
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STREAMING DRAG-ORIENTED INTERACTIVE VIDEO
MANIPULATION: DRAG ANYTHING, ANYTIME!

Anonymous authors
Paper under double-blind review

[Animation: Trans] [Animation: Defor]

[Editing: 2D Rot] [Animation: Trans]

[Editing: 3D Rot][Animation: 3D Rot]

…

…

…

…

…

…

user user user user

Frame k1 Frame k1+1 Frame k2 Frame k2+1

…
…

Streaming

Drag Anything, Anytime!

Figure 1: Examples of our REVEL task. The streaming video manipulation results shown above—
including both Editing and Animation with drag effects such as object translation (“Trans”),
deformation (“Defor”), and rotation (“Rot”)—are produced by our DragStream method.

ABSTRACT

Achieving streaming, fine-grained control over the outputs of autoregressive video
diffusion models remains challenging, making it difficult to ensure that they con-
sistently align with user expectations. To bridge this gap, we propose stReaming
drag-oriEnted interactiVe vidEo manipuLation (REVEL), a new task that en-
ables users to modify generated videos anytime on anything via fine-grained, in-
teractive drag. Beyond DragVideo and SG-I2V, REVEL unifies drag-style video
manipulation as editing and animating video frames with both supporting user-
specified translation, deformation, and rotation effects, making drag operations
versatile. In resolving REVEL, we observe: i) drag-induced perturbations ac-
cumulate in latent space, causing severe latent distribution drift that halts the
drag process; ii) streaming drag is easily disturbed by context frames, thereby
yielding visually unnatural outcomes. We thus propose a training-free approach,
DragStream, comprising: i) an adaptive distribution self-rectification strategy
that leverages neighboring frames’ statistics to effectively constrain the drift of
latent embeddings; ii) a spatial-frequency selective optimization mechanism, al-
lowing the model to fully exploit contextual information while mitigating its inter-
ference via selectively propagating visual cues along generation. Our method can
be seamlessly integrated into existing autoregressive video diffusion models, and
extensive experiments firmly demonstrate the effectiveness of our DragStream1.

1 INTRODUCTION

Video Diffusion Models (VDMs) have shown impressive capabilities in generating photorealistic
videos, and their success inspired a broad range of generative applications, including image anima-
tion Lei et al. (2025); Hu (2024), text-based video editing Ceylan et al. (2023); Liu et al. (2024),

1For more visualization results, please refer to our anonymous project page: DragStream Demo

1

https://anonymous-30f12b51.github.io/Streaming-Drag-Oriented-Interactive-Video-Manipulation.github.io/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

camera-controlled video generation Zheng et al. (2024); He et al. (2024); Bai et al. (2025), etc. With
the progress in autoregressive VDMs Yin et al. (2025); Huang et al. (2025), researchers have been
focusing more on achieving controllable video generation in a streaming manner, thereby enabling
users to interact with VDMs and alter synthetic videos on the fly. For instance, Kodaira et al. (2023;
2025); Lin et al. (2025) proposed directly finetuning VDMs to support streaming video genera-
tion conditioned on text, camera viewpoint, and human pose, whereas Liang et al. (2024) realized
training-free, text-guided streaming video translation by introducing a looking-back strategy.

Drag-style operations have become a crucial control signal for VDMs due to their fine-grained nature
and user-friendly interactivity Wu et al. (2024); Deng et al. (2024); Wang et al. (2024); Namekata
et al. (2024); Zhou et al. (2025). However, it remains challenging to realize streaming, fine-grained
control over the outputs of VDMs through drag-style operations. To mitigate this dilemma, we
propose a new task, stReaming drag-oriEnted interactiVe vidEo manipuLation (REVEL). As
shown in Figure 1, REVEL aims to allow users to modify generated videos at any time and on any
content via fine-grained, interactive drag, making generated videos consistently meet users’ require-
ments. We go beyond prior methods, such as DragVideo Deng et al. (2024) and SG-I2V Namekata
et al. (2024), by unifying drag-oriented video manipulation as editing and animating video frames,
with both supporting user-specified translation, deformation, and rotation effects, thereby making
drag operations versatile and establishing a standard paradigm for drag-style video manipulation.

Given the fine-grained nature and high diversity of drag-based video manipulation, solving REVEL
is non-trivial. Directly finetuning VDMs to realize REVEL usually incurs expensive training costs—
requiring training VDMs on large-scale, fine-grained drag-style data by hundreds or even thousands
of H100 GPU hours Yin et al. (2025); Kodaira et al. (2025); Huang et al. (2025)—making it impracti-
cal for resource-constrained scenarios. This observation naturally leads us to ask a key question:
How can high-quality REVEL be achieved without incurring prohibitive computational costs?

We propose solving the above question from a training-free perspective in this paper, so as to ef-
fectively reduce training expenses. However, we observe that there exist two key challenges: i)
perturbations induced by drag operations easily accumulate in latent space, thereby causing severe
latent distribution drift that totally halts the drag process; ii) streaming drag is easily disturbed by
context frames, resulting in visually unnatural content. Therefore, we propose a new DragStream
approach. Specifically, we first design an Adaptive Distribution Self-Rectification (ADSR) strategy
that suppresses the distribution drift of latent code by considering statistics from neighboring frames,
thereby effectively overcoming drag interruption. We also introduce a Spatial-Frequency Selective
Optimization (SFSO) mechanism, which propagates visual cues from preceding video frames se-
lectively in both spatial and frequency domains. As a result, we can fully exploit the information
of context frames while relieving their interference. ADSR and SFSO enable our DragStream to
achieve high-quality results on REVEL without incurring prohibitive training costs, while allowing
it to be seamlessly integrated into existing autoregressive VDMs. Extensive experiments provided
in Section 5 and the appendix consistently demonstrate the superiority of our proposed approach.

Here, we summarize the main contributions of this paper:
• We propose stReaming drag-oriEnted interactiVe vidEo manipuLation (REVEL), a

new task that enables users to drag anything anytime during video generation, thus achiev-
ing streaming, fine-grained control over the outputs of VDMs via drag-style operations.

• We identify two key challenges in solving REVEL within a training-free paradigm: i) drag-
induced perturbations cause severe latent distribution drift and halt the drag process; and ii)
streaming drag is disturbed by context frames, resulting in visually unnatural outcomes.

• We propose DragStream, which incorporates a Spatial-Frequency Selective Optimization
(SFSO) mechanism and an Adaptive Distribution Self-Rectification (ADSR) strategy to
effectively suppress context interference and mitigate distribution drift in latent code.

• Extensive experiments clearly demonstrate the effectiveness of our approach in addressing
REVEL, showing that it achieves high-quality streaming drag-style manipulation, remains
training-free, and offers plug-and-play integration with existing autoregressive VDMs.

2 RELATED WORK

Streaming Video Generation. StreamDiffusion Kodaira et al. (2023), SVDiff Chen et al. (2024),
and StreamDiT Kodaira et al. (2025) are recent representative streaming text-guided video genera-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tion models, in which VDMs are either trained from scratch or finetuned to enable streaming control
via text prompts. Lin et al. (2025) proposed an autoregressive adversarial post-training strategy
that enables VDMs to operate as one-step autoregressive generators, supporting conditions on hu-
man pose, camera viewpoint, and text. Liang et al. (2024) designed a text-based streaming video
translation model by preserving historical information across video frames using a feature bank.

Drag-Based Video Generation and Editing. Wu et al. (2024); Wang et al. (2024) proposed finetun-
ing bidirectional VDMs with trajectory conditions, thereby realizing trajectory-guided video gener-
ation. Zhang et al. (2025a) proposed unifying text, image, and trajectory conditions into a DiT
framework Peebles & Xie (2023), while Geng et al. (2025); Zhang et al. (2025b) further trained
VDMs on dense trajectories. Namekata et al. (2024); Qiu et al. (2024); Jain et al. (2024); Deng et al.
(2024) resorted to training-free frameworks. Deng et al. (2024) introduced a drag-based latent opti-
mization strategy to realize drag-oriented video editing. Namekata et al. (2024) proposed to further
consider semantically aligned visual features during dragging, whereas Qiu et al. (2024) achieved
trajectory-guided video generation by imposing guidance on both attention and noise construction.

REMARK 1. i) Despite the progress in streaming video generation, current models rarely support
highly flexible, fine-grained drag-style operations in a streaming manner—a key challenge our work
aims to address. ii) Existing drag-based video generation and editing methods are not tailored
for streaming tasks, making them unsuitable for achieving fine-grained, streaming control over the
outputs of autoregressive VDMs. iii) Directly finetuning VDMs for realizing streaming drag-style
manipulation is computationally expensive, usually requiring training VDMs on large-scale drag-
style data by hundreds or even thousands of H100 GPU hours, which is unacceptable for resource-
constrained scenarios. Different from finetuning-based methods, our DragStream is training-free
and can be seamlessly integrated into existing autoregressive VDMs. iv) Beyond previous works,
we unify drag-style video manipulation as editing and animating video frames with both supporting
user-specified translation, deformation, and rotation effects, thus making drag operations versatile.

