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Abstract

In this paper, we address the problem of ex-001
tracting causal knowledge from text documents002
in a weakly supervised manner. We target use003
cases in decision support and risk management,004
where causes and effects are general phrases005
without any constraints. We present a unified006
framework that supports three classes of tasks007
with varying degrees of available information.008
We provide approaches for each of the tasks009
using pre-trained, Natural Language Inference010
(NLI) and Question Answering (QA) models.011
We present a novel evaluation scheme and use012
existing and new benchmark data sets to mea-013
sure the relative performance of each of the014
approaches.015

1 Introduction016

Extracting causal knowledge from natural language017

descriptions of such knowledge in text documents018

is a challenging problem with a wide range of ap-019

plications in AI systems. There is a relatively large020

body of work in the literature addressing differ-021

ent flavors of this problem. One major application022

area has been event forecasting (Radinsky et al.,023

2012a), as well as decision support and risk man-024

agement (Dasgupta et al., 2018; Hassanzadeh et al.,025

2019, 2020). Our work targets the latter application026

area, where causes and effects are general phrases027

which may or may not be describing actions or028

events.029

A major challenge in applying state-of-the-art su-030

pervised knowledge extraction methods is the need031

for a large manually-annotated corpus, which is not032

feasible for large-scale generic causal knowledge033

extraction. Our focus in this paper is on weakly034

supervised methods where the input is a corpus of035

text documents that contain descriptions of causal036

knowledge required in the target application, and037

the output is a high-quality collection of cause-038

effect pairs, which can then be further processed,039

represented as a causal knowledge graph, and used040

Cause Effect

COVID-19 pandemic wave of solidarity
COVID-19 pandemic sharp increase in the use of

telemedical services
COVID-19 outbreak fear of a potential economic

breakdown
COVID-19 reductions in bus route fre-

quencies
fears of supply shortages panic buying
panic buying shortages of some products

Table 1: Examples of Cause-Effect pairs extracted by
one of our proposed methods where the only input is a
collection of Wikipedia articles on COVID-19.

as input for decision support or predictive analyt- 041

ics. Table 1 shows an example of a few cause- 042

effect pairs extracted by one of our methods where 043

the only input is a collection of Wikipedia articles 044

about COVID-19. 045

Our contributions in this paper are as follows: 046

1. We present a framework for weakly super- 047

vised causal knowledge extraction from text, 048

depicted in Figure 1, with three classes of so- 049

lutions based on whether the input is only a 050

corpus of text documents or consists of a set 051

of candidate causes and/or effects. 052

2. For each class of solutions, we present a 053

method using state-of-the-art natural language 054

understanding techniques including methods 055

that rely on neural models for Natural Lan- 056

guage Inference (NLI) or Question Answer- 057

ing (QA). To our knowledge, we are the first 058

to use NLI and open-ended QA for causal 059

knowledge extraction. 060

3. We present a novel scheme for evaluation of 061

weakly supervised causal knowledge extrac- 062

tion techniques and present the results of our 063

experiments on existing and new benchmarks. 064

We will make our benchmark data sets pub- 065

licly available. 066
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Figure 1: Causal Knowledge Extraction Framework. The three approaches labeled 1⃝, 2⃝ and 3⃝ are presented in
Sec 3.1, 3.2, and 3.3 respectively.

