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Abstract

Large-scale simulation models of complex socio-technical systems provide
decision-makers with high-fidelity testbeds in which policy interventions can be
evaluated and what-if scenarios explored. Unfortunately, the high computational
cost of such models inhibits their widespread use in policy-making settings. Surro-
gate models can address these computational limitations, but to do so they must
behave consistently with the simulator under interventions of interest. In this paper,
we build upon recent developments in causal abstractions to develop a framework
for learning interventionally consistent surrogate models for large-scale, complex
simulation models. We provide theoretical results showing that our proposed ap-
proach induces surrogates to behave consistently with high probability with respect
to the simulator across interventions of interest, facilitating rapid experimenta-
tion with policy interventions in complex systems. We further demonstrate with
empirical studies that conventionally trained surrogates can misjudge the effect
of interventions and misguide decision-makers towards suboptimal interventions,
while surrogates trained for interventional consistency with our method closely
mimic the behaviour of the original simulator under interventions of interest.

1 Introduction

Large-scale, complex simulators are powerful tools for modelling distributed socio-technical systems
and emergent phenomena across application domains, including the social sciences [Wiese et al.,
2024], epidemiology [Kerr et al., 2021], and finance [Cont, 2007]. Many such systems consist of a
multitude of autonomous, interacting, and decision-making agents, whose individual behaviours and
interactions can be captured more readily and at a higher degree of fidelity in a computer program
than through conventional modelling paradigms. This level of granularity can, in turn, allow for more
effective control of the potentially deleterious effects that can arise from the endogenous dynamics
of real-world systems by providing a testbed for experimentation with policy interventions. In
economics, for example, such interventions may take the form of limits on loan-to-value ratios in
housing markets to attenuate housing price cycles [Baptista et al., 2016], while in epidemiology they
may be (non-)pharmaceutical interventions that aim to inhibit disease transmission [Kerr et al., 2021].

Whilst simulation modelling of this kind promises many benefits, the intricacy and multi-scale nature
of the simulators that result from these modelling efforts can result in large computational costs even
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for single forward simulations [Jagiella et al., 2017, Fadai et al., 2019, Wright and Davidson, 2020,
Heppenstall et al., 2021]. Since extensive simulation studies are often required to aid decision-making
with these models, such costs present a barrier to their use as synthetic test environments for potential
policy interventions in practice. Moreover, the high-fidelity data generated by detailed simulation
models can be difficult for decision-makers to interpret and relate to policy interventions that act
system-wide [Haldane and Turrell, 2018]. This motivates the development of simpler surrogate
models that model the underlying system at a higher level of abstraction. Such surrogates can also be
used in place of the complex model for downstream tasks where computational resources are limited.
In addition, surrogates may be viewed as interpretable explanations for the complex simulator, and
they allow for rapid testing of population-wide interventions which may be difficult to implement or
test within the orginal model.

However, for surrogates to be useful in downstream tasks involving experimentation with possi-
ble policy interventions, they must preserve the complex simulator’s dynamics under the external
interventions of interest. Without imposing this condition on the constructed surrogate, there is
no guarantee that the surrogate will behave similarly under external policy interventions, which in
turn may lead policy-makers away from effective policies and towards suboptimal interventions.
Existing methods typically apply off-the-shelf machine learning methods to learn surrogates through
observation [Lamperti et al., 2018, Platt, 2022], which fails to account for interventional consistency.

Our contribution. To address this, we build on recent developments in causal abstraction [Beckers
and Halpern, 2019, Zennaro et al., 2023a]. We view the complex simulator and its surrogate
as structural causal models [Pearl, 2009], and propose a framework for constructing and learning
surrogate models for expensive simulators of complex socio-technical systems that are interventionally
consistent, in the sense that they (approximately) preserve the behaviour of the simulator under
equivalent policy interventions. This perspective enables treating the surrogate model as a causal
abstraction of the simulator. We motivate our proposed methodology theoretically, and demonstrate
with simulation studies that our method permits us to learn an abstracted surrogate model for an
epidemiological agent-based model that behaves consistently in multiple interventional regimes.

Our approach establishes, for the first time, a connection between complex simulation models and
causal abstraction, and a practical approach to learning interventionally consistent surrogates for
complex simulators. Our work provides an avenue for researchers modelling complex socio-technical
systems to draw on the rich literature in causality for integrating causal knowledge, evaluating what-if
scenarios, and learning new abstracted models with guarantees about interventional consistency.
Our contribution lays the groundwork for surrogate modelling methods that facilitate rapid experi-
mentation with different scenarios and interventions, with assurances that the error introduced by
experimenting at a higher level of abstraction is low. This line of work has the potential to enable
decision- and policy-makers to use simulation models to quickly identify life-saving policy strategies
during novel and rapidly unfolding emergencies, such as pandemics and economic crises. Indeed, a
recent World Health Organisation report [Health Organization et al., 2024] emphasises the importance
of integrated modelling to concurrently address interdependent policy objectives, such as reducing
disease transmission, mitigating hospital admissions overload, and minimising the economic costs
of service closures on society during pandemics. It further discusses the intense time pressures
involved in these efforts. Our work addresses these points by taking steps towards facilitating rapid
experimentation with large and computationally expensive integrated simulation models.

2 Background

We first recall the key elements of causal inference, following Pearl [2009], and elucidate the
connection between structural causal models (SCMs) and complex simulators. We also review the
notion of exact transformations between SCMs, which theoretically motivates our framework.

2.1 Structural causal models

A SCM is a rigorous model describing a causal system:

Definition 1 (SCMs [Pearl, 2009]). A structural causal modelM is a tuple ⟨X,U,F ,P(U)⟩ where:

• X = {Xi}ni=1, is a finite set of endogenous random variables Xi each with domain dom[Xi];
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• U = {Ui}ni=1, is a finite set of exogenous random variables, each with domain dom[Ui] and each
associated with an endogenous variable;

• F = {fi}ni=1, is a finite set of measurable structural functions, one for each endogenous variable
defined as fi : dom[PA(Xi)]× dom[Ui]→ dom[Xi], where PA(Xi) ⊆ X \Xi.

• PM(U) is a joint probability distribution over the exogenous variables factorizing as∏n
i=1 PM(Ui).

The modelM is associated with a Directed Acyclic Graph (DAG) GM = ⟨V, E⟩ where the set V of
vertices is given by X ∪U and the set E of edges is given by {(Sj , Xi) | Sj ∈ PA(Xi) ∪ {Ui}}ni=1.

Definition 1 conforms to the standard definition of a Markovian SCM (see Appendix A for an
explanation of the underlying assumptions). Thanks to the measurability of the structural functions
in F , the probability distribution PM(U) over the exogenous variables can be pushed forward
over the endogenous variables, defining the probability distribution PM(X) = F#(PM(U)). Joint
distributions PM(S) can then be defined for any subset S ⊆ X.

External interventions on the system by an experimenter can be represented in an SCM through
changes in the structural functions. Here, we restrict our attention to hard interventions, in which
fixed values are assigned to subsets of endogenous variables:
Definition 2 (Interventions [Pearl, 2009]). Given an SCMM, S ⊆ X, and a set of values s realizing
S, an intervention ι = do(S = s), is an operator that replaces each function fi associated with Si
with constant si.