3 STREAMING DRAG-ORIENTED INTERACTIVE VIDEO MANIPULATION

We first give the definition of our stReaming drag-oriEnted interactiVe vidEo manipuLation
(REVEL) task in Definition 1. For the summary of the main notations, please refer to Section B.

Definition 1 (REVEL) Let Γk denote the k-th video frame produced by autoregressive VDMs.
REVEL aims to enable users to utilize drag-style operations Uk to modify video frames for ∀k ∈ Z+

and ensures that subsequently nearby frames are consistent to Γk, so as to realize streaming, fine-
grained control over outputs of VDMs and make generated videos always meet users’ requirements.

We argue that there exist a major limitation in current drag-based video manipulation, namely the
lack of a unified definition of drag-style manipulation operations. Existing drag-based video edit-
ing methods focus on dragging objects in generated videos, with the goal of yielding the effects of
translation, deformation, and rotation Deng et al. (2024); also, these methods are generally unable
to allow users to animate video frames via dragging. By contrast, trajectory-guided video gener-
ation models are designed to generate video clips by moving objects along trajectories, with their
motion rendered by VDMs; however, they are not flexible enough to specifically allow users to
determine the type of drag operations, e.g., deforming object shape, translating objects, or rotating
them around a center point Namekata et al. (2024); Zhang et al. (2025a). Since both of these settings
are incomplete, we propose unifying drag-style video manipulation operations in Proposition 1.

Proposition 1 (Unifying Drag-Style Video Manipulation Operations) We unify drag-style video
manipulation as enabling users to perform editing and animation on video frames via drag-style op-
erations, with both supporting user-specified translation, deformation, and 2D/3D rotation effects.
Here, editing refers to directly modifying the content of generated video frames, whereas animation
represents generating a video clip from an existing frame according to user-given drag instructions.

REMARK 2. Here, we clarify how our REVEL task differs from prior works on drag-based video
editing and generation. DragVideo Deng et al. (2024) is a recent typical drag-based video editing
approach. Different from our REVEL, it only supports drag-based editing and does not allow users
to animate video frames. Moreover, DragVideo does not support the 2D object rotation operation.
SG-I2V Namekata et al. (2024) and Tora Zhang et al. (2025a) are two typical trajectory-guided

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

[Animation: Trans]

[Animation: Rot]

[Animation: Trans] w/o ADSR: Distribution drift halts the drag process w/ ADSR

w/o SFSO: Context interference causes artifacts w/ SFSO

Interference

Interference

(a) Challenge 1: Latent distribution drift

(b) Challenge 2: Context interference

Drag Drag Drag Drag

Mean of latent code Variance of latent code Maximum value of latent code Minimum value of latent code

Figure 2: Examples of Challenge 1 and Challenge 2.
video generation approaches. Both of them focus solely on animating images by moving objects
along trajectories with VDM-rendered motion, without allowing users to flexibly achieve more fine-
grained drag-style effects, such as editing object shape or rotating objects around a center point
by a specific angle. Most importantly, these methods are all incapable of achievinbg drag-oriented
video editing and animation in a streaming manner.

We propose addressing REVEL from a training-free perspective, and identify that there exist two
key challenges, summarized in Challenge 1 and Challenge 2, respectively.

Challenge 1 (Latent Distribution Drift) Perturbations induced by drag-style operations easily ac-
cumulate in the latent space of autoregressive VDMs, which leads to severe distribution drift of latent
code and thus interrupts the drag process.

We show Challenge 1 in Figure 2 (a). The figure shows that the mean and variance of latent embed-
dings change significantly once drag operations are applied, while the maximum and minimum val-
ues exhibit obvious fluctuations. This instability drives the latent embeddings (“w/o ADSR+drag”)
to drift away from the original distribution (“Ref: w/o Drag”), thereby disrupting the drag process.
We find that latent distribution drift may cause undesirable change of object attributes, such as color
and category, as shown in the second row of Figure 2 (a). The use of our ADSR strategy (“w/
ADSR+Drag”) can effectively suppress the distribution drift. We will introduce it in Section 4.2.2.

Challenge 2 (Context Interference) Streaming drag is easily disturbed by context frames, mis-
leading VDMs to produce visually unnatural content and thus substantially degrading video quality.

We show Challenge 2 in Figure 2 (b). The results in Figure 2 (b) clearly indicate that visual cues
from previous frames may mislead the subsequent generation severely, e.g., the features around the
handle points spuriously guide the model to produce duplicated ears on the rabbit and artifacts on
the car (“w/o SFSO”), which obviously lowers the quality of generated videos. We will introduce
how to overcome context interference by using our SFSO strategy in Section 4.2.3.

4 METHODOLOGY

4.1 PRELIMINARIES

Autoregressive Video Diffusion Models. Autoregressive VDMs refer to a hybrid generative frame-
work that integrates diffusion models with chain-rule decomposition, i.e., P(Γ1:k) =

∏k
i=1 P(Γi |

{Γj}j=max(i−Lc,0):i−1), where P(Γi | {Γj}j=max(i−Lc,0):i−1) is modeled by iteratively denoising

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

𝒛0
𝑘

𝒛0
𝑘′

…

𝒛0
𝑘−1

…

𝒛𝑇′
𝑘′

…
Denoise

𝒛𝑇
𝑘′

…
Denoise

𝒛𝑇′
𝑘

…
Denoise

𝒛𝑇
𝑘

…
Denoise

𝒛𝑇′
𝑘−1

…
Denoise

𝒛𝑇
𝑘−1

…
Denoise 𝒛𝑇′

𝑘

𝒛𝑇′
𝑘′

DiT

Iterative Latent Region Optimization

DiT

Multi-layer features

Reconstruction

ℒTot

Interventional

adjustment

Decode

Decode

Decode

Streaming
generation

S
F
S

KV cache

KV cache

ADSR

CSS

Fetch

Fetch

Multi-layer features

𝐿 layers

𝒛𝑇′
𝑘′

Gradients

𝒛𝑇′
𝑘′

← 𝒛𝑇′
𝑘′

− 𝑮𝑘′ 𝜕ℒTot

𝜕𝒛𝑇′
𝑘′

CSS

Adaptive Distribution Self-Rectification

𝒛𝑇′
𝑘𝒛𝑇′

𝑘−1

𝒛𝑇′
𝑘′

𝑰 iterations𝑖-th iteration

Neghboring latent embeddings

ഥ𝝁𝑇′

Denoising timesteps

ഥ𝝈𝑇′

Rectification

Distribution drift

𝐿 layers

Gaussian filtering map

Back-
propagation

𝑮𝑘′

𝜕ℒTot

𝜕𝒛𝑇′
𝑘′

𝑯𝑖
𝑘

𝒀𝑖
𝑘′

𝚪𝑘−1

𝚪𝑘

𝚪𝑘′

Manipulate
the k-th
frame

SFS
Self-attention

Switchable
Frequency selection

KV cache

Repeat in 𝑳 layers

Linear projector

Input

𝜔1 𝜔4

Randomly switchable

Output

Back-
propagation

If Editing: 𝑘′ = 𝑘;
If Animation: 𝑘′ = 𝑘 + 1.

Focus on crucial region

Next iteration

𝑘 − 1…𝑘 − 𝐿𝑐

… 𝑘′ − 2𝑘′ − 𝐿𝑐 𝑘′ − 1

𝑘 − 1…𝑘 − 𝐿𝑐 𝑸𝑘𝑽𝑘
𝑲𝑘

𝜔2 𝜔3

Spatial-Frequency Selective Optimization

𝒀𝑖
𝑘′

Figure 3: Schematic illustration of our DragStream, where an Adaptive Distribution Self-
Rectification (ADSR) strategy and a Spatial-Frequency Selective Optimization (SFSO) mechanism
are designed to suppress latent distribution drift and context interference, respectively.

a Gaussian latent code zi
T ∈ N (0, I) conditioned on the proceeding frames {Γj}j=max(i−Lc,0):i−1,

and Lc represents the length of the context window. Generally, a KV caching strategy is employed
during inference to accelerate autoregressive generation Huang et al. (2025); Yin et al. (2025).

Drag-Style Operation Formats. We use Uk = {Ek,Ck} to represent drag-style operations for
a video frame Γk, where Ek = {Hk

i }i=1:n indicates a set of user-specified handle regions that
require to be dragged, and Ck = {ηk, ζki ,Ok

i }i=1:n represents the corresponding drag instruc-
tions. The indictor ηk = Editing or Animation determines whether the video frame Γk is to
be edited or animated, whereas ζki indicates the type of each drag operation. For animation, Ok

i =

{hk
i , {pk′

i }k′=k+1:k+m, cki }, if ζki = Rotation; otherwise, Ok
i = {hk

i , {pk′

i }k′=k+1:k+m}. Here,
hk
i represents a handle point, {pk′

i }k′=k+1:k+m represents m discrete target points sampled along a
drag trajectory, assigned to subsequent m video frames, and cki denotes a rotation center of the han-
dle region Hk

i . For editing, Ok
i = {hk

i ,p
k
i , c

k
i }, if ζki = Rotation; otherwise, Ok

i = {hk
i ,p

k
i }.