2 Related Work067

There is a large body of work on causal knowledge068

extraction from text. Section 2 of (Hassanzadeh069

et al., 2019), Section 5 of (Li et al., 2020), and070

Xu et al. 2020 provide excellent summaries of re-071

lated work in this area. Here, we discuss a few072

key approaches and their main characteristics of073

solutions as compared to our approach. Table 2074

lists several prior works, along with their main075

characteristics based on these dimensions: 1) the076

end application; whether the goal is primarily com-077

monsense reasoning, or decision support and risk078

management 2) whether the approach is supervised079

or unsupervised 3) if causes and effects are sim-080

ply words/phrases/text spans, or have a specific081

semantic representation 4) whether patterns or dis-082

course cues are used or not, and 5) if the approach083

relies on a very large corpus or not. Note that these084

dimensions are not entirely independent. For ex-085

ample, work primarily focused on commonsense086

reasoning can take advantage of the vast volume087

of textual descriptions of such knowledge available088

on the Web, whereas in other domains such large089

corpora may not be available or may result in an090

too much noise for the end application.091

Our primary motivation in this paper is applica-092

tion in generic decision support systems and risk093

management, where the system needs to be capa-094

ble of extracting causal relations between a wide095

variety of causes and effects, and so specifying096

a specific semantic representation for causes and097

effects (e.g. an event representation) and a large098

enough annotated corpus could be unfeasible. As a099

result, we focus on weakly supervised approaches100

that perform causal relation extraction over text101

spans with very little training data. The output of102

our solution can then be used to build models for103

risk management (Chapman, 2013; Sohrabi et al.,104

2018), or be further refined into a knowledge base105

for e.g. forecasting future events (Radinsky and106
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Our Work ✓ ✓ ✓ ✓
(Li et al., 2020) ✓ ✓ ✓
(Hassanzadeh et al., 2019) ✓ ✓ ✓
(Dasgupta et al., 2018) ✓ ✓ ✓
(Kruengkrai et al., 2017)
(Hashimoto et al., 2014) ✓
(Dunietz et al., 2017b) ✓ ✓
(Luo et al., 2016) ✓ ✓ ✓ ✓
(Sap et al., 2018) ✓ ✓
(Radinsky et al., 2012b)
(Soares et al., 2019) ✓
(Li and Tian, 2020) ✓ ✓

Table 2: Characteristics Prior Work & Our Work

Horvitz, 2013; Muthiah et al., 2016). 107

Our approach in using patterns to extract candi- 108

date cause-effect pairs follows the approach used in 109

prior work (Girju, 2003; Luo et al., 2016; Hassan- 110

zadeh et al., 2019; Li et al., 2020). Most recently, 111

such patterns are used to create very large collec- 112

tions of cause-effect pairs given a large corpus of 113

documents. Li et al. (Li et al., 2020) use such an 114

approach over a large corpus of Web documents 115

to create a large collection of cause-effect pairs, 116

referred to as CausalBank, which is then used to 117

generate a “Cause Effect Graph” with application 118

to training a BERT-based model that significantly 119

outperforms similar methods in the Choice Of Plau- 120

sible Alternatives (COPA) evaluation task which 121

is geared towards commonsense reasoning. Has- 122

sanzadeh et al. (2019) extract cause-effect pairs 123

from a large collection of news articles and use the 124

outcome for a binary classification task to answer 125

binary causal questions. Our work has a different 126

goal: creating a high-quality collection of cause- 127

effect pairs from a smaller authoritative source of 128

text documents in a particular domain, similar to 129
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1. X causes Y 5. If X then Y
2. X is the reason for Y 6. Effect of X is Y
3. Because of X, Y 7. Y as a result of X
4. X leads to Y

Table 3: Causal patterns used for NLI

the pairs shown in Table 1.130

3 Causal Knowledge Extraction131

Framework132

Our framework for causal knowledge extraction is133

depicted in Figure 1. This framework allows us to134

approach Below, we describe the three categories135

of tasks and propose weakly supervised causal ex-136

traction methods in each category.137

3.1 Cause, Effect and Context138

Given a potential cause-effect pair and the con-139

text in which it appears, the task is a binary clas-140

sification problem - to label the pair as causal141

or non-causal. We approach this task using Nat-142

ural Language Inference. Let S1 be the origi-143

nal sentence and (X,Y ) be a candidate cause-144

effect pair. We construct a new causal sentence145

Si
2, i ∈ 1 . . . k in k different ways based on k = 7146

syntactically different causal patterns shown in Ta-147

ble 3. For instance, S1
2 = “X causes Y”, S2

2 =148

“X is the reason for Y”. We then use a pre-trained149

NLI model to get the probability Pi of inferring150

the causal sentence Si
2 from the original sentence151

S1. We use the mean of the k probabilities as the152

probability of (X,Y ) being causal.153

3.2 Cause/Effect and Context154

In this category, methods have access to the text155

and either the cause or the effect but not both. The156

task is to discover the corresponding effect or cause.157

This is a common scenario in practice where a user158

might be interested in the causes of a major set159

of events such as “covid-19". We approach this160

task using Question Answering. Let S be the given161

sentence and X be the candidate cause. We cre-162

ate a causal question q = “What does X cause?".163

We then use a pre-trained QA model to extract164

answers (Yi) to q from S along with their confi-165

dence scores. We retain the one with the highest166

score and pair it with X to form the causal pair167

(X,Y ). Correspondingly, we could treat X as the168

candidate effect and change the causal question to169

q = “What causes X" and follow the same proce-170

dure above to extract the cause.171

1. X causes Y 6. X is responsible for Y
2. Y because X 7. whenever X, Y
3. X triggers Y 8. Y arises from X
4. Y results from 9. X contributes to Y
5. attribute Y to X 10. following X, Y

