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Federated Morozov Regularization for Shortcut Learning in
Privacy Preserving Learning with Watermarked Image Data
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ABSTRACT
Federated learning is a promising privacy-preserving learning par-
adigm in which multiple clients can collaboratively learn a model
with their image data kept local. For protecting data ownership, per-
sonalized watermarks are usually added to the image data by each
client. However, the introduced watermarks can lead to a shortcut
learning problem, where the learned model performs predictions
over-rely on the simple watermark-related features and represents
a low accuracy on real-world data. Existing works assume the
central server can directly access the predefined shortcut features
during the training process. However, these may fail in the feder-
ated learning setting as the shortcut features of the heterogeneous
watermarked data are difficult to obtain.

In this paper, we propose a federated Morozov regularization
technique, where the regularization parameter can be adaptively
determined based on the watermark knowledge of all the clients
in a privacy-preserving way, to eliminate the shortcut learning
problem caused by the watermarked data. Specifically, federated
Morozov regularization firstly performs lightweight local water-
mark mask estimation in each client to obtain the locations and
intensities knowledge of local watermarks. Then, it aggregates the
estimated local watermark masks to generate the global watermark
knowledge with a weighted averaging. Finally, federated Morozov
regularization determines the regularization parameter for each
client by combining the local and global watermark knowledge.
With the regularization parameter determined, the model is trained
as normal federated learning. We implement and evaluate feder-
ated Morozov regularization based on a real-world deployment of
federated learning on 40 Jetson devices with real-world datasets.
The results show that federated Morozov regularization improves
model accuracy by 11.22% compared to existing baselines.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies.
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Federated Learning, Watermark, Shortcut Learning
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1 INTRODUCTION
With the growth of applying advanced multimedia technology to
commercial applications, concerns about user data privacy have
greatly increased [21], and research on privacy-preserving learn-
ing has come into being. Federated learning [12, 50] emerges as
a promising privacy-preserving learning paradigm, where mul-
tiple clients can collaboratively learn a model without exposing
their private data to the central server. Federated learning has been
widely adopted in many multimedia applications such as medical
image classification [27], anomaly detection in public safety surveil-
lance [58], and sentiment analysis in social media content [56].

For data ownership identification and copyright protection, digi-
tal watermarking technologies are developed and applied in many
multimedia applications [13, 51], through adding the well-designed
digital watermark into the image data by the data owner [5, 20].
Training models with the watermarked data may lead to the short-
cut learning problem, that is the learned model makes predictions
based on the simple shortcut features in the training data, rather
than learning the underlying complex core features of the target
domain, and presents a good performance on the training dataset
but decreased model accuracy on the unseen data [4, 28, 53]. For
example, in medical image classification, a trained model detects
pneumonia in chest X-rays (CXRs) relying on watermarks that rep-
resent which hospital the patient was seen instead of lung patho-
physiology used by a radiologist [8, 53].

There are many works proposed to overcome the shortcut learn-
ing problem. According to where the shortcut feature is processed,
existing works can be divided into data preprocesing-based [30,
34, 36, 42] and regularization-based [18, 32] methods. The data
preprocessing-based methods assume the shortcut features of data
are useless, and they eliminate the shortcut learning problem by
detecting and removing the shortcut features from the training
dataset. These methods may fail in learning with the watermarked
data as the shortcut features (i.e., the watermark-related features)
are important for data ownership identification, and cannot be
directly removed in practice. For regularization-based methods,
shortcut features are regularized based on certain prior knowledge
during each training iteration. For example, FD [18] assumes the
shortcut features are represented in specific frequency, and designs
a feature-level regularization technique where a randomized filter-
ing layer is applied after each convolution layer to prevent CNNs
from learning frequency-specific imaging features. wMMD-T [32]
assumes the causal Directed Acyclic Graph (DAG) indicating the re-
lationship between the input image and output label is known and
designs a regularizer that leverages knowledge of the causal DAG
to efficiently learn a classifier. These regularization-based methods
can work well in the centralized learning setting where the central
server can directly obtain certain characteristics of the shortcut
features. However, they may fail in a federated learning setting
with watermarked data, as the characteristics of the watermark

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The task accuracy of a model learned with various
watermark heterogeneity.

features of each client are uncertain and unknown to the server for
privacy protection.

Moreover, different clients may apply various digital watermark-
ing techniques on the local data resulting in watermark heterogene-
ity, which further degrades the accuracy of the learned model. Our
initial experiments show the impact of watermark heterogeneity
under different regularization-based methods. As shown in Fig. 1,
with the watermark heterogeneity degree 𝛽 (detail setting can be
seen in Sec. 4) increasing from 100 to 0.05, the accuracy of the
learned model decreases up to 15.5% under all baselines.