Here, each drag operation considers only one target point, since the editing task ignores intermediate
drag states. Also, a binary mask Mk is utilized to specify the non-editable region of the frame Γk.

4.2 DRAGSTREAM: DRAG ANYTHING, ANYTIME IN A TRAINING-FREE PARADIGM

4.2.1 OVERALL PIPELINE

We first introduce the overall pipeline of our DragStream. Suppose that users observe the video
frame Γk during streaming generation and intend to manipulate Γk by giving the instructions
Uk = {Ek,Ck}, where Ek = {Hk

i }i=1:n indicates handle regions, and Ck = {ηk, ζki ,Ok
i }i=1:n

denotes the corresponding drag instructions. We use Γk′
to represent a video frame produced during

dragging, where k′ = k if ηk = Editing; otherwise, k′ > k since new frames are animated during
Animation.

We take the handle region Hk
i as an example to illustrate our method. As exhibited in Figure 3,

we first denoise zk′

T to zk′

T ′ , and extract the features F(zk′

T ′) by concatenating features from the
multiple layers of the DiT denoiser ϵΘ(·|{Ki,V i}i=k′−Lc:k′−1), where {Ki,V i}i=k′−Lc:k′−1 are

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the cached keys and values of context frames. We then estimate the position of the handle region
Hk

i after being dragged within the features F(zk′

T ′) according to the user-given drag instruction:

Y k′

i ,ΠHk
i →Y k′

i
= G(k′,Hk

i , η
k, ζki ,O

k
i), (1)

s.t.,G(k′,Hk
i , η

k, ζki ,O
k
i) =

{
Rot(Hk

i , c
k
i , θ = ∠pk′

i cki p
k
i), if ζki = Rotation

Trans(Hk
i ,ϑ = pk′

i − pk
i), else.

Here, Rot(Hk
i , c

k
i , θ) denotes rotating the handle region Hk

i around the center point cki by an angle
θ, and Trans(Hk

i ,ϑ) indicates translating Hk
i by an offset ϑ. Y k′

i is a binary mask that indicates
the target position of Hk

i in the extracted featuresF(zk′

T ′), and ΠHk
i →Y k′

i
is the coordinate mapping

from Hk
i to Y k′

i . Finally, the latent code zk′

T ′ is iteratively optimized. In each iteration, the features
of zk

T ′ are also extracted and detached as reference features, Fref(zk
T ′) = F(zk

T ′).detach().
Moreover, we interventionally adjust the reference features according to the coordinate mapping,
Fref(zk

T ′)[ΠHk
i →Y k′

i
], thereby perturbing the original latent code and transforming the handle re-

gion features to the target position Y k′

i . The latent code zk′

T ′ of the new frame Γk′
can be updated

by reconstructing the features from the original handle region at the target position of F(zk′

T ′)

zk′

T ′ ←− zk′

T ′ −
∂LTot
∂zk′

T ′
, (2)

where

LTot = ∥F(zk′

T ′) ∗ Y k′

i −Fref(zk
T ′)[ΠHk

i →Y k′
i
] ∗ Y k′

i ∥1︸ ︷︷ ︸
LRec

+ ∥F(zk′

T ′) ∗Mk′
−Finit(zk′

T ′) ∗Mk′
∥1︸ ︷︷ ︸

LCst

.

(3)
Here, LRec denotes a reconstruction loss, and LCst represents a constraint term that ensures the
consistency of the non-editable region Mk′

of Γk′
. Finit(zk′

T ′) = F(zk′

T ′).detach() indicates the
initial features of zk′

T ′ before conducting iterative latent region optimization. Our ADSR and SFSO
strategies are employed during the above iterative latent region optimization process to overcome
Challenge 1 and Challenge 2, which are detailed in Section 4.2.2 and Section 4.2.3, respectively.

REMARK 2. If ηk = Animation, then k′ > k, which represents a cross-frame optimization
paradigm, i.e., using the perturbed features Fref(zk

T ′)[ΠHk
i →Y k′

i
] to guide the denoising process of

zk′

T of the new frame Γk′
. If ηk = Editing, k′ = k, which can be seen as self-guided optimization,

i.e., using the detached features Fref(zk
T ′)[ΠHk

i →Y k′
i
] of Γk to guide the re-denoising of zk

T .

4.2.2 ADAPTIVE DISTRIBUTION SELF-RECTIFICATION

We propose a simple-yet-effective strategy, Adaptive Distribution Self-Rectification (ADSR), to ad-
dress the latent distribution drift issue caused by cumulative perturbations—Challenge 1—as pro-
vided in Proposition 2.

Proposition 2 (Adaptive Distribution Self-Rectification) Suppose users apply drag-style opera-
tions to the frame Γk. The statistics µ̄T ′ and σ̄T ′ of the preceding neighboring latent embeddings
{zi

T ′}i=k′−Ln−1:k′−1 of Γk are recorded, where µ̄T ′ and σ̄T ′ are the mean and standard deviation.
We propose using µ̄T ′ and σ̄T ′ to rectify the distribution of zk′

T ′ after each optimization iteration:

ẑk′

T ′ =
Iter optim(zk′

T ′ ,Uk)− µk
T ′

σk′
T ′

∗ σ̄T ′ + µ̄T ′ , (4)

where Iter optim(·) denotes an iteration of the latent optimization, and µ̄T ′/µk′

T ′ and σ̄T ′/σk′

T ′

denotes the mean and standard deviation of {zi
T ′}i=k′−Ln−1:k′−1/z

k′

T ′ . As exemplified in Figure 2
(a), our ADSR can effectively suppress the distribution drift of latent embeddings, while significantly
improving video quality and preventing undesired changes in object attributes during dragging. This
aligns with the findings provided in Figure 7, showing that ADSR consistently improves model
performance across the evaluation metrics ObjMC, DAI, FVD, and FID. For more details, please
refer to Section 5.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2.3 SPATIAL-FREQUENCY SELECTIVE OPTIMIZATION

We design a Spatial-Frequency Selective Optimization (SFSO) mechanism to overcome Chal-
lenge 2. It fully exploits the information of context frames while relieving their interference via
conducting information selection in both frequency and spatial domains during iterative latent re-
gion optimization.

High-frequency information—though capturing finer visual information—tends to mislead VDMs
to produce unnatural results, as it carries more noise perturbations Fan et al. (2019); Li et al. (2020);
by contrast, low-frequency information—while more robust—lacks sufficient fine-grained visual
details. We argue that it is crucial to harness the strengths of both high- and low-frequency informa-
tion while alleviating their inherent limitations during the drag-oriented optimization process. We
therefore propose a Switchable Frequency-domain Selection (SFS) strategy in Proposition 3.

Proposition 3 (Switchable Frequency-domain Selection) Let {li}i=1:L represent the layers of the
DiT denoiser that are used to construct reference features, and let Xk

li
denote the input features of

the layer li. SFS is applied to the self-attention of the layer {li}i=1:L to build reference features with
switchable frequency components in each iteration of the latent region optimization process:

Qk
li ,K

k
ii ,V

k
li = Linear projector(Xk

li), (5)

K̄k
li = Concat({Kj

li
}j=k−Lc:k−1, Kk

li), V̄
k
li = Concat({V j

li
}j=k−Lc:k−1,V

k
li), (6)

{K̄k
li , V̄

k
li } = IFFT(Butterw(FFT({K̄k

li , V̄
k
li }), ω = Random(ω1, ..., ωN))), (7)

Xk
li+1 = self-attention(Qk

li , K̄
k
li , V̄

k
li). (8)

Here, {Kj
li
}j=k−Lc:k−1 and {V j

li
}j=k−Lc:k−1 denote cached keys and values, Butterw(· | ω)

represents the Butterworth filter with the cutoff frequency ω randomly selected from {ωi}i=1:N , and
FFT(·) and IFFT(·) represent the 2D Fourier transform and 2D inverse Fourier transform.

By using SFS strategy, in each iteration, the information of different frequencies can be propagated
to the latent embeddings zk′

T ′ of Γk′
by the reconstruction lossLRec, thus fully exploiting information

from context frames, while preventing high-frequency information from dominating the drag process
and inducing artifacts in generated frames.

In Proposition 4, we also design a Criticality-driven Spatial-domain Selection (CSS) strategy to
prevent over-optimization of the background within editable region, which is beneficial for further
reducing unnatural content.

Proposition 4 (Criticality-driven Spatial-domain Selection) We selectively back-propagate gra-
dients in spatial domain, avoiding the drag process undesirably affecting the background:

zk′

T ′ ←− zk′

T ′ −Gk′ ∂LTot
∂zk′

T ′
(9)

where Gk′
is a Gaussian filtering map that decays w.r.t. the distance to the center point (xc, yc) of

the edited region

Gk′
[x, y] = exp

[
−
(
(x− xc)

2

2σ2
x

+
(y − yc)

2

2σ2
y

)]
, s.t., σx =

W

2
∗ α and σy =

H

2
∗ α, (10)

W and H are the width and height of the handle region’s minimum bounding rectangle, and α is a
hyperparameter scaling the spread of the Gaussian and set as 1. The use of SFS and CSS can further
improve video quality, which is demonstrated by experiments given in the main paper and appendix.