The intervention ι = do(S = s) induces a new post-intervention SCM,Mι = ⟨X,U,Fι,P(U)⟩,
identical to the original one, except that in Fι the functions fi are replaced with the constants si. The
probability distribution ofMι is computed as PMι(X\S). Graphically, the intervention ι transforms
the DAG ofM by removing incoming edges in each variable Si.

We use I to denote a set of feasible interventions on the SCMM that are relevant to a policymaker.
Intervention sets are equipped with a natural partial ordering: let ι1 = (S = s) and ι2 = (T = t);
then ι1 ⪯ ι2 iff (i) S ⊆ T, and (ii) for each Si = Ti it holds si = ti; informally, ι1 intervenes on a
subset of the variables that ι2 intervenes on, and it sets the same values as ι2.

2.2 Complex simulators as structural causal models

Many simulation models of complex systems – such as, for example, agent-based models (ABMs)
– can be modelled as a SCM by expressing its implicit underlying causal structure. Practically, this
entails encoding quantities of interest as endogenous variables, deterministic dynamics into structural
equations, and factoring sources of randomness into exogenous variables. The following example
illustrates how a common ABM from epidemiology can be cast as a SCM.
Example 1 (Spatial SIRS ABM). We consider a susceptible-infected-recovered-susceptible (SIRS)
epidemic model on an L× L lattice of cells, each of which represents one of N = L2 agents. The
state of each agent can be 0, 1, or 2, respectively, indicating that the agent is disease-free and
susceptible to infection, infected, or is recovered from a recent infection. The infection status of all
agents at discrete time step t ∈ J0, T K is written as xt ∈ {0, 1, 2}N , where T is the total number of
simulated time steps, and Jl,mK = {l, l + 1, . . . ,m− 1,m} for integers l ≤ m. The states xt,n of
each of the agents n ∈ J1, NK are updated synchronously as follows for t ∈ J0, T − 1K:

(U1) If xt,n = 0, then xt+1,n = 1 with probability

pt,n(αt+1) = 1− (1− αt+1)
∑
n′∈Nn I[xt,n′=1] (1)

where Nn is the von Neumann neighbourhood for cell n; else remain susceptible.

(U2) If xt,n = 1, then xt+1,n = 2 with probability βt+1; else remain infected.

(U3) If xt,n = 2, then xt+1,n = 0 with probability γt+1; else remain recovered.

In the above, θt = (αt, βt, γt) ∈ [0, 1]3 are the model parameters determining the transition
probabilities between states. While these may vary over time, the simplest case consists of assigning
all θt the same vector,

θt = v ∀t ∈ J1, T K. (2)
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The model is initialised by infecting each agent in the model at initial time t = 0 with probability
I0 ∈ [0, 1]. The value of I0 for any forward simulation of the model can be chosen by drawing a
random variable a from some distribution on [0, 1] and setting

I0 = a. (3)

With this model in place, lockdowns over some time period tl : tl + ∆ of length ∆ ≥ 0 can be
modelled (crudely) by setting θtl:tl+∆ = (0, β, γ) for β, γ ∈ [0, 1]. To express this ABM as an SCM,
we define the following:

Endogenous variables These consist of the variables of interest that may be set by the policymaker:
I0, {xt}0≤t≤T , and {θt}1≤t≤T .

Exogenous variables The model as described above is initialised randomly according to a, v, and
a collection u0 = (u0,n)1≤n≤N ofN random variables distributed as U(0, 1), the nth of which helps
determine whether agent n is infected at time t = 0. Similarly, further collections ut, t ∈ J1, T K
of U(0, 1) random variables decide how each agent updates their state at each time step. Thus the
exogenous variables for the model are a, v, and the ut for t ∈ J0, T K.

Structural equations Equations 2 and 3, respectively, define the structural equations fθt and fI0
for the endogenous variables θt and I0. The structural equation fx0,n

for each x0,n, n ∈ J1, NK can
furthermore be written as

x0,n = fx0,n
(u0,n, I0) = I [u0,n < I0] . (4)

Finally, update rules (U1)-(U3) can be written in the following way for t ∈ J0, T − 1K:

xt+1,n = fxt+1,n
(θt+1,ut+1,n,xt,n)

= I [xt,n = 0] · I [ut+1,n < pt,n(αt+1)] + I [xt,n = 1] · (1 + I [ut+1,n < βt+1])

+ 2I [xt,n = 2] · (1− I [ut+1,n < γt+1]), (5)

Distribution over exogenous variables The (random) behaviour of the exogenous variables is
fully specified by the distribution over a and v, along with U(0, 1) distributions over the ut,n.

The underlying graph The DAG corresponding to this SCM is shown in Figure 1 for T = 3.

In this model, interventions in the form of, for example, lockdowns can be (crudely) modelled by
intervening on one or more of the θt as do(θt = (0, β, γ)) for some β, γ ∈ [0, 1], while in the
observational regime the θt will all be assigned the same value.

a I0 x0 x1 x2 x3

u0 u1 u2 u3

θ1

v

θ2 θ3

Figure 1: The directed acyclic graph induced by
the structural causal model for the spatial SIRS
agent-based model for T = 3 time steps.

We emphasise that the above example is in-
tended only to illustrate that complex simulators,
such as ABMs, can be seen as SCMs; explicitly rep-
resenting a given simulator as an SCM as in the
example above is not required in the sequel.

2.3 Causal abstractions

Beside expressing interventions more rigorously,
viewing complex simulation models as SCMs
allows one to take advantage of the theory of
causal abstraction to formalise the relationship
between the simulator and its surrogate model.
Indeed, causal abstraction provides a framework
for relating SCMs representing an identical sys-
tem at different levels of granularity. The notion of exact transformation formalizes this relation,
providing a framework to relate complex models, such as ABMs, to simpler top-down models, while
preserving causal structure.
Definition 3 (τ -ω Exact Transformation [Rubenstein et al., 2017]). Given two SCMs,M andM′,
with respective intervention sets I and I ′, a τ -ω transformation is a pair (τ, ω) consisting of a
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map τ : dom[X] → dom[X′] and a surjective, order-preserving map ω : I → I ′. An exact τ -ω
transformation is a τ -ω transformation such that

τ#(PMι
) = PM′

ω(ι)
,∀ι ∈ I. (6)

An exact τ -ω transformation constitutes a form of abstraction between probabilistic causal models
[Beckers et al., 2020] with the guarantee of commutativity between intervention and transformation
as detailed in Figure 2: intervening via ι and then abstracting produces the same result as abstracting
first and then intervening via ω(ι). The map τ describes corresponding states in each of the models,
while the map ω describes corresponding interventions in each model. Whenever the map τ is clear
from context, we herein shorthand the pushforward measure τ#(PMι

) as P#
Mι

.

ι PMι

ω(ι) PM′
ω(ι)

M

ω τ

M′

Figure 2: Computing τ#(PMι
) corresponds to

moving right, then down, in the diagram. That
is, running the intervention ι in a base modelM
such as an ABM. Computing PM′

ω(ι)
corresponds

to moving down, then right. That is, running the
intervention ω(ι) in an abstracted modelM′ such
as a surrogate. If (τ, ω) is an exact transformation,
then the diagram is commutative for all interven-
tions. That is, τ#(PMι

) = PM′
ω(ι)

for all ι ∈ I.