In this paper, we propose a federated Morozov regularization
method to solve the shortcut learning problem of learning with
watermarked data in a privacy-preserving way. Specifically, we
first perform the local watermark mask estimation with the maxi-
mum a posteriori (MAP) method to generate the watermark mask,
a matrix that can represent the characteristics of the watermarks.
We observe that the embedded watermarks with various digital
watermarking technologies can all be presented by the location
and intensity map. Therefore, we estimate the watermark mask
based on the distinct statistical distributions of natural images and
artificial watermarks, capturing the divergence in their spatial and
frequency domain characteristics. Then, we aggregate the estimated
local watermark mask in the server to generate the global water-
mark mask with a weighted averaging model. Finally, we perform
Morozov regularization-based local training by actively adjusting
the regularization parameters with the estimated local and global
mask. Intuitively, if the model training leads to worse overfitting to
shortcut features, the regularization parameter will be increased,
i.e., to aggressively mitigate overfitting introduced by the water-
mark; and vice versa. We evaluate federatedMorozov regularization
through experiments in real-world settings by deploying it on a
test network of 40 Jetson devices, each with varying computational
capabilities. We also evaluate our method on a real-world federated
watermarked dataset, COVID-FL [52], where watermark hetero-
geneity is present. Evaluation results demonstrate the superior
performance of our method compared to the baselines. federated
Morozov regularization improves the accuracy of the learned model
by up to 11.22%. We also conducted an ablation study of federated
Morozov regularization to validate the contribution of each compo-
nent to FL model performance in watermarked datasets.

The contributions of this paper can be summarized as:

• We are the first to formulate the shortcut learning problem
arising from watermarked datasets in federated learning and
find that watermark heterogeneity can further degrade the
learning performance.
• We propose federated Morozov regularization, a new regu-
larization method that can automatically adjust the regular-
ization parameters based on the watermark knowledge of
all clients in a privacy-preserving way.
• We evaluate federated Morozov regularization by deploying
a real-world testbed of 40 Jetson devices with diverse com-
putational capacities and comparing it to several baselines
with real-world datasets. Our evaluations show that feder-
ated Morozov regularization outperforms existing baselines,
achieving 11.22% higher accuracy.

2 BACKGROUND & RELATEDWORK
2.1 FL for Multimedia Application
The integration of federated learning (FL) with multimedia appli-
cations is fundamentally motivated by the need to safeguard pri-
vacy [23, 29, 55]. This approach has facilitated the advancement of
multimedia applications involving personal data, such as image clas-
sification [27], anomaly detection in public safety surveillance [58],
and sentiment analysis in social media content [56]. The bulk of
current research in this area has been concentrated on tackling
data-centric challenges [31, 57], including non-iid data [26, 57],
data imbalance [44], and the presence of noise [47].

However, a relatively unexplored issue in this domain is the
influence of watermarked data in federated learning. Digital water-
marking, a strategy widely adopted in multimedia applications for
asserting data ownership [13, 51] and copyright protection [5, 20],
has found extensive application in data involving privacy and copy-
right issues, such as medical images [41], surveillance videos [13],
and social media [38]. Despite its primary intent, watermarking
unintentionally introduces detectable patterns into the data, pre-
cipitating a phenomenon known as shortcut learning.

2.2 Shortcut Learning
Shortcut learning refers to a phenomenon where deep learning
models, during training, preferentially latch onto simple, detectable
features—termed as shortcut features—instead of grappling with
the more complex, core features of the data [10, 16]. This inclination
can lead to models that perform well on training and in-distribution
test data but falter significantly when faced with out-of-distribution
inputs. Examples of shortcut learning include models relying on
background elements [2] or specific textures for image classifica-
tion [15], and even the presence of watermarks [4, 8].

Solutions to shortcut learning have primarily focused on data
prepossessing [30, 34, 36, 42] and regularization techniques [18,
32]. Data prepossessing often involve the removal of shortcut fea-
tures [34, 36] or data augmentation [30, 42]. However, in federated
learning scenarios, watermarks are added due to a lack of trust in
the federated learning applications or to embed ownership directly
into the training model, making their removal impractical. The
regularization method often views shortcuts as a consequence of
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Figure 2: Overview of the federated Morozov regularization in federated learning.

model overparameterization [32]. Techniques like FD [18] empha-
size high-frequency shortcut features, while methods like wMMD-
T [32] focus on background elements as shortcut features. Yet, these
shortcut features do not align with those introduced by watermarks.

Moreover, these approaches often require prior knowledge of
the shortcut features from client data, such as labels or filter param-
eters, which contradicts the privacy-preserving nature of federated
learning. Utilizing global information from the server side also fails
to address the challenges brought by watermark heterogeneity.

2.3 Morozov Regularization
Morozov regularization [39] is one type of tool to adjust regular-
ization parameters actively. One key principle of these methods
is the discrepancy principle [43]. The rationale is that for a good
regularized solution, the norm of the residual should match the
noise level of the data.

Morozov regularization has been used in many applications in
the past, e.g., to regularize noises from satellite sounder measure-
ments for atmospheric profiling applications [24], to regularize
sensor noises in digital images [6] and machine learning [19, 39]
recently.

The suitability of Morozov regularization for our problem lies in
its precision in targeting specific distributions or explicitly formu-
lated noise, offering localized regularization rather than a blanket,
global approach. This characteristic is particularly aligned with
the challenges posed by watermarks, which introduce shortcut fea-
tures localized within parts of an image, rather than affecting it
uniformly. Unlike other regularization methods that might operate
under broad assumptions about noise or apply regularization uni-
formly across the entire data set, Morozov regularization provides
an adaptive mechanism to fine-tune the regularization parameter,
thereby mitigating the shortcut learning effect.

As compared to other regularization, Morozov regularization
is simple and has less assumptions on noise approximation [1],
practical a-posteriori rules [35], and/or convergence rate [37]. We
choose Morozov regularization for its widely applicability and leave
other types of regularization into future works.

