)

where
Loow = |F(5) * Y = Froe (200 Mgy ]« YV |1+ | F(25) « MY — Fioio(250) « MY

1-

L"Rec LCst
3)
Here, Lz.. denotes a reconstruction loss, and Lqs. represents a constraint term that ensures the
consistency of the non-editable region M* of T¥'. F. .. (z%,) = F(z%,).detach () indicates the
initial features of zéﬁl, before conducting iterative latent region optimization. Our ADSR and SFSO

strategies are employed during the above iterative latent region optimization process to overcome
Challenge [I|and Challenge 2] which are detailed in Section and Section[4.2.3] respectively.

REMARK 2. If n* = Animation, then &’ > k, which represents a cross-frame optimization
paradigm, i.e., using the perturbed features F.+ (2%, )[II * _}Yk/] to guide the denoising process of

zéﬂl of the new frame T'*'. If 77’“ = Editing, k' = k, which can be seen as self-guided optimization,
i.e., using the detached features Frc¢ (2% ) [T ] of T* to guide the re-denoising of 2%..

4.2.2 ADAPTIVE DISTRIBUTION SELF-RECTIFICATION

We propose a simple-yet-effective strategy, Adaptive Distribution Self-Rectification (ADSR), to ad-
dress the latent distribution drift issue caused by cumulative perturbations—Challenge [I}—as pro-
vided in Proposition 2]

Proposition 2 (Adaptive Distribution Self-Rectification) Suppose users apply drag-style opera-
tions to the frame T'y. The statistics i and &7+ of the preceding neighboring latent embeddings
{2k }ick— L, —1:—1 of Ty, are recorded, where fur: and &1+ are the mean and standard deviation.

We propose using i1 and o1/ to rectify the distribution of zéﬂi after each optimization iteration:
.» _ Iter_opt im(zk,, U — b,

Zpr = K’ * o + /»_IJT” (4)
O'T,

where Iter_optim(-) denotes an iteration of the latent optimization, and fir+/ ui}’, and 7/ U’{i

denotes the mean and standard deviation of {24, }i—p'— 1, —1.k7—1/ zéﬂl/. As exemplified in Figure
(a), our ADSR can effectively suppress the distribution drift of latent embeddings, while significantly
improving video quality and preventing undesired changes in object attributes during dragging. This
aligns with the findings provided in Figure [/} showing that ADSR consistently improves model
performance across the evaluation metrics ObjMC, DAI, FVD, and FID. For more details, please
refer to Section
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4.2.3 SPATIAL-FREQUENCY SELECTIVE OPTIMIZATION

We design a Spatial-Frequency Selective Optimization (SFSO) mechanism to overcome Chal-
lenge 2] It fully exploits the information of context frames while relieving their interference via
conducting information selection in both frequency and spatial domains during iterative latent re-
gion optimization.

High-frequency information—though capturing finer visual information—tends to mislead VDMs
to produce unnatural results, as it carries more noise perturbations [Fan et al.[(2019); |Li et al.|(2020);
by contrast, low-frequency information—while more robust—Ilacks sufficient fine-grained visual
details. We argue that it is crucial to harness the strengths of both high- and low-frequency informa-
tion while alleviating their inherent limitations during the drag-oriented optimization process. We
therefore propose a Switchable Frequency-domain Selection (SFS) strategy in Proposition 3]

Proposition 3 (Switchable Frequency-domain Selection) Ler {l;},— 1L represent the layers of the
DiT denoiser that are used to construct reference features, and let X denote the input features of
the layer ;. SFS is applied to the self-attention of the layer {1;},—1.1, to build reference features with
switchable frequency components in each iteration of the latent region optimization process:

Qﬁ,Kﬁ,VlfC = Linear,projector(Xllj), (5)

R’l’f = Concat({K'lji}j:k,LC:k,l7 Kl’f), ‘_/Ef = Concat({Vlj}j:k,LC;k,l, VZC), (6)
(K}, V*} = 1rFT(Butterw(FFT({K}, V;*}),w = Random(wy, ..., wn))), (7)
Xl’jJrl = self—attention(QZ,f(ﬁ, ‘_/lf) (8)

Here, {Kljl }i=k—Lok—1 and {sz}jzk—Lc:k—l denote cached keys and values, Butterw(- | w)
represents the Butterworth filter with the cutoff frequency w randomly selected from {w; }i=1.n, and
FFT(-) and IFFT(-) represent the 2D Fourier transform and 2D inverse Fourier transform.