5 EXPERIMENTS

Since REVEL is a new task, no existing approaches have been specifically designed to tackle it. We
adapt two training-free methods, SG-I2V Namekata et al. (2024) and DragVideo Deng et al. (2024),
to the REVEL task for comparison. Please refer to Section C of the appendix for details about our
experimental setup, including implementation details, evaluation metrics, and compared baselines.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

…

O
u
rs

…

…

[Editing: 2D Rot] [Animation: Trans]

SG
-I
2
V

D
ra
gV
id
eo

[Animation: 3D Rot] [Animation: 3D Rot]

[Animation: Trans] [Animation: Trans]

…
O
u
rs

…

…

S
G
-I
2
V

D
ra
gV
id
eo

…

O
u
rs

…

…

SG
-I
2
V

D
ra
gV
id
eo

[Editing: Trans]

O
u
rs

SG
-I
2
V

D
ra
gV
id
eo

[Animation: Trans]

…

…

…

Streaming generation

…

…

…

…

…

…

…

…

…

…

…

…

Distortion

Distortion

Drag failure

Artifact

Drag failure

Distortion

Distortion

Drag failure

Figure 4: Visualization results achieved by our DragStream on REVEL. Note that Editing
produces only one video frame, but we insert an extra subsequent frame to maintain layout consis-
tency with Animation.

5.1 MAIN RESULTS

Visualization Results. The visualization results achieved by our method are shown in Figure 4.
Compared to SG-I2V and DragVideo, our DragStream produces obviously more natural and higher-
quality streaming drag-style video manipulation results. For instance, it better preserves object ap-
pearance and structure, while exhibiting fewer visual distortions, artifacts, and drag failures. These
results validate the effectiveness of our method in addressing the REVEL task. More visualization
results achieved by our DragStream are provide in the appendix; for details, please refer to Section E.

Quantitative Performance. The quantitative results in Figure 5 demonstrate that our DragStream
consistently outperforms SG-I2V and DragVideo again. On one hand, the lowest FID and FVD
scores indicate that our DragStream achieves higher video quality than SG-I2V and DragVideo.
On the other hand, achieving the best ObjMC and DAI scores demonstrates that our DragStream
approach realizes more precise object dragging, aligned with the findings shown in Figure 4.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

SG-I2V DragVideo Ours81624324048
Score

44.19 49.69

23.05

ObjMC ()

SG-I2V DragVideo Ours400500600700800900

Score

936.89

561.45 552.39

FVD ()

SG-I2V DragVideo Ours182124273033

Score

33.59

25.02 23.72

FID ()

SG-I2V DragVideo Ours0.030.040.050.060.070.080.09

Score

0.08 0.09

0.05

DAI ()

Figure 5: Quantitative performance achieved by our method in terms of ObjMC, FVD,
FID, and DAI. “↓” indicates that lower values correspond to better performance.

w/o ADSR,SFSOw/ ADSRw/ ADSR,SFSw/ ADSR,CSS Full2024283236404448

Score

ObjMC ()

w/o ADSR,SFSOw/ ADSRw/ ADSR,SFSw/ ADSR,CSS Full540550560570580590600610

Score

FVD ()

w/o ADSR,SFSOw/ ADSRw/ ADSR,SFSw/ ADSR,CSS Full23.524.024.525.025.5

Score

FID ()

w/o ADSR,SFSOw/ ADSRw/ ADSR,SFSw/ ADSR,CSS Full0.0400.0480.0560.0640.0720.0800.0880.096

Score

DAI ()

Figure 6: Ablation study on the key components of our DragStream.

0.2 0.4 0.6 0.8 SwitchCutoff frequency
24
25
26
27

Score

ObjMC ()

0.2 0.4 0.6 0.8 SwitchCutoff frequency
552556560564568572576580584588

Score

FVD ()

0.2 0.4 0.6 0.8 SwitchCutoff frequency
24.0
24.5

Score
FID ()

0.2 0.4 0.6 0.8 SwitchCutoff frequency
0.0520.0530.0540.0550.0560.057

Score

DAI ()

Figure 7: Analysis on the influence of the cutoff frequency ω. “Switch” represents
frequencies are switchable during the latent region optimization.

5.2 ANALYSIS

Ablation Study. In Figure 6, we conduct ablation study to investigate the influence of each com-
ponent. The results indicate the full method achieves the best performance. Discarding SFSO (“w/
ADSR”) leads to significant performance degradation, while further removing ADSR (”w/o ADSR,
SFSO”) results in an even greater decline. These results demonstrate the importance of the ADSR
strategy and the SFSO mechanism. Similarly, using the full SFSO is better than using CSS or SFS
alone. We also analyze the influence of the cutoff frequency in Figure 7. We can see that both
small and large cutoff frequencies lead to performance drops. By contrast, our switchable frequency
selection strategy achieves the best performance, as it fully exploits contextual information while
mitigating interference from high-frequency components by preventing them from dominating the
drag process.

Table 1: Runtime analysis of our DragStream approach.
In the table, “RF” denotes runtime per frame, and I indicates
the number of iterations of drag-oriented latent optimization.

Experiments RF ObjMC (↓) DAI (↓)

I = 0 0.17s 90.39 0.133

I = 2 0.24s 27.67 0.054
I = 3 0.27s 24.55 0.053

I = 4 (Ours) 0.30s 23.05 0.051

Runtime Analysis. Table 1 exhibits the runtime anal-
ysis of our DragStream approach. Our DragStream is
based on an iterative optimization scheme. In the ta-
ble, we investigate the influence of the iteration num-
ber I . We find that setting I = 4 already achieves
satisfactory performance, achieving 23.05 ObjMC and
0.051 DAI, while incurring only 0.13s of additional
runtime per frame compared with the baseline with-
out DragStream (i.e., I = 0). Decreasing the iteration
number—such as I = 2 or 3—can further improve execution speed, while still maintaining ac-
ceptable drag-based manipulation performance, with ObjMC and DAI clearly outperforming those
of the baseline (i.e., I = 0). Note that all the experiments on the table are conducted on a single
NVIDIA H20 GPU.

5.3 COMPLEX STREAMING MANIPULATION

Occlusion and Re-emergence. In Figure 8, we also study our DragStream in the scenario of object
occlusion and subsequent re-emergence. We find that our approach shows promising performance

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

[Animation: Trans]

[Animation: Trans]

face occluded by cup face re-emerges

face occluded by cup face re-emerges

Figure 8: Streaming drag with object occlusion and Re-emergence.
[Animation: Trans]

[Animation: Trans]

10s0s Generated Videos 11s10s Animated Videos

22s0s Generated Videos 23s22s Animated Videos

Figure 9: Streaming drag in long video scenarios.
[Animation: Defor]

[Animation: Trans]

Unreasonable Overstretch

Physically Implausible Drag

Figure 10: Failure cases under unreasonable and physically implausible conditions.

in this scenario and produce smooth video results. This is because VDMs are trained on massive
amounts of data and thereby learns rich prior knowledge about object occlusion and scene transition.

Streaming Drag in Long Video Generation. In Figure 9, we study the use of our DragStream for
achieving streaming drag in long video generation. As shown in the figure, despite that accumulated
errors remain a challenging issue for current autoregressive VDMs, our method can still effectively
realize drag-based manipulation. For more results, please refer to Section P of our appendix.

5.4 FAILURE CASES

We observe a failure case of our method. As shown in Figure 10, our method fails to realize high-
quality manipulation under highly unreasonable and physically implausible conditions, as such ma-
nipulation instructions severely conflict with prior knowledge learned by VDMs in large-scale data.

6 CONCLUSION

We propose stReaming drag-oriEnted interactiVe vidEo manipuLation (REVEL), a new task
that aims to allow users to achieve streaming, drag-style control over the outputs of autoregressive
VDMs. To solve REVEL, we propose a training-free approach, DragStream, which employs an
Adaptive Distribution Self-Rectification (ADSR) strategy and design a Spatial-Frequency Selective
Optimization (SFSO) mechanism. ADSR effectively constrains the drift of latent embeddings by
leveraging neighboring frames’ statistics, while SFSO fully exploits contextual information while
mitigating its interference via selectively propagating visual cues along generation in spatial and
frequency domains. These two strategies enable our method to achieve superior performance on
REVEL and allow seamless integration into existing autoregressive VDMs. We hope this work will
inspire more excellent solutions to address the streaming drag-style video manipulation problem.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji
Hu, Xiang Bai, Pengfei Wan, et al. Recammaster: Camera-controlled generative rendering from
a single video. arXiv preprint arXiv:2503.11647, 2025.

Duygu Ceylan, Chun-Hao P Huang, and Niloy J Mitra. Pix2video: Video editing using image
diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
23206–23217, 2023.

Feng Chen, Zhen Yang, Bohan Zhuang, and Qi Wu. Streaming video diffusion: Online video editing
with diffusion models. arXiv preprint arXiv:2405.19726, 2024.