3 FEDERATED MOROZOV REGULARIZATION
3.1 Problem Definition
Federated Learning leverages a set of distributed clients N =

{1, . . . , 𝑁 } to iteratively learn a global model 𝜽 without leaking
any private local data to the central server [33]. In each client 𝑖 , the
local dataset is defined as 𝐷 (𝑖 ) . For data ownership identification,
each data sample 𝑥 (𝑖 )

𝑘
is embedded with a digital watermark 𝑛 (𝑖 )

𝑘
.

Let 𝜽 (𝑖 ) be the local model of client 𝑖 , and the global model 𝜽 is
learned by solving the following optimization problem:

𝐹 (𝜽 ) := argmin
𝜽

𝑁∑︁
𝑖=1

𝐷 (𝑖 )∑︁
𝑘=1

𝑓 (𝑖 ) (𝜽 ;𝑊𝑀 (𝑥 (𝑖 )
𝑘

, 𝑛
(𝑖 )
𝑘
), 𝑦 (𝑖 )

𝑘
), (1)

where f(𝑖 ) (𝜽 (𝑖 ) ) = 1
|𝐷 (𝑖 ) |

∑
(𝑥,𝑦) ∈𝐷 (𝑖 ) ℓ (𝑥,𝑦;𝜽 (𝑖 ) ), |𝐷 (𝑖 ) | is the num-

ber of data sample in client 𝑖 ,𝑊𝑀 (·) is the watermark embedding
function, and ℓ (·) is the loss function.

The integration of digital watermarks into image data for own-
ership identification introduces several challenges in the federated
learning environment. Firstly, accurately modeling the embedded
watermarks (𝑛 (𝑖 )

𝑘
) within the data requires sophisticated techniques

to distinguish and quantify their impact on the learning process.
Secondly, the distributed nature of federated learning complicates
the task of addressing the variability in watermark characteristics
across different clients whilemaintaining globalmodel performance.
Thirdly, it is crucial to mitigate the performance degradation caused
by watermarks without compromising the privacy of the data.

We propose a federated Morozov regularization method to ad-
dress these challenges, and Fig. 2 shows the overview of federated
Morozov regularization during a training round of the FL model.
The complete training process include four steps. After obtaining
user consent for training data, the client preprocesses the data on-
line or offline using the watermark estimator. This step involves
individually inputting watermarked data 𝑥 (𝑖 )

𝑘
to obtain the water-

mark estimation mask 𝒎 (𝑖 )
𝑘

for the client’s dataset (Step 1). Mask
aggregation involves aggregating local watermark estimation masks
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𝒎 (𝑖 )
𝑘

from each client into a global watermark estimation mask 𝑴 .
This step synthesizes collective watermark characteristics from all
participating clients (Step 2). Local training using watermarked
data is conducted under the Morozov regularization module. This
module automatically selects regularization parameters based on
the watermark estimation mask corresponding to the training data,
thereby adjusting the local model parameters to ignore watermarks
in the data (Step 3). Finally, the server aggregates the local models
from the selected clients to form a new global model for the next
round of training (Step 4).

3.2 MAP-basd Watermark Mask Estimator
Our stochastic approach is based on maximum a posteriori (MAP)
estimation, as described in [48]. Consider the classical problem of
watermark embedding, which involves embedding a watermark
into an image without considering the image content. In the most
general form in communication codec theory [49], the process of
𝑊𝑀 (·) can be modeled as 𝑥 ′ = 𝑥 + 𝑛, where 𝑥 ′ represents the
watermarked data, 𝑥 is the original data, 𝑥 ∈ R𝑁 with 𝑁 = 𝑀 ×𝑀 ,
and 𝑛 denotes the watermark. Our goal is to estimate 𝑛̂, which is
an approximation of the watermark 𝑛.

Under the general assumption [49], we model the watermark
as a Gaussian random variable. Let watermark sample 𝑛𝑢,𝑣 (1 ≤
𝑢, 𝑣 ≤ 𝑀) and image sample 𝑥𝑢,𝑣 (1 ≤ 𝑢, 𝑣 ≤ 𝑀) be defined on the
vertices of a grid 𝑀 ×𝑀 . Further, let all samples be independent
and identically distributed, we have conditional probability density
of 𝑛𝑢,𝑣 :

𝑝𝑛𝑢,𝑣 (𝑥𝑢,𝑣 | 𝑛𝑢,𝑣) =
1√︂(

2𝜋𝜎2
𝑛𝑢,𝑣

)𝑁 exp

{
− 1

2𝜎2
𝑛𝑢,𝑣

Δ𝑇𝑛Δ𝑛

}
, (2)

where the 𝜎𝑛𝑢,𝑣 of the watermark in the (𝑢, 𝑣) location signifies its
intensity, Δ𝑛 = 𝑥𝑢,𝑣 − 𝑛𝑢,𝑣 . Higher variance indicates a more no-
ticeable watermark (albeit with possible image distortion), whereas
lower variance results in a subtler watermark.