By using SFS strategy, in each iteration, the information of different frequencies can be propagated

to the latent embeddings zéi/, of ¥ by the reconstruction loss Lg., thus fully exploiting information
from context frames, while preventing high-frequency information from dominating the drag process
and inducing artifacts in generated frames.

In Proposition [, we also design a Criticality-driven Spatial-domain Selection (CSS) strategy to
prevent over-optimization of the background within editable region, which is beneficial for further
reducing unnatural content.

Proposition 4 (Criticality-driven Spatial-domain Selection) We selectively back-propagate gra-

dients in spatial domain, avoiding the drag process undesirably affecting the background:

aﬁ Tot
a "l{/"/l

k//
) zT, G

)

where G is a Gaussian filtering map that decays w.r.t. the distance to the center point (.., y.) of
the edited region

/ —1.)? —ye)? w H
G" [z,y] = exp [— ((x 20; ) + (y20'§ ) )} , §t., Oy = o> xoand o, = 5 ¥ (10)
W and H are the width and height of the handle region’s minimum bounding rectangle, and « is a
hyperparameter scaling the spread of the Gaussian and set as 1. The use of SFS and CSS can further
improve video quality, which is demonstrated by experiments given in the main paper and appendix.

5 EXPERIMENTS

Since REVEL is a new task, no existing approaches have been specifically designed to tackle it. We
adapt two training-free methods, SG-12V [Namekata et al.|(2024) and DragVideo |Deng et al.|(2024),
to the REVEL task for comparison. Please refer to Section [C|of the appendix for details about our
experimental setup, including implementation details, evaluation metrics, and compared baselines.
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Figure 4: Visualization results achieved by our DragStream on REVEL. Note that Editi ing

produces only one video frame, but we insert an extra subsequent frame to maintain layout consis-
tency with Animation.

5.1 MAIN RESULTS

Visualization Results. The visualization results achieved by our method are shown in Figure [4]
Compared to SG-I2V and DragVideo, our DragStream produces obviously more natural and higher-
quality streaming drag-style video manipulation results. For instance, it better preserves object ap-
pearance and structure, while exhibiting fewer visual distortions, artifacts, and drag failures. These
results validate the effectiveness of our method in addressing the REVEL task. More visualization
results achieved by our DragStream are provide in the appendix; for details, please refer to Section[E}

Quantitative Performance. The quantitative results in Figure [5] demonstrate that our DragStream
consistently outperforms SG-I2V and DragVideo again. On one hand, the lowest FID and FVD
scores indicate that our DragStream achieves higher video quality than SG-I2V and DragVideo.
On the other hand, achieving the best ObjMC and DAI scores demonstrates that our DragStream
approach realizes more precise object dragging, aligned with the findings shown in Figure 4]
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Figure 5: Quantitative performance achieved by our method in terms of ObjMC, FVD,
FID, and DAL “|” indicates that lower values correspond to better performance.
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Figure 6: Ablation study on the key components of our DragStream.
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Figure 7: Analysis on the influence of the cutoff frequency w. “Switch” represents
frequencies are switchable during the latent region optimization.

5.2 ANALYSIS

Ablation Study. In Figure 6] we conduct ablation study to investigate the influence of each com-
ponent. The results indicate the full method achieves the best performance. Discarding SFSO (“w/
ADSR?”) leads to significant performance degradation, while further removing ADSR ("w/o ADSR,
SFSO”) results in an even greater decline. These results demonstrate the importance of the ADSR
strategy and the SFSO mechanism. Similarly, using the full SFSO is better than using CSS or SFS
alone. We also analyze the influence of the cutoff frequency in Figure[7} We can see that both
small and large cutoff frequencies lead to performance drops. By contrast, our switchable frequency
selection strategy achieves the best performance, as it fully exploits contextual information while
mitigating interference from high-frequency components by preventing them from dominating the
drag process.

unti sis. Table[l|exhibits the runtime anal- able 1: Runtime analysis of our DragStream approach.