Yufan Deng, Ruida Wang, Yuhao Zhang, Yu-Wing Tai, and Chi-Keung Tang. Dragvideo: Interactive
drag-style video editing. In European Conference on Computer Vision, pp. 183–199. Springer,
2024.

Linwei Fan, Fan Zhang, Hui Fan, and Caiming Zhang. Brief review of image denoising techniques.
Visual computing for industry, biomedicine, and art, 2(1):7, 2019.

Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester Cole, Serena Zhang, Tobias Pfaff, Tatiana
Lopez-Guevara, Yusuf Aytar, Michael Rubinstein, Chen Sun, et al. Motion prompting: Control-
ling video generation with motion trajectories. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 1–12, 2025.

Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan
Yang. Cameractrl: Enabling camera control for text-to-video generation. arXiv preprint
arXiv:2404.02101, 2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8153–8163, 2024.

Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, and Eli Shechtman. Self forcing: Bridging
the train-test gap in autoregressive video diffusion. arXiv preprint arXiv:2506.08009, 2025.

Yash Jain, Anshul Nasery, Vibhav Vineet, and Harkirat Behl. Peekaboo: Interactive video generation
via masked-diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8079–8088, 2024.

Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. In
Proc. arXiv:2410.11831, 2024.

Akio Kodaira, Chenfeng Xu, Toshiki Hazama, Takanori Yoshimoto, Kohei Ohno, Shogo Mitsuhori,
Soichi Sugano, Hanying Cho, Zhijian Liu, and Kurt Keutzer. Streamdiffusion: A pipeline-level
solution for real-time interactive generation. arXiv preprint arXiv:2312.12491, 2023.

Akio Kodaira, Tingbo Hou, Ji Hou, Masayoshi Tomizuka, and Yue Zhao. Streamdit: Real-time
streaming text-to-video generation. arXiv preprint arXiv:2507.03745, 2025.

Guojun Lei, Chi Wang, Rong Zhang, Yikai Wang, Hong Li, and Weiwei Xu. Animateanything:
Consistent and controllable animation for video generation. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pp. 27946–27956, 2025.

Qiufu Li, Linlin Shen, Sheng Guo, and Zhihui Lai. Wavelet integrated cnns for noise-robust im-
age classification. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 7245–7254, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Feng Liang, Akio Kodaira, Chenfeng Xu, Masayoshi Tomizuka, Kurt Keutzer, and Diana Mar-
culescu. Looking backward: Streaming video-to-video translation with feature banks. arXiv
preprint arXiv:2405.15757, 2024.

Shanchuan Lin, Ceyuan Yang, Hao He, Jianwen Jiang, Yuxi Ren, Xin Xia, Yang Zhao, Xuefeng
Xiao, and Lu Jiang. Autoregressive adversarial post-training for real-time interactive video gen-
eration. arXiv preprint arXiv:2506.09350, 2025.

Shaoteng Liu, Yuechen Zhang, Wenbo Li, Zhe Lin, and Jiaya Jia. Video-p2p: Video editing with
cross-attention control. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8599–8608, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Koichi Namekata, Sherwin Bahmani, Ziyi Wu, Yash Kant, Igor Gilitschenski, and David B Lin-
dell. Sg-i2v: Self-guided trajectory control in image-to-video generation. arXiv preprint
arXiv:2411.04989, 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Haonan Qiu, Zhaoxi Chen, Zhouxia Wang, Yingqing He, Menghan Xia, and Ziwei Liu. Freetraj:
Tuning-free trajectory control in video diffusion models. arXiv preprint arXiv:2406.16863, 2024.

Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski,
and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges.
arXiv preprint arXiv:1812.01717, 2018.

Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
ACM SIGGRAPH 2024 Conference Papers, pp. 1–11, 2024.

Weijia Wu, Zhuang Li, Yuchao Gu, Rui Zhao, Yefei He, David Junhao Zhang, Mike Zheng Shou,
Yan Li, Tingting Gao, and Di Zhang. Draganything: Motion control for anything using entity
representation. In European Conference on Computer Vision, pp. 331–348. Springer, 2024.

Tianwei Yin, Qiang Zhang, Richard Zhang, William T Freeman, Fredo Durand, Eli Shechtman, and
Xun Huang. From slow bidirectional to fast autoregressive video diffusion models. In Proceed-
ings of the Computer Vision and Pattern Recognition Conference, pp. 22963–22974, 2025.

Zewei Zhang, Huan Liu, Jun Chen, and Xiangyu Xu. Gooddrag: Towards good practices for drag
editing with diffusion models. arXiv preprint arXiv:2404.07206, 2024.

Zhenghao Zhang, Junchao Liao, Menghao Li, Zuozhuo Dai, Bingxue Qiu, Siyu Zhu, Long Qin, and
Weizhi Wang. Tora: Trajectory-oriented diffusion transformer for video generation. In Proceed-
ings of the Computer Vision and Pattern Recognition Conference, pp. 2063–2073, 2025a.

Zhongwei Zhang, Fuchen Long, Zhaofan Qiu, Yingwei Pan, Wu Liu, Ting Yao, and Tao Mei. Mo-
tionpro: A precise motion controller for image-to-video generation. In Proceedings of the Com-
puter Vision and Pattern Recognition Conference, pp. 27957–27967, 2025b.

Guangcong Zheng, Teng Li, Rui Jiang, Yehao Lu, Tao Wu, and Xi Li. Cami2v: Camera-controlled
image-to-video diffusion model. arXiv preprint arXiv:2410.15957, 2024.

Yuan Zhou, Junbao Zhou, Qingshan Xu, Kesen Zhao, Yuxuan Wang, Hao Fei, Richang Hong,
and Hanwang Zhang. Dragnext: Rethinking drag-based image editing. arXiv preprint
arXiv:2506.07611, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Related Work 2

3 Streaming Drag-Oriented Interactive Video Manipulation 3

4 Methodology 4

4.1 Preliminaries . 4

4.2 DragStream: Drag Anything, Anytime in a Training-Free Paradigm 5

4.2.1 Overall Pipeline . 5

4.2.2 Adaptive Distribution Self-Rectification 6

4.2.3 Spatial-Frequency Selective Optimization 7

5 Experiments 7

5.1 Main Results . 8

5.2 Analysis . 9

5.3 Complex Streaming Manipulation . 9

5.4 Failure Cases . 10

6 Conclusion 10

A Use of LLMs 15

B Summary of Main Notations 15

C Experimental Setup 15

C.1 Implementation Details . 15

C.2 Evaluation Metrics . 15

C.3 Compared Baselines . 16

D Streaming VS. Non-Streaming Drag-Style Video Manipulation 16

E More Visualization Results 17

F Visualized Analysis of Switchable Frequency 18

G Visualized Analysis of Gaussian Filtering Map 19

H Ablation Study on Objective Function LTot 20

I Compatibility of DragStream 20

J Drag-Style Operation Types 22

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

K Why Need Context Frames? 22

L Additional Video Results in Supplementary Materials 22

M Robustness Analysis of Hyperparameters 23

N Results on Controlling Bidirectional Models 23

O Discussion of Prompt–Drag Conflicts 24

P Additional Results on Long Video Generation 24

Q Long-Duration Drag-Oriented Manipulation 25

R Object Leaving and Re-Entering 26

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A USE OF LLMS

LLMs were only used to provide minor writing assistance in preparing the manuscript, such as
grammar polishing and readability improvement. No parts of the methodology, experimental design,
analysis, or results were generated by LLMs. The all ideas, experiments, and conclusions are entirely
completed and drawn by the authors of this paper.

B SUMMARY OF MAIN NOTATIONS

In Table 2, we provide a summary for the main notations used in this paper.

Table 2: Summary of main notations.

Notions Descriptions
Γk The k-th video frame generated by VDMs.
zk
T The latent embeddings of Γk at the denoising timestep T .

Uk = {Ek,Ck} The user-specified drag-style operations for the frame Γk.
Ek = {Hk

i }i=1:n The set of user-specified handle regions for the frame Γk.
Ck = {ηk, ζki ,O

k
i }i=1:n The corresponding drag instructions for the handle region Ek.

Hk
i The binary mask that indicates the i-th user-specified handle region of the frame Γk.

Y k′
i The binary mask indicates the target position of Hk

i that is to be dragged in Γk′
.

Π
Hk

i →Y k′
i

The coordinate mapping from the handle region Hk
i to the target position Y k′

i

ηk The indictor determines whether the frame Γk is to be edited or animated.
ζki The indictor determines the type of drag operations, i.e, translation, deformation, and rotation.
Ok

i The points sampled from the drag trajectory given for the handle region Hk
i .

Mk The user-specified non-editable region of the video frame Γk.
Gk The Gaussian filtering map used for the frame Γk during latent region optimization.

θ = ∠pk′
i cki p

k
i The angle at the center point cki w.r.t. the trajectory points pk′

i and pk
i .

ϑ = pk′
i − pk

i The offset of the sampled trajectory point pk′
i w.r.t. pk

i .
µk′

T ′/σk′

T ′ The mean/standard deviation of the latent embeddings zk′

T ′ .
Qk/Kk/V k Query/key/value features about the frame Γk.

