

STREAMING DRAG-ORIENTED INTERACTIVE VIDEO MANIPULATION: DRAG ANYTHING, ANYTIME!

005 **Anonymous authors**

006 Paper under double-blind review

010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Figure 1: **Examples of our REVEL task.** The streaming video manipulation results shown above—including both Editing and Animation with drag effects such as object translation (“Trans”), deformation (“Defor”), and rotation (“Rot”)—are produced by our **DragStream** method.

ABSTRACT

Achieving streaming, fine-grained control over the outputs of autoregressive video diffusion models remains challenging, making it difficult to ensure that they consistently align with user expectations. To bridge this gap, we propose **stReaming drag-oriEnted interactiVe vidEo manipuLation (REVEL)**, a new task that enables users to modify generated videos *anytime* on *anything* via fine-grained, interactive drag. Beyond DragVideo and SG-I2V, REVEL unifies drag-style video manipulation as editing and animating video frames with both supporting user-specified translation, deformation, and rotation effects, making drag operations versatile. In resolving REVEL, we observe: *i*) drag-induced perturbations accumulate in latent space, causing severe latent distribution drift that halts the drag process; *ii*) streaming drag is easily disturbed by context frames, thereby yielding visually unnatural outcomes. We thus propose a training-free approach, **DragStream**, comprising: *i*) an adaptive distribution self-rectification strategy that leverages neighboring frames’ statistics to effectively constrain the drift of latent embeddings; *ii*) a spatial-frequency selective optimization mechanism, allowing the model to fully exploit contextual information while mitigating its interference via selectively propagating visual cues along generation. Our method can be seamlessly integrated into existing autoregressive video diffusion models, and extensive experiments firmly demonstrate the effectiveness of our DragStream¹.

1 INTRODUCTION

Video Diffusion Models (VDMs) have shown impressive capabilities in generating photorealistic videos, and their success inspired a broad range of generative applications, including image animation Lei et al. (2025); Hu (2024), text-based video editing Ceylan et al. (2023); Liu et al. (2024),

¹For more visualization results, please refer to our anonymous project page: [DragStream Demo](#)

054 camera-controlled video generation Zheng et al. (2024); He et al. (2024); Bai et al. (2025), etc. With
 055 the progress in autoregressive VDMs Yin et al. (2025); Huang et al. (2025), researchers have been
 056 focusing more on achieving controllable video generation in a streaming manner, thereby enabling
 057 users to interact with VDMs and alter synthetic videos on the fly. For instance, Kodaira et al. (2023;
 058 2025); Lin et al. (2025) proposed directly finetuning VDMs to support streaming video genera-
 059 tion conditioned on text, camera viewpoint, and human pose, whereas Liang et al. (2024) realized
 060 training-free, text-guided streaming video translation by introducing a looking-back strategy.

061 Drag-style operations have become a crucial control signal for VDMs due to their fine-grained nature
 062 and user-friendly interactivity Wu et al. (2024); Deng et al. (2024); Wang et al. (2024); Namekata
 063 et al. (2024); Zhou et al. (2025). However, it remains challenging to realize streaming, fine-grained
 064 control over the outputs of VDMs through drag-style operations. To mitigate this dilemma, we
 065 propose a new task, **stReaming drag-oriEnted interactiVe vidEo manipuLation (REVEL)**. As
 066 shown in Figure 1, REVEL aims to allow users to modify generated videos *at any time and on any*
 067 *content* via fine-grained, interactive drag, making generated videos consistently meet users’ require-
 068 ments. We go beyond prior methods, such as DragVideo Deng et al. (2024) and SG-I2V Namekata
 069 et al. (2024), by unifying drag-oriented video manipulation as editing and animating video frames,
 070 with both supporting user-specified translation, deformation, and rotation effects, thereby making
 071 drag operations versatile and establishing a standard paradigm for drag-style video manipulation.

072 Given the fine-grained nature and high diversity of drag-based video manipulation, solving REVEL
 073 is non-trivial. Directly finetuning VDMs to realize REVEL usually incurs expensive training costs—
 074 requiring training VDMs on large-scale, fine-grained drag-style data by hundreds or even thousands
 075 of H100 GPU hours Yin et al. (2025); Kodaira et al. (2025); Huang et al. (2025)—making it impracti-
 076 cal for resource-constrained scenarios. **This observation naturally leads us to ask a key question:**
 077 ***How can high-quality REVEL be achieved without incurring prohibitive computational costs?***

078 We propose solving the above question from a training-free perspective in this paper, so as to ef-
 079 fectively reduce training expenses. However, we observe that there exist two key challenges: *i*)
 080 perturbations induced by drag operations easily accumulate in latent space, thereby causing severe
 081 latent distribution drift that totally halts the drag process; *ii*) streaming drag is easily disturbed by
 082 context frames, resulting in visually unnatural content. Therefore, we propose a new **DragStream**
 083 approach. Specifically, we first design an Adaptive Distribution Self-Rectification (ADSR) strategy
 084 that suppresses the distribution drift of latent code by considering statistics from neighboring frames,
 085 thereby effectively overcoming drag interruption. We also introduce a Spatial-Frequency Selective
 086 Optimization (SFSO) mechanism, which propagates visual cues from preceding video frames se-
 087 lectively in both spatial and frequency domains. As a result, we can fully exploit the information
 088 of context frames while relieving their interference. ADSR and SFSO enable our DragStream to
 089 achieve high-quality results on REVEL without incurring prohibitive training costs, while allowing
 090 it to be seamlessly integrated into existing autoregressive VDMs. Extensive experiments provided
 091 in Section 5 and the appendix consistently demonstrate the superiority of our proposed approach.

092 Here, we summarize the main contributions of this paper:

- 093 • We propose **stReaming drag-oriEnted interactiVe vidEo manipuLation (REVEL)**, a
 094 new task that enables users to drag *anything anytime* during video generation, thus achiev-
 095 ing streaming, fine-grained control over the outputs of VDMs via drag-style operations.
- 096 • We identify two key challenges in solving REVEL within a training-free paradigm: *i*) drag-
 097 induced perturbations cause severe latent distribution drift and halt the drag process; and *ii*)
 098 streaming drag is disturbed by context frames, resulting in visually unnatural outcomes.
- 099 • We propose **DragStream**, which incorporates a Spatial-Frequency Selective Optimization
 100 (SFSO) mechanism and an Adaptive Distribution Self-Rectification (ADSR) strategy to
 101 effectively suppress context interference and mitigate distribution drift in latent code.
- 102 • Extensive experiments clearly demonstrate the effectiveness of our approach in addressing
 103 REVEL, showing that it achieves high-quality streaming drag-style manipulation, remains
 104 training-free, and offers plug-and-play integration with existing autoregressive VDMs.

105 2 RELATED WORK

106 **Streaming Video Generation.** StreamDiffusion Kodaira et al. (2023), SVDiff Chen et al. (2024),
 107 and StreamDiT Kodaira et al. (2025) are recent representative streaming text-guided video genera-

108 tion models, in which VDMs are either trained from scratch or finetuned to enable streaming control
 109 via text prompts. Lin et al. (2025) proposed an autoregressive adversarial post-training strategy
 110 that enables VDMs to operate as one-step autoregressive generators, supporting conditions on hu-
 111 man pose, camera viewpoint, and text. Liang et al. (2024) designed a text-based streaming video
 112 translation model by preserving historical information across video frames using a feature bank.

113 **Drag-Based Video Generation and Editing.** Wu et al. (2024); Wang et al. (2024) proposed finetun-
 114 ing bidirectional VDMs with trajectory conditions, thereby realizing trajectory-guided video gener-
 115 ation. Zhang et al. (2025a) proposed unifying text, image, and trajectory conditions into a DiT
 116 framework Peebles & Xie (2023), while Geng et al. (2025); Zhang et al. (2025b) further trained
 117 VDMs on dense trajectories. Namekata et al. (2024); Qiu et al. (2024); Jain et al. (2024); Deng et al.
 118 (2024) resorted to training-free frameworks. Deng et al. (2024) introduced a drag-based latent opti-
 119 mization strategy to realize drag-oriented video editing. Namekata et al. (2024) proposed to further
 120 consider semantically aligned visual features during dragging, whereas Qiu et al. (2024) achieved
 121 trajectory-guided video generation by imposing guidance on both attention and noise construction.

122 **REMARK 1.** *i) Despite the progress in streaming video generation, current models rarely support
 123 highly flexible, fine-grained drag-style operations in a streaming manner—a key challenge our work
 124 aims to address. ii) Existing drag-based video generation and editing methods are not tailored
 125 for streaming tasks, making them unsuitable for achieving fine-grained, streaming control over the
 126 outputs of autoregressive VDMs. iii) Directly finetuning VDMs for realizing streaming drag-style
 127 manipulation is computationally expensive, usually requiring training VDMs on large-scale drag-
 128 style data by hundreds or even thousands of H100 GPU hours, which is unacceptable for resource-
 129 constrained scenarios. Different from finetuning-based methods, our DragStream is training-free
 130 and can be seamlessly integrated into existing autoregressive VDMs. iv) Beyond previous works,
 131 we unify drag-style video manipulation as editing and animating video frames with both supporting
 132 user-specified translation, deformation, and rotation effects, thus making drag operations versatile.*

133 3 STREAMING DRAG-ORIENTED INTERACTIVE VIDEO MANIPULATION

135 We first give the definition of our **stReaming drag-oriEnted interactiVe vidEo manipuLation**
 136 (**REVEL**) task in **Definition 1**. For the summary of the main notations, please refer to Section B.

138 **Definition 1 (REVEL)** *Let Γ_k denote the k -th video frame produced by autoregressive VDMs.
 139 REVEL aims to enable users to utilize drag-style operations U_k to modify video frames for $\forall k \in \mathbb{Z}^+$
 140 and ensures that subsequently nearby frames are consistent to Γ_k , so as to realize streaming, fine-
 141 grained control over outputs of VDMs and make generated videos always meet users' requirements.*

143 We argue that there exist a major limitation in current drag-based video manipulation, namely the
 144 lack of a unified definition of drag-style manipulation operations. Existing drag-based video edit-
 145 ing methods focus on dragging objects in generated videos, with the goal of yielding the effects of
 146 *translation, deformation, and rotation* Deng et al. (2024); also, these methods are generally unable
 147 to allow users to animate video frames via dragging. By contrast, trajectory-guided video gener-
 148 ation models are designed to generate video clips by moving objects along trajectories, with their
 149 motion rendered by VDMs; however, they are not flexible enough to specifically allow users to
 150 determine the type of drag operations, e.g., deforming object shape, translating objects, or rotating
 151 them around a center point Namekata et al. (2024); Zhang et al. (2025a). Since both of these settings
 152 are incomplete, we propose unifying drag-style video manipulation operations in **Proposition 1**.

153 **Proposition 1 (Unifying Drag-Style Video Manipulation Operations)** *We unify drag-style video
 154 manipulation as enabling users to perform editing and animation on video frames via drag-style op-
 155 erations, with both supporting user-specified translation, deformation, and 2D/3D rotation effects.
 156 Here, editing refers to directly modifying the content of generated video frames, whereas animation
 157 represents generating a video clip from an existing frame according to user-given drag instructions.*

158 **REMARK 2.** *Here, we clarify how our REVEL task differs from prior works on drag-based video
 159 editing and generation. DragVideo Deng et al. (2024) is a recent typical drag-based video editing
 160 approach. Different from our REVEL, it only supports drag-based editing and does not allow users
 161 to animate video frames. Moreover, DragVideo does not support the 2D object rotation operation.
 SG-I2V Namekata et al. (2024) and Tora Zhang et al. (2025a) are two typical trajectory-guided*

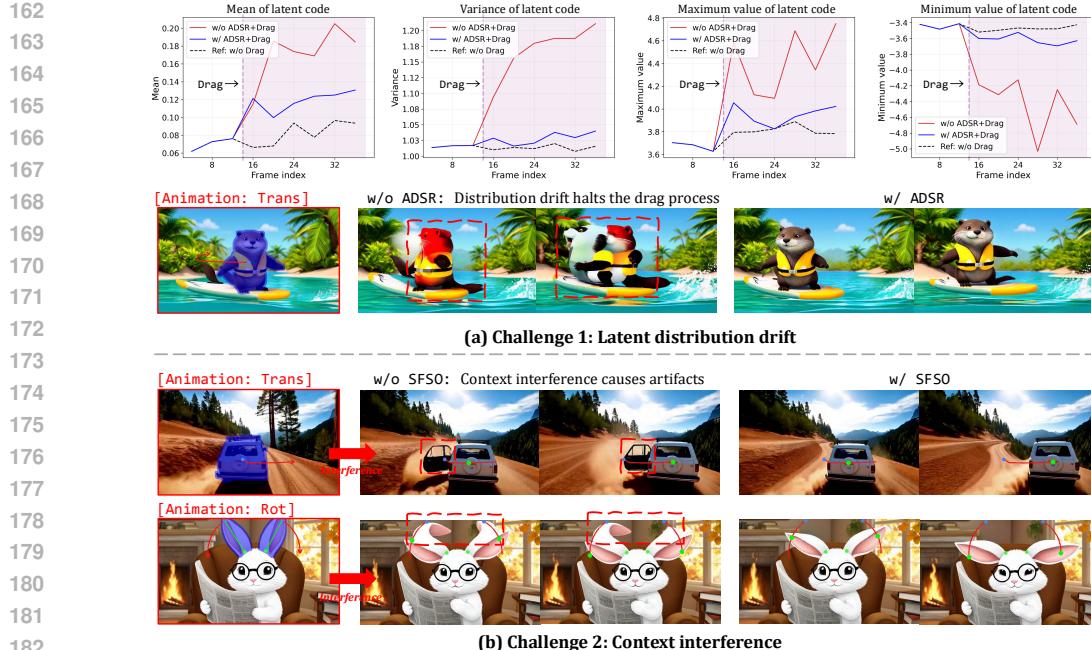


Figure 2: Examples of Challenge 1 and Challenge 2.

video generation approaches. Both of them focus solely on animating images by moving objects along trajectories with VDM-rendered motion, without allowing users to flexibly achieve more fine-grained drag-style effects, such as editing object shape or rotating objects around a center point by a specific angle. Most importantly, these methods are all incapable of achieving drag-oriented video editing and animation in a streaming manner.