Runtime Analysis. Tabl hibits th t - Table I: R lysis of our DragS pproach

y%l% of our DragStream uppr()ach. Our Dl"ngtl'ClllTl is In the table, Rl— d%‘mucs‘runlnnc per frame, and I n?d]c.ulcs
T .. . the number of iterations of drag-oriented latent optimization.

based on an iterative optimization scheme. In the ta-

ble, we investigate the influence of the iteration num- Experiments | RF  ObMC() DAI()

ber I. We find that setting I = 4 already achieves I=0 | 017 90.39 0.133
satisfactory performance, achieving 23.05 ObjMC and I=2 0.24s 27.67 0.054
0.051 DAI, while incurring only 0.13s of additional r=3 0.27s 2455 0053
runtime per frame compared with the baseline with- I =4(Ours) | 0.30s 23.05 0.051
out DragStream (i.e., I = 0). Decreasing the iteration

number—such as I = 2 or 3—-can further improve execution speed, while still maintaining ac-

ceptable drag-based manipulation performance, with ObjMC and DAI clearly outperforming those
of the baseline (i.e., I = 0). Note that all the experiments on the table are conducted on a single
NVIDIA H20 GPU.

5.3 COMPLEX STREAMING MANIPULATION

Occlusion and Re-emergence. In Figure[8] we also study our DragStream in the scenario of object
occlusion and subsequent re-emergence. We find that our approach shows promising performance
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[Animation: Trans] face occluded by cup face re-emerges

Figure 8: Streaming drag with object occlusion and Re-emergence.

s Generated Videos 105, [Animation: Trans] 1es Animated Videos 11s

Figure 9: Streaming drag in long video scenarios.

[Animation: Defor] Unreasonable Overstretch

J

Figure 10: Failure cases under unreasonable and physically implausible conditions.

in this scenario and produce smooth video results. This is because VDMs are trained on massive
amounts of data and thereby learns rich prior knowledge about object occlusion and scene transition.

Streaming Drag in Long Video Generation. In Figure[P] we study the use of our DragStream for
achieving streaming drag in long video generation. As shown in the figure, despite that accumulated
errors remain a challenging issue for current autoregressive VDMs, our method can still effectively
realize drag-based manipulation. For more results, please refer to Section [P} of our appendix.

5.4 FAILURE CASES

We observe a failure case of our method. As shown in Figure[T0] our method fails to realize high-
quality manipulation under highly unreasonable and physically implausible conditions, as such ma-
nipulation instructions severely conflict with prior knowledge learned by VDMs in large-scale data.

6 CONCLUSION

We propose stReaming drag-oriEnted interactiVe vidEo manipuLation (REVEL), a new task
that aims to allow users to achieve streaming, drag-style control over the outputs of autoregressive
VDMs. To solve REVEL, we propose a training-free approach, DragStream, which employs an
Adaptive Distribution Self-Rectification (ADSR) strategy and design a Spatial-Frequency Selective
Optimization (SFSO) mechanism. ADSR effectively constrains the drift of latent embeddings by
leveraging neighboring frames’ statistics, while SFSO fully exploits contextual information while
mitigating its interference via selectively propagating visual cues along generation in spatial and
frequency domains. These two strategies enable our method to achieve superior performance on
REVEL and allow seamless integration into existing autoregressive VDMs. We hope this work will
inspire more excellent solutions to address the streaming drag-style video manipulation problem.

10
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A USE OF LLMs

LLMs were only used to provide minor writing assistance in preparing the manuscript, such as
grammar polishing and readability improvement. No parts of the methodology, experimental design,
analysis, or results were generated by LLMs. The all ideas, experiments, and conclusions are entirely
completed and drawn by the authors of this paper.

B SUMMARY OF MAIN NOTATIONS

In Table [2} we provide a summary for the main notations used in this paper.

Table 2: Summary of main notations.

Notions Descriptions
r* The k-th video frame generated by VDMs.
25 The latent embeddings of I'* at the denoising timestep 7.
Uk = {E" ,C* } The user-specified drag-style operations for the frame I'*.
EF = {Hf Yiz1in The set of user-specified handle regions for the frame k.
C* = {n* ¢F OF}i—1., | The corresponding drag instructions for the handle region E*.
H} The binary mask that indicates the i-th user-specified handle region of the frame T'*.
Yf/ The binary mask indicates the target position of H that is to be dragged in v,
II HE YK The coordinate mapping from the handle region HY to the target position Yik/
n* The indictor determines whether the frame I'* is to be edited or animated.
k The indictor determines the type of drag operations, i.e, translation, deformation, and rotation.
of The points sampled from the drag trajectory given for the handle region HY.
M* The user-specified non-editable region of the video frame I'*.
GF The Gaussian filtering map used for the frame I'* during latent region optimization.
0= Apf,cf pr The angle at the center point ¢f w.r.t. the trajectory points pf/ and p¥.
9 = pf/ —pk The offset of the sampled trajectory point pfl w.rt. p¥.
u?l, / cr?l, The mean/standard deviation of the latent embeddings z%.
Q*/K*/v*F Query/key/value features about the frame T'.
Lot The object function used in the latent region optimization.
Lrec The reconstruction loss used in the latent region optimization.
Lcst The constraint term in the latent region optimization.
710) The denoiser of VDMs.
F() The function that extracts the features of latent code from eg ().