LTot The object function used in the latent region optimization.
LRec The reconstruction loss used in the latent region optimization.
LCst The constraint term in the latent region optimization.
ϵΘ(·) The denoiser of VDMs.
F(·) The function that extracts the features of latent code from ϵΘ(·).

C EXPERIMENTAL SETUP

C.1 IMPLEMENTATION DETAILS

We implement our DragStream in PyTorch and run it on an NVIDIA H20 GPU card. We choose
Self-Forcing Huang et al. (2025) as our main base autoregressive VDM with the number of denoising
timesteps T = 4. We follow SG-I2V to use the AdamW Loshchilov & Hutter (2017) optimizer
during latent optimization, with the learning rate set as 4× 10−2. Following Deng et al. (2024), we
perform latent region optimization at the denoising timestep T ′ = 3, where the features of latent
code are extracted from the 12−15 layers of the DiT denoiser, the number of iterations is set to I = 4
per trajectory point, and the set of cutoff frequencies is set as {0.2, 0.4, 0.6, 1}. Following Zhang
et al. (2025a), we annotate 204 video clips generated by Self-Forcing with diverse drag trajectories
and scenes, to serve as a new benchmark for evaluating model performance on our proposed REVEL
task, i.e., realizing fine-grained, drag-style control over the outputs of video generation models.

C.2 EVALUATION METRICS

We evaluate model performance on the REVEL task using four metrics: Fréchet Video Distance
(FVD) Unterthiner et al. (2018), Fréchet Inception Distance (FID) Heusel et al. (2017), DAI Zhang
et al. (2024), and ObjMC Wu et al. (2024). Since FVD and FID are well-defined metrics, we omit

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

the explanation for them; for more details, please refer to Unterthiner et al. (2018); Heusel et al.
(2017). We provide the details of ObjMC and DAI below.

ObjMC. ObjMC Wu et al. (2024) is a metric to evaluate the motion fidelity of the manipulated
object in the video. It is calculated as the average distance between the trajectory of the manipulated
object in the generated video and the groundtruth trajectory specified by the user. To generate the
trajectory of the manipulated object, we utilize Co-Tracker 3 Karaev et al. (2024) to track the points
scattered in the original region of the manipulated object, and then compute the average position of
these points in each frame to form the trajectory. Lower ObjMC scores indicate that the manipulated
object in the generated video closely follows the user’s specified trajectory, reflecting better motion
fidelity.

DAI. DAI Zhang et al. (2024) is a metric for evaluating the quality of drag editing in image and
video manipulation. Specifically, DAI calculates the average difference between the latent features
of the original handle region and the corresponding manipulated region in the final output. The
metric is defined as:

DAI =
1

N

N∑
i=1

∥zk′

0 [Ω(pk′

i , r)]− zk0 [Ω(p
k
i , r)]∥

(1 + 2r)
2 (11)

where N is the number of trajectory points, while zk0 and zk
′

0 are the latent embeddings of the orig-
inal frame Γk and the manipulated frame Γk′

, respectively. r is the radius of the area we calculate
DAI and Ω(p, r) denotes a square area centered at point p with a side length of 2r + 1. pk

i and pk′

i

are the i-th trajectory points in the original frame Γk and the manipulated frame Γk′
, respectively.

We set r = 20 following DragNeXtZhou et al. (2025), which is suitable for measuring the consis-
tency inside the manipulated region. Lower DAI scores indicate that the manipulated region in the
generated image or video closely matches the target region specified by the user, reflecting better
drag editing quality.

C.3 COMPARED BASELINES

We emphasize that our proposed task, stReaming drag-oriEnted interactiVe vidEo manipuLa-
tion (REVEL), is entirely new. Thus, to the best of our knowledge, no existing approaches have
been specifically designed to address it. For comparison, we adapt two training-free approaches,
SG-I2V Namekata et al. (2024) and DragVideo Deng et al. (2024), to our REVEL setting. Like
our DragStream, both SG-I2V and DragVideo follow the latent optimization paradigm; however,
they are not equipped with our ADSR and SFSO strategies, designed to address Challenge 1 and
Challenge 2 in REVEL. We do not include the finetuning–based methods such as Tora Zhang et al.
(2025a) and DragAnything Wu et al. (2024) in our comparisons. First, our DragStream is training-
free, making direct comparisons with finetuning–based methods unfair. Second, Tora and DragAny-
thing are not specifically designed to solve our REVEL. Adapting them to enable autoregressive
generation or streaming control of VDMs would be non-trivial, as it requires finetuning on large-
scale, fine-grained drag-style data by hundreds or even thousands of H100 GPU hours Yin et al.
(2025); Kodaira et al. (2025); Huang et al. (2025), which stands in direct contrast to the core philos-
ophy of our work—achieving high-quality REVEL without incurring prohibitive training costs. We
leave exploring the REVEL task from a finetuning-based perspective for our future research.

D STREAMING VS. NON-STREAMING DRAG-STYLE VIDEO MANIPULATION

We provide a comparison between streaming and non-streaming drag-style video manipulation in
Figure 6. A fundamental distinction lies in the different type of used VDMs. In streaming drag-style
video manipulation, video frames are generated autoregressively; thus, when an unsatisfactory video
frame is observed, users can directly feed drag-style operations to models and modify videos on the
fly. In contrast, non-streaming drag-style video manipulation relies on conventional bidirectional
VDMs that generate an entire video clip at each time as they are based on modeling bidirectional
information across frames, requiring users to regenerate the whole video clip when they find a frame
unsatisfactory. That is why adapting finetuning–based, non-streaming drag-style video manipula-
tion approaches to REVEL is non-trivial as we mentioned in Section C.3: it would require trans-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Streaming drag-style video manipulation

(d) Bidirectional VDMs

Autoregressive VDMs Frame k
user

Frame k’

Once an
unsatisfactory

frame is
observed, simply

adjust it!

Observe the frame k

Feedback

Manipulate

Bidirectional VDMs
user

Observe the frames in the video clip k

Feedback

Manipulate

If an unsatisfactory
frame is encountered,
the whole video clip

needs to be
regenerated!

(c) Autoregressive VDMs

(b) Non-streaming drag-style video manipulation

Frame k Frame k+1 Frame k+2 Frame k+3

𝒛𝑘 𝒛𝑘+1 𝒛𝑘+2 𝒛𝑘+3

Frame k Frame k+1 Frame k+2 Frame k+3

𝒛𝑘 𝒛𝑘+1 𝒛𝑘+2 𝒛𝑘+3

Drag
Drag

Figure 11: Comparison between streaming and non-streaming drag-style video manipulation.

forming the bidirectional generation paradigm totally into the autoregressive manner, which in
turn necessitates collecting a large-scale, fine-grained drag-style dataset and finetuning VDMs
on it by hundreds or even thousands of H100 GPU hours Yin et al. (2025); Huang et al. (2025).

In addition to the type of VDMs, another key difference lies in the manipulation process. In stream-
ing drag-style video manipulation, if users find a video frame unsatisfactory and wish to edit it, they
only need to apply drag operations to that specific frame. In contrast, in non-streaming drag-style
video manipulation, users must provide drag operations for the all subsequent frames to maintain
cross-frame consistency, since information flow in bidirectional VDMs is bidirectional as shown in
Figure 6 (d), i.e., subsequent video frames can influence preceding video frames. Also, streaming
drag-style video manipulation can animate any video frame during the generation process; however,
non-streaming drag-style video manipulation struggles to animate intermediate frames, as this con-
flicts with the bidirectional nature of VDMs, which generates the entire video clip simultaneously.
That means animating intermediate frames will break out the consistency of the original video clip.

REMARK 3. Tora and DragAnything can be directly integrated with existing autoregressive VDMs
as external modules to animate generated video frames. However, they indeed cannot realize stream-
ing control over autoregressive VDMs as they do not alter the original generation direction of VDMs.
Differently, our DragStream modifies the latent embeddings of autoregressive VDMs by performing
iterative latent region optimization, thereby enabling streaming control over the video generation
process by propagating the information of modified latent code through a sliding context window.

The above analysis demonstrates the importance of advancing existing approaches from non-
streaming to streaming drag-style manipulation, highlighting the significant application value
of our REVEL task!

E MORE VISUALIZATION RESULTS

In Figure 12, we provide more visualization results achieved by our DragStream approach on our
proposed REVEL task. These experimental results still consistently demonstrate that our method can
achieve high-quality streaming manipulation over the outputs of VDMs, including both Editing
and Animation with the effects of drag operations such as translation (“Trans”), deformation
(“Defor”), and rotation (“Rot”). For more results, please refer to our anonymous project page,
which is provided below the abstract.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

[Animation: 3D Rot] [Editing: Defor]

……

…

[Animation: Trans] [Animation: Trans]

…

…

[Animation: Trans][Animation: Trans]

…

…

[Animation: 3D Rot] [Animation: Trans]

…

…

[Animation: 3D Rot] [Animation: 3D Rot]

…

…

[Animation: 3D Rot] [Editing: 3D Rot]

…

…

[Editing: Trans] [Animation: Trans]

…

…

[Editing: Defor] [Animation: 2D Rot]

…

… …

[Animation: Trans][Animation: 2D Rot]

… …

[Animation: Trans][Animation: Trans]

[Animation: 2D Rot] [Animation: Trans]

……

Streaming generation

Figure 12: More visualization results achieved by our DragStream on the REVEL task. Note
that Editing produces only one video frame, but we insert an extra subsequent frame to maintain
layout consistency with Animation.