We propose addressing REVEL from a training-free perspective, and identify that there exist two key challenges, summarized in **Challenge 1** and **Challenge 2**, respectively.

Challenge 1 (Latent Distribution Drift) *Perturbations induced by drag-style operations easily accumulate in the latent space of autoregressive VDMs, which leads to severe distribution drift of latent code and thus interrupts the drag process.*

We show **Challenge 1** in Figure 2 (a). The figure shows that the mean and variance of latent embeddings change significantly once drag operations are applied, while the maximum and minimum values exhibit obvious fluctuations. This instability drives the latent embeddings (“w/o ADSR+drag”) to drift away from the original distribution (“Ref: w/o Drag”), thereby disrupting the drag process. We find that latent distribution drift may cause undesirable change of object attributes, such as color and category, as shown in the second row of Figure 2 (a). The use of our ADSR strategy (“w/ ADSR+Drag”) can effectively suppress the distribution drift. We will introduce it in Section 4.2.2.

Challenge 2 (Context Interference) *Streaming drag is easily disturbed by context frames, misleading VDMs to produce visually unnatural content and thus substantially degrading video quality.*

We show **Challenge 2** in Figure 2 (b). The results in Figure 2 (b) clearly indicate that visual cues from previous frames may mislead the subsequent generation severely, e.g., the features around the handle points spuriously guide the model to produce duplicated ears on the rabbit and artifacts on the car (“w/o SFSO”), which obviously lowers the quality of generated videos. We will introduce how to overcome context interference by using our SFSO strategy in Section 4.2.3.

4 METHODOLOGY

4.1 PRELIMINARIES

Autoregressive Video Diffusion Models. Autoregressive VDMs refer to a hybrid generative framework that integrates diffusion models with chain-rule decomposition, i.e., $\mathbb{P}(\boldsymbol{\Gamma}^{1:k}) = \prod_{i=1}^k \mathbb{P}(\boldsymbol{\Gamma}^i \mid \{\boldsymbol{\Gamma}^j\}_{j=\max(i-L_c, 0):i-1})$, where $\mathbb{P}(\boldsymbol{\Gamma}^i \mid \{\boldsymbol{\Gamma}^j\}_{j=\max(i-L_c, 0):i-1})$ is modeled by iteratively denoising

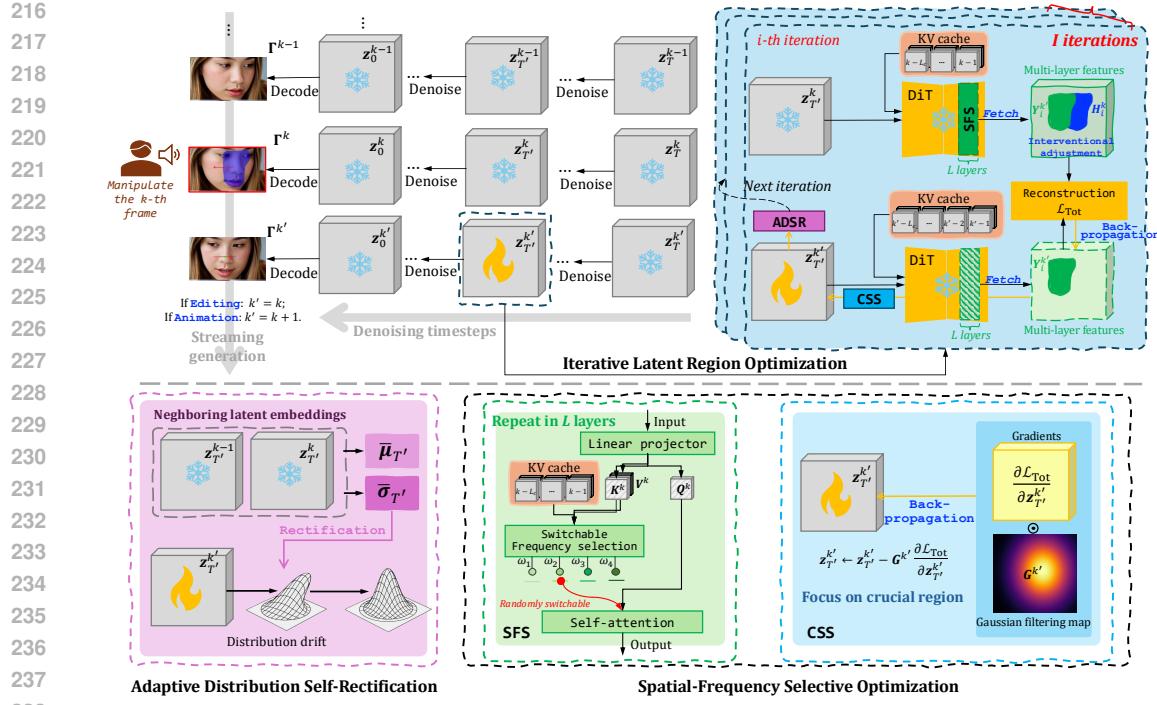


Figure 3: **Schematic illustration of our DragStream**, where an Adaptive Distribution Self-Rectification (ADSR) strategy and a Spatial-Frequency Selective Optimization (SFSO) mechanism are designed to suppress latent distribution drift and context interference, respectively.

a Gaussian latent code $\mathbf{z}_T^i \in \mathcal{N}(\mathbf{0}, \mathbf{I})$ conditioned on the proceeding frames $\{\Gamma^j\}_{j=\max(i-L_c, 0):i-1}$, and L_c represents the length of the context window. Generally, a KV caching strategy is employed during inference to accelerate autoregressive generation Huang et al. (2025); Yin et al. (2025).

Drag-Style Operation Formats. We use $\mathbf{U}^k = \{\mathbf{E}^k, \mathbf{C}^k\}$ to represent drag-style operations for a video frame Γ^k , where $\mathbf{E}^k = \{\mathbf{H}_i^k\}_{i=1:n}$ indicates a set of user-specified handle regions that require to be dragged, and $\mathbf{C}^k = \{\eta^k, \zeta^k, \mathbf{O}_i^k\}_{i=1:n}$ represents the corresponding drag instructions. The indictor $\eta^k = \text{Editing or Animation}$ determines whether the video frame Γ^k is to be edited or animated, whereas ζ^k indicates the type of each drag operation. For animation, $\mathbf{O}_i^k = \{\mathbf{h}_i^k, \{\mathbf{p}_i^{k'}\}_{k'=k+1:k+m}, \mathbf{c}_i^k\}$, if $\zeta_i^k = \text{Rotation}$; otherwise, $\mathbf{O}_i^k = \{\mathbf{h}_i^k, \{\mathbf{p}_i^{k'}\}_{k'=k+1:k+m}\}$. Here, \mathbf{h}_i^k represents a handle point, $\{\mathbf{p}_i^{k'}\}_{k'=k+1:k+m}$ represents m discrete target points sampled along a drag trajectory, assigned to subsequent m video frames, and \mathbf{c}_i^k denotes a rotation center of the handle region \mathbf{H}_i^k . For editing, $\mathbf{O}_i^k = \{\mathbf{h}_i^k, \mathbf{p}_i^k, \mathbf{c}_i^k\}$, if $\zeta_i^k = \text{Rotation}$; otherwise, $\mathbf{O}_i^k = \{\mathbf{h}_i^k, \mathbf{p}_i^k\}$. Here, each drag operation considers only one target point, since the editing task ignores intermediate drag states. Also, a binary mask \mathbf{M}^k is utilized to specify the non-editable region of the frame Γ^k .

4.2 DRAGSTREAM: DRAG ANYTHING, ANYTIME IN A TRAINING-FREE PARADIGM

4.2.1 OVERALL PIPELINE

We first introduce the overall pipeline of our DragStream. Suppose that users observe the video frame Γ^k during streaming generation and intend to manipulate Γ^k by giving the instructions $\mathbf{U}^k = \{\mathbf{E}^k, \mathbf{C}^k\}$, where $\mathbf{E}^k = \{\mathbf{H}_i^k\}_{i=1:n}$ indicates handle regions, and $\mathbf{C}^k = \{\eta^k, \zeta^k, \mathbf{O}_i^k\}_{i=1:n}$ denotes the corresponding drag instructions. We use $\Gamma^{k'}$ to represent a video frame produced during dragging, where $k' = k$ if $\eta^k = \text{Editing}$; otherwise, $k' > k$ since new frames are animated during Animation.

We take the handle region \mathbf{H}_i^k as an example to illustrate our method. As exhibited in Figure 3, we first denoise $\mathbf{z}_{T'}^{k'}$ to $\mathbf{z}_{T'}^{k'}$, and extract the features $\mathcal{F}(\mathbf{z}_{T'}^{k'})$ by concatenating features from the multiple layers of the DiT denoiser $\epsilon_{\Theta}(\cdot | \{\mathbf{K}^i, \mathbf{V}^i\}_{i=k'-L_c:k'-1})$, where $\{\mathbf{K}^i, \mathbf{V}^i\}_{i=k'-L_c:k'-1}$ are

270 the cached keys and values of context frames. We then estimate the position of the handle region
 271 \mathbf{H}_i^k after being dragged within the features $\mathcal{F}(\mathbf{z}_{T'}^{k'})$ according to the user-given drag instruction:
 272

$$273 \quad \mathbf{Y}_i^{k'}, \Pi_{\mathbf{H}_i^k \rightarrow \mathbf{Y}_i^{k'}} = \mathcal{G}(k', \mathbf{H}_i^k, \eta^k, \zeta_i^k, \mathbf{O}_i^k), \quad (1)$$

$$275 \quad s.t., \mathcal{G}(k', \mathbf{H}_i^k, \eta^k, \zeta_i^k, \mathbf{O}_i^k) = \begin{cases} \text{Rot}(\mathbf{H}_i^k, \mathbf{c}_i^k, \theta = \angle \mathbf{p}_i^{k'} \mathbf{c}_i^k \mathbf{p}_i^k), & \text{if } \zeta_i^k = \text{Rotation} \\ \text{Trans}(\mathbf{H}_i^k, \vartheta = \mathbf{p}_i^{k'} - \mathbf{p}_i^k), & \text{else.} \end{cases}$$

277 Here, $\text{Rot}(\mathbf{H}_i^k, \mathbf{c}_i^k, \theta)$ denotes rotating the handle region \mathbf{H}_i^k around the center point \mathbf{c}_i^k by an angle
 278 θ , and $\text{Trans}(\mathbf{H}_i^k, \vartheta)$ indicates translating \mathbf{H}_i^k by an offset ϑ . $\mathbf{Y}_i^{k'}$ is a binary mask that indicates
 279 the target position of \mathbf{H}_i^k in the extracted features $\mathcal{F}(\mathbf{z}_{T'}^{k'})$, and $\Pi_{\mathbf{H}_i^k \rightarrow \mathbf{Y}_i^{k'}}$ is the coordinate mapping
 280 from \mathbf{H}_i^k to $\mathbf{Y}_i^{k'}$. Finally, the latent code $\mathbf{z}_{T'}^{k'}$ is iteratively optimized. In each iteration, the features
 281 of $\mathbf{z}_{T'}^{k'}$ are also extracted and detached as reference features, $\mathcal{F}_{\text{ref}}(\mathbf{z}_{T'}^{k'}) = \mathcal{F}(\mathbf{z}_{T'}^{k'}) \cdot \text{detach}()$.
 282 Moreover, we interventionally adjust the reference features according to the coordinate mapping,
 283 $\mathcal{F}_{\text{ref}}(\mathbf{z}_{T'}^{k'})[\Pi_{\mathbf{H}_i^k \rightarrow \mathbf{Y}_i^{k'}}]$, thereby perturbing the original latent code and transforming the handle
 284 region features to the target position $\mathbf{Y}_i^{k'}$. The latent code $\mathbf{z}_{T'}^{k'}$ of the new frame $\Gamma^{k'}$ can be updated
 285 by reconstructing the features from the original handle region at the target position of $\mathcal{F}(\mathbf{z}_{T'}^{k'})$
 286 by reconstructing the features from the original handle region at the target position of $\mathcal{F}(\mathbf{z}_{T'}^{k'})$
 287

$$288 \quad \mathbf{z}_{T'}^{k'} \leftarrow \mathbf{z}_{T'}^{k'} - \frac{\partial \mathcal{L}_{\text{Tot}}}{\partial \mathbf{z}_{T'}^{k'}}, \quad (2)$$