C EXPERIMENTAL SETUP
C.1 IMPLEMENTATION DETAILS

We implement our DragStream in PyTorch and run it on an NVIDIA H20 GPU card. We choose
Self-ForcingHuang et al.|(2025)) as our main base autoregressive VDM with the number of denoising
timesteps 7' = 4. We follow SG-I2V to use the AdamW |Loshchilov & Hutter (2017) optimizer
during latent optimization, with the learning rate set as 4 x 10~2. Following Deng et al.|(2024), we
perform latent region optimization at the denoising timestep 7" = 3, where the features of latent
code are extracted from the 12— 15 layers of the DiT denoiser, the number of iterations is setto [ = 4
per trajectory point, and the set of cutoff frequencies is set as {0.2,0.4,0.6,1}. Following [Zhang
et al.[(2025a)), we annotate 204 video clips generated by Self-Forcing with diverse drag trajectories
and scenes, to serve as a new benchmark for evaluating model performance on our proposed REVEL
task, i.e., realizing fine-grained, drag-style control over the outputs of video generation models.

C.2 EVALUATION METRICS

We evaluate model performance on the REVEL task using four metrics: Fréchet Video Distance
(FVD) |Unterthiner et al.|(2018]), Fréchet Inception Distance (FID) Heusel et al.|(2017), DAI|Zhang
et al.| (2024), and ObjMC Wu et al.| (2024). Since FVD and FID are well-defined metrics, we omit
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the explanation for them; for more details, please refer to [Unterthiner et al.| (2018)); Heusel et al.
(2017). We provide the details of ObjMC and DAI below.

ObjMC. ObjMC |Wu et al|(2024) is a metric to evaluate the motion fidelity of the manipulated
object in the video. It is calculated as the average distance between the trajectory of the manipulated
object in the generated video and the groundtruth trajectory specified by the user. To generate the
trajectory of the manipulated object, we utilize Co-Tracker 3 |Karaev et al.|(2024) to track the points
scattered in the original region of the manipulated object, and then compute the average position of
these points in each frame to form the trajectory. Lower ObjMC scores indicate that the manipulated
object in the generated video closely follows the user’s specified trajectory, reflecting better motion
fidelity.

DAI. DAI [Zhang et al|(2024) is a metric for evaluating the quality of drag editing in image and
video manipulation. Specifically, DAI calculates the average difference between the latent features
of the original handle region and the corresponding manipulated region in the final output. The
metric is defined as:

1L 1= [0 )] — 25920k, )|
DAl = — E L a 11
N =1 (1 + 27’)2 ( )

where N is the number of trajectory points, while z% and z(’)“/ are the latent embeddings of the orig-
inal frame I'* and the manipulated frame r~, respectively. r is the radius of the area we calculate
DAI and (p, ) denotes a square area centered at point p with a side length of 2r + 1. p¥ and pf/
are the i-th trajectory points in the original frame I'* and the manipulated frame ', respectively.
We set » = 20 following DragNeXitZhou et al.| (2025)), which is suitable for measuring the consis-
tency inside the manipulated region. Lower DAI scores indicate that the manipulated region in the
generated image or video closely matches the target region specified by the user, reflecting better
drag editing quality.