To estimate the watermark throughout an image, we use a local
estimation mask 𝒎 = [𝑛̂𝑢,𝑣]1≤𝑢,𝑣≤𝑀 , which is a matrix represent
each client’s watermark information in local dataset. The index
(𝑢, 𝑣) in this mask represents the watermark location. Each 𝑛̂𝑢,𝑣 is
determined by the MAP criterion:

𝑛̂𝑢,𝑣 = argmax𝑛̃𝑢,𝑣 ∈R𝑁

(
ln𝑝𝑥𝑢,𝑣 (𝑥 ′ | 𝑛̃𝑢,𝑣) + ln𝑝𝑛𝑢,𝑣 (𝑛̃𝑢,𝑣)

)
, (3)

where 𝑛̃ represents a hypothetical watermark value being consid-
ered during the optimization process to maximize the posterior
probability. The estimation accuracy enhancement is due to MAP
estimation’s statistical convergence towards the true watermark
distribution as the dataset grows.

3.3 Global Watermark Mask Aggregation
In FL environments, the aggregation of local models is a crucial step
for synthesizing a global model that benefits from the distributed
learning process. Analogously, the aggregation of local watermark
estimationmasks is essential for constructing comprehensive global
watermark knowledge.

The aggregation of the global watermark estimation mask, de-
noted by 𝑴 , incorporates contributions from local watermark esti-
mation masks 𝒎 (𝑖 ) from each client 𝑖 within the network N . The
aggregation process is governed by the equation:

𝑴 =
∑︁
𝑖∈N

(
|𝐷 (𝑖 ) |∑

𝑗∈N |𝐷 ( 𝑗 ) |
· 𝑠 (𝑖 )

)
𝒎 (𝑖 ) , (4)

where the weight for each client’s local mask𝒎 (𝑖 ) is determined by
the product of two key factors. The first factor, |𝐷 (𝑖 ) |∑

𝑗 ∈N |𝐷 ( 𝑗 ) |
, consider

the relative data sample size |𝐷 (𝑖 ) | of the 𝑖-th client, indicating the
proportion of data contributed by this client in comparison to the
total data volume across all clients in N . The second factor, 𝑠 (𝑖 ) ,
corresponds to the average size of the watermark estimation mask
for the 𝑖-th client, which is computed as the mean of the dimensions
of the mask 𝒎 (𝑖 ) . This measure reflects the spatial extent of the
watermark information present within the client’s data.

3.4 Morozov Regularization
After obtaining the global watermark estimation mask 𝑴 , it is
a mask integration with the local masks to refine the watermark
knowledge for each client. The refined local mask for client 𝑖 , de-
noted by 𝒎∗(𝑖 ) , is achieved by blending 𝑴 with 𝒎 (𝑖 ) :

𝒎∗(𝑖 ) = 𝛽 (𝑖 )𝑴 + (1 − 𝛽 (𝑖 ) )𝒎 (𝑖 ) , (5)

where 𝛽 (𝑖 ) ∈ [0, 1] is an adaptive hyperparameter that controls
the degree to which the global mask influences the refined local
mask. The value of 𝛽 (𝑖 ) is dynamically adjusted based solely on the
training performance difference, ΔAcc(𝑖 ) , which is the difference
between the highest validation accuracy among all clients and the
validation accuracy of the current client 𝑖 . To ensure 𝛽 (𝑖 ) scales
appropriately between 0 and 1, it is calculated as follows:

𝛽 (𝑖 ) =
exp(−ΔAcc(𝑖 ) )

max𝑗∈N exp(−ΔAcc( 𝑗 ) )
, (6)

This formula uses an exponential function to decrease the influence
of ΔAcc(𝑖 ) as it increases, ensuring that 𝛽 (𝑖 ) remains within the
desired range and effectively balances the contribution of the global
mask based on the relative performance of each client.

Regularization adds a term 𝑟𝑒𝑔(·) to the loss function 𝑓 (𝜽 ;𝑥,𝑦),
comprising a parameter matrix 𝜶 and norm 𝑅(𝜽 ), formulated as
𝑟𝑒𝑔(𝜽 ) = 𝜶𝑅(𝜽 ). The matrix 𝜶 balances regularization’s impor-
tance, with higher values increasing bias and reducing overfitting,
and lower values doing the opposite. This balance is captured by
𝜶 = 𝜶 (𝛿), where 𝛿 measures deviation from real data.

Mathematically, refer to [25], the loss function with regulariza-
tion is formulated as below,

𝐹 (𝜽 ∗) := argmin
𝜽 ,𝜶

𝑁∑︁
𝑖=1

𝐷 (𝑖 )∑︁
𝑘=1

(
𝑓 (𝜽 ;𝑥𝑘 + 𝑛𝑘 , 𝑦𝑘 ) + 𝛼 | |𝜽 | |22

)
. (7)

Morozov regularization is a principle for choosing a regulariza-
tion parameter, i.e., 𝜶 , to stabilize the machine learning model to
be trained. Specifically, let 𝑥𝛼 be

𝑥𝛼 = arg min
𝑥

{
1
2
∥𝜃 (𝑥) − 𝑦∥2 + 𝜶𝑅(𝜽 )

}
. (8)



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Federated Morozov Regularization for Shortcut Learning in Privacy Preserving Learning with Watermarked Image Data ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

𝜶 can be considered as a control parameter. If 𝜶 is too small,
the model overfits the watermarked in the data; and if 𝜶 is too
big, the model loses the essential details. If 𝑦𝛿 is the watermarked
data and assume that 𝛿 is the known noise level introduced by the
watermarked data, then 𝜶 is chosen such that:

∥𝜃 (𝑥𝛼 ) − 𝑦𝛿 ∥ = 𝛿 = 𝒎∗
𝑘
. (9)

In other words, Morozov regularization chooses the value of 𝜶
that can make the norm | | · | | equal to the noise level (also called
the Morozov’s discrepancy principle [43]).