290 where

$$291 \quad \mathcal{L}_{\text{Tot}} = \underbrace{\|\mathcal{F}(\mathbf{z}_{T'}^{k'}) * \mathbf{Y}_i^{k'} - \mathcal{F}_{\text{ref}}(\mathbf{z}_{T'}^{k'})[\Pi_{\mathbf{H}_i^k \rightarrow \mathbf{Y}_i^{k'}}] * \mathbf{Y}_i^{k'}\|_1}_{\mathcal{L}_{\text{Rec}}} + \underbrace{\|\mathcal{F}(\mathbf{z}_{T'}^{k'}) * \mathbf{M}^{k'} - \mathcal{F}_{\text{init}}(\mathbf{z}_{T'}^{k'}) * \mathbf{M}^{k'}\|_1}_{\mathcal{L}_{\text{Cst}}}. \quad (3)$$

294 Here, \mathcal{L}_{Rec} denotes a reconstruction loss, and \mathcal{L}_{Cst} represents a constraint term that ensures the
 295 consistency of the non-editable region $\mathbf{M}^{k'}$ of $\Gamma^{k'}$. $\mathcal{F}_{\text{init}}(\mathbf{z}_{T'}^{k'}) = \mathcal{F}(\mathbf{z}_{T'}^{k'}) \cdot \text{detach}()$ indicates the
 296 initial features of $\mathbf{z}_{T'}^{k'}$ before conducting iterative latent region optimization. Our ADSR and SFSO
 297 strategies are employed during the above iterative latent region optimization process to overcome
 298 **Challenge 1** and **Challenge 2**, which are detailed in Section 4.2.2 and Section 4.2.3, respectively.
 299

300 **REMARK 2.** If $\eta^k = \text{Animation}$, then $k' > k$, which represents a cross-frame optimization
 301 paradigm, i.e., using the perturbed features $\mathcal{F}_{\text{ref}}(\mathbf{z}_{T'}^{k'})[\Pi_{\mathbf{H}_i^k \rightarrow \mathbf{Y}_i^{k'}}]$ to guide the denoising process of
 302 \mathbf{z}_T^k of the new frame $\Gamma^{k'}$. If $\eta^k = \text{Editing}$, $k' = k$, which can be seen as self-guided optimization,
 303 i.e., using the detached features $\mathcal{F}_{\text{ref}}(\mathbf{z}_{T'}^{k'})[\Pi_{\mathbf{H}_i^k \rightarrow \mathbf{Y}_i^{k'}}]$ of Γ^k to guide the re-denoising of \mathbf{z}_T^k .
 304

305 4.2.2 ADAPTIVE DISTRIBUTION SELF-RECTIFICATION

307 We propose a simple-yet-effective strategy, Adaptive Distribution Self-Rectification (ADSR), to ad-
 308 dress the latent distribution drift issue caused by cumulative perturbations—**Challenge 1**—as pro-
 309 vided in **Proposition 2**.

310 **Proposition 2 (Adaptive Distribution Self-Rectification)** *Suppose users apply drag-style opera-
 311 tions to the frame Γ_k . The statistics $\bar{\mu}_{T'}$ and $\bar{\sigma}_{T'}$ of the preceding neighboring latent embeddings
 312 $\{\mathbf{z}_{T'}^i\}_{i=k'-L_n-1:k'-1}$ of Γ_k are recorded, where $\bar{\mu}_{T'}$ and $\bar{\sigma}_{T'}$ are the mean and standard deviation.
 313 We propose using $\bar{\mu}_{T'}$ and $\bar{\sigma}_{T'}$ to rectify the distribution of $\mathbf{z}_{T'}^{k'}$ after each optimization iteration:*
 314

$$315 \quad \hat{\mathbf{z}}_{T'}^{k'} = \frac{\text{Iter_optim}(\mathbf{z}_{T'}^{k'}, \mathbf{U}^k) - \mu_{T'}^k}{\sigma_{T'}^{k'}} * \bar{\sigma}_{T'} + \bar{\mu}_{T'}, \quad (4)$$

318 where $\text{Iter_optim}(\cdot)$ denotes an iteration of the latent optimization, and $\bar{\mu}_{T'}/\mu_{T'}^{k'}$ and $\bar{\sigma}_{T'}/\sigma_{T'}^{k'}$
 319 denotes the mean and standard deviation of $\{\mathbf{z}_{T'}^i\}_{i=k'-L_n-1:k'-1}/\mathbf{z}_{T'}^{k'}$. As exemplified in Figure 2
 320 (a), our ADSR can effectively suppress the distribution drift of latent embeddings, while significantly
 321 improving video quality and preventing undesired changes in object attributes during dragging. This
 322 aligns with the findings provided in Figure 7, showing that ADSR consistently improves model
 323 performance across the evaluation metrics ObjMC, DAI, FVD, and FID. For more details, please
 324 refer to Section 5.

324 4.2.3 SPATIAL-FREQUENCY SELECTIVE OPTIMIZATION
325

326 We design a Spatial-Frequency Selective Optimization (SFSO) mechanism to overcome **Challenge 2**. It fully exploits the information of context frames while relieving their interference via
327 conducting information selection in both frequency and spatial domains during iterative latent re-
328 gion optimization.

329 High-frequency information—though capturing finer visual information—tends to mislead VDMs
330 to produce unnatural results, as it carries more noise perturbations Fan et al. (2019); Li et al. (2020);
331 by contrast, low-frequency information—while more robust—lacks sufficient fine-grained visual
332 details. We argue that it is crucial to harness the strengths of both high- and low-frequency informa-
333 tion while alleviating their inherent limitations during the drag-oriented optimization process. We
334 therefore propose a Switchable Frequency-domain Selection (SFS) strategy in **Proposition 3**.
335

336 **Proposition 3 (Switchable Frequency-domain Selection)** *Let $\{l_i\}_{i=1:L}$ represent the layers of the
337 DiT denoiser that are used to construct reference features, and let $\mathbf{X}_{l_i}^k$ denote the input features of
338 the layer l_i . SFS is applied to the self-attention of the layer $\{l_i\}_{i=1:L}$ to build reference features with
339 switchable frequency components in each iteration of the latent region optimization process:*

$$340 \quad \mathbf{Q}_{l_i}^k, \mathbf{K}_{l_i}^k, \mathbf{V}_{l_i}^k = \text{Linear_projector}(\mathbf{X}_{l_i}^k), \quad (5)$$

$$342 \quad \bar{\mathbf{K}}_{l_i}^k = \text{Concat}(\{\mathbf{K}_{l_i}^j\}_{j=k-L_c:k-1}, \mathbf{K}_{l_i}^k), \bar{\mathbf{V}}_{l_i}^k = \text{Concat}(\{\mathbf{V}_{l_i}^j\}_{j=k-L_c:k-1}, \mathbf{V}_{l_i}^k), \quad (6)$$

$$344 \quad \{\bar{\mathbf{K}}_{l_i}^k, \bar{\mathbf{V}}_{l_i}^k\} = \text{IFFT}(\text{Butterw}(\text{FFT}(\{\bar{\mathbf{K}}_{l_i}^k, \bar{\mathbf{V}}_{l_i}^k\})), \omega = \text{Random}(\omega_1, \dots, \omega_N)), \quad (7)$$

$$345 \quad \mathbf{X}_{l_i+1}^k = \text{self-attention}(\mathbf{Q}_{l_i}^k, \bar{\mathbf{K}}_{l_i}^k, \bar{\mathbf{V}}_{l_i}^k). \quad (8)$$

347 Here, $\{\mathbf{K}_{l_i}^j\}_{j=k-L_c:k-1}$ and $\{\mathbf{V}_{l_i}^j\}_{j=k-L_c:k-1}$ denote cached keys and values, $\text{Butterw}(\cdot \mid \omega)$
348 represents the Butterworth filter with the cutoff frequency ω randomly selected from $\{\omega_i\}_{i=1:N}$, and
349 $\text{FFT}(\cdot)$ and $\text{IFFT}(\cdot)$ represent the 2D Fourier transform and 2D inverse Fourier transform.

350 By using SFS strategy, in each iteration, the information of different frequencies can be propagated
351 to the latent embeddings $\mathbf{z}_{T'}^{k'}$ of $\mathbf{T}^{k'}$ by the reconstruction loss \mathcal{L}_{Rec} , thus fully exploiting information
352 from context frames, while preventing high-frequency information from dominating the drag process
353 and inducing artifacts in generated frames.

355 In **Proposition 4**, we also design a Criticality-driven Spatial-domain Selection (CSS) strategy to
356 prevent over-optimization of the background within editable region, which is beneficial for further
357 reducing unnatural content.

358 **Proposition 4 (Criticality-driven Spatial-domain Selection)** *We selectively back-propagate gra-
359 dients in spatial domain, avoiding the drag process undesirably affecting the background:*

$$361 \quad \mathbf{z}_{T'}^{k'} \leftarrow \mathbf{z}_{T'}^{k'} - \mathbf{G}^{k'} \frac{\partial \mathcal{L}_{\text{Tot}}}{\partial \mathbf{z}_{T'}^{k'}} \quad (9)$$

363 where $\mathbf{G}^{k'}$ is a Gaussian filtering map that decays w.r.t. the distance to the center point (x_c, y_c) of
364 the edited region

$$366 \quad \mathbf{G}^{k'}[x, y] = \exp \left[- \left(\frac{(x - x_c)^2}{2\sigma_x^2} + \frac{(y - y_c)^2}{2\sigma_y^2} \right) \right], \text{ s.t., } \sigma_x = \frac{W}{2} * \alpha \text{ and } \sigma_y = \frac{H}{2} * \alpha, \quad (10)$$

369 W and H are the width and height of the handle region’s minimum bounding rectangle, and α is a
370 hyperparameter scaling the spread of the Gaussian and set as 1. The use of SFS and CSS can further
371 improve video quality, which is demonstrated by experiments given in the main paper and appendix.

372 5 EXPERIMENTS
373

375 Since REVEL is a new task, no existing approaches have been specifically designed to tackle it. We
376 adapt two training-free methods, SG-I2V Namekata et al. (2024) and DragVideo Deng et al. (2024),
377 to the REVEL task for comparison. Please refer to Section C of the appendix for details about our
experimental setup, including implementation details, evaluation metrics, and compared baselines.



Figure 4: **Visualization results achieved by our DragStream on REVEL.** Note that Editing produces only one video frame, but we insert an extra subsequent frame to maintain layout consistency with Animation.

5.1 MAIN RESULTS

Visualization Results. The visualization results achieved by our method are shown in Figure 4. Compared to SG-I2V and DragVideo, our DragStream produces obviously more natural and higher-quality streaming drag-style video manipulation results. For instance, it better preserves object appearance and structure, while exhibiting fewer visual distortions, artifacts, and drag failures. These results validate the effectiveness of our method in addressing the REVEL task. More visualization results achieved by our DragStream are provide in the appendix; for details, please refer to Section E.

Quantitative Performance. The quantitative results in Figure 5 demonstrate that our DragStream consistently outperforms SG-I2V and DragVideo again. On one hand, the lowest FID and FVD scores indicate that our DragStream achieves higher video quality than SG-I2V and DragVideo. On the other hand, achieving the best ObjMC and DAI scores demonstrates that our DragStream approach realizes more precise object dragging, aligned with the findings shown in Figure 4.

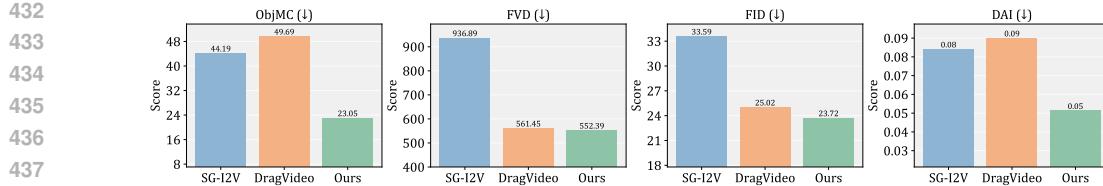


Figure 5: Quantitative performance achieved by our method in terms of ObjMC, FVD, FID, and DAI. “ \downarrow ” indicates that lower values correspond to better performance.

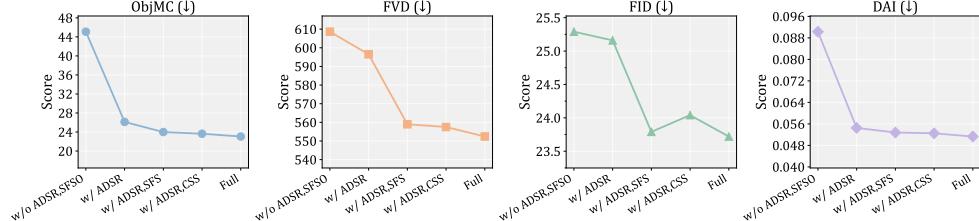


Figure 6: Ablation study on the key components of our DragStream.