An exact τ -ω transformation between the SCM
M underlying a complex simulation model and
the SCMM′ underlying the candidate surrogate
model would (a) certify that the surrogate pre-
serves the causal behaviour of interest, guaran-
teeing interventional consistency when policy-
makers study interventions through the surro-
gate, and (b) allow to interpret the emergent
causal structure of the simulator throughM′.

3 Abstraction error

It is often unrealistic to assume that an exact τ -ω
transformation exists between a complex simu-
lator and its surrogate A more pragmatic goal
is to find an approximate abstraction [Beckers
et al., 2020] from the simulator to the surrogate. We therefore define the abstraction error:
Definition 4 (Abstraction error). Let (τ, ω) be a τ -ω transformation between two SCMsM andM′

with respective intervention sets I and I ′. Given a statistical divergence d between distributions, and
a distribution η over the intervention set I, we define the abstraction error as follows:

dτ,ω(M,M′) = Eι∼η
[
d
(
τ#(PMι

), PM′
ω(ι)

)]
. (7)

A τ -ω transformation is α-approximate for some α ∈ R≥0 if dτ,ω(M,M′) ≤ α.

ι PMι

τ#(PMι
)

ω(ι) PM′
ω(ι)

M

ω

τ

M′

dτ,ω≤α

Figure 3: The abstraction error compares the distri-
butions τ#(PMι

) and PM′
ω(ι)

for each intervention
ι using the divergence dτ,ω , as indicated by the red
dotted arrow. If the divergence is zero then we
recover the commutative diagram in Figure 2.

A τ -ω abstraction with low abstraction error im-
plies that τ#(PMι

) is close to PM′
ω(ι)

in expec-
tation with respect to the interventional distribu-
tion η. If the d

(
τ#(PMι

), PM′
ω(ι)

)
is zero for

all interventions ι ∈ I, then (τ, ω) is an exact
transformation (see Figure 3).

Definition 4 differs from previously defined no-
tions of abstraction error in the causal abstrac-
tion literature. Whilst Beckers et al. [2020] em-
ploy a maximum over interventions, we instead
take an expectation over a fixed interventional
distribution η. This is motivated by the fact that
policymakers will often hold preferences over
possible interventions, which may, for example,
reflect the cost or feasibility of implementing each intervention in the real world. Through the specifi-
cation of η, one may implicitly favour surrogates which perform well with respect to interventions of
high interest. Further discussion is provided in Appendix B.

4 Method

The definitions of abstraction and abstraction error provide us with a framework for learning sur-
rogates, and, in the remainder, we assume that the base model M is implicitly represented by a
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simulation model of a complex socio-technical system. Our goal is then to identify a surrogate model
which is interventionally consistent with this simulator. Specifically, from a set of candidate surrogate
models M, we seek a surrogate and a τ -ω transformation that minimises the abstraction error.

To proceed, we assume that M is a parameterised family MΨ := {Mψ : ψ ∈ Ψ} of differentiable
surrogate simulators with tractable probability mass or density function qψ. Here, Mψ denotes
the causal model induced by a surrogate whose structural equations are parameterised by ψ, and Ψ
denotes the set of feasible parameter values. Such a family of surrogate models can be constructed
through a composition of differential equation- or deep learning-based modelling, in combination
with probability distributions with reparameterisable sampling procedures; an example is a latent
neural ordinary differential equation model [Rubanova et al., 2019], which we use in the experiments
in Section 5. We further assume only the ability to sample from τ#(PM), amounting to running the
simulator and applying τ to the output.

Generally speaking, policymakers know what macroscopic quantities are of interest when modelling
a complex system, and how to aggregate the microscopic variables into global statistics. For example,
in macroeconomic settings, policymakers will often be concerned with aggregate quantities such as
unemployment rates or aggregate demand, which can be derived from the state of the agents. Further
specific examples are discussed in Appendix C.1. We thus assume that the map τ , which defines the
aggregate, emergent quantities of interest to the policymaker, is pre-specified.

Hence, to find an appropriate τ -ω transformation, we need only to identify an intervention map
ω⋆ between I and I ′. For computational tractability, we select ω⋆ from a parameterised family
ΩΦ := {ωϕ : ϕ ∈ Φ} with parameters ϕ ranging over the set Φ. For example, ϕ may be the
weights of a neural network. We then select ϕ⋆ and ψ⋆ jointly by minimising dτ,ω(M,M′) over
ΩΦ ×MΨ. Since each element of M has a differentiable and tractable distribution, a convenient
choice of discrepancy d is the Kullback-Leibler (KL) divergence, such that out problem becomes:

ϕ⋆, ψ⋆ = argmin
ϕ∈Φ,ψ∈Ψ

dτ,ωϕ(M,Mψ) with dτ,ωϕ(M,Mψ) = EηEP#
Mι

log dP#
Mι

dPMψ

ωϕ(ι)

 . (8)

The KL divergence can be minimised using Monte Carlo estimates of the gradient

G(ϕ, ψ) = ∇ϕ,ψ dτ,ωϕ(M,Mψ) ≈ 1

B

B∑
b=1

−∇ϕ,ψ log qψ
ωϕ(ι(b))

(y(b)) (9)

where ι(b) ∼ η, y(b) ∼ τ#(PM
ι(b)

), qψ
ωϕ(ι)

is the probability mass/density function forMψ
ωϕ(ι)

, and
B ≥ 1 is the size of a batch drawn from R ≥ B training examples from the joint distribution over
the ι(b) and y(b). Once (ϕ⋆, ψ⋆) has been selected, we may generate data from the macromodel for
ABM intervention ι by sampling from PMψ⋆

ωϕ
⋆
(ι)

. Algorithm 1 summarises the training procedure.

4.1 Theory Algorithm 1: Summary of the training procedure.
Input: Budget R; batch size B ∈ J1, R− 1K;

ABMM; intervention distribution η;
surrogate family MΨ; abstraction map
family ΩΦ

Result: Trained surrogate and abstraction map
parameters, ψ∗ and ϕ∗

Set D = ∅;
for r = 1 to R do

Sample ι(r) ∼ η, x(r) ∼ PM
ι(r)

;
D ← D ∪ (ι(r), τ(x(r)))

end
while not converged do

Sample minibatch {(ι(b), τ(x(b)))}Bb=1
uniformly from D;

Take gradient step in ϕ, ψ using Equation 9
end

Definition 4 is closely related to exact trans-
formations:

Proposition 1. Let η be an interventional
distribution, d be a statistical divergence,
and (τ, ω) be a τ -ω transformation between
SCMs M and M′. If τ -ω is 0-approximate
(dτ,ω(M,M′) = 0), then we have η-almost-
surely

τ#(PMι
) = PM′

ω(ι)
.

The proof is in Appendix D.1. In particu-
lar, when I is finite and η(ι) > 0 ∀ι ∈ I,
then any 0-approximate τ -ω transformation is
an exact τ -ω transformation betweenM and
M′. This motivates our own choice of loss
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function: minimising Equation 8 induces ϕ and ψ to produce a surrogate that behaves the same way
as the simulator under interventions of interest.