The federated Morozov regularization for FL in Alg. 1 operates in
three main phases: watermark estimation, mask aggregation, and
regularization parameter computation. Initially, each client’s model
parameters 𝜽 (𝑖 ) are initialized. The watermark estimation phase
involves using MAP-based method to estimate the 𝑛̂ (𝑖 )

𝑘
in each data

point of client 𝑖’s dataset 𝑑 (𝑖 ) and get the 𝒎 (𝑖 ) (Lines 4–7).
The watermark aggregation use the clients’ watermark estima-

tion mask to aggregate a global mask with Eq. (4) before federated
learning training process (Lines 10–11).

During the federated learning process, each client refines the wa-
termark estimation mask as outlined in Lines 14– 17. In this phase,
the learning module of each client employs Morozov regularization
to compute the regularization parameters. This involves setting
an initial discrepancy tolerance and 𝜶 (𝑖 )

𝑘
, which are iteratively re-

fined based on model predictions 𝑦 (𝑖 )
𝑘

, residuals, and discrepancy
measures until they converge within the set tolerance (Lines 18–24).

Finally, the algorithm utilizes the refined 𝜶 (𝑖 )
𝑘

to adjust each
client’s model parameters 𝜽 (𝑖 ) . This adjustment takes into account
the loss function 𝑓 (·), the regularization parameter 𝜶 (𝑖 )

𝑘
, and the

estimated watermark 𝑛̂ (𝑖 )
𝑘

. Consequently, the regularized loss func-
tion 𝐹𝑟𝑒𝑔 (𝜽 (𝑖 ) ) is updated to reflect these changes, ensuring that the
model parameters are optimized in alignment with the FL objectives
and constraints.

Subsequently, each client performs local model training and
adheres to the FL training protocol depicted in Step 4 of Fig. 2.
Throughout the FL cycles, Alg. 1 systematically incorporates these
updates into the overall FL training scheme.

4 EVALUATION
4.1 Evaluation Settings
We assess the performance of our technique in a client-server
testbed that we have constructed. The server is equipped with an
Nvidia RTX 3090 GPU and an AMD Ryzen 9 5900X CPU, running
on Ubuntu 20.04 LTS. For client devices, we employ 2 × NVIDIA
Jetson AGX Orin, 3 × Jetson Orin Nano 8GB, 5 × Jetson Orin Nano
4GB, and 30 × Jetson Nano. The performance detail can be seen
in Table. 1. Our testbed setting and equation1 have been shown in
Fig. 3 to understand the efficacy of federated Morozov regulariza-
tion in heterogeneity edge clients. We connected each client device
to switches via an Ethernet cable. Data exchange in federated learn-
ing, including metadata and models, is facilitated by accessing the

1The 4GB and 8GB Jetson Orin Nano boards have the same appearance.

Algorithm 1: Federated Morozov Regularization
Data: Loss function 𝑓 (·) in client 𝑖 , data 𝑥𝑖 in client 𝑖 .
Result: Regularized loss function.

1 Initialization:
2 for client 𝑖 in N do
3 for data 𝑥 (𝑖 )

𝑘
in 𝐷 (𝑖 ) do

4 Compute 𝒎 (𝑖 )
𝑘

using Eq.(3);
5 end

6 Combine dataset mask 𝒎 (𝑖 ) = 1
|𝐷 (𝑖 ) |

∑ |𝐷 (𝑖 ) |
𝑘=1 𝒎 (𝑖 )

𝑘
;

7 Upload 𝒎 (𝑖 ) to server;
8 end
9 Server:

10 Aggregate 𝑴 using Eq. (4) and {𝒎 (𝑖 ) }N
𝑖=1 from clients;

11 Broadcast global watermark mask 𝑴 to each client;
12 Start FL training:
13 for each client 𝑖 in N do
14 Upload last round’s local Acc.;
15 Calculate ΔAcc(𝑖 ) before received global Acc. from

server ;
16 Update 𝛽 (𝑖 ) using Eq. (6);
17 Refine 𝒎∗(𝑖 ) using Eq. (5);
18 Apply watermark estimation 𝑛̂

(𝑖 )
𝑘
← 𝒎∗(𝑖 )

𝑘
;

19 Initialize value for 𝜶 (𝑖 )
𝑘

and set tolerance 𝑡𝑜𝑙 ;
20 while 𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 > 𝑡𝑜𝑙 do
21 Compute the model prediction 𝑦 (𝑖 )

𝑘
← 𝑓 (𝜽 (𝑖 ) ;𝑥 (𝑖 )

𝑘
);

22 Compute the residual: 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 (𝑖 )
𝑘

=




𝑦 (𝑖 )
𝑘
− 𝑦 (𝑖 )

𝑘




2

2
;

23 Compute the discrepancy:

𝑑𝑖𝑠𝑐𝑟𝑒𝑝𝑎𝑛𝑐𝑦 = 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
(𝑖 )
𝑘
−




𝑛̂ (𝑖 )
𝑘




2

2
;

24 Update 𝜶 (𝑖 )
𝑘

;
25 end
26 return 𝜶 (𝑖 )

𝑘
;

27 Update Regularized Loss:
𝐹𝑟𝑒𝑔 (𝜽 (𝑖 ) ) ← 𝑓 (𝜽 (𝑖 ) ;𝑥 (𝑖 )

𝑘
+ 𝑛̂ (𝑖 )

𝑘
, 𝑦
(𝑖 )
𝑘
) + 𝜶 (𝑖 )

𝑘
| |𝜽 (𝑖 ) | |22;

28 end

IP bound to each device. The communications protocol uses sockets.
The underlying Jetson driver is supported by Jetpack 5.1.