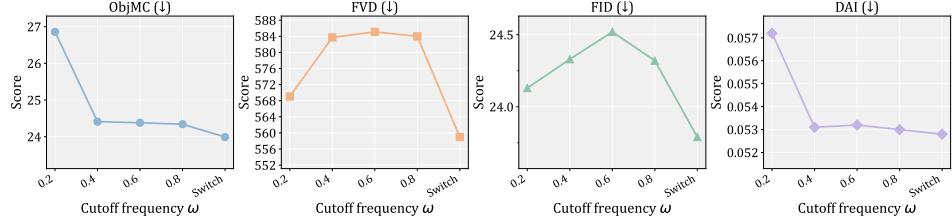


Figure 7: Analysis on the influence of the cutoff frequency ω . “Switch” represents frequencies are switchable during the latent region optimization.

5.2 ANALYSIS

Ablation Study. In Figure 6, we conduct ablation study to investigate the influence of each component. The results indicate the full method achieves the best performance. Discarding SFSO (“w/ ADSR”) leads to significant performance degradation, while further removing ADSR (“w/o ADSR, SFSO”) results in an even greater decline. These results demonstrate the importance of the ADSR strategy and the SFSO mechanism. Similarly, using the full SFSO is better than using CSS or SFS alone. We also analyze the influence of the cutoff frequency in Figure 7. We can see that both small and large cutoff frequencies lead to performance drops. By contrast, our switchable frequency selection strategy achieves the best performance, as it fully exploits contextual information while mitigating interference from high-frequency components by preventing them from dominating the drag process.

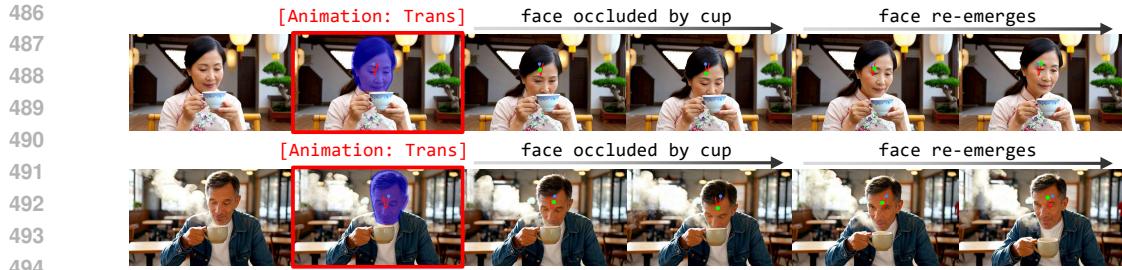
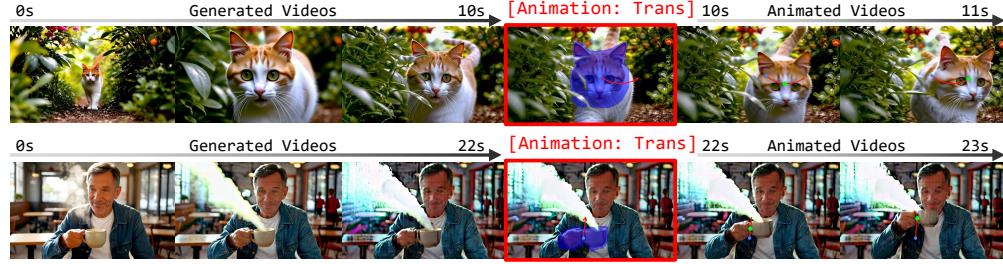
Runtime Analysis. Table 1 exhibits the runtime analysis of our DragStream approach. Our DragStream is based on an iterative optimization scheme. In the table, we investigate the influence of the iteration number I . We find that setting $I = 4$ already achieves satisfactory performance, achieving 23.05 ObjMC and 0.051 DAI, while incurring only 0.13s of additional runtime per frame compared with the baseline without DragStream (i.e., $I = 0$). Decreasing the iteration number—such as $I = 2$ or 3—can further improve execution speed, while still maintaining acceptable drag-based manipulation performance, with ObjMC and DAI clearly outperforming those of the baseline (i.e., $I = 0$). Note that all the experiments on the table are conducted on a single NVIDIA H20 GPU.

5.3 COMPLEX STREAMING MANIPULATION

Occlusion and Re-emergence. In Figure 8, we also study our DragStream in the scenario of object occlusion and subsequent re-emergence. We find that our approach shows promising performance

Table 1: Runtime analysis of our DragStream approach. In the table, “RF” denotes runtime per frame, and I indicates the number of iterations of drag-oriented latent optimization.

Experiments	RF	ObjMC (\downarrow)	DAI (\downarrow)
$I = 0$	0.17s	90.39	0.133
$I = 2$	0.24s	27.67	0.054
$I = 3$	0.27s	24.55	0.053
$I = 4$ (Ours)	0.30s	23.05	0.051

Figure 8: **Streaming drag with object occlusion and Re-emergence.**Figure 9: **Streaming drag in long video scenarios.**Figure 10: **Failure cases under unreasonable and physically implausible conditions.**

in this scenario and produce smooth video results. This is because VDMs are trained on massive amounts of data and thereby learns rich prior knowledge about object occlusion and scene transition.

Streaming Drag in Long Video Generation. In Figure 9, we study the use of our DragStream for achieving streaming drag in long video generation. As shown in the figure, despite that accumulated errors remain a challenging issue for current autoregressive VDMs, our method can still effectively realize drag-based manipulation. For more results, please refer to Section P of our appendix.

5.4 FAILURE CASES

We observe a failure case of our method. As shown in Figure 10, our method fails to realize high-quality manipulation under highly unreasonable and physically implausible conditions, as such manipulation instructions severely conflict with prior knowledge learned by VDMs in large-scale data.

6 CONCLUSION

We propose **stReaming drag-oriEnted interactiVe vidEo manipuLation (REVEL)**, a new task that aims to allow users to achieve streaming, drag-style control over the outputs of autoregressive VDMs. To solve REVEL, we propose a training-free approach, **DragStream**, which employs an Adaptive Distribution Self-Rectification (ADSR) strategy and design a Spatial-Frequency Selective Optimization (SFSO) mechanism. ADSR effectively constrains the drift of latent embeddings by leveraging neighboring frames' statistics, while SFSO fully exploits contextual information while mitigating its interference via selectively propagating visual cues along generation in spatial and frequency domains. These two strategies enable our method to achieve superior performance on REVEL and allow seamless integration into existing autoregressive VDMs. We hope this work will inspire more excellent solutions to address the streaming drag-style video manipulation problem.

540 REFERENCES
541

542 Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji
543 Hu, Xiang Bai, Pengfei Wan, et al. Recammaster: Camera-controlled generative rendering from
544 a single video. *arXiv preprint arXiv:2503.11647*, 2025.

545 Duygu Ceylan, Chun-Hao P Huang, and Niloy J Mitra. Pix2video: Video editing using image
546 diffusion. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
547 23206–23217, 2023.

548 Feng Chen, Zhen Yang, Bohan Zhuang, and Qi Wu. Streaming video diffusion: Online video editing
549 with diffusion models. *arXiv preprint arXiv:2405.19726*, 2024.

550 Yufan Deng, Ruida Wang, Yuhao Zhang, Yu-Wing Tai, and Chi-Keung Tang. Dragvideo: Interactive
551 drag-style video editing. In *European Conference on Computer Vision*, pp. 183–199. Springer,
552 2024.

553 Linwei Fan, Fan Zhang, Hui Fan, and Caiming Zhang. Brief review of image denoising techniques.
554 *Visual computing for industry, biomedicine, and art*, 2(1):7, 2019.

555 Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, Serena Zhang, Tobias Pfaff, Tatiana
556 Lopez-Guevara, Yusuf Aytar, Michael Rubinstein, Chen Sun, et al. Motion prompting: Controlling
557 video generation with motion trajectories. In *Proceedings of the Computer Vision and Pattern
558 Recognition Conference*, pp. 1–12, 2025.

559 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan
560 Yang. Cameractrl: Enabling camera control for text-to-video generation. *arXiv preprint
561 arXiv:2404.02101*, 2024.

562 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
563 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in
564 neural information processing systems*, 30, 2017.

565 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
566 tion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
567 pp. 8153–8163, 2024.

568 Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, and Eli Shechtman. Self forcing: Bridging
569 the train-test gap in autoregressive video diffusion. *arXiv preprint arXiv:2506.08009*, 2025.

570 Yash Jain, Anshul Nasery, Vibhav Vineet, and Harkirat Behl. Peekaboo: Interactive video generation
571 via masked-diffusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
572 Pattern Recognition*, pp. 8079–8088, 2024.

573 Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian
574 Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. In
575 *Proc. arXiv:2410.11831*, 2024.

576 Akio Kodaira, Chenfeng Xu, Toshiki Hazama, Takanori Yoshimoto, Kohei Ohno, Shogo Mitsuhori,
577 Soichi Sugano, Hanying Cho, Zhijian Liu, and Kurt Keutzer. Streamdiffusion: A pipeline-level
578 solution for real-time interactive generation. *arXiv preprint arXiv:2312.12491*, 2023.

579 Akio Kodaira, Tingbo Hou, Ji Hou, Masayoshi Tomizuka, and Yue Zhao. Streamdit: Real-time
580 streaming text-to-video generation. *arXiv preprint arXiv:2507.03745*, 2025.

581 Guojun Lei, Chi Wang, Rong Zhang, Yikai Wang, Hong Li, and Weiwei Xu. Animateanything:
582 Consistent and controllable animation for video generation. In *Proceedings of the Computer
583 Vision and Pattern Recognition Conference*, pp. 27946–27956, 2025.

584 Qiufu Li, Linlin Shen, Sheng Guo, and Zhihui Lai. Wavelet integrated cnns for noise-robust im-
585 age classification. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
586 recognition*, pp. 7245–7254, 2020.

594 Feng Liang, Akio Kodaira, Chenfeng Xu, Masayoshi Tomizuka, Kurt Keutzer, and Diana Mar-
 595 culescu. Looking backward: Streaming video-to-video translation with feature banks. *arXiv*
 596 *preprint arXiv:2405.15757*, 2024.

597

598 Shanchuan Lin, Ceyuan Yang, Hao He, Jianwen Jiang, Yuxi Ren, Xin Xia, Yang Zhao, Xuefeng
 599 Xiao, and Lu Jiang. Autoregressive adversarial post-training for real-time interactive video gen-
 600 eration. *arXiv preprint arXiv:2506.09350*, 2025.

601 Shaoteng Liu, Yuechen Zhang, Wenbo Li, Zhe Lin, and Jiaya Jia. Video-p2p: Video editing with
 602 cross-attention control. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 603 *Pattern Recognition*, pp. 8599–8608, 2024.

604 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 605 *arXiv:1711.05101*, 2017.

606

607 Koichi Namekata, Sherwin Bahmani, Ziyi Wu, Yash Kant, Igor Gilitschenski, and David B Lin-
 608 dell. Sg-i2v: Self-guided trajectory control in image-to-video generation. *arXiv preprint*
 609 *arXiv:2411.04989*, 2024.

610 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 611 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

612

613 Haonan Qiu, Zhaoxi Chen, Zhouxia Wang, Yingqing He, Menghan Xia, and Ziwei Liu. Freetraj:
 614 Tuning-free trajectory control in video diffusion models. *arXiv preprint arXiv:2406.16863*, 2024.

615 Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
 616 and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
 617 *arXiv preprint arXiv:1812.01717*, 2018.

618

619 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
 620 and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
 621 *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024.

622 Weijia Wu, Zhuang Li, Yuchao Gu, Rui Zhao, Yefei He, David Junhao Zhang, Mike Zheng Shou,
 623 Yan Li, Tingting Gao, and Di Zhang. Draganything: Motion control for anything using entity
 624 representation. In *European Conference on Computer Vision*, pp. 331–348. Springer, 2024.

625

626 Tianwei Yin, Qiang Zhang, Richard Zhang, William T Freeman, Fredo Durand, Eli Shechtman, and
 627 Xun Huang. From slow bidirectional to fast autoregressive video diffusion models. In *Proceed-
 628 ings of the Computer Vision and Pattern Recognition Conference*, pp. 22963–22974, 2025.

629

630 Zewei Zhang, Huan Liu, Jun Chen, and Xiangyu Xu. Gooddrag: Towards good practices for drag
 631 editing with diffusion models. *arXiv preprint arXiv:2404.07206*, 2024.

632

633 Zhenghao Zhang, Junchao Liao, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu, Long Qin, and
 634 Weizhi Wang. Tora: Trajectory-oriented diffusion transformer for video generation. In *Proceed-
 635 ings of the Computer Vision and Pattern Recognition Conference*, pp. 2063–2073, 2025a.

636

637 Zhongwei Zhang, Fuchen Long, Zhaofan Qiu, Yingwei Pan, Wu Liu, Ting Yao, and Tao Mei. Mo-
 638 tionpro: A precise motion controller for image-to-video generation. In *Proceedings of the Com-
 639 puter Vision and Pattern Recognition Conference*, pp. 27957–27967, 2025b.

640

641 Guangcong Zheng, Teng Li, Rui Jiang, Yehao Lu, Tao Wu, and Xi Li. Cami2v: Camera-controlled
 642 image-to-video diffusion model. *arXiv preprint arXiv:2410.15957*, 2024.

643

644 Yuan Zhou, Junbao Zhou, Qingshan Xu, Kesen Zhao, Yuxuan Wang, Hao Fei, Richang Hong,
 645 and Hanwang Zhang. Dragnext: Rethinking drag-based image editing. *arXiv preprint*
 646 *arXiv:2506.07611*, 2025.