Definition 4 employs an expectation over an interventional distribution η. As a result, even when
the abstraction error is low, there may still be a large discrepancy between τ#(PMι

) and PM′
ω(ι)

for
some fixed intervention ι ∈ I. Proposition 2 provides an upper bound on the error associated with
any intervention sampled from η when d is the KL divergence and the simulator state space is finite:
Proposition 2. Let d be the KL divergence and CEι = EY∼τ#(PMι )

[
− log qω(ι) (Y)

]
denote the

cross-entropy of PM′
ω(ι)

with respect to τ#(PMι
). Assume dom[X] is finite. Then for all ε > 0,

Pη
(
d
(
τ#(PMι

), PM′
ω(ι)

)
≥ ε
)
≤ Eι∼η[CEι]

ε
.

The proof is in Appendix D.2. This shows that it is only with low probability that the effects of
individual interventions are captured poorly by the surrogate when the surrogate and abstraction map
parameters, ψ and ϕ, are found by minimising Equation 8.

5 Case study

ã Ĩ0 ỹ0 ỹ1 ỹ2 ỹ3

ũ0 ũ1 ũ2 ũ3

θ̃1

ṽ

θ̃2 θ̃3

Figure 4: The DAG induced by the SCMs correspond-
ing to the surrogate families for T = 3.

Here, we outline a case study2 in which we
learn interventionally consistent surrogates for
the spatial SIRS ABM from Example 1, allowing
us to experiment more rapidly with policy in-
terventions while remaining confident that the
causal behaviour of the original SIRS ABM is
approximately preserved. Further experimental
details and results are given in Appendix E. We
consider three families of surrogate models with
endogenous variables Ĩ0 ∈ [0, 1], θ̃t ∈ R3

≥0

for t ∈ J1, T K, and ỹt ∈ {(a, b, c) | a, b, c ∈
J0, NK, a + b + c = N} for t ∈ J0, T K, where
a, b, c denote, respectively, the number of sus-
ceptible, infected, and recovered individuals in the population. The DAGs underlying the SCMs of each
of these families are as in Figure 4, and the three families differ only in the form of the structural
equations mapping from Ĩ0 and θ̃0:t to the ỹt. Throughout, we let qψ be a Multinomial emission
distribution and ψ be trainable parameters of these structural equations.

Surrogate family 1 consists of a latent ODE (LODE) built by feeding the classical SIRS ODE’s three
state variables (which take values in the two-simplex) in as the class probabilities of qψ . Here, ψ = ∅.
Surrogate family 2 consists of a latent ODE-RNN (LODE-RNN), where we run a recurrent network
(RNN) with parameters ψ over the output of the SIRS ODE. The RNN outputs the class logits of qψ .
Surrogate family 3 consists of a latent RNN (LRNN) constructed by running an RNN with trainable
parameters ψ over the θ̃t, and the output of the RNN at each t ∈ J0, T K indexes the class logits of qψ .

Given θ̃1:T , Ĩ0, these surrogates enjoy tractable likelihood functions, which factorise as qψ(ỹ0:T |
θ̃1:T , Ĩ0) = qψ(ỹ0 | Ĩ0)

∏T
t=1 q

ψ(ỹt | θ̃1:t, Ĩ0).

Interventions & the τ -ω transformation. Denoting

ιv,a = do (θ1:T = v, I0 = a) , (10)
ιv,a,tl = do (θ1:tl−1 = θtl+6:T = v,θtl:tl+5 = v ⊙ (0, 1, 1), I0 = a) ,

we define two subsets I = Iinit ∪ Iinit, lock of interventions for the ABM:

Iinit = {ιv,a | (v, a) ∈ [0, 1]4} and Iinit, lock = {ιv,a,tl | (v, a, tl) ∈ [0, 1]4 × J5, 10K}. (11)

2Code for reproducing the experimental results is available at https://github.com/joelnmdyer/
neurips_ics4csm.

7

https://github.com/joelnmdyer/neurips_ics4csm
https://github.com/joelnmdyer/neurips_ics4csm


Table 1: Metrics for interventionally (I) & observationally (O) trained surrogates on interventional
(I′) & observational (O′) test sets (medianthird quartile

first quartile from 5 repeats). Bold denotes best performance.

Test Model LRNN LODE-RNN LODE
Train I O I O I O

I′
AMSE (×10−1) 3.483.91

3.41 49.452.646.7 3.353.41
3.18 18.521.917.1 8.158.24

8.06 22.422.722.1

ANLL (×103) 2.092.16
2.03 21.822.920.1 1.992.00

1.98 8.409.898.27 4.014.02
4.00 10.010.19.91

O′ AMSE (×10−1) 4.134.264.11 2.953.16
2.62 3.593.683.54 2.522.78

2.16 18.418.718.1 4.364.40
4.32

ANLL (×103) 2.222.232.16 1.641.71
1.43 1.861.971.85 1.431.53

1.27 7.637.747.52 2.152.17
2.13

The first of these is a subset of interventions that fix the initial proportion of infected individuals in the
ABM, as well as its parameter values. The second subset of interventions is the set of interventions that
fix (a) the initial proportion of infected individuals in the ABM, (b) the values of the ABM’s parameters
before, during, and beyond a lockdown beginning at time tl ∈ J5, 10K with duration equal to 5 time
steps, and (c) the value of tl. Similarly defining

ι′ṽ,ã = do
(
θ̃1:T = ṽ, Ĩ0 = ã

)
, (12)

ι′ṽ,ã,t̃l = do
(
θ̃1:t̃l−1 = θ̃t̃l+6:T = ṽ, θ̃t̃l:t̃l+5 = ṽ ⊙ (0, 1, 1),= ṽ, Ĩ0 = ã

)
,

we define I ′ = I ′init ∪ I ′init, lock for the surrogates, where, letting D = R3
≥0 × [0, 1], we have

I ′init = {ι′ṽ,ã | (ṽ, ã) ∈ D} and I ′init, lock = {ι′ṽ,ã,t̃l | (ṽ, ã, t̃l) ∈ D× J5, 10K}. (13)

The map τ is taken to map: θt identically to θ̃t for each t ∈ J1, T K; the microstate xt of the ABM at
each time step to the ỹt through an aggregation map that counts the number of agents in xt in each
of the three states (susceptible, infectious, and recovered); and the initial proportion I0 of infected
agents in the ABM identically to Ĩ0. Further, for a neural network fϕ : [0, 1]3 → R3

≥0, we take

ωϕ : ιv,a 7→ ι′fϕ(v),a , ιv,a,tl 7→ ι′fϕ(v),a,tl . (14)

The benefits of training for interventional consistency We use Algorithm 1 to jointly learn the
parameters ϕ, ψ of the surrogates and the map ωϕ described above in two different ways: training
the surrogate models with η taken to be a uniform distribution U(Iinit) over Iinit, which entails
comparing the behaviour of the surrogate and ABM without lockdowns at different parameters; and
training with η instead taken to be a uniform distribution U(I) over I, which entails comparing the
behaviour of the surrogate and ABM under different lockdowns, or no lockdowns at all, at different
parameters. We indicate the two approaches to training the surrogates with, respectively, bold
uppercase O and I. Appendix E details the training procedure and network architectures. We
assess the interventional consistency of the surrogates trained in these two ways by computing
error metrics on a hold-out test dataset I′ = {(ι(r′),y(r′)

0:T )}R
′

r′=1 of size R′ = 1000, generated as

ι(r
′) ∼ η = U (I) , y(r′)

0:T ∼ τ#

(
PM

ι(r
′)