Switch Orin Nano 8GB AGX Orin

Nano

Orin 
Nano 
4GB

Figure 3: Evaluation testbed in the lab.
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Table 1: Performance Comparison of Edge Devices

Device Quantity GPU CPU

AGX Orin 2 248 TOPS 8-core, 2.2 GHz
Orin Nano-8 3 40 TOPs 6-core, 1.5 GHz
Orin Nano-4 5 20 TOPS 6-core, 1.5 GHz

Nano 30 472 GFLOPS 4-core, 1.4 GHz

Models and datasets. In the experimental phase, our investigation
employed a range of neural network architectures to perform the
image recognition task. The first is a Lite-CNN2, characterized by
its simplicity yet effectiveness. Alongside our custom CNN, we inte-
grated two well-established models: VGG [45] and ResNet-18 [14].
The initial learning rate is set to 0.1, and the batch size is set to
64 by default. Using the SSP [17] synchronization strategy, the lo-
cal epochs are set to 5 by default. In our experimental setup, we
evaluated the performance of our proposed method using widely
recognized image classification datasets, includingMNIST [9], Cifar-
10 [22], Tiny-ImageNet [7] and COVID-FL [52]. In our experimental
design, MNIST was trained using the Lite-CNN to assess the ef-
fectiveness of our method on simple tasks with a straightforward
model. For Cifar-10, we employed the VGG model to train, lever-
aging its depth and complexity for a more detailed image classifi-
cation task. The Tiny-ImageNet, serving as a multi-classification
challenge, and the binary classification task of COVID-FL were both
approached using the ResNet architecture, to handle the complexity
and scale of these datasets adequately.
Watermark setting. In the creation of our watermarked dataset,
various watermark embedding techniques, including frequency wa-
termark: DWT, DCT, DFT, LSB, and spatial watermark: LSB, explicit
watermarking [3, 41], are employed. Although the adjustment pa-
rameters for watermark intensity vary across different methods
(for instance, the intensity in explicit watermarks refers to trans-
parency, while in some frequency domain watermarks, like DFT, it
refers to modulation amplitude), we normalize the intensity of all
watermarks to a 0-1 scale. The embedding location in spatial do-
main watermarks denotes the position of the watermark within the
image (such as the center or edges), whereas in frequency domain
watermarks, it refers to the frequency within the image spectrum
(like high, mid, or low frequency; in DCT, this ranges from the LL
to HH domain).

The watermark embedding intensity is adjusted between 0.01
and 1 for our experiments. Each client in the FL employs the same
watermarking method and parameters, ensuring consistency across
the dataset.
Evaluation metrics. Our performance evaluation focuses FL per-
formance. Referring to the evaluation metric of the shortcut learn-
ing research [18, 32, 36], FL performance is assessed using task
accuracy, which measures the percentage of correct predictions
by the FL models on a distributed dataset, and loss, indicating the
prediction error with lower values signifying better performance.
Benchmark methods. We compare the federated Morozov reg-
ularization with the following peer robust training methods in
2Lite-CNN comprises two convolutional layers, each with a 5x5 kernel size and 64
channels, succeeded by a 3x3 max pooling layer. The network also includes two
fully connected dense layers, the first containing 384 units and the second 192 units,
culminating in a softmax output layer for classification.

FL [40] [11], generalized regularization [54] and regularization for
shortcut learning [18].
• FedAvg [33]: Used to establish a performance baseline in our
experiments, serving as a foundation for comparison with
other FL algorithms.
• GroupLasso [54]: a generalized regularization for machine
learning by adding a penalty term. We modified GroupLasso
to federated learning version based on the client-level profil-
ing setting.
• AFL [11]: Using global model transmission, local gradient
calculations, and averaging, with hyperparameters set to
𝛼1 = 0.75, 𝛼2 = 0.01, 𝛼3 = 0.1 in our experiments.
• RFA [40]: A Roubstness aggregation method for corrupted
data. We applied with hyperparameters as per the original
paper: R = 3 and 𝑣 = 10−6.
• FD [18]: A feature regularization with frequency filter tools.
We modified FD to federated learning version (Fed-FD) based
on the client-level profiling setting.

4.2 Evaluation Results & Analysis
4.2.1 Improvement with federatedMorozov regularization. The eval-
uationmetric was task accuracy in FL, compared under two different
training and inference conditions: with watermarked data but clean
inference, and with both watermarked training and inference.

The experimental design, as outlined in Table 2, bifurcates the
analysis into two primary scenarios: inference on clean data and
inference under watermarked conditions. This distinction aims to
uncover the impact of shortcut learning induced by watermarks,
which affects not only the inference with watermarked features
but also the performance on clean data, highlighting the pervasive
influence of watermarks on model behavior. The settings for data
and watermark heterogeneity are set to 𝛼 = 0.5, 𝛽 = 0.5, which be
defined in Sec. 4.2.2.