647

648	CONTENTS	
649		
650		
651	1 Introduction	1
652		
653	2 Related Work	2
654		
655	3 Streaming Drag-Oriented Interactive Video Manipulation	3
656		
657	4 Methodology	4
658		
659	4.1 Preliminaries	4
660	4.2 DragStream: Drag Anything, Anytime in a Training-Free Paradigm	5
661	4.2.1 Overall Pipeline	5
662	4.2.2 Adaptive Distribution Self-Rectification	6
663	4.2.3 Spatial-Frequency Selective Optimization	7
664		
665		
666	5 Experiments	7
667		
668	5.1 Main Results	8
669	5.2 Analysis	9
670	5.3 Complex Streaming Manipulation	9
671	5.4 Failure Cases	10
672		
673		
674	6 Conclusion	10
675		
676		
677	A Use of LLMs	15
678		
679	B Summary of Main Notations	15
680		
681	C Experimental Setup	15
682		
683	C.1 Implementation Details	15
684	C.2 Evaluation Metrics	15
685	C.3 Compared Baselines	16
686		
687		
688	D Streaming VS. Non-Streaming Drag-Style Video Manipulation	16
689		
690	E More Visualization Results	17
691		
692	F Visualized Analysis of Switchable Frequency	18
693		
694	G Visualized Analysis of Gaussian Filtering Map	19
695		
696	H Ablation Study on Objective Function \mathcal{L}_{Tot}	20
697		
698	I Compatibility of DragStream	20
699		
700	J Drag-Style Operation Types	22
701		

702	K Why Need Context Frames?	22
703		
704		
705	L Additional Video Results in Supplementary Materials	22
706		
707	M Robustness Analysis of Hyperparameters	23
708		
709	N Results on Controlling Bidirectional Models	23
710		
711	O Discussion of Prompt–Drag Conflicts	24
712		
713	P Additional Results on Long Video Generation	24
714		
715		
716	Q Long-Duration Drag-Oriented Manipulation	25
717		
718	R Object Leaving and Re-Entering	26
719		
720		
721		
722		
723		
724		
725		
726		
727		
728		
729		
730		
731		
732		
733		
734		
735		
736		
737		
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

756 **A USE OF LLMs**
757758 LLMs were only used to provide minor writing assistance in preparing the manuscript, such as
759 grammar polishing and readability improvement. No parts of the methodology, experimental design,
760 analysis, or results were generated by LLMs. The all ideas, experiments, and conclusions are entirely
761 completed and drawn by the authors of this paper.
762763 **B SUMMARY OF MAIN NOTATIONS**
764765 In Table 2, we provide a summary for the main notations used in this paper.
766767 **Table 2: Summary of main notations.**
768

769 Notions	770 Descriptions
771 Γ^k	The k -th video frame generated by VDMs.
772 \mathbf{z}_T^k	The latent embeddings of Γ^k at the denoising timestep T .
773 $\mathbf{U}^k = \{\mathbf{E}^k, \mathbf{C}^k\}$	The user-specified drag-style operations for the frame Γ^k .
774 $\mathbf{E}^k = \{\mathbf{H}_i^k\}_{i=1:n}$	The set of user-specified handle regions for the frame Γ^k .
775 $\mathbf{C}^k = \{\eta^k, \mathbf{c}_i^k, \mathbf{O}_i^k\}_{i=1:n}$	The corresponding drag instructions for the handle region \mathbf{E}^k .
776 \mathbf{H}_i^k	The binary mask that indicates the i -th user-specified handle region of the frame Γ^k .
777 $\mathbf{Y}_i^{k'}$	The binary mask indicates the target position of \mathbf{H}_i^k that is to be dragged in $\Gamma^{k'}$.
778 $\Pi_{\mathbf{H}_i^k \rightarrow \mathbf{Y}_i^{k'}}$	The coordinate mapping from the handle region \mathbf{H}_i^k to the target position $\mathbf{Y}_i^{k'}$.
779 η^k	The indictor determines whether the frame Γ^k is to be edited or animated.
780 ζ_i^k	The indictor determines the type of drag operations, i.e, translation, deformation, and rotation.
781 \mathbf{O}_i^k	The points sampled from the drag trajectory given for the handle region \mathbf{H}_i^k .
782 \mathbf{M}^k	The user-specified non-editable region of the video frame Γ^k .
783 \mathbf{G}^k	The Gaussian filtering map used for the frame Γ^k during latent region optimization.
784 $\theta = \angle \mathbf{p}_i^{k'} \mathbf{c}_i^k \mathbf{p}_i^k$	The angle at the center point \mathbf{c}_i^k w.r.t. the trajectory points $\mathbf{p}_i^{k'}$ and \mathbf{p}_i^k .
785 $\vartheta = \mathbf{p}_i^{k'} - \mathbf{p}_i^k$	The offset of the sampled trajectory point $\mathbf{p}_i^{k'}$ w.r.t. \mathbf{p}_i^k .
786 $\mu_{T'}^{k'}/\sigma_{T'}^{k'}$	The mean/standard deviation of the latent embeddings $\mathbf{z}_{T'}^{k'}$.
787 $\mathbf{Q}^k/\mathbf{K}^k/\mathbf{V}^k$	Query/key/value features about the frame Γ^k .
788 \mathcal{L}_{Tot}	The object function used in the latent region optimization.
789 \mathcal{L}_{Rec}	The reconstruction loss used in the latent region optimization.
790 \mathcal{L}_{Cst}	The constraint term in the latent region optimization.
$\epsilon_{\Theta}(\cdot)$	The denoiser of VDMs.
$\mathcal{F}(\cdot)$	The function that extracts the features of latent code from $\epsilon_{\Theta}(\cdot)$.

791
792 **C EXPERIMENTAL SETUP**
793794 **C.1 IMPLEMENTATION DETAILS**
795796 We implement our DragStream in PyTorch and run it on an NVIDIA H20 GPU card. We choose
797 Self-Forcing Huang et al. (2025) as our main base autoregressive VDM with the number of denoising
798 timesteps $T = 4$. We follow SG-I2V to use the AdamW Loshchilov & Hutter (2017) optimizer
799 during latent optimization, with the learning rate set as 4×10^{-2} . Following Deng et al. (2024), we
800 perform latent region optimization at the denoising timestep $T' = 3$, where the features of latent
801 code are extracted from the 12–15 layers of the DiT denoiser, the number of iterations is set to $I = 4$
802 per trajectory point, and the set of cutoff frequencies is set as $\{0.2, 0.4, 0.6, 1\}$. Following Zhang
803 et al. (2025a), we annotate 204 video clips generated by Self-Forcing with diverse drag trajectories
804 and scenes, to serve as a new benchmark for evaluating model performance on our proposed REVEL
805 task, i.e., realizing fine-grained, drag-style control over the outputs of video generation models.
806807 **C.2 EVALUATION METRICS**
808809 We evaluate model performance on the REVEL task using four metrics: Fréchet Video Distance
(FVD) Unterthiner et al. (2018), Fréchet Inception Distance (FID) Heusel et al. (2017), DAI Zhang
et al. (2024), and ObjMC Wu et al. (2024). Since FVD and FID are well-defined metrics, we omit

810 the explanation for them; for more details, please refer to Unterthiner et al. (2018); Heusel et al.
 811 (2017). We provide the details of ObjMC and DAI below.
 812

813 **ObjMC.** ObjMC Wu et al. (2024) is a metric to evaluate the motion fidelity of the manipulated
 814 object in the video. It is calculated as the average distance between the trajectory of the manipulated
 815 object in the generated video and the groundtruth trajectory specified by the user. To generate the
 816 trajectory of the manipulated object, we utilize Co-Tracker 3 Karaev et al. (2024) to track the points
 817 scattered in the original region of the manipulated object, and then compute the average position of
 818 these points in each frame to form the trajectory. Lower ObjMC scores indicate that the manipulated
 819 object in the generated video closely follows the user’s specified trajectory, reflecting better motion
 fidelity.
 820

821 **DAI.** DAI Zhang et al. (2024) is a metric for evaluating the quality of drag editing in image and
 822 video manipulation. Specifically, DAI calculates the average difference between the latent features
 823 of the original handle region and the corresponding manipulated region in the final output. The
 824 metric is defined as:
 825

$$826 \quad \text{DAI} = \frac{1}{N} \sum_{i=1}^N \frac{\|z_0^{k'}[\Omega(\mathbf{p}_i^{k'}, r)] - z_0^k[\Omega(\mathbf{p}_i^k, r)]\|}{(1+2r)^2} \quad (11)$$

827 where N is the number of trajectory points, while z_0^k and $z_0^{k'}$ are the latent embeddings of the origi-
 828 nal frame Γ^k and the manipulated frame $\Gamma^{k'}$, respectively. r is the radius of the area we calculate
 829 DAI and $\Omega(\mathbf{p}, r)$ denotes a square area centered at point \mathbf{p} with a side length of $2r+1$. \mathbf{p}_i^k and $\mathbf{p}_i^{k'}$
 830 are the i -th trajectory points in the original frame Γ^k and the manipulated frame $\Gamma^{k'}$, respectively.
 831 We set $r = 20$ following DragNeXtZhou et al. (2025), which is suitable for measuring the consis-
 832 tency inside the manipulated region. Lower DAI scores indicate that the manipulated region in the
 833 generated image or video closely matches the target region specified by the user, reflecting better
 834 drag editing quality.
 835

836 C.3 COMPARED BASELINES

837 We emphasize that our proposed task, **stReaming drag-oriEnted interactiVe vidEo manipuLa-
 838 tion (REVEL)**, is entirely new. Thus, to the best of our knowledge, no existing approaches have
 839 been specifically designed to address it. For comparison, we adapt two training-free approaches,
 840 SG-I2V Namekata et al. (2024) and DragVideo Deng et al. (2024), to our REVEL setting. *Like
 841 our DragStream, both SG-I2V and DragVideo follow the latent optimization paradigm; however,
 842 they are not equipped with our ADSR and SFSO strategies, designed to address Challenge 1 and
 843 Challenge 2 in REVEL.* We do not include the finetuning-based methods such as Tora Zhang et al.
 844 (2025a) and DragAnything Wu et al. (2024) in our comparisons. First, our DragStream is training-
 845 free, making direct comparisons with finetuning-based methods unfair. Second, Tora and DragAny-
 846 thing are not specifically designed to solve our REVEL. Adapting them to enable autoregressive
 847 generation or streaming control of VDMs would be non-trivial, as it requires finetuning on large-
 848 scale, fine-grained drag-style data by hundreds or even thousands of H100 GPU hours Yin et al.
 849 (2025); Kodaira et al. (2025); Huang et al. (2025), which stands in direct contrast to the core philo-
 850 sophy of our work—achieving high-quality REVEL without incurring prohibitive training costs. We
 851 leave exploring the REVEL task from a finetuning-based perspective for our future research.
 852

853 D STREAMING VS. NON-STREAMING DRAG-STYLE VIDEO MANIPULATION

854 We provide a comparison between streaming and non-streaming drag-style video manipulation in
 855 Figure 6. A fundamental distinction lies in the different type of used VDMs. In streaming drag-style
 856 video manipulation, video frames are generated autoregressively; thus, when an unsatisfactory video
 857 frame is observed, users can directly feed drag-style operations to models and modify videos on the
 858 fly. In contrast, non-streaming drag-style video manipulation relies on conventional bidirectional
 859 VDMs that generate an entire video clip at each time as they are based on modeling bidirectional
 860 information across frames, requiring users to regenerate the whole video clip when they find a frame
 861 unsatisfactory. *That is why adapting finetuning-based, non-streaming drag-style video manipula-
 862 tion approaches to REVEL is non-trivial as we mentioned in Section C.3: it would require trans-
 863*

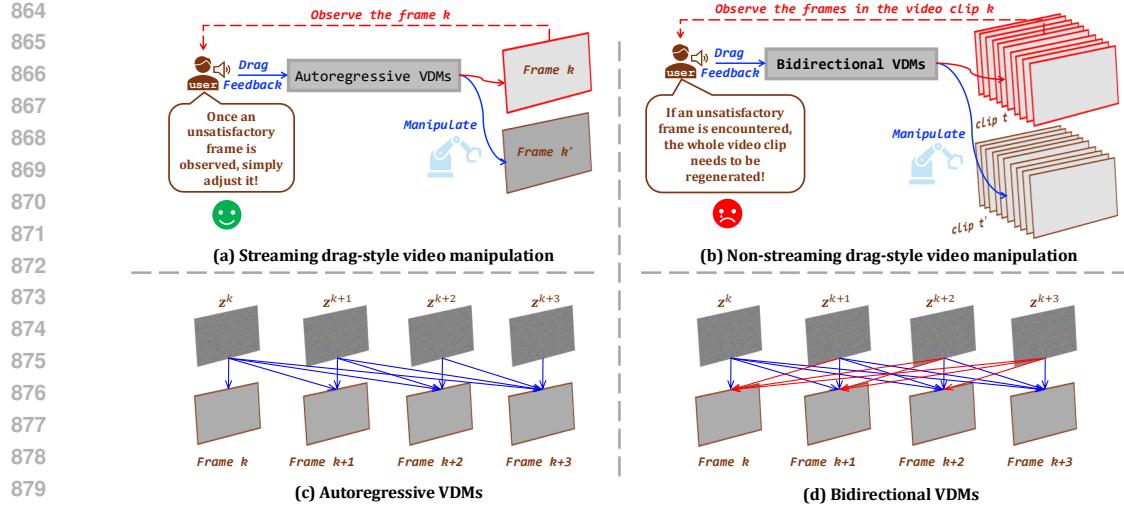


Figure 11: Comparison between streaming and non-streaming drag-style video manipulation.