)
. Specifically, we inspect the average mean squared

error (AMSE) between trajectories from the trained surrogates and y
(r′)
0:T , and the average negative

log-likelihood (ANLL) of this test data under the likelihood of the learned surrogates. Observational
consistency is checked on a different hold-out test set O′, generated by instead taking η = U(Iinit).
Table 1 shows these performance metrics evaluated on I′ and O′ for all surrogate families and training
schemes. We observe that far lower values of the error metrics are obtained by the interventionally,
rather than observationally, trained surrogates when assessing interventional consistency. This
suggests that training on interventional data can result in more accurate predictions about the effect of
interventions in the ABM, and that data drawn from the relevant interventional distributions associated
with the ABM should be included during training if the policy-maker intends to perform policy
experiments with the surrogate. We also report a minor drop in observational consistency when
training with data from the combined intervention set I instead of Iinit, which can be explained by
the overfit of the observationally-trained model on the observational distribution. We also observe
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Figure 5: Example trajectories from the ABM (middle) and the LODE-RNN trained interventionally (left)
and observationally (right). A lockdown is imposed at the dashed vertical line. Solid (resp. dot-dash)
lines show trajectories under (resp. without) the lockdown. The transmission-inhibiting effect of the
lockdown is vastly underestimated in the observationally trained surrogate, while the interventionally
trained surrogate accurately predicts a reduction in disease transmission.

that the LODE-RNN – which combines the “mechanistic” SIRS ODE with a flexible RNN – achieves
the best interventional and observational consistencies of all surrogates, suggesting that such hybrid
approaches to constructing flexible surrogates are promising choices under our proposed method.

In Figure 5, we show an example of a possible negative consequence of failing to train a surrogate on
data drawn from the appropriate ABM interventional distributions. In the middle panel, we show the
change in the ABM trajectory induced by imposing a lockdown at time tl = 7, while in the left (resp.
right) panel we show corresponding trajectories from the interventionally (resp. observationally)
trained surrogates under the equivalent intervention learned through our training procedure. While
the interventionally trained LODE-RNN correctly predicts that the lockdown effectively impedes the
spread of the disease in the ABM, the observationally trained surrogate predicts that the lockdown will
temporarily increase infections, before approximately reverting to the behaviour of the model without
a lockdown.

The use of such a surrogate model in policy experiments when limited computational resources do
not permit use of the accurate, high-fidelity ABM of the underlying complex system may therefore
have misdirected policy-makers towards suboptimal, and away from effective, interventions. Indeed,
while the SIRS ABM predicts that any lockdown is better than no lockdown at all for reducing the
number of infections occurring over the simulated time horizon, we see that the observationally
trained surrogates often do not predict that no lockdown is the worst intervention in this respect,
and in some cases mistakenly predict that no lockdown is the best intervention. For example, the
observational LRNN predicts that no lockdown was the best intervention in 1 of 5 training repeats,
and was not the worst option in all 5 of 5 training repeats. In contrast, none of the interventionally
trained surrogates predict that no lockdown is the best intervention, and only the interventional LODE
model predicts that no lockdown is not the worst option (in only 2 out of 5 training repeats). This
highlights the potential importance of training surrogate models for interventional consistency when
their purpose is to help inform downstream decision-making tasks. Furthermore, this suggests that a
possible benchmark criterion in further research on interventional surrogates could be the degree to
which different surrogates preserve the ordering of interventions with respect to those downstream
tasks of interest.

6 Related work

Surrogates are often used to expedite simulation-based inference when modelling complex systems
[Heppenstall et al., 2021]. Modern approaches rely on established machine learning methods such as
random forests [Lamperti et al., 2018, De Leeuw et al., 2023], artificial neural networks [Anirudh
et al., 2022, De Leeuw et al., 2023], support vector machines [ten Broeke et al., 2021], kriging [Salle
and Yıldızoğlu, 2014], and mixture density networks (MDNs) [Platt, 2022]. Our experiments also rely
on established machine learning methods to construct surrogates; for example, our LRNN surrogate
family resembles that of Platt [2022], in which MDNs are used to approximate an ABM’s transition
density. However, in such works, the causal/interventional consistency of the surrogate with respect
to the simulator and policy interventions of interest is not considered. In contrast to prior work, our
work explicitly details the causal relation between the surrogate and the underlying simulator via

9



causal abstraction, which broadens the scope of surrogate modelling beyond its current use case of
expediting calibration to also enable the use of surrogates for policy experimentation.

Causal abstraction and exact transformations were introduced by Rubenstein et al. [2017]. Beckers
and Halpern [2019] extended this work by proposing stricter definitions of causal abstraction, and
in Beckers et al. [2020], where approximate abstractions are introduced to account for uncertainty
and simplification. Causal abstraction found practical application in Geiger et al. [2021] for learning
interpretable neural networks. Rischel and Weichwald [2021] discusses an alternative category-
theoretical definition of abstraction; this was used to learn abstractions to transfer data between
models at different levels of abstraction in Zennaro et al. [2023a]. Further related work includes a
multi-marginal Optimal Transport solution to the abstraction learning problem [Felekis et al., 2023],
as well as constructive abstraction learning in neural causal models [Xia et al., 2023] and cluster DAGs
[Anand et al., 2023]. However, none of these approaches reduce the state space of the SCM or the cost
of simulation, as our approach does.

7 Conclusion

We propose a rigorous framework for learning interventionally consistent surrogates for complex sim-
ulation models, formalised with casual abstraction. This is the first application of causal abstraction
to surrogate modelling. Our approach applies to any simulator corresponding to any DAG, and does
not require explicit knowledge of the simulator’s SCM. Through experiments, we highlight the efficacy
of our method against purely observational surrogates that do not learn to match interventional
data under equivalent interventions. Using our framework, policy-makers may be able to more
rapidly draw insights from complex simulators about the possible effects of interventions – in our
experiments, our surrogates simulate approximately three times faster than the original complex
simulators – and swiftly prepare effective responses to future crises.

Our work naturally suffers limitations. Investigating the sample complexity of abstraction learning
would be desirable in future work. Our definition of abstraction error involves an expectation over
interventions rather than a maximum as in Beckers et al. [2020]; this produces a computationally
tractable optimisation problem, but introduces the possibility that one or more interventions is
captured poorly by the learned abstraction map, even for a low abstraction error. In our experiments,
we have assumed surrogate models with tractable and differentiable density functions, permitting
us to use a KL divergence within our definition of abstraction error; future work might extend our
approach by considering different surrogate families with these properties, such as families based
on normalising flows [Tabak and Vanden-Eijnden, 2010], or alternative divergences that relax the
requirement for tractable densities, such as maximum mean discrepancies [Gretton et al., 2012].
Finally, our method does not directly exploit knowledge of the simulators’ causal graphs to accelerate
abstraction learning. It is possible that exploiting access to the base SCM/DAG may expedite abstraction
by allowing us to focus on minimal intervention sets [Aglietti et al., 2020, Lee and Bareinboim, 2018],
or leverage the identifiability of interventional distributions to reduce the number of simulations
required from the base model [Lattimore et al., 2016, Bilodeau et al., 2022]. However, it is unclear
whether or not applying the do-calculus on large causal graphs is more efficient than simulating
interventions directly. The “black-box” nature of our approach may be beneficial for this reason,
and since it does not require the modeller to explicitly write their simulator as an SCM, making it
generically applicable.
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A Assumptions Underlying Markovian SCMs

Definition 1 implies the standard assumptions of (i) acyclicity of the DAG GM and (ii) causal
sufficiency, meaning that there are no unobserved confounders [Pearl, 2009, Peters et al., 2017].
These two assumptions entail that our SCMs are Markovian.