C.3 COMPARED BASELINES

We emphasize that our proposed task, stReaming drag-oriEnted interactiVe vidEo manipuLa-
tion (REVEL), is entirely new. Thus, to the best of our knowledge, no existing approaches have
been specifically designed to address it. For comparison, we adapt two training-free approaches,
SG-I12V Namekata et al.[ (2024) and DragVideo Deng et al.| (2024)), to our REVEL setting. Like
our DragStream, both SG-12V and DragVideo follow the latent optimization paradigm; however,
they are not equipped with our ADSR and SFSO strategies, designed to address Challenge |I| and
Challenge 2)in REVEL. We do not include the finetuning—based methods such as Tora [Zhang et al.
(2025a) and DragAnything [Wu et al.| (2024) in our comparisons. First, our DragStream is training-
free, making direct comparisons with finetuning—based methods unfair. Second, Tora and DragAny-
thing are not specifically designed to solve our REVEL. Adapting them to enable autoregressive
generation or streaming control of VDMs would be non-trivial, as it requires finetuning on large-
scale, fine-grained drag-style data by hundreds or even thousands of H100 GPU hours |Yin et al.
(2025)); Kodaira et al.[(2025); |[Huang et al.| (2025), which stands in direct contrast to the core philos-
ophy of our work—achieving high-quality REVEL without incurring prohibitive training costs. We
leave exploring the REVEL task from a finetuning-based perspective for our future research.

D STREAMING VS. NON-STREAMING DRAG-STYLE VIDEO MANIPULATION

We provide a comparison between streaming and non-streaming drag-style video manipulation in
Figure[f] A fundamental distinction lies in the different type of used VDMs. In streaming drag-style
video manipulation, video frames are generated autoregressively; thus, when an unsatisfactory video
frame is observed, users can directly feed drag-style operations to models and modify videos on the
fly. In contrast, non-streaming drag-style video manipulation relies on conventional bidirectional
VDMs that generate an entire video clip at each time as they are based on modeling bidirectional
information across frames, requiring users to regenerate the whole video clip when they find a frame
unsatisfactory. That is why adapting finetuning-based, non-streaming drag-style video manipula-
tion approaches to REVEL is non-trivial as we mentioned in Section [C.3} it would require trans-
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Figure 11: Comparison between streaming and non-streaming drag-style video manipulation.

forming the bidirectional generation paradigm totally into the autoregressive manner, which in
turn necessitates collecting a large-scale, fine-grained drag-style dataset and finetuning VDMs
on it by hundreds or even thousands of H100 GPU hours Yin et al.|(2025); Huang et al.|(2025).

In addition to the type of VDMs, another key difference lies in the manipulation process. In stream-
ing drag-style video manipulation, if users find a video frame unsatisfactory and wish to edit it, they
only need to apply drag operations to that specific frame. In contrast, in non-streaming drag-style
video manipulation, users must provide drag operations for the all subsequent frames to maintain
cross-frame consistency, since information flow in bidirectional VDMs is bidirectional as shown in
Figure[6] (d), i.e., subsequent video frames can influence preceding video frames. Also, streaming
drag-style video manipulation can animate any video frame during the generation process; however,
non-streaming drag-style video manipulation struggles to animate intermediate frames, as this con-
flicts with the bidirectional nature of VDMs, which generates the entire video clip simultaneously.
That means animating intermediate frames will break out the consistency of the original video clip.

REMARK 3. Tora and DragAnything can be directly integrated with existing autoregressive VDMs
as external modules to animate generated video frames. However, they indeed cannot realize stream-
ing control over autoregressive VDMs as they do not alter the original generation direction of VDMs.
Differently, our DragStream modifies the latent embeddings of autoregressive VDMs by performing
iterative latent region optimization, thereby enabling streaming control over the video generation
process by propagating the information of modified latent code through a sliding context window.

The above analysis demonstrates the importance of advancing existing approaches from non-
streaming to streaming drag-style manipulation, highlighting the significant application value
of our REVEL task!

E MORE VISUALIZATION RESULTS

In Figure [T12] we provide more visualization results achieved by our DragStream approach on our
proposed REVEL task. These experimental results still consistently demonstrate that our method can
achieve high-quality streaming manipulation over the outputs of VDMs, including both Editing
and Animation with the effects of drag operations such as translation (“Trans”), deformation
(“Defor”), and rotation (“Rot”). For more results, please refer to our anonymous project page,
which is provided below the abstract.
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[Animation: 2D Rot] [Animation: Trans]

[Animation: 3D Rot]

[Editing: 3D Rot]

Figure 12: More visualization results achieved by our DragStream on the REVEL task. Note
that Edit ing produces only one video frame, but we insert an extra subsequent frame to maintain
layout consistency with Animation.