Table 4: Examples of causal patterns used for matching

3.3 Only Context 172

This category consists of methods which have ac- 173

cess to only the text and the task is to extract cause- 174

effect pairs from the text. This is the most difficult 175

task among the three since it assumes access to the 176

least amount of information. We approach this task 177

by first using pattern matching (PM) to construct 178

candidate cause-effect pairs from the given text and 179

then classifying them as causal or non-causal using 180

the NLI method described in Sec 3.1. We use a 181

list of nearly 200 causal patterns created by Duni- 182

etz et al. (2017a) as a guide to annotate linguistic 183

evidences of causality. Table 4 shows a sample 184

of these patterns. We lemmatize all the patterns 185

and the sentences to enable matching verbs in their 186

root form and convert the patterns to regexes e.g. 187

“(.*) cause (.*)". Finally we match them against 188

the sentence obtaining the parts of the sentence 189

corresponding to the candidate cause-effect pair. 190

In the cases where the given text is long, the 191

patterns lead to long candidate causes and effects 192

which may provide details that are irrelevant to 193

the causal pair. In such cases, we extract phrases 194

from the candidates and pair them with each other 195

to form candidate cause-effect pairs. To extract 196

phrases, we experiment with two phrase extrac- 197

tion techniques - NPFST and CP. NPFST (Handler 198

et al., 2016) extracts noun phrases using Finite 199

State Transducers while CP extracts all constituent 200

phrases from a constituency parse of the sentence. 201

4 Evaluation 202

4.1 Datasets 203

We benchmark the performance of the proposed 204

methods on three datasets described below. Full 205

datasets are included in supplementary material 206

and will be released publicly. 207

The BECauSE 2.0 corpus (Dunietz et al., 208

2017a) consists of general phrases as causes and ef- 209

fects, tagged by annotators from within a sentence. 210

Overall, there are 2150 pairs in the dataset out of 211

which 1472 are causal. Table 5 shows a sample of 212

cause-effect pairs from this dataset. 213

The SemEval dataset has been constructed 214
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Cause Effect Context

The regula-
tory regime
we establish
and follow

market disci-
pline

The regulatory regime we es-
tablish and follow must accom-
plish three things: ensure market
discipline; provide a shock ab-
sorber against systemic risk; and,
first and foremost, protect the tax-
payer.

This bill regulation
more effi-
cient

This bill seeks to make regula-
tion more efficient by closing
gaps in our regulatory structure
and by promoting consolidation
and cooperation among regula-
tory agencies.

The federal
reserve’s ac-
tions

preserve
confidence
and bring
stability to
our financial
markets and
institutions

And Chairman Bernanke, the
Federal Reserve’s actions con-
tinue to help preserve confidence
and bring stability to our finan-
cial markets and institutions.

Table 5: Causal pairs from the BECauSE 2.0 corpus.

from SemEval 2010 Task 8 (Hendrickx et al., 2010)215

The dataset consists of 2662 pairs of words instead216

of phrases with equal number of causal and non-217

causal pairs. Table 6 shows some examples from218

this dataset.219

Cause Effect Context

disease blindness a rare and incurable congenital disease which
causes blindness has been successfully treated for
the first time using gene therapy.

vaccine fever convulsions that occur after dtap are usually not
caused directly by the vaccine, but by a fever,
which in turn was triggered by the vaccine.

explosion damage iraqi soldiers inspect the damage after the explo-
sion in a school in baghdad.

Table 6: Causal pairs from the SemEval dataset.