We also assume faithfulness, guaranteeing that independencies in the data are captured in the graphical
model Spirtes et al. [2000].

B Other Notions of Abstraction Error

As discussed in Section 3, Definition 4 is closely related to the notion of abstraction error introduced
by Beckers et al. [2020]. In contrast to Definition 4, Beckers et al. [2020] employ a maximum over
the intervention set I instead of an expectation. Hence, the abstraction error introduced by Beckers
et al. [2020] may be viewed as a worst-case version of Definition 4.

In addition, Beckers and Halpern [2019] assume the intervention map ω can be implicitly defined
by the map τ , and require the abstraction map τ to be consistent. That is, the image of I under the
intervention map induced by τ must equal I ′. Since we do not couple the maps τ and ω we enforce
no such condition. Additionally, Beckers et al. [2020] enforce surjectivity of τ . Since this makes no
practical difference in a surrogate’s use in downstream tasks, we dispense with this assumption.

Alternative notions of abstraction error have been introduced by Zennaro et al. [2023b], building upon
the notion of exact transformations introduced by Rischel [2020]. We conjecture that an analogous
version of our framework may be developed for this setting, wherein the aggregation function over
the intervention set is again chosen to be an expectation over an interventional distribution η instead
of a maximum, and we leave this as a direction for future work.

C Additional Related Work

Surrogate modelling of complex simulators is closely related to the problem of simulation-based
inference. Inference involves tuning model parameters so that data generated by the simulator matches
that generated by the real world system being modelled. Analogously, surrogate modelling consists
of tuning surrogate parameters so that data generated by the surrogate matches data generated by the
corresponding simulator. Hence, methods for calibration can naturally be applied to learn surrogates.
Several calibration techniques and metrics have been proposed in the literature, including the method
of simulated moments [Fabretti, 2013, Gilli and Winker, 2003] and minimum simulation distance
[Grazzini and Richiardi, 2015]. We refer the reader to Dyer et al. [2024] for a thorough survey.
Unlike our framework, surrogates trained for the purpose of parameter estimation do not typically
account for interventional consistency explicitly.

More generally, our framework bears similarities to latent space modelling of Markov decision
processes (MDPs) [Gelada et al., 2019], wherein one attempts to learn a smaller latent MDP from
a target MDP, whose size precludes its use in downstream tasks. For downstream tasks such as
formal verification of policies, Delgrange et al. [2022] employs the bisimulation metric to measure
the consistency of their latent MDPs with respect to the target. Abstraction error plays an analogous
role in our framework, where the original MDP corresponds to the simulator, and the latent MDP
the surrogate. Likewise, the surrogates we propose in Section 5 are implicitly connected to the
scientific modelling framework of Rackauckas et al. [2021], who embed prior information regarding
system dynamics into systems of universal differential equations represented by neural architectures
such as neural ODEs. We embed the underlying dynamics of the classical SIRS ODE into several
surrogates in an attempt to learn better causal abstractions. Our work also bears some similarities to,
yet differs substantially in several key ways from, Kekić et al. [2023], who also use an abstraction
error to learn reduced causal models from larger SCMs. While their approach focuses on a single
target variable at a fixed time horizon, assumes Gaussian noise and linear structural functions, and
focuses on explainability of outcomes, we track multiple interdependent variables over the entire
time horizon with a focus on accurate simulation from interventional distributions. Our approach
is therefore more tailored to large-scale and realistic nonlinear simulators. In contrast, the method
presented in Kekić et al. [2023] becomes impractical for large-scale models.
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C.1 Examples of τ Maps in Real Modelling Scenarios

We provide here some practical examples, beyond the two case studies we present, that illustrate how
the τ map may be chosen for large-scale simulators, as a guideline for practitioners. We consider
three exaples from the literature on policy modelling below:

1. Consider the model of forced migration in Ghorbani et al. [2024]. Variables of interest
to these modellers are the total number of displaced people by location over time by
age, gender, and other demographic characteristics. τ would therefore be defined by
counting the number of agents in each of these states at each location, i.e. τl,d(xt) =∑
a∈A I[agent a has demographic features d and is in location l at time t] where l indexes

locations, d are demographic features, x is the state of the simulation at time t, A is the set
of all agents, and I is the indicator function.

2. Consider the model of flood risk mitigation behaviours proposed in Geaves et al. [2024],
which models how households decide to take precautions to protect themselves from floods
in high flood risk areas. The modellers are interested in the different precautions households
take under different policy interventions, namely whether they: do nothing; purchase
insurance; purchase property-level protection; and purchase property-level protection and
insurance (see Fig. 3 of Geaves et al. [2024]). τ would count the number of agents taking
such actions in this case (as in the example above).

3. Consider the UK housing market model proposed in Bardoscia et al. [2024], in which
households consume goods, provide labour and invest in housing, whilst banks assess the
credit worthiness of borrowers and set commercial interest rates. Tables 2-6 of Bardoscia
et al. [2024] define macroeconomic market statistics such as inflation rate, unemployment
rate and real interest rate that are of interest to the modellers. τ would therefore be defined
by standard macroeconomic formulas for these quantities.

D Proof

D.1 Proof of Proposition 1

Proof. By non-negativity of the divergence d we have d
(
τ#(PMι

), PM′
ω(ι)

)
≥ 0 for all ι ∈ I.

Hence dτ,ω(M,M′) corresponds to an expectation over a non-negative random variable. Since this

expectation is equal to zero, we conclude that d
(
τ#(PMι

), PM′
ω(ι)

)
= 0 almost surely with respect

to the distribution η. Positivity of the divergence d then implies that τ#(PMι
) = PM′

ω(ι)
almost

surely with respect to the distribution η.

D.2 Proof of Proposition 2

Proof. Using Markov’s inequality and the fact that dτ,ωϕ(M,Mψ) =

Eι∼η
[
d

(
τ#(PMι),PMψ

ωϕ(ι)

)]
:

Pη
(
d

(
τ#(PMι) ∥PMψ

ωϕ(ι)

)
≥ ϵ
)
≤
dτ,ωϕ

(
M,Mψ

)
ϵ

.