F VISUALIZED ANALYSIS OF SWITCHABLE FREQUENCY

In Figure[I3] we investigate the influence of switchable frequency used in SFS during latent region
optimization. From the figure, the use of only low-frequency (“w = 0.2”) information easily leads
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Figure 13: Visualization analysis of switchable frequency. w indicates cutoff frequency.

to scene blurring and unnatural object shape variation. Meanwhile, the high-frequency information
inherently contained in original images (“w = 1”) causes noticeable artifacts in generated videos. In
contrast, our proposed switchable frequency strategy can balance frequency components, effectively
suppressing artifacts and blur while maintaining object shape consistency. These results confirm that
our SFS strategy is crucial for achieving high-quality streaming video manipulation.

G VISUALIZED ANALYSIS OF GAUSSIAN FILTERING MAP

Figure [[4]illustrates the effect of Gaussian filtering maps on streaming drag-style video manipula-
tion. Without the use of Gaussian filtering map (“w/o CSS”) to constrain the latent optimization,
back-propagated gradient maps may be leaked to irrelevant regions, thereby resulting in artifacts
in generated video frames (e.g., distortions around non-target areas). In contrast, with Gaussian
filtering maps (“w/ CSS”), gradients are constrained to focus on the most important target region,
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therefore suppressing their interference to surrounding areas and effectively improving video quality.
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Figure 14: Visualization analysis of Gaussian filtering map.

H ABLATION STUDY ON OBJECTIVE FUNCTION L+,

Table 3: Ablation study on the objective function used in latent region optimization.

Experiment \ ObjMC () FVD () FID () DAI ({)
W/ Lrec + Lecst 26.12 596.51 25.16 0.0545
w/o Lcse 20.87 949.06 33.55 0.0509
W/0 Lrec 90.39 301.74 14.11 0.1337

In Table [3] we provide ablation studies for the objective function used during latent region opti-
mization. As can be seen from the table, removing the reconstruction loss Lx.. causes an obvious
performance drop in ObjMC and DAI, which indicates that objects in handle regions are not suc-
cessfully dragged to target points. Although removing the constraint term L. leads to a slight im-
provement in ObjMC and DAL, it causes a significant degradation in FVD and FID. This is because,
without L.+, non-editable regions are severely affected by the latent region optimization, resulting
in noticeable artifacts in generated videos. These artifacts significantly degrade the overall video
quality, leading to a substantial decline in FVD and FID scores. This observation underscores the
importance of Lc: in maintaining the integrity of non-editable regions and ensuring high-quality
video generation.

I COMPATIBILITY OF DRAGSTREAM

In principle, our DragStream method is model-agnostic and can be seamlessly integrated with dif-
ferent autoregressive VDMs. To demonstrate this, we additionally apply our method to the recent
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Figure 15: Visualization results achieved by our DragStream approach based on CausVid

et all 2025,

autoregressive VDM, CausVid (2025). As can be seen from Figure[I3] it can still achieve
high-quality streaming drag-style video manipulation, enabling both Editing and animation
with fine-grained drag operations such as translation (Trans), deformation (“Defor”), and rota-
tion (“Rot”). These results demonstrate the effectiveness of our proposed method again, and also
highlight its potential as a versatile training-free solution for streaming drag-style video manipula-
tion across different VDM backbones. For more visualization results, we encourage readers to visit
our anonymous project webpage, provided below the abstract.
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J DRAG-STYLE OPERATION TYPES

Currently, our DragStream supports both editing and animating video frames, with user-specified
drag effects including translation, deformation, and rotation. For both editing and animation tasks,
we can consider the following rules: i) translating an object along a trajectory can be achieved by
moving its entire region (as shown in the fourth row from the bottom of Figure[I2] the cup translation
can be achieved by moving its entire region); ii) deforming object shape can be realized by translating
only its edge region (an example is shown in the third row from the bottom of Figure[I2); iii) object
2D rotation can be realized by using a planar rotation transformation (an example is given in the
third row from the bottom of Figure[I2); and iv) 3D rotation can be regarded as translating a sub-
region of the object, assisted by the inherent prior knowledge of VDMs (as shown in the second row
of Figure[I2] the 3D rotation of the man’s face can be realized by moving face’s sub-region).

K WHY NEED CONTEXT FRAMES?