885 **forming the bidirectional generation paradigm totally into the autoregressive manner, which in**
 886 **necessitates collecting a large-scale, fine-grained drag-style dataset and finetuning VDMs**
 887 **on it by hundreds or even thousands of H100 GPU hours Yin et al. (2025); Huang et al. (2025).**

888 In addition to the type of VDMs, another key difference lies in the manipulation process. In streaming
 889 drag-style video manipulation, if users find a video frame unsatisfactory and wish to edit it, they
 890 only need to apply drag operations to that specific frame. In contrast, in non-streaming drag-style
 891 video manipulation, users must provide drag operations for all subsequent frames to maintain
 892 cross-frame consistency, since information flow in bidirectional VDMs is bidirectional as shown in
 893 Figure 6 (d), i.e., subsequent video frames can influence preceding video frames. Also, streaming
 894 drag-style video manipulation can animate any video frame during the generation process; however,
 895 non-streaming drag-style video manipulation struggles to animate intermediate frames, as this
 896 conflicts with the bidirectional nature of VDMs, which generates the entire video clip simultaneously.
 897 That means animating intermediate frames will break out the consistency of the original video clip.

898 **REMARK 3.** Tora and DragAnything can be directly integrated with existing autoregressive VDMs
 899 as external modules to animate generated video frames. However, they indeed cannot realize stream-
 900 ing control over autoregressive VDMs as they do not alter the original generation direction of VDMs.
 901 Differently, our DragStream modifies the latent embeddings of autoregressive VDMs by performing
 902 iterative latent region optimization, thereby enabling streaming control over the video generation
 903 process by propagating the information of modified latent code through a sliding context window.

904 **The above analysis demonstrates the importance of advancing existing approaches from non-**
 905 **streaming to streaming drag-style manipulation, highlighting the significant application value**
 906 **of our REVEL task!**

910 E MORE VISUALIZATION RESULTS

913 In Figure 12, we provide more visualization results achieved by our DragStream approach on our
 914 proposed REVEL task. These experimental results still consistently demonstrate that our method can
 915 achieve high-quality streaming manipulation over the outputs of VDMs, including both Editing
 916 and Animation with the effects of drag operations such as translation (“Trans”), deformation
 917 (“Defor”), and rotation (“Rot”). For more results, please refer to our anonymous project page,
 which is provided below the abstract.

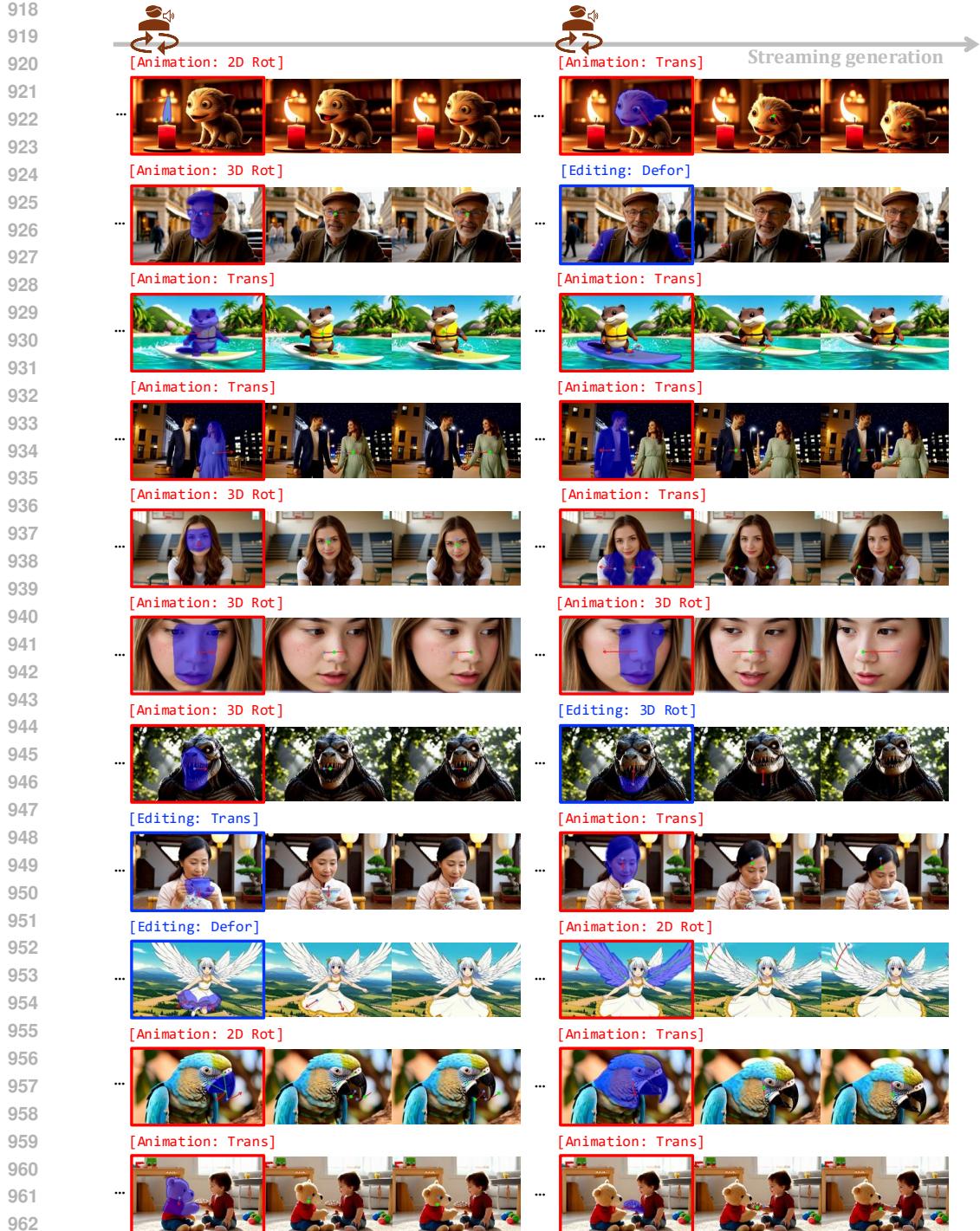
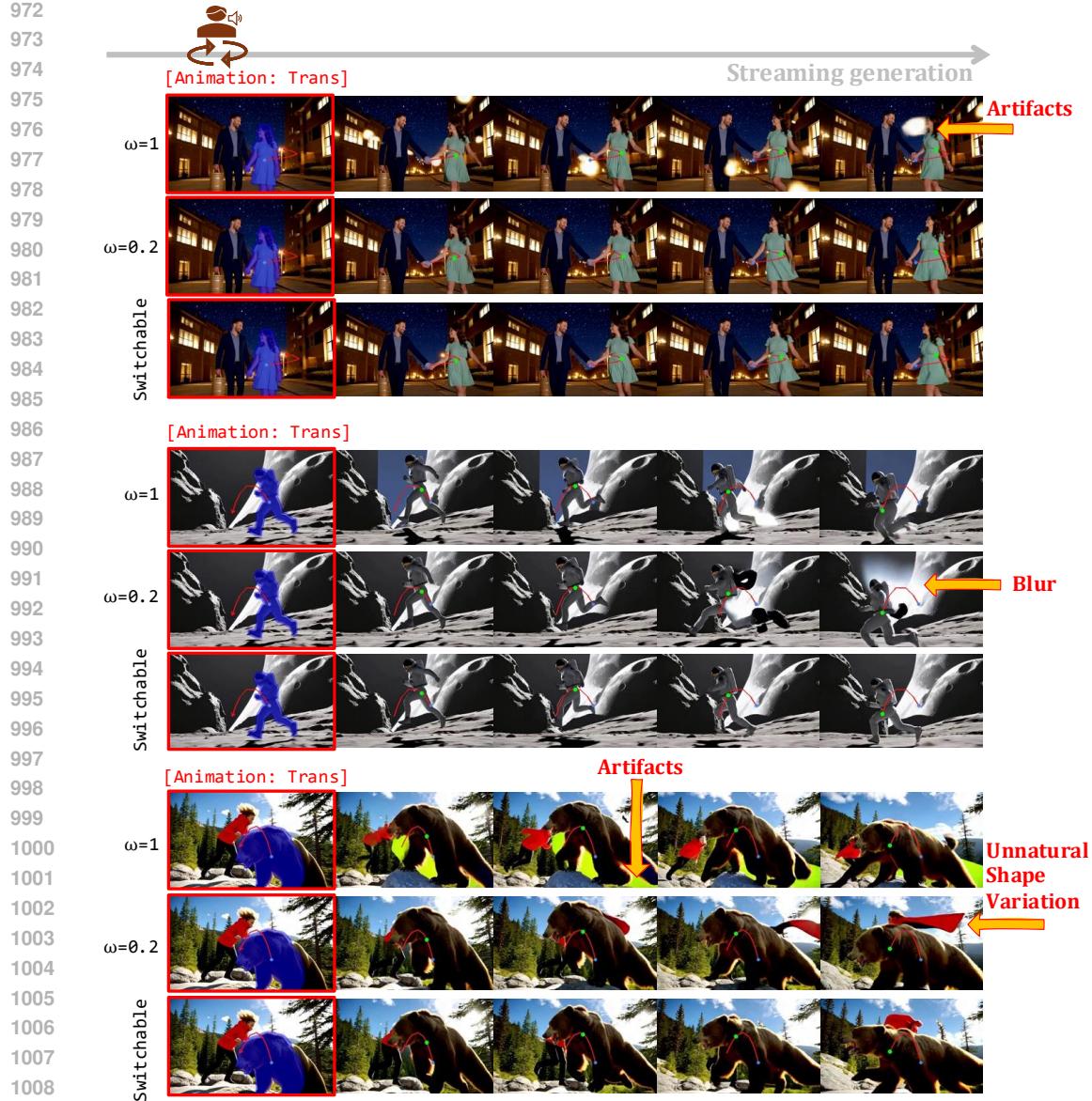


Figure 12: **More visualization results achieved by our DragStream on the REVEL task.** Note that Editing produces only one video frame, but we insert an extra subsequent frame to maintain layout consistency with Animation.

F VISUALIZED ANALYSIS OF SWITCHABLE FREQUENCY

In Figure 13, we investigate the influence of switchable frequency used in SFS during latent region optimization. From the figure, the use of only low-frequency (“ $\omega = 0.2$ ”) information easily leads

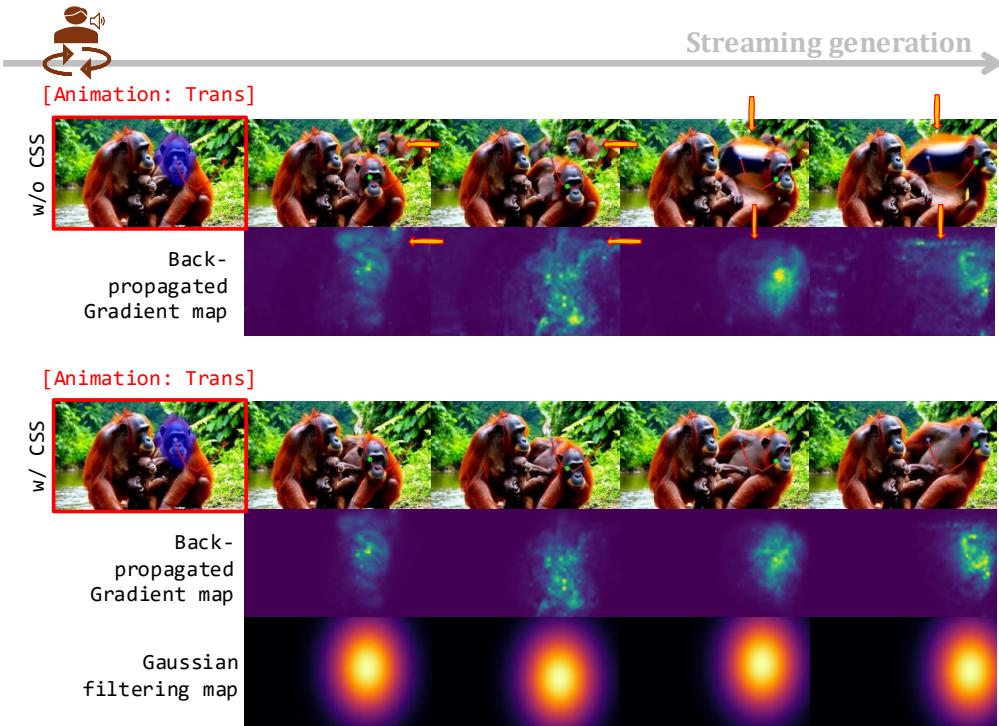
Figure 13: **Visualization analysis of switchable frequency.** ω indicates cutoff frequency.

to scene blurring and unnatural object shape variation. Meanwhile, the high-frequency information inherently contained in original images (“ $\omega = 1$ ”) causes noticeable artifacts in generated videos. In contrast, our proposed switchable frequency strategy can balance frequency components, effectively suppressing artifacts and blur while maintaining object shape consistency. These results confirm that our SFS strategy is crucial for achieving high-quality streaming video manipulation.