Since we have a finite domain, the likelihood functions associated with (a) the pushforward measure
of the ABM under τ and (b) the surrogate macromodel can be written as probability mass functions,
whose logarithms are non-positive. Since we have assumed PMψ

ωϕ(ι)

≪ τ# (PMι
), we have that

0 ≤ − log qψ
ωϕ(ι)

(Y) <∞ for any Y ∼ τ# (PMι
), and therefore

0 ≤ Eι∼η [CEι] <∞. (15)

We also have that
−Hτ#(PMι )

≤ 0 ⇒ Eι∼η
[
−Hτ#(PMι )

]
≤ 0, (16)
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Figure 6: A schematic representation of the LODE surrogate family for a single time step. First, the
output of the SIRS ODE for the next time step, zt+1, is computed via ODESolve. Then, zt+1 serves
as the logits for a multinomial distribution from which ỹt is sampled. This sampling procedure is
denoted by MN in the diagram. The exogenous variables required to reparameterise the multinomial
distribution during sampling are denoted by ũt.

where Hτ#(PMι )
is the entropy of the probability mass function associated with τ#(PMι), and that

d

(
τ#(PMι

),PMψ

ωϕ(ι)

)
= −Hτ#(PMι )

+ CEι ≥ 0 (17)

⇒ dτ,ωϕ
(
M,Mψ

)
= Eι∼η

[
−Hτ#(PMι )

]
+ Eι∼η [CEι] ≤ Eι∼η [CEι] . (18)

We write the upper bound above in terms of the cross-entropy, since this can be estimated with finite
samples, whereas the full KL-divergence cannot be estimated in general due to the complexity of
evaluating the density associated with τ#(PMι

) for an arbitrary ABMs. Hence

Pη
(
d

(
τ#(PMι

) ∥PMψ

ωϕ(ι)

)
≥ ϵ
)
≤ Eι∼η [CEι]

ϵ
. (19)

E Further Experimental Details

As described in the main text, the three surrogate families we consider have SCMs whose corresponding
DAGs can be drawn as in Figure 4. In this section, we fully specify the corresponding SCM for each
surrogate. Furthermore, for each surrogate, we provide details on the procedure used to train the
parameters ψ and ϕ, which respectively describe the structural equations of each SCM and their
corresponding intervention map ω.

E.1 The LODE Surrogate Family

To construct a set M of probabilistic SCMs, we define a latent neural ordinary differential equation
(LNODE) based on the classical SIRS ODE system. The SIRS ODE system takes the form

dS̃t
dt

= γ̃tR̃t − α̃tĨtS̃t,
dĨt
dt

= α̃tĨtS̃t − β̃tĨt,

dR̃t
dt

=β̃tĨt − γ̃tR̃t,
(20)

where θ̃t = (α̃t, β̃t, γ̃t) ∈ R3
≥0 are the ODE parameters and zt = (S̃t, Ĩt, R̃t) ∈ S ∀t ∈ [0, T ] is the

ODE state, where S is the two-simplex. Note that zt represents the proportion of susceptible, infected
and recovered individuals in the population according the SIRS ODE. Whilst the parameters θ̃t may
change over time – which will permit the experimenter to intervene on the values of the parameters at
different time steps – we assume the simplest case of assigning the same vector ṽ ∈ R3

≥0 to all θ̃t
when no interventions are applied:

θ̃t = ṽ, ∀t ∈ [0, T ]. (21)

In other words, Equation (21) describes the structural equation f̃θ̃t for θ̃t. Practically speaking, the
choice of ṽ is inconsequential, as we can model any change to θ̃t as an intervention. Given θ̃t, the
ODE state zt evolves according to the following rule:

zt = ODESolve(zt−1, θ̃t), t ∈ J1, T K, (22)

where ODESolve denotes numerical integration of System 20 between times t − 1 and t. In our
experiments, we compute this using a Euler scheme with step size ∆t = 1. The initial state of the
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Figure 7: A schematic representation of the LODE-RNN surrogate family for a single time step. First,
the output of the SIRS ODE for the next time step, zt+1, is computed via ODESolve. Then, zt+1 is
passed through to the hidden state of a recurrent neural network (denoted by RNN in the diagram)
that updates its hidden state from ht to ht+1. The updated hidden state is passed to a feedforward
neural network (denoted by FF in the diagram), which computes the logits ot+1 for a multinomial
distribution from which ỹt+1 is sampled.

ODE is taken to be z0 = (1− Ĩ0, Ĩ0, 0). One may change the initial state z0 through interventions on
Ĩ0, which is modelled as an endogenous variable.

Given zt, we draw the endogenous variables ỹt from a multinomial distribution whose class proba-
bilities are given by zt. Whilst zt represents the percentage of susceptible, infected, and recovered
individuals predicted by the SIR ODE, ỹt represents the actual counts observed by the experimenter.
We write f̃ỹt(Ĩ0, θ̃1:t, ũt) to denote the structural function associated with ỹt, where the dependence
on Ĩ0 and θ̃t′ for t′ ≤ t is mediated by the trajectory followed by the zt′ for t′ ≤ t, and ũt are the
exogenous random variables required to reparameterise the multinomial sampling procedure on each
time step.

Note that ψ = ∅ for this family of surrogates, and hence M is a singleton. For the function fϕ
comprising the intervention map ωϕ, we take a feedforward network with layer sizes 3, 32, 64, 64,
64, 32, 3. A ReLU activation is applied after each hidden layer, and a sigmoid activation is applied to
the final output layer. The sigmoid activation function ensures that the predicted intervention vector
fϕ(v) on the parameters of the LODE has all of its components in the range [0, 1], which is suitable
when forward simulating the ODE with an Euler scheme with ∆t = 1. This feedforward network
consists of 12,739 trainable parameters.

E.2 The LODE-RNN Surrogate Family

This surrogate family closely mimics the LODE family described above, and differs only in that
the class logits of the multinomial distributions are instead indexed by the output of a feedforward
network – with layer sizes 32, 32, 64, 32, 16, 3, where all hidden layers are followed by a ReLU
activation function – which maps from the hidden state ht ∈ R32 of a GRU recurrent network that is
passed over the trajectory z0:T generated from the SIRS ODE (forward simulated as described above).
The combined action of the ODE solver, the GRU-feedforward networks, and the reparameterisation of
sampling from the multinomial distributions, define the structural equations f̃ỹt : (Ĩ0, θ̃1:t, ũt) 7→ ỹt
for each t ∈ J1, T K.

For this model, ψ is the collection of trainable parameters comprising these GRU and feedforward
networks. For fϕ, we use a feedforward network with layer sizes 3, 32, 64, 32, 3, where a ReLU
activation is applied after all hidden layers and a sigmoid activation is applied after the final layer.
Thus, the total number of trainable parameters from ψ and ϕ combined is 13,798.

E.3 The LRNN Surrogate Family

This surrogate family makes no use of the SIRS ODE model. Instead, the logits of the multinomial
distributions for t ∈ J1, T K are indexed by the outputs (o1, . . . ,oT ),ot ∈ R3 of a feedforward
network – with layer sizes 32, 32, 64, 32, 16, 3, and where all hidden layers are followed by a ReLU
activation function – that maps from the hidden state ht ∈ R32 of a GRU recurrent network which is
passed over the sequence θ̃1:T . The initial hidden state is chosen to be h0 = (1− Ĩ0, Ĩ0,0), where 0
is a vector of 30 zeros. We also take o0 = (log(1− Ĩ0), log(Ĩ0),−∞) which indexes the logits of
the multinomial distribution at time t = 0. Once again, we may write the structural equations f̃ỹt for
the ỹt in terms of Ĩ0, θ̃1:t, and the exogenous random variables ũt required to reparameterise the
sampling procedure from the multinomial distribution.
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Figure 8: A schematic representation of the LRNN surrogate family for a single time step. First, the
parameters θt+1 are passed to a recurrent neural network (denoted by RNN in the diagram) that
updates its hidden state. The updated hidden state is passed to a feedforward neural network (denoted
by FF in the diagram), which computes the logits ot+1 for a multinomial distribution from which
ỹt+1 is sampled.

Since we use exactly the same networks in this surrogate family as in the LODE-RNN family, the total
number of trainable parameters from ψ and ϕ combined is also 13,798.