F VISUALIZED ANALYSIS OF SWITCHABLE FREQUENCY

In Figure 13, we investigate the influence of switchable frequency used in SFS during latent region
optimization. From the figure, the use of only low-frequency (“ω = 0.2”) information easily leads

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

[Animation: Trans]

S
wi
t
ch
a
bl
e

⍵=0.2

⍵=1

[Animation: Trans]

[Animation: Trans]

Streaming generation

S
w
i
t
c
h
a
b
l
e

⍵=0.2

⍵=1

S
wi
t
ch
a
bl
e

⍵=0.2

⍵=1

Blur

Unnatural
Shape
Variation

Artifacts

Artifacts

Figure 13: Visualization analysis of switchable frequency. ω indicates cutoff frequency.

to scene blurring and unnatural object shape variation. Meanwhile, the high-frequency information
inherently contained in original images (“ω = 1”) causes noticeable artifacts in generated videos. In
contrast, our proposed switchable frequency strategy can balance frequency components, effectively
suppressing artifacts and blur while maintaining object shape consistency. These results confirm that
our SFS strategy is crucial for achieving high-quality streaming video manipulation.

G VISUALIZED ANALYSIS OF GAUSSIAN FILTERING MAP

Figure 14 illustrates the effect of Gaussian filtering maps on streaming drag-style video manipula-
tion. Without the use of Gaussian filtering map (“w/o CSS”) to constrain the latent optimization,
back-propagated gradient maps may be leaked to irrelevant regions, thereby resulting in artifacts
in generated video frames (e.g., distortions around non-target areas). In contrast, with Gaussian
filtering maps (“w/ CSS”), gradients are constrained to focus on the most important target region,

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

therefore suppressing their interference to surrounding areas and effectively improving video quality.

[Animation: Trans]

w
/
C
SS

w
/o

CS
S

[Animation: Trans]

Back-
propagated

Gradient map

Gaussian
filtering map

Back-
propagated

Gradient map

Streaming generation

Figure 14: Visualization analysis of Gaussian filtering map.

H ABLATION STUDY ON OBJECTIVE FUNCTION LTOT

Table 3: Ablation study on the objective function used in latent region optimization.

Experiment ObjMC (↓) FVD (↓) FID (↓) DAI (↓)

w/ LRec + LCst 26.12 596.51 25.16 0.0545
w/o LCst 20.87 949.06 33.55 0.0509
w/o LRec 90.39 301.74 14.11 0.1337

In Table 3, we provide ablation studies for the objective function used during latent region opti-
mization. As can be seen from the table, removing the reconstruction loss LRec causes an obvious
performance drop in ObjMC and DAI, which indicates that objects in handle regions are not suc-
cessfully dragged to target points. Although removing the constraint term LCst leads to a slight im-
provement in ObjMC and DAI, it causes a significant degradation in FVD and FID. This is because,
without LCst, non-editable regions are severely affected by the latent region optimization, resulting
in noticeable artifacts in generated videos. These artifacts significantly degrade the overall video
quality, leading to a substantial decline in FVD and FID scores. This observation underscores the
importance of LCst in maintaining the integrity of non-editable regions and ensuring high-quality
video generation.

I COMPATIBILITY OF DRAGSTREAM

In principle, our DragStream method is model-agnostic and can be seamlessly integrated with dif-
ferent autoregressive VDMs. To demonstrate this, we additionally apply our method to the recent

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

……

…

[Animation: Trans] [Animation: Trans]

…

…

[Animation: Trans][Animation: 2D Rot]

…

…

[Animation: 3D Rot]

…

…

[Animation: Trans]

…

……

……

……

… …

[Animation: 3D Rot]

[Animation: Trans]

……

[Editing: 2D Rot]

[Editing: Defor]

[Animation: Trans]

[Editing: 2D Rot]

[Editing: 3D Rot]

[Editing: Defor] [Animation: Trans]

[Animation: 2D Rot] [Editing: Trans]

[Animation: 3D Rot] [Editing: Trans]

[Editing: Defor]

Streaming generation

Figure 15: Visualization results achieved by our DragStream approach based on CausVid Yin
et al. (2025).

autoregressive VDM, CausVid Yin et al. (2025). As can be seen from Figure 15, it can still achieve
high-quality streaming drag-style video manipulation, enabling both Editing and animation
with fine-grained drag operations such as translation (Trans), deformation (“Defor”), and rota-
tion (“Rot”). These results demonstrate the effectiveness of our proposed method again, and also
highlight its potential as a versatile training-free solution for streaming drag-style video manipula-
tion across different VDM backbones. For more visualization results, we encourage readers to visit
our anonymous project webpage, provided below the abstract.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

J DRAG-STYLE OPERATION TYPES

Currently, our DragStream supports both editing and animating video frames, with user-specified
drag effects including translation, deformation, and rotation. For both editing and animation tasks,
we can consider the following rules: i) translating an object along a trajectory can be achieved by
moving its entire region (as shown in the fourth row from the bottom of Figure 12, the cup translation
can be achieved by moving its entire region); ii) deforming object shape can be realized by translating
only its edge region (an example is shown in the third row from the bottom of Figure 12); iii) object
2D rotation can be realized by using a planar rotation transformation (an example is given in the
third row from the bottom of Figure 12); and iv) 3D rotation can be regarded as translating a sub-
region of the object, assisted by the inherent prior knowledge of VDMs (as shown in the second row
of Figure 12, the 3D rotation of the man’s face can be realized by moving face’s sub-region).

K WHY NEED CONTEXT FRAMES?

In section 2, we argue that the context frames are sources of disturbance during streaming drag-style
video manipulation. However, we also emphasize that context frames provide crucial visual cues
that are essential for subsequent video generation. In Figure 16, we provide a visualization analysis
to illustrate the importance of context frames. As shown in the figure, without context frames (“w/o
context”), the generated video frames become totally blurry and unnatural. Besides, the foreground
object and background scene are completely changed to be inconsistent with the original video. In
contrast, with context frames (“w/ context”) and our SFSO mechanism, the generated video frames
preserves the appearance and structure of the foreground object, as well as the background scene,
while achieving high-quality drag-style manipulation. These results firmly demonstrate that context
frames provide indispensable visual cues for streaming drag-style video manipulation.

[Animation: Trans]

w
/o

c
on
t
ex
t

[Animation: 2D Rot]

w
/

c
on
t
ex
t

w
/o

c
o
n
t
e
x
t

w
/

c
on
t
ex
t

Blur Background Change

Appearance ChangeBlur

Figure 16: Visualization analysis on the importance of context frames.

L ADDITIONAL VIDEO RESULTS IN SUPPLEMENTARY MATERIALS

We present additional video results in our supplementary material ‘supp-material-1676.zip’, includ-
ing 9 videos, which provide a more intuitive demonstration of the results achieved by our approach.
For more visualization results, we recommend readers again to visit our anonymous project web-
page: DragStream Demo.

22

https://anonymous-30f12b51.github.io/Streaming-Drag-Oriented-Interactive-Video-Manipulation.github.io/

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

M ROBUSTNESS ANALYSIS OF HYPERPARAMETERS

In this section, we analyse the robustness of several hyperparameters in our DragStream.

Table 4: Analysis of the hyperparameter Ln.

Experiments ObjMC (↓) DAI (↓) FVD (↓)

Ln = 0 45.09 0.093 608.63

Ln = 3 25.88 0.052 570.41
Ln = 9 23.05 0.051 552.39
Ln = 18 24.37 0.051 554.25

Analysis of Ln. The hyperparameter Ln de-
termines how many neighboring latent embed-
dings are used to rectify drifted latent distribu-
tion during performing ADSR. The results in
Table 4 shows that our method is robust to the
hyperparameter Ln. When varying the value
of Ln from 3 to 18, our DragStream exhibits
consistently stable performance. By contrast,
discarding ADSR (i.e., Ln = 0) leads to signif-
icant performance degradation, which demonstrate the effectivness of our ADSR again.

Table 5: Analysis of the hyperparameter α.

Experiments ObjMC (↓) DAI (↓) FVD (↓)

w/o CSS 26.12 0.061 25.16

α = 2.0 24.70 0.054 24.52
α = 1.5 23.50 0.052 24.17
α = 1.0 23.65 0.053 24.04
α = 0.5 24.52 0.055 23.65

Analysis of α. The hyperparameter α deter-
mines the shape of the Gaussian filtering map.
In Table 5, we provide an analysis of α. On
one hand, similar to the hyperparameter Ln, our
DragStream still achieves stable performance
when varying the value of α from 2 to 0.5.
These results demonstrate that our approach is
robust to the hyperparameter α. On the other
hand, the removal of the Gaussian filtering map
(“w/o CSS”) results in an obvious performance
drop, highlighting the importance of using the Gaussian filtering map to guide the model toward
critical areas during drag-oriented manipulation.