G VISUALIZED ANALYSIS OF GAUSSIAN FILTERING MAP

Figure 14 illustrates the effect of Gaussian filtering maps on streaming drag-style video manipulation. Without the use of Gaussian filtering map (“w/o CSS”) to constrain the latent optimization, back-propagated gradient maps may be leaked to irrelevant regions, thereby resulting in artifacts in generated video frames (e.g., distortions around non-target areas). In contrast, with Gaussian filtering maps (“w/ CSS”), gradients are constrained to focus on the most important target region,

1026 therefore suppressing their interference to surrounding areas and effectively improving video quality.
 1027



1040 **Figure 14: Visualization analysis of Gaussian filtering map.**
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051

1056 H ABLATION STUDY ON OBJECTIVE FUNCTION \mathcal{L}_{Tot}

1057
 1058 **Table 3: Ablation study on the objective function used in latent region optimization.**
 1059

1061 Experiment	1062 ObjMC (\downarrow)	1063 FVD (\downarrow)	1064 FID (\downarrow)	1065 DAI (\downarrow)
1062 w/ $\mathcal{L}_{\text{Rec}} + \mathcal{L}_{\text{Cst}}$	26.12	596.51	25.16	0.0545
1063 w/o \mathcal{L}_{Cst}	20.87	949.06	33.55	0.0509
1064 w/o \mathcal{L}_{Rec}	90.39	301.74	14.11	0.1337

1066 In Table 3, we provide ablation studies for the objective function used during latent region optimization.
 1067 As can be seen from the table, removing the reconstruction loss \mathcal{L}_{Rec} causes an obvious
 1068 performance drop in ObjMC and DAI, which indicates that objects in handle regions are not suc-
 1069 cessfully dragged to target points. Although removing the constraint term \mathcal{L}_{Cst} leads to a slight im-
 1070 provement in ObjMC and DAI, it causes a significant degradation in FVD and FID. This is because,
 1071 without \mathcal{L}_{Cst} , non-editable regions are severely affected by the latent region optimization, resulting
 1072 in noticeable artifacts in generated videos. These artifacts significantly degrade the overall video
 1073 quality, leading to a substantial decline in FVD and FID scores. This observation underscores the
 1074 importance of \mathcal{L}_{Cst} in maintaining the integrity of non-editable regions and ensuring high-quality
 1075 video generation.
 1076

1077 I COMPATIBILITY OF DRAGSTREAM

1078 In principle, our DragStream method is model-agnostic and can be seamlessly integrated with dif-
 1079 ferent autoregressive VDMs. To demonstrate this, we additionally apply our method to the recent

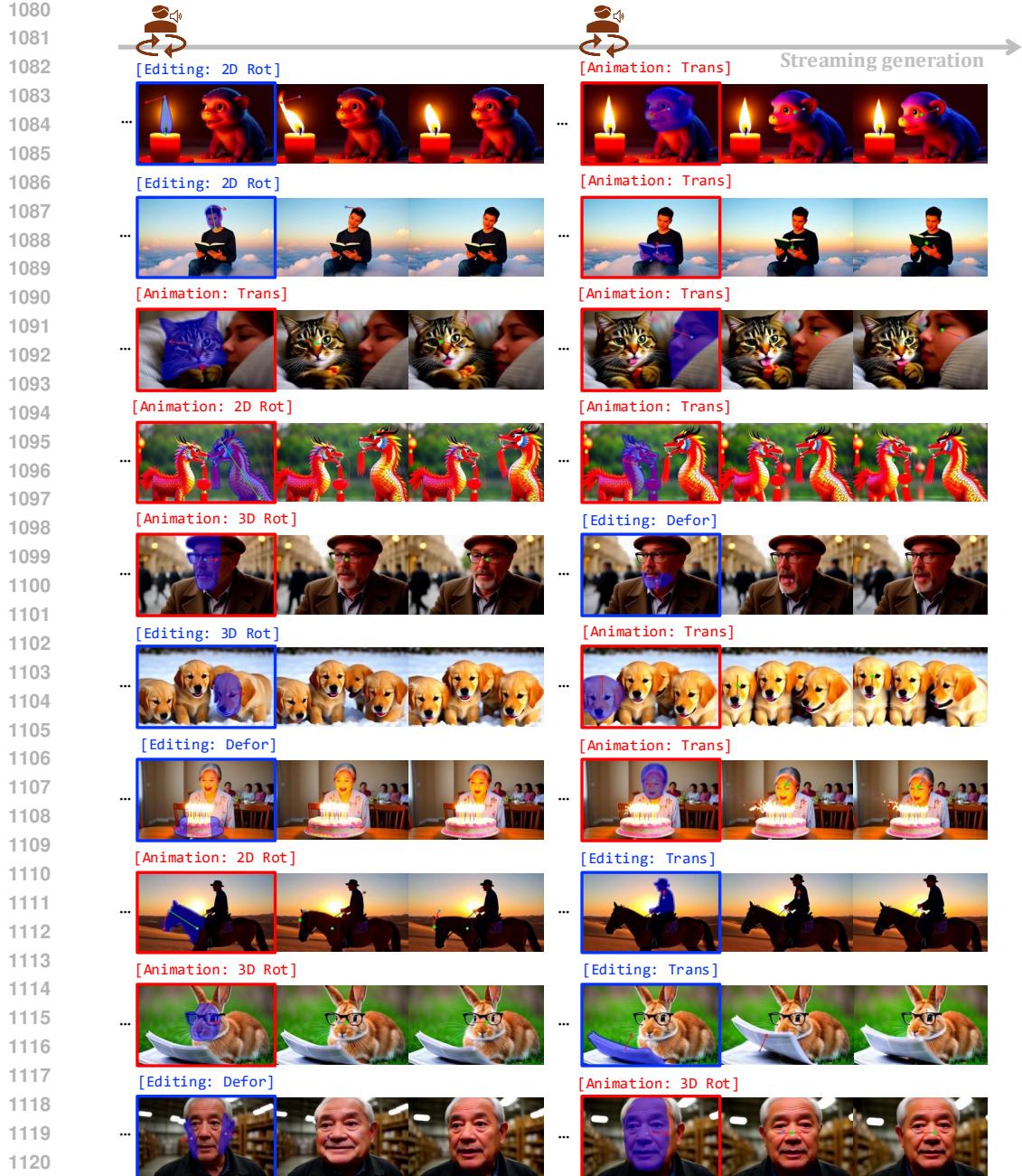


Figure 15: **Visualization results achieved by our DragStream approach based on CausVid Yin et al. (2025).**

autoregressive VDM, CausVid Yin et al. (2025). As can be seen from Figure 15, it can still achieve high-quality streaming drag-style video manipulation, enabling both **Editing** and **animation** with fine-grained drag operations such as translation (“**Trans**”), deformation (“**Defor**”), and rotation (“**Rot**”). These results demonstrate the effectiveness of our proposed method again, and also highlight its potential as a versatile training-free solution for streaming drag-style video manipulation across different VDM backbones. For more visualization results, we encourage readers to visit our anonymous project webpage, provided below the abstract.

1134 **J DRAG-STYLE OPERATION TYPES**
1135

1136 Currently, our DragStream supports both editing and animating video frames, with user-specified
 1137 drag effects including translation, deformation, and rotation. For both editing and animation tasks,
 1138 we can consider the following rules: *i*) translating an object along a trajectory can be achieved by
 1139 moving its entire region (*as shown in the fourth row from the bottom of Figure 12, the cup translation*
 1140 *can be achieved by moving its entire region*); *ii*) deforming object shape can be realized by translating
 1141 only its edge region (*an example is shown in the third row from the bottom of Figure 12*); *iii*) object
 1142 2D rotation can be realized by using a planar rotation transformation (*an example is given in the*
 1143 *third row from the bottom of Figure 12*); and *iv*) 3D rotation can be regarded as translating a sub-
 1144 region of the object, assisted by the inherent prior knowledge of VDMs (*as shown in the second row*
 1145 *of Figure 12, the 3D rotation of the man’s face can be realized by moving face’s sub-region*).
 1146

1147 **K WHY NEED CONTEXT FRAMES?**
1148

1149 In section 2, we argue that the context frames are sources of disturbance during streaming drag-style
 1150 video manipulation. However, we also emphasize that context frames provide crucial visual cues
 1151 that are essential for subsequent video generation. In Figure 16, we provide a visualization analysis
 1152 to illustrate the importance of context frames. As shown in the figure, without context frames (“w/o
 1153 context”), the generated video frames become totally blurry and unnatural. Besides, the foreground
 1154 object and background scene are completely changed to be inconsistent with the original video. In
 1155 contrast, with context frames (“w/ context”) and our SFSO mechanism, the generated video frames
 1156 preserves the appearance and structure of the foreground object, as well as the background scene,
 1157 while achieving high-quality drag-style manipulation. These results firmly demonstrate that context
 1158 frames provide indispensable visual cues for streaming drag-style video manipulation.
 1159

1178 **Figure 16: Visualization analysis on the importance of context frames.**
11791180 **L ADDITIONAL VIDEO RESULTS IN SUPPLEMENTARY MATERIALS**
1181

1182 We present additional video results in our supplementary material ‘supp-material-1676.zip’, includ-
 1183 ing 9 videos, which provide a more intuitive demonstration of the results achieved by our approach.
 1184 For more visualization results, we recommend readers again to visit our anonymous project web-
 1185 page: DragStream Demo.
 1186

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

M ROBUSTNESS ANALYSIS OF HYPERPARAMETERS

In this section, we analyse the robustness of several hyperparameters in our DragStream.

Analysis of L_n . The hyperparameter L_n determines how many neighboring latent embeddings are used to rectify drifted latent distribution during performing ADSR. The results in Table 4 shows that our method is robust to the hyperparameter L_n . When varying the value of L_n from 3 to 18, our DragStream exhibits consistently stable performance. By contrast, discarding ADSR (i.e., $L_n = 0$) leads to significant performance degradation, which demonstrate the effectiveness of our ADSR again.

Analysis of α . The hyperparameter α determines the shape of the Gaussian filtering map. In Table 5, we provide an analysis of α . On one hand, similar to the hyperparameter L_n , our DragStream still achieves stable performance when varying the value of α from 2 to 0.5. These results demonstrate that our approach is robust to the hyperparameter α . On the other hand, the removal of the Gaussian filtering map (“w/o CSS”) results in an obvious performance drop, highlighting the importance of using the Gaussian filtering map to guide the model toward critical areas during drag-oriented manipulation.

Analysis of ω . During latent region optimization, we let the model randomly switch among a set of predefined cutoff frequencies $\omega \in \{0.2, 0.4, 0.6, 1\}$, thereby preventing the high-frequency components from dominating the drag process and introducing artifacts or unnatural results. In Table 6, we show that our method is robust to the set of cutoff frequencies. As can be seen from the table, despite that the low-frequency component is randomly selected from a continuous range $[0, 1, 0.8]$, $[0, 1, 0.7]$, or $[0, 1, 0.6]$, our method still produce stable performance.

Analysis of I . Our DragStream is based on an iterative optimization scheme. In Table 7, we investigate the influence of the hyperparameter I . The experimental results in the table demonstrate the robustness of our approach to hyperparameters again. For example, despite setting I with a small value, such as $I = 3$ or 2, our approach still exhibits robust performance in streaming drag-style manipulation, which is significantly better than that of the baseline without using our DragStream (i.e., $I = 0$).

1236
1237
1238

N RESULTS ON CONTROLLING BIDIRECTIONAL MODELS

1239
1240
1241
Although our DragStream is designed for autoregressive VDMs, it can also be applied to bidirectional VDMs to control their generation process via drag-style control signal. From the results in Figure 17, we can see that our method can successfully guide the bidirectional model Wan-2.1 to generate videos that conform to drag-style conditions specified by users.

Table 4: **Analysis of the hyperparameter L_n .**

Experiments	ObjMC (↓)	DAI (↓)	FVD (↓)
$L_n = 0$	45.09	0.093	608.63
$L_n = 3$	25.88	0.052	570.41
$L_n = 9$	23.05	0.051	552.39
$L_n = 18$	24.37	0.051	554.25

Table 5: **Analysis of the hyperparameter α .**

Experiments	ObjMC (↓)	DAI (↓)	FVD (↓)
w/o CSS	26.12	0.061	25.16
$\alpha = 2.0$	24.70	0.054	24.52
$\alpha = 1.5$	23.50	0.052	24.17
$\alpha = 1.0$	23.65	0.053	24.04
$\alpha = 0.5$	24.52	0.055	23.65

“w/o CSS” results in an obvious performance drop, highlighting the importance of using the Gaussian filtering map to guide the model toward critical areas during drag-oriented manipulation.

Table 6: **Analysis of the hyperparameter ω .**

Experiments	ObjMC (↓)	DAI (↓)	FVD (↓)
$\omega \in [0.1, 0.8] \cup \{1\}$	24.27	0.054	584.21
$\omega \in [0.1, 0.7] \cup \{1\}$	24.05	0.054	578.65
$\omega \in [0.1, 0.6] \cup \{1\}$	23.99	0.053	558.97
$\omega \in \{0.2, 0.4, 0.6, 1\}$	23.05	0.051	552.39

“w/o CSS” results in an obvious performance drop, highlighting the importance of using the Gaussian filtering map to guide the model toward critical areas during drag-oriented manipulation.