Our method demonstrates superior accuracy across all datasets
and settings, underscoring its effectiveness inmitigating the adverse
effects of shortcut learning in FL. Specifically, in the clean inference
setting, our approach achieves an accuracy of 97.35% on MNIST,
80.86% on Cifar-10, 35.43% on ImageNet, and 87.14% on COVID-FL.
These results are notably higher than those obtained with other
methods, such as FedAvg, GroupLasso, AFL, RFA, and Fed-FD. The
improvement is even more pronounced in the watermarked dataset
& inference setting, with scores of 95.24% on MNIST, 79.26% on
Cifar-10, 33.29% on ImageNet, and 84.10% on COVID-FL. The detail
learning performance with epoch growing can be seen in Fig. 4.

The underperformance of other methods can be attributed to
their inability to effectively address the dual challenge posed by
non-IID data and the presence of watermarks. Methods like FedAvg
and GroupLasso, while foundational in FL, lack specific mechanisms
to counteract the nuanced effects of watermarked data, leading to
compromised accuracy. AFL and RFA, despite introducing robust-
ness in aggregation, do not directly tackle the issue of shortcut
learning induced by watermarks. Fed-FD, which applies feature
regularization, shows promise but still falls short of fully mitigating
the impact of watermarks on model learning.

4.2.2 Results on Data and Watermark Heterogeneity. In FL, the
issue of data-level heterogeneity is primarily manifested through
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Table 2: FL method benchmark accuracy(%) comparison under different settings.

Setting Watermarked Dataset & Clean Inference Watermarked Dataset & Inference
MNIST Cifar-10 ImageNet COVID-FL MNIST Cifar-10 ImageNet COVID-FL

FedAvg 95.35±0.04 71.29±0.72 25.56±1.06 77.30±1.42 92.10±0.02 64.07±0.83 15.45±1.14 74.43±1.23
GroupLasso 96.44±0.02 71.30±0.71 28.94±1.00 81.43±1.53 92.59±0.01 64.14±0.51 19.22±0.83 74.29±1.43

AFL 96.05±0.02 72.52±0.35 30.42±0.53 83.41±2.56 91.53±1.03 65.10±0.07 22.52±0.51 75.41±1.51
RFA 96.73±0.03 72.54±0.87 30.62±1.03 84.52±1.98 94.14±0.01 67.89±1.12 25.70±0.97 77.62±1.83

Fed-FD 96.86±0.01 76.89±0.75 33.80±0.71 84.09±1.27 93.83±0.02 68.04±0.90 24.03±0.95 79.93±1.25

Ours 97.35±0.03 80.86±1.04 35.43±0.73 87.14±1.03 95.24±0.02 79.26±1.09 33.29±1.01 84.10±1.68
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(b) Cifar-10 dataset
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(c) Tiny-ImageNet dataset
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Figure 4: Task accuracy and convergence with epoch growing of method benchmark in different watermarked datasets.

the presence of non-IID (independent and identically distributed)
data challenges. For the non-IID problem in the FL experiment,
we define the degree of non-IID data and non-IID watermark as
follows:

In a multi-client training scenario, each client’s data is inde-
pendently sampled with class labels from 𝑁 classes, following a
categorical distribution with vector 𝑞 (𝑞𝑖 ≥ 0, 𝑖 ∈ [1, 𝑁 ], ∥𝑞∥1 = 1).
Non-IID client data is simulated by sampling 𝑞 from a Dirichlet dis-
tribution, Dir(𝛼p), where p is the prior class distribution, and 𝛼 > 0
determines client similarity. An infinite 𝛼 implies uniform client
distributions, while 𝛼 near zero results in maximum divergence
among clients.

In the context of non-IID watermark settings, we adopt a distri-
bution similar to the Dirichlet distribution to manage the variability
in watermark characteristics such as intensity (𝐼 ) and location (𝐿).
Intensity ranges from 0 (no watermark) to 1 (maximum intensity),
while location varies from low-frequency areas or image edges to
high-frequency areas or central regions. We introduce a parameter
𝛽 in Dir(𝛽p) to control the degree of non-IID in the watermark
distribution. A higher 𝛽 indicates more uniformity in watermark
characteristics across clients, leading to similar intensity and loca-
tion settings. Conversely, a lower 𝛽 results in greater diversity, with
each client having distinct watermark intensity and placement. This
approach allows us to simulate a spectrum of watermark patterns
across different clients, reflecting various degrees of intensity and
placement. Unlike other datasets, for the real-world dataset COVID-
FL, the data is already divided among different clients by medical
institutions, thus we utilize the official non-IID configuration dis-
tribution to proceed. The variation in equipment used by different
medical institutions, along with their respective watermark design
preferences, inherently introduces a non-IID distribution of wa-
termarks. Therefore, COVID-FL, as a more realistic watermarked

dataset, can be considered a reference for real-world issues and
does not require additional non-IID watermark design and settings.