The MultiCause dataset (Anonymous, 2020) is220

a new dataset created using the Natural Questions221

dataset (Kwiatkowski et al., 2019). The dataset is222

created by first finding causal questions by filtering223

questions that have a causal verb (e.g., “causes",224

“leads to") and start with “What" or “Would". There225

are several questions that result in more than one226

cause for an effect or more than one effect for a227

cause. The final set consists of 140 cause-effect228

pairs from 112 causal questions. We expand a pair229

with multiple causes (or effects) into multiple pairs,230

each having the same cause (or effect). Table 7231

shows a sample of pairs from this dataset.232

4.2 Evaluation Metrics233

We match an extracted pair with the ground truth234

pair if both the phrases - cause and the effect match.235

To match a phrase in the BECAUSE dataset we236

Cause Effect Context

(1) excessive
nutrient
pollution from
human activities
coupled with
other factors
that deplete the
oxygen

(1) a dead
zone in the
ocean

Dead zones are hypoxic (low-
oxygen) areas in the world’s
oceans and large lakes, caused
by excessive nutrient pollution
from human activities coupled
with other factors that deplete
the oxygen required to support
most marine life in bottom and
near-bottom water. (NOAA)

(1) cold weather
(2) anticyclone
and windless
conditions (3)
collected
airborne
pollutants

the deadly
smog in
london in
1952

The Great Smog of London , or
Great Smog of 1952 , was a se-
vere air - pollution event that af-
fected the British capital of Lon-
don in early December 1952 . A
period of cold weather , combined
with an anticyclone and windless
conditions , collected airborne
pollutants – mostly arising from
the use of coal – to form a thick
layer of smog over the city .

(1) bacterium
treponema
pallidum

(1) syphilis
(2) bejel (3)
pinta (4)
yawns

Treponema pallidum is a
spirochaete bacterium with
subspecies that cause trepone-
mal diseases such as syphilis ,
bejel , pinta , and yaws. The
treponemes have a cytoplasmic
and an outer membrane. . . .

Table 7: Causal pairs from the MultiCause dataset.

check if the Jaccard similarity between the tokens is 237

more than 0.5. Since the SemEval dataset consists 238

of words, we check if the true word is contained 239

within the extracted phrase. On the other hand, in 240

the MultiCause dataset, the cause-effect pairs do 241

not occur inside the sentence verbatim. Hence, we 242

calculate the cosine similarity between the mean of 243

the Siamese BERT (Reimers and Gurevych, 2019) 244

word vectors of the two phrases and use a threshold 245

of 0.5 to declare a match. Finally, we report the 246

Precision, Recall, and F1-score of the extracted 247

pairs as well as the causes and effects. 248

5 Experiments 249

Settings For QA, we use the ALBERT-xxlarge 250

model (Lan et al., 2020) fine-tuned on the SQuAD 251

v2.0 dataset (Rajpurkar et al., 2018) while for NLI 252

we use the RoBERTa model (Liu et al., 2020) fine- 253

tuned on MNLI (A. Williams and Bowman, 2018). 254

For every dataset, we first split it into dev and test 255

sets with 20% and 80% points respectively and 256

search for a threshold confidence on the dev set 257

from the range [0, 1] with steps of 0.01. An ex- 258

tracted pair is marked causal if its confidence is 259

more than the selected threshold. All our experi- 260

ments were conducted using PyTorch framework 261

on one Tesla P100 GPU with 16GB memory. 262
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DS Input Method Thresh Pairs Causes Effects

P R F P R F P R F
B

E
C

au
SE

Context only PM - 26.3 36.5 30.6 28.5 38.5 32.7 27.4 37.0 31.5
Context only PM + NLI 0.9 41.6 27.7 33.3 40.9 28.0 33.3 39.5 27.1 32.1
Context only PM + CP + NLI 0.89 34.0 23.2 27.6 39.6 27.2 32.2 35.9 24.2 29.6
Context only PM + NP + NLI 0.28 7.0 3.5 4.6 15.5 7.6 10.2 9.1 4.4 5.9
Context + Cause/Effect QA 0.23 56.6 55.4 56.0 46.2 45.0 45.6 51.8 51.6 51.7
Context + Cause + Effect NLI 0.6 74 81.0 77.3 74.3 80.7 77.4 74.6 80.9 77.6

M
ul

tiC
au

se

Context only PM - 7.5 19.1 10.8 22.3 51.2 31.1 14.8 33.3 20.5
Context only PM + NLI 0.9 9.0 19.1 12.2 22.8 47.6 30.8 16.1 31.0 21.2
Context only PM + CP + NLI 0.9 9.0 10.7 9.8 23.1 26.2 24.5 16.7 20.2 18.3
Context only PM + NP + NLI 0.9 15.0 7.1 9.7 25.0 15.5 19.1 22.5 10.7 14.5
Context + Cause/Effect QA 0.3 54.7 53.6 54.1 41.3 41.7 41.5 34.7 34.5 34.6
Context + Cause + Effect NLI 0.5 58.4 75.0 65.7 68.1 76.2 71.9 72.6 78.6 75.5