Table 7: **Analysis of the hyperparameter I .**

Experiments	FID	ObjMC (↓)	DAI (↓)
$I = 0$	14.11	90.39	0.133
$I = 2$	25.88	27.67	0.054
$I = 3$	24.17	24.55	0.053
$I = 4$	23.72	23.05	0.051

“w/o CSS” results in an obvious performance drop, highlighting the importance of using the Gaussian filtering map to guide the model toward critical areas during drag-oriented manipulation.

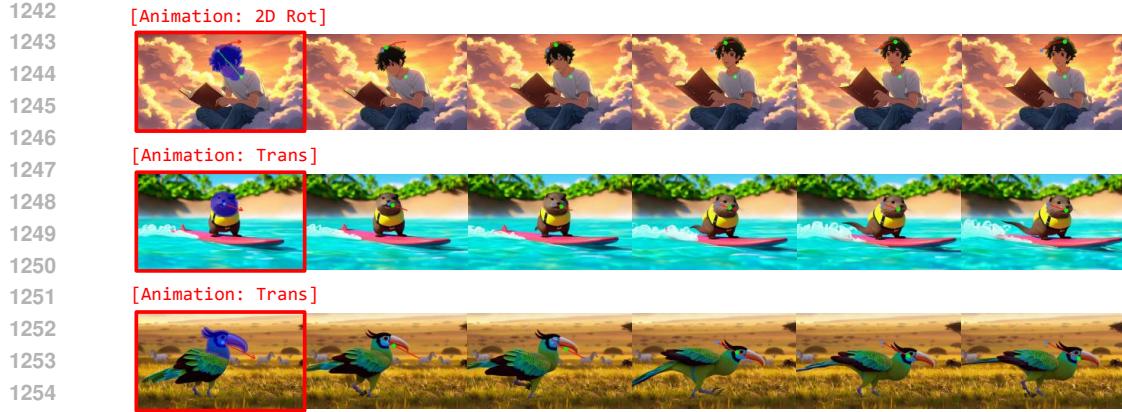


Figure 17: **Results of controlling the video generation of the bidirectional model Wan2.1 via drag-style instructions using our DragStream approach.**

O DISCUSSION OF PROMPT–DRAG CONFLICTS

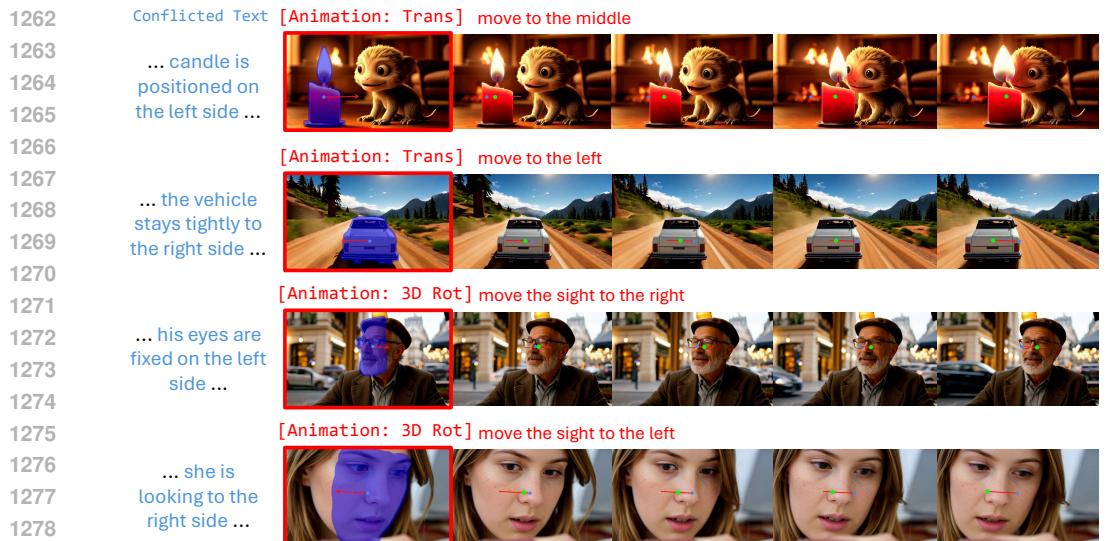


Figure 18: **Visualized case study on prompt-drag conflicts.**

In Figure 18, we further investigate an interesting scenario in streaming drag-style video manipulation where drag operations conflict with text prompts. We observe that when such conflicts occur, VDMs consistently follow drag instructions specified by users during generation. This is because our DragStream revises latent embeddings more explicitly. For example, as shown in the figure, although the text prompt requires the car to remain on the right side, our DragStream can successfully drag the car toward the left side of the path.

P ADDITIONAL RESULTS ON LONG VIDEO GENERATION

In this section, we provide additional streaming drag results of our DragStream in long video generation. As shown in Figure 19, despite accumulated errors remain a challenging issue for current autoregressive VDMs, our method can still effectively realize drag-based manipulation in 5s, 10s, and 20s. Importantly, compared with the original videos generated by Self-Forcing Huang et al. (2025), drag operations introduced by our DragStream do not degrade video quality either during the drag-based manipulation process or in subsequently generated video frames after the manipu-

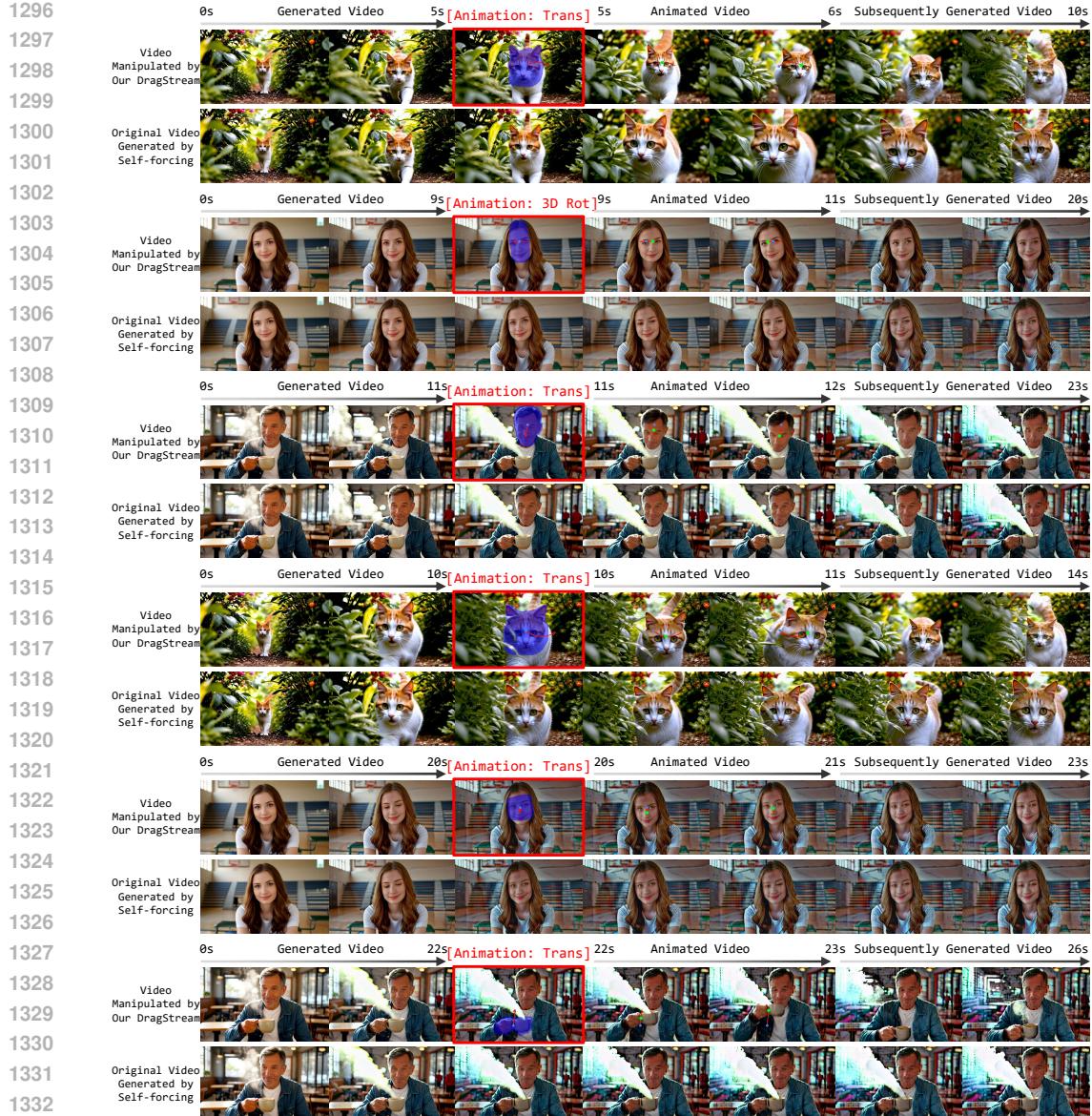
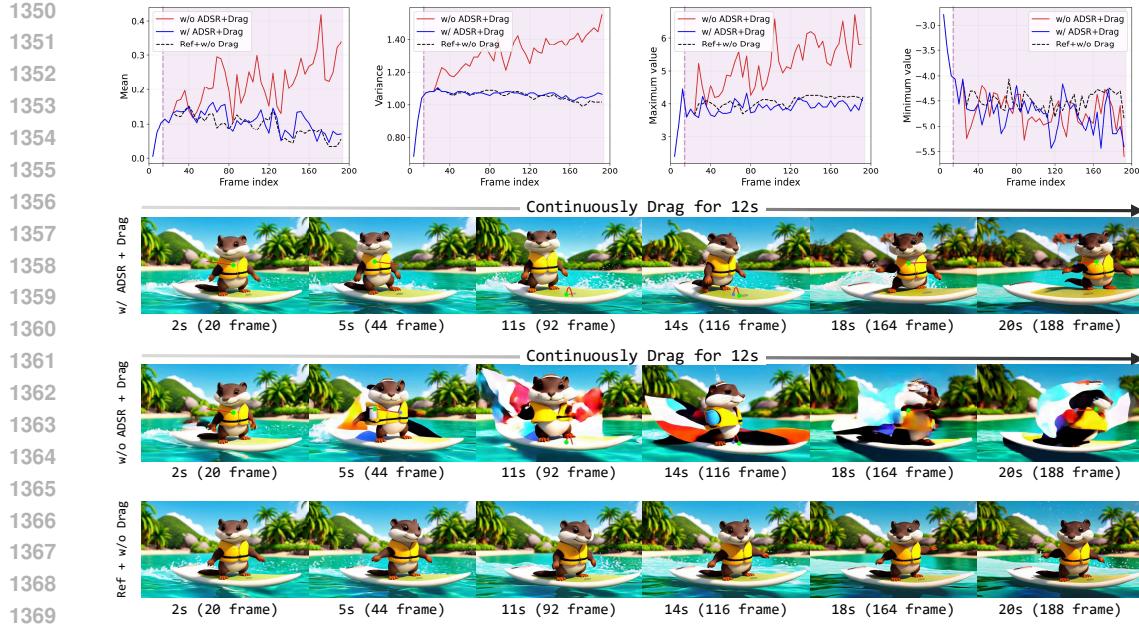


Figure 19: Additional results of our DragStream on long video generation.

lation. For example, in the second case, when we manipulate the frame at 9s (i.e., dragging the woman’s face to the left), the animated video clip maintains the same quality as that produced by Self-Forcing. Moreover, after the manipulation, our DragStream can continue to preserve the same quality as Self-Forcing in the subsequently generated frames from 11s to 20s. These experimental results firmly demonstrate that the effectiveness of our DragStream approach in streaming long-video generation.

Q LONG-DURATION DRAG-ORIENTED MANIPULATION

In this section, we further investigate the effectiveness of our ADSR strategy in long-duration drag-oriented video manipulation. As shown in Figure 20, performing drag-style manipulation without ADSR (“w/o ADSR + Drag”) results in severe latent distribution drift, which leads to noticeable degradation in video quality compared with the baseline without drag-based manipulation (“Ref + w/o Drag”). In contrast, our ADSR (“w/ ADSR + Drag”) can effectively suppresses the latent

Figure 20: **Analysis of ADSR in long-duration drag-oriented manipulation**Figure 21: **Streaming drag with object leaving and re-entering.**

1385 distribution drift issue even when drag operations are sustained for over 20s. Consequently, the
 1386 video generated by our DragStream (“w/ ADSR + Drag”) is significantly better than that of “w/o
 1387 ADSR + Drag”, further demonstrating the effectiveness of our DragStream approach.

R OBJECT LEAVING AND RE-ENTERING

1391 In addition to object occlusion and re-emergence discussed in Section 5.3, we also evaluate our
 1392 DragStream in another interesting scenario—objects leaving and re-entering the view. As shown in
 1393 Figure 21, when an object is dragged to move out of the frame and later back into view, DragStream
 1394 effectively preserves its appearance and structure, producing high-quality results of drag-based
 1395 manipulation. Actually, the re-entering process is essentially no different from the standard drag-based
 1396 manipulation. We just need to save the latent features of an object before it moves out of view, and
 1397 then reconstruct it along a user-given trajectory via latent optimization.