In our experimental analysis, the combined impact of non-IID
data and non-IID watermark on the federated Morozov regular-
ization technique is depicted through heatmaps, revealing a com-
pounded decrease in accuracy with the simultaneous presence of
both non-IID conditions. We have selected Fed-FD as the bench-
mark for testing our method based on its superior performance as
demonstrated in Sec. 4.2.1. When the non-IID degree for both data
and watermark is at its highest, we observe a notable reduction in
accuracy, illustrating the challenges posed by these conditions. For
example, with 𝛼 of 0.5 and 𝛽 of 0.5, the accuracy drops to around
68.04%. Modifications to the technique, as reflected in the second
heatmap, show improvements in this challenging scenario with a
notable increase in accuracy. Under the same high non-IID condi-
tions, the accuracy improves to 79.26%. The third heatmap, which
focuses on the percentage of improvement, highlights the effec-
tiveness of our modifications. In scenarios with non-IID data and
watermark, our method achieves a substantial improvement, with
the most pronounced increase in accuracy reaching up to 11.22%.

4.2.3 Ablation Study. We present an analysis of three components
designed for such environments: MAP-based watermark estimation
(MAP), watermark estimation aggregation (Aggr.) and Morozov
regularization (Moro.) in Table. 3. The goal is to evaluate how effec-
tively these components, can counteract the reduction in accuracy
often caused by watermarking, compared to alternative methods
or variations.
Study on watermark estimation. Our exploration delved into
the efficacy of MAP-based watermark estimation by comparing
it against both its variants and analogous statistical methodolo-
gies. This included the Blind Image Quality Measurement (denoted
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Figure 5: Accuracy in heterogeneous FL environment with Cifar-10 dataset.

Table 3: Accuracy(%) comparison in ablation study. The bot-
tom line is the component of our method.

(a) Study on watermark estimation.

Method MNIST Cifar-10 ImageNet COVID-FL

Blind 93.86 64.89 26.80 79.00
Stacking 93.55 66.58 26.29 81.26
MAP 95.24 79.26 33.29 84.10

(b) Study on estimation mask aggregation.

Method MNIST Cifar-10 ImageNet COVID-FL

w/o. 94.45 72.52 30.50 83.23
Avg. 95.05 73.57 33.42 83.50
Aggr. 95.24 79.26 33.29 84.10

(c) Study on feature extractor regularization.

Method MNIST Cifar-10 ImageNet COVID-FL

Tik. 94.24 73.44 31.46 80.29
L1 93.93 76.25 30.21 80.41
Moro. 95.24 79.26 33.29 84.10

as Blind) [46], a technique predicated on leveraging statistical at-
tributes to gauge image quality, and the strategy of stacking all
dataset images to generate a uniformly weighted mask, tantamount
to an averaged weighted MAP-based estimation (denoted as Stack-
ing). As delineated in Table 3a, the MAP approach manifested a
notably superior accuracy enhancement relative to its counterparts,
with a 12.68% increment over Stacking within the Cifar-10 dataset.
Such findings underscore that methodologies centered on image
quality estimation (Blind) and indiscriminate estimation of images
and watermarks (Stacking) are ineffectual in procuring a robust
watermark estimation.
Study on estimation mask aggregation.We delve into the effi-
cacy of watermark mask aggregation by both omitting this com-
ponent (denoted as w/o.) and evaluating its variants, specifically
average aggregation (denoted as Avg.), where the local masks from
all clients undergo aggregation with equal weighting. As evidenced
in the Table. 3b, aggregation demonstrates enhanced performance

in the Cifar-10 dataset, characterized by strong heterogeneity and
a smaller quantity of images. Conversely, for datasets with a larger
volume and more uniform data, such as Tiny-ImageNet and COVID-
FL, the performance difference compared to average aggregation
is minimal. This phenomenon can be attributed to the intrinsic
purpose of mask aggregation, which is to furnish a global mask
that aids clients with less data in obtaining a more applicable mask.
Therefore, if the local datasets of clients are sufficiently large, the
improvement brought about by aggregation may be marginal.
Study on Morozov regularization. In our ablation study focus-
ing on Morozov regularization, we maintained identical inputs for
the estimation mask while employing a simplified form of regu-
larization. Morozov regularization, conceptualized as a variant of
Tikhonov regularization, introduces parameter adjustments that are
more finely tuned to the noise levels encountered. Thus, Tikhonov
regularization (denoted as Tik.) is utilized as a comparative mea-
sure to ascertain the significance of adjustments in regularization
parameters. Furthermore, we investigate whether L1 regularization,
a widely referenced regularization technique, also demonstrates
improvements in the context of prior information on watermark
estimation (denoted as L1). Insights from Table. 3c reveal that the
enhancements attributed to Morozov Regularization are predomi-
nantly observed in datasets with smaller capacities, such as Cifar-10,
and in datasets where the watermark patterns are relatively fixed,
such as COVID-FL. It is also observed that, although other forms of
regularization exhibit limited improvements over the baseline, their
compatibility with watermark estimation is not as pronounced.

5 CONCLUSION
Our introduces federated Morozov regularization, a technique tai-
lored for federated learning training on watermarked data. Ad-
dressing the challenges posed by the diversity in watermarking
algorithms and intensities across FL participant devices, federated
Morozov regularization efficiently facilitates FL without requiring
prior knowledge of these watermark specifics. The system’s ability
to probe watermark details and employ Morozov regularization for
adapting local model training to watermarked data sets it apart. Our
extensive experiments, conducted on a testbed of 40 Jetson edge
devices. Federated Morozov regularization improves the accuracy
by 11.22%. We also conducted an ablation study of federated Moro-
zov regularization to validate the contribution of each component
to FL model performance in watermarked datasets.
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