In section 2] we argue that the context frames are sources of disturbance during streaming drag-style
video manipulation. However, we also emphasize that context frames provide crucial visual cues
that are essential for subsequent video generation. In Figure[T6] we provide a visualization analysis
to illustrate the importance of context frames. As shown in the figure, without context frames (“w/o
context”), the generated video frames become totally blurry and unnatural. Besides, the foreground
object and background scene are completely changed to be inconsistent with the original video. In
contrast, with context frames (“w/ context”) and our SFSO mechanism, the generated video frames
preserves the appearance and structure of the foreground object, as well as the background scene,
while achieving high-quality drag-style manipulation. These results firmly demonstrate that context
frames provide indispensable visual cues for streaming drag-style video manipulation.

[Animation: Trans]

w/o
context

w/
context

w/o
context

w/
context

Figure 16: Visualization analysis on the importance of context frames.

L ADDITIONAL VIDEO RESULTS IN SUPPLEMENTARY MATERIALS

We present additional video results in our supplementary material ‘supp-material-1676.zip’, includ-
ing 9 videos, which provide a more intuitive demonstration of the results achieved by our approach.
For more visualization results, we recommend readers again to visit our anonymous project web-
page: DragStream Demol
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1188
1189
1190
1191 In this section, we analyse the robustness of several hyperparameters in our DragStream.

1192 .
1193 Analysis of L,,. The hyperparameter L,, de- Table 4: Analysis of the hyperparameter L.
1164 termines how many neighboring latent embed-

dings are used to rectify drifted latent distribu-  gyperiments | ObjMC (]) DAI() FVD (})
1195 tion during performing ADSR. The results in P | Obi v ' L

M ROBUSTNESS ANALYSIS OF HYPERPARAMETERS

1196 Table [ shows that our method is robust to the Lo=0 | 4509 0.093 608.63
1197 hyperparameter L,,. When varying the value L,=3 25.88 0.052 570.41
1198 of L,, from 3 to 18, our DragStream exhibits L,=9 23.05 0.051 552.39
1199  consistently stable performance. By contrast, n=18 2437 0.051 554.25

1200  discarding ADSR (i.e., L,, = 0) leads to signif-
1201 icant performance degradation, which demonstrate the effectivness of our ADSR again.

1202

. Analysis of . The hyperparameter o deter- Table 5: Analysis of the hyperparameter o.
oo mines the shape of the Gaussian filtering map.
o In Table B] we provide an analysis of a. On Experiments | ObjMC (J) DAI(}) FVD ()

one hand, similar to the hyperparameter L,,, our

1206 DragStream still achieves stable performance wloCSS | 2612 0.061 25.16
1207 when varying the value of o from 2 to 0.5. a=20 24.70 0.054 24.52
1208  These results demonstrate that our approach is a=15 23.50 0.052 24.17
1209  robust to the hyperparameter . On the other a=1.0 23.65 0.053 24.04
1210 hand, the removal of the Gaussian filtering map a=05 24.52 0.055 23.65

1211 (“w/o CSS”) results in an obvious performance
1212  drop, highlighting the importance of using the Gaussian filtering map to guide the model toward
critical areas during drag-oriented manipulation.

1213

1214 Analysis of w. During latent region opti- Table 6: Analysis of the hyperparameter w.

1215 mization, we let the model randomly switch

1216 among a set of predefined cutoff frequencies Experiments | ObjMC (}) DAI()) FVD())
1217 w € {0.2,0.4,0.6,1}, thereby preventing the

1218 high-frequency components from dominating we [8}’ 83] ~ {}} %jgg 8823 gggé;
1219  the drag process and introducing artifacts or un- Z g {0'1’ 0.6% 8 El% 73.99 0053 55807

1200  hatural results. In Table [0} we show that our
120q  method is robust to the set of cutoff frequen- _w € {0.2,0.4,0.6,1} | 23.05 0.051  552.39

cies. As can be seen from the table, despite that

122 the low-frequency component is randomly selected from a continuous range [0, 1, 0.8], [0, 1, 0.7], or
1223 .

oo [0, 1, 0.6], our method still produce stable performance.