Table 6: Analysis of the hyperparameter ω.

Experiments ObjMC (↓) DAI (↓) FVD (↓)

ω ∈ [0.1, 0.8] ∪ {1} 24.27 0.054 584.21
ω ∈ [0.1, 0.7] ∪ {1} 24.05 0.054 578.65
ω ∈ [0.1, 0.6] ∪ {1} 23.99 0.053 558.97

ω ∈ {0.2, 0.4, 0.6, 1} 23.05 0.051 552.39

Analysis of ω. During latent region opti-
mization, we let the model randomly switch
among a set of predefined cutoff frequencies
ω ∈ {0.2, 0.4, 0.6, 1}, thereby preventing the
high-frequency components from dominating
the drag process and introducing artifacts or un-
natural results. In Table 6, we show that our
method is robust to the set of cutoff frequen-
cies. As can be seen from the table, despite that
the low-frequency component is randomly selected from a continuous range [0, 1, 0.8], [0, 1, 0.7], or
[0, 1, 0.6], our method still produce stable performance.

Table 7: Analysis of the hyperparameter I .

Experiments FID ObjMC (↓) DAI (↓)

I = 0 14.11 90.39 0.133

I = 2 25.88 27.67 0.054
I = 3 24.17 24.55 0.053
I = 4 23.72 23.05 0.051

Analysis of I . Our DragStream is based on
an iterative optimization scheme. In Table 7,
we investigate the influence of the hyperparam-
eter I . The experimental results in the table
demonstrate the robustness of our approach to
hyperparameters again. For example, despite
setting I with a small value, such as I = 3 or 2,
our approach still exhibits robust performance
in streaming drag-style manipulation, which is
significantly better than that of the baseline without using our DragStream (i.e., I = 0).

N RESULTS ON CONTROLLING BIDIRECTIONAL MODELS

Although our DragStream is designed for autoregressive VDMs, it can also be applied to bidirec-
tional VDMs to control their generation process via drag-style control signal. From the results in
Figure 17, we can see that our method can successfully guide the bidirectional model Wan-2.1 to
generate videos that conform to drag-style conditions specified by users.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

[Animation: 2D Rot]

[Animation: Trans]

[Animation: Trans]

Figure 17: Results of controlling the video generation of the bidirectional model Wan2.1 via
drag-style instructions using our DragStream approach.

O DISCUSSION OF PROMPT–DRAG CONFLICTS

Conflicted Text [Animation: Trans]

…
... candle is

positioned on
the left side ...

move to the middle

[Animation: Trans]

…
... the vehicle

stays tightly to
the right side ...

move to the left

[Animation: 3D Rot]

…
... his eyes are

fixed on the left
side ...

move the sight to the right

[Animation: 3D Rot]

…
... she is

looking to the
right side ...

move the sight to the left

Figure 18: Visualized case study on prompt-drag conflicts.

In Figure 18, we further investigate an interesting scenario in streaming drag-style video manipula-
tion where drag operations conflict with text prompts. We observe that when such conflicts occur,
VDMs consistently follow drag instructions specified by users during generation. This is because
our DragStream revises latent embeddings more explicitly. For example, as shown in the figure, al-
though the text prompt requires the car to remain on the right side, our DragStream can successfully
drag the car toward the left side of the path.

P ADDITIONAL RESULTS ON LONG VIDEO GENERATION

In this section, we provide additional streaming drag results of our DragStream in long video gen-
eration. As shown in Figure 19, despite accumulated errors remain a challenging issue for current
autoregressive VDMs, our method can still effectively realize drag-based manipulation in 5s, 10s,
and 20s. Importantly, compared with the original videos generated by Self-Forcing Huang et al.
(2025), drag operations introduced by our DragStream do not degrade video quality either during
the drag-based manipulation process or in subsequently generated video frames after the manipu-

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

[Animation: Trans] 6s5s 10sAnimated Video Subsequently Generated Video0s 5sGenerated Video

Video
Manipulated by
Our DragStream

Original Video
Generated by
Self-forcing

[Animation: 3D Rot] 11s9s 20sAnimated Video Subsequently Generated Video0s 9sGenerated Video

Video
Manipulated by
Our DragStream

Original Video
Generated by
Self-forcing

[Animation: Trans] 12s11s 23sAnimated Video Subsequently Generated Video0s 11sGenerated Video

Video
Manipulated by
Our DragStream

Original Video
Generated by
Self-forcing

[Animation: Trans] 11s10s 14sAnimated Video Subsequently Generated Video0s 10sGenerated Video

Video
Manipulated by
Our DragStream

Original Video
Generated by
Self-forcing

[Animation: Trans] 21s20s 23sAnimated Video Subsequently Generated Video0s 20sGenerated Video

Video
Manipulated by
Our DragStream

Original Video
Generated by
Self-forcing

[Animation: Trans] 23s22s 26sAnimated Video Subsequently Generated Video0s 22sGenerated Video

Video
Manipulated by
Our DragStream

Original Video
Generated by
Self-forcing

Figure 19: Additional results of our DragStream on long video generation.

lation. For example, in the second case, when we manipulate the frame at 9s (i.e., dragging the
woman’s face to the left), the animated video clip maintains the same quality as that produced by
Self-Forcing. Moreover, after the manipulation, our DragStream can continue to preserve the same
quality as Self-Forcing in the subsequently generated frames from 11s to 20s. These experimental re-
sults firmly demonstrate that the effectiveness of our DragStream approach in streaming long-video
generation.

Q LONG-DURATION DRAG-ORIENTED MANIPULATION

In this section, we further investigate the effectiveness of our ADSR strategy in long-duration drag-
oriented video manipulation. As shown in Figure 20, performing drag-style manipulation without
ADSR (“w/o ADSR + Drag”) results in severe latent distribution drift, which leads to noticeable
degradation in video quality compared with the baseline without drag-based manipulation (“Ref
+ w/o Drag”). In contrast, our ADSR (“w/ ADSR + Drag”) can effectively suppresses the latent

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Re
f
+
w/
o
Dr
ag

2s (20 frame) 5s (44 frame) 11s (92 frame) 14s (116 frame) 18s (164 frame) 20s (188 frame)

2s (20 frame) 5s (44 frame) 11s (92 frame) 14s (116 frame) 18s (164 frame) 20s (188 frame)

w/
 A
DS
R
+
Dr
ag

Continuously Drag for 12s

w/
o
AD
SR
 +
 D
ra
g

2s (20 frame) 5s (44 frame) 11s (92 frame) 14s (116 frame) 18s (164 frame) 20s (188 frame)

Continuously Drag for 12s

Figure 20: Analysis of ADSR in long-duration drag-oriented manipulation

[Animation: Trans]

[Animation: Trans] cup moves out cup re-enters

cup moves out cup re-enters

Figure 21: Streaming drag with object leaving and re-entering.

distribution drift issue even when drag operations are sustained for over 20s. Consequently, the
video generated by our DragStream (“w/ ADSR + Drag”) is significantly better than that of “w/o
ADSR + Drag”, further demonstrating the effectiveness of our DragStream approach.

R OBJECT LEAVING AND RE-ENTERING

In addition to object occlusion and re-emergence discussed in Section 5.3, we also evaluate our
DragStream in another interesting scenario—objects leaving and re-entering the view. As shown in
Figure 21, when an object is dragged to move out of the frame and later back into view, DragStream
effectively preserves its appearance and structure, producing high-quality results of drag-based ma-
nipulation. Actually, the re-entering process is essentially no different from the standard drag-based
manipulation. We just need to save the latent features of an object before it moves out of view, and
then reconstruct is along a user-given trajectory via latent optimization.

26

	Introduction
	Related Work
	Streaming Drag-Oriented Interactive Video Manipulation
	Methodology
	Preliminaries
	DragStream: Drag Anything, Anytime in a Training-Free Paradigm
	Overall Pipeline
	Adaptive Distribution Self-Rectification
	Spatial-Frequency Selective Optimization

	Experiments
	Main Results
	Analysis
	Complex Streaming Manipulation
	Failure Cases

	Conclusion
	Use of LLMs
	Summary of Main Notations
	Experimental Setup
	Implementation Details
	Evaluation Metrics
	Compared Baselines

	Streaming VS. Non-Streaming Drag-Style Video Manipulation
	More Visualization Results
	Visualized Analysis of Switchable Frequency
	Visualized Analysis of Gaussian Filtering Map
	Ablation Study on Objective Function LTot
	Compatibility of DragStream
	Drag-Style Operation Types
	Why Need Context Frames?
	Additional Video Results in Supplementary Materials
	Robustness Analysis of Hyperparameters
	Results on Controlling Bidirectional Models
	Discussion of Prompt–Drag Conflicts
	Additional Results on Long Video Generation
	Long-Duration Drag-Oriented Manipulation
	Object Leaving and Re-Entering