E.4 The likelihood function for each of these surrogate families

Having intervened on the Ĩ0 and θ̃t with known values, the class probabilities for each multinomial
distribution is completely determined given the deterministic dynamics within the structural equations
mapping to the ỹt.

E.5 Formalising the τ map

Taking dom[I0] = JM = [0, 1], dom[X0:T ] = X T+1 with X = {0, 1, 2}N , and dom[Θ1:T ] = PTM
with P = [0, 1]3, we define

τ : JM ×X T+1 × PTM → JM′ × YT+1 × PTM′

which operates componentwise as

τ (I0,x0:T ,θ0:T ) = (τi(I0), τx(x0:T ), τθ(θ0:T )) (23)

where

τi = id, (24)

τx : x0:T 7→

(
N∑
n=1

Ixnt=0,

N∑
n=1

Ixnt=1,

N∑
n=1

Ixnt=2

)
0:T

,

τθ = id. (25)

In the above, id is the identity map, and τx acts by counting the total number of susceptible, infected,
and recovered individuals in the ABM at each time step.

E.6 Further experimental details on the training procedure

All models were trained on CPU on a 2022 MacBook Pro, operating on macOS Ventura 13.2.1.
Training one surrogate model on this machine took on average approximately 20 minutes, amounting
to approximately 600 minutes in total to produce the results reported in Table 1. Initial attempts at
experiments while the code was still in development contribute approximately 200 additional minutes.
Software dependencies are specified in the GitHub repository containing the code for this paper,
which will be made public upon acceptance.

We assume periodic boundary conditions in both spatial dimensions for the ABM presented in Example
1, which is used in all of our experiments.

As suggested by Figures 1, 4, and 6-8, the parameters θ and θ̃ are fed into the models at each time
step.

For the LODE and LODE-RNN surrogate families, we forward simulate the SIRS ODE with an Euler
scheme with step size ∆t = 1.

For all surrogates, the neural networks comprising the ωϕ map and structural equations parameterised
by ψ were trained with a learning rate of 10−2 for a maximum number of 1000 epochs, batch size
B = 50, and with the Adam optimiser [Kingma and Ba, 2014]. A total number of R = 1000
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Table 2: Metrics for interventionally (I) & observationally (O) trained surrogates on interventional
(I′) & observational (O′) test sets (medianthird quartile

first quartile from 5 repeats) for the predator-prey case study.
AMSE & ANLL measure ability to model counts of each species over time. Bold denotes best
performance.

Test Model LRNN LODE-RNN LODE
Train I O I O I O

I′
AMSE (×102) 1.651.80

1.62 3.304.322.37 1.791.83
1.79 2.232.292.13 41.8444.74

40.13 201.78250.8046.11

ANLL (×103) 0.780.81
0.77 11.2011.6410.09 0.930.94

0.92 5.635.964.72 6.5410.14
6.44 47.1450.3337.33

O′ AMSE (×102) 1.852.031.81 1.611.64
1.59 2.182.192.08 1.561.67

1.51 63.89326.3338.25 36.7538.25
36.08

ANLL (×103) 0.760.800.71 0.690.70
0.68 1.251.251.24 0.660.70

0.65 32.1133.9010.56 5.496.18
4.96

training samples was generated from the ABM for each of the observational and interventional training
sets; these were each split 5 times into different training and validation sets of sizes 800 and 200,
respectively, with a new surrogate model trained from scratch on each of these splits. We apply an
early stopping criterion in which training is ceased if the validation error does not decrease for 20
consecutive epochs.

E.7 Additional Case Study

In this case study, we consider a different policy scenario: reintroducing a species into an ecology, and
simulating the ensuing population dynamics. Specifically, we adapt slightly a model from Wilensky
and Reisman [2006]: we model an environment initially consisting of grass, sheep, and wolves, in
which grass grows and is eaten by sheep, sheep eat grass and reproduce and are eaten by wolves,
and wolves eat sheep and reproduce. The intervention we consider entails reintroducing a third
animal species – bears, which eat both sheep and wolves, and also reproduce – whose population is
originally zero but is made non-zero at some intervention time t. We imagine that t is the variable the
policymaker wants to optimise here.

We simulate the interactions between these four species in a spatial model, in which members of
each animal species move around the grid and interact with the other species. We are then interested
in understanding how the reintroduction of the bears affects the overall population dynamics, i.e.,
the counts of each animal in each species, along with the quantity of grass over time. As in the
epidemic case study, we consider the problem of learning interventionally consistent surrogates
for this complex spatiotemporal simulator, and once again examine three possible approaches for
constructing surrogate families:

1. a family of deterministic mechanistic models based on a discrete-time Lotka-Volterra model
of population dynamics [see, e.g., Sabo, 2005], where (analogously to the LODE surrogate
family discussed in the epidemic case study) the underlying deterministic dynamics of the
population dynamics model index a probability distribution at each time step (in this case, a
Binomial distribution for each of the 4 species);

2. an LRNN family, exactly mirroring the LRNN family considered in the epidemic case study
presented already;

3. and a third family considers a hybrid approach, where (as in the LODE-RNN family considered
in the epidemic case study) we pass a recurrent network over the underlying Lotka-Volterra-
type population dynamics model first before taking the output of the recurrent network to
index the Binomial distributions for each of the four species.

A table for the results of this additional case study is shown in Table 2, where we see that the results
are qualitatively very similar to the epidemic case study already presented: we see that training
surrogates using our framework yields significant improvements in the surrogates’ interventional
consistency over observationally trained baselines, and that interventionally trained surrogates only
see a minor decrease in performance on observational data compared to the drop in performance the
observational surrogates see on interventional data.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction motivate our work and its purpose, and indicates
the theoretical results we provide in Section 4.1 and empirical results we provide in Section
5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: These are discussed in the Conclusion (Section 7).

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions are provided in the Propositions in Section 4.1 (and more
generally in Section 2 and Appendix A), and the proofs are located in Appendices D.1 and
D.2.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We provide details on the method and training algorithm in Section 4. We
describe the experimental setup in Section 5, and provide further details on neural network
architectures, training hyperparameters etc. in Appendix E. Finally, we also make code for
our experiments publicly available, in order for the reader to be able to reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Open source code is provided on GitHub, along with instructions for how to
run the script to reproduce the results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These are provided in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experiments were all repeated 5 times with cross-validation, resulting in first
quantile, median, and third quantile error metrics reported in Table 1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: This is provided in Appendix E.6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have discussed the potential positive societal consequences of this line of
work in, e.g., Section 1. While we do not see any reason that our work should be seen as
posing any particular risk of threatening harm to society, we recognise that causal simulation
modelling in general can be used by malicious actors to improve their own decision making,
which could support them to achieve their own malicious goals.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the potential positive impact of our work in, e.g., Section
1, namely that our methods may assist policymakers to more rapidly identify policy inter-
ventions that save lives and mitigate economic costs during pandemics and other crises. As
discussed in point 9. of this checklist, we do however recognise that simulation modelling
and machine learning in general can be misused by malevolent actors to support their own
decision-making.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not see that our method for learning surrogate models poses a particularly
high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We do not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
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Justification: Code for reproducing the results is provided on GitHub. The README
contains instructions for how to reproduce the results, while the LICENCE file specifies the
licence attached to the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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