1205  Analysis of /. Our DragStream is based on Table 7: Analysis of the hyperparameter /.

1226 an iterative optimization scheme. In Table [7]

1207  Weinvestigate the ipﬂuence of the hyperparam- Experiments | FID  ObjMC (|) DAI(})
eter I. The experimental results in the table

:;22 demonstrate the robustness of our approach to =0 | 14.11 90.39 0.133

hyperparameters again. For example, despite I=2 25.88 27.67 0.054
1230 setting [ with a small value, such as I = 3 or 2, I1=3 24.17 24.55 0.053
1231 our approach still exhibits robust performance I'=4 23.72 23.05 0.051

1232 in streaming drag-style manipulation, which is

1233 significantly better than that of the baseline without using our DragStream (i.e., [ = 0).
1234
1235
1236
1237
1238
1239 Although our DragStream is designed for autoregressive VDM, it can also be applied to bidirec-
1240  tional VDMs to control their generation process via drag-style control signal. From the results in
1241 Figure [T7] we can see that our method can successfully guide the bidirectional model Wan-2.1 to

generate videos that conform to drag-style conditions specified by users.

N RESULTS ON CONTROLLING BIDIRECTIONAL MODELS
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[Animation: 2D Rot]

Figure 17: Results of controlling the video generation of the bidirectional model Wan2.1 via
drag-style instructions using our DragStream approach.

O DISCUSSION OF PROMPT-DRAG CONFLICTS

Conflicted Text [Animation: Trans] move to the middle

...candle is
positioned on
the left side ...

... the vehicle
stays tightly to
the right side ...

... hiseyes are
fixed on the left
side ...

...sheis
looking to the
right side ...

Figure 18: Visualized case study on prompt-drag conflicts.

In Figure[[8] we further investigate an interesting scenario in streaming drag-style video manipula-
tion where drag operations conflict with text prompts. We observe that when such conflicts occur,
VDMs consistently follow drag instructions specified by users during generation. This is because
our DragStream revises latent embeddings more explicitly. For example, as shown in the figure, al-
though the text prompt requires the car to remain on the right side, our DragStream can successfully
drag the car toward the left side of the path.

P ADDITIONAL RESULTS ON LONG VIDEO GENERATION

In this section, we provide additional streaming drag results of our DragStream in long video gen-
eration. As shown in Figure [T[9] despite accumulated errors remain a challenging issue for current
autoregressive VDMs, our method can still effectively realize drag-based manipulation in 5s, 10s,
and 20s. Importantly, compared with the original videos generated by Self-Forcing
(2023), drag operations introduced by our DragStream do not degrade video quality either during
the drag-based manipulation process or in subsequently generated video frames after the manipu-
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Figure 19: Additional results of our DragStream on long video generation.

lation. For example, in the second case, when we manipulate the frame at 9s (i.e., dragging the
woman’s face to the left), the animated video clip maintains the same quality as that produced by
Self-Forcing. Moreover, after the manipulation, our DragStream can continue to preserve the same
quality as Self-Forcing in the subsequently generated frames from 11s to 20s. These experimental re-
sults firmly demonstrate that the effectiveness of our DragStream approach in streaming long-video
generation.

Q LONG-DURATION DRAG-ORIENTED MANIPULATION

In this section, we further investigate the effectiveness of our ADSR strategy in long-duration drag-
oriented video manipulation. As shown in Figure 0] performing drag-style manipulation without
ADSR (“w/o ADSR + Drag”) results in severe latent distribution drift, which leads to noticeable
degradation in video quality compared with the baseline without drag-based manipulation (“Ref
+ w/o Drag”). In contrast, our ADSR (“w/ ADSR + Drag”) can effectively suppresses the latent
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Figure 20: Analysis of ADSR in long-duration drag-oriented manipulation

[Animation: Trans]

cup moves out cup re-enters
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Figure 21: Streaming drag with object leaving and re-entering.

distribution drift issue even when drag operations are sustained for over 20s. Consequently, the
video generated by our DragStream (“w/ ADSR + Drag”) is significantly better than that of “w/o
ADSR + Drag”, further demonstrating the effectiveness of our DragStream approach.

R OBIJECT LEAVING AND RE-ENTERING

In addition to object occlusion and re-emergence discussed in Section 5.3} we also evaluate our
DragStream in another interesting scenario—objects leaving and re-entering the view. As shown in
Figure[21] when an object is dragged to move out of the frame and later back into view, DragStream
effectively preserves its appearance and structure, producing high-quality results of drag-based ma-
nipulation. Actually, the re-entering process is essentially no different from the standard drag-based
manipulation. We just need to save the latent features of an object before it moves out of view, and
then reconstruct is along a user-given trajectory via latent optimization.
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