Se
m

E
va

l

Context only PM - 36.1 66.2 46.7 45.7 72.6 56.1 46.3 72.9 56.6
Context only PM + NLI 0.95 45.9 57.7 51.1 55.2 63.0 58.8 56.1 62.8 59.3
Context only PM + CP + NLI 0.97 43.3 44.2 43.7 56.3 49.8 52.9 55.6 49.5 52.4
Context only PM + NP + NLI 0.92 26.6 14.1 18.4 46.5 18.6 26.6 43.8 17.8 25.3
Context + Cause/Effect QA 0.33 76.0 78.6 77.3 76.0 78.6 77.3 77.4 80.3 78.8
Context + Cause + Effect NLI 0.58 81.9 87.6 84.7 81.9 87.6 84.7 81.9 87.7 84.7

Table 8: The performance of different classes of models based on their input, across three diverse datasets. P, R and
F refer to the Precision, Recall and F-score of the different methods and Thresh refers to the threshold picked on a
small dev set. The standard deviation across 5 random runs for all the methods is smaller than 0.6

5.1 Overall Results263

In Table 8 we show the performance of our models.264

We can observe that as we add more information to265

the methods, their performance improves i.e. NLI266

performs better than QA which performs better than267

PM based methods.268

We also observe that CP performs better than269

NPFST, likely due to the fact that NPFST focuses270

on extracting only the noun phrases while CP has271

no such restriction. However, the PM+NLI ap-272

proach which does not perform any phrase extrac-273

tion outperforms both. This is likely due to the fact274

that for short, well formed sentences, extracting275

phrases might remove critical context e.g. in the276

sentence “Failure to comply with the new regula-277

tions could result in denying entry or a fine of AU278

$62,800 ." NPFST extracts the phrase “new regu-279

lations" as the cause whereas the precise cause is280

“Failure to comply with the new regulations".281

5.2 Error Analysis282

Here we analyze the errors made by the NLI model283

on BECauSE and SemEval datasets. We focus on284

the false positives as these errors are more critical285

to our target application in risk management.286

In the BECauSE 2.0 dataset, all pairs are labeled287

with eight relations like temporal, hypothetical etc.288

in addition to the causal/non-causal relation. Fig-289

ure 2a shows the distribution of false positives of290

the NLI model. We find that most of the false posi- 291

tives are actually only temporal relations between 292

the phrases. We find many instances in which even 293

though liguistically there is little evidence of causal- 294

ity, the NLI model gives a reasonable output. For 295

example in the sentence “In Iraq violence, three 296

american soldiers died over the weekend, the mili- 297

tary said in a statement" it is reasonable to assume 298

that the Iraq violence caused the death of three 299

American soldiers. We also find some cases in 300

which the context implies that the cause prevents 301

the effect from occurring but the NLI model mis- 302

takes it for a causal relationship. 303

In the SemEval dataset, all the non-causal 304

pairs are labeled with one of nine relations like 305

Component-Whole, Entity-Destination, Other etc. 306

Fig 2b shows the distribution of false positives 307

made by the NLI model on the SemEval dataset. 308

We find that most errors belong to the Other cate- 309

gory followed by the Entity-Destination category. 310

Here also, we find some instances where the model 311

makes a reasonable assumption about causality 312

even though there is little linguistic evidence in 313

the sentence e.g. in the sentence “The typical flu 314

infection start with fever, muscular pains, headache 315

and general fatigue", infection is the cause of fever. 316
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Figure 2: Distriution of false positives of the NLI model
on the BECauSE and SemEval datasets.

5.3 Comparison with supervised baselines317

To show the efficacy of our pattern matching and318

NLI based methods, we compare them against a319

strong, supervised baseline based on BERT (De-320

vlin et al., 2018; Soares et al., 2019) on the BE-321

CAUSE dataset. BERT is finetuned as a tagging322

model for comparison against pattern matching323

based approaches and as a relation classification324

model (Soares et al., 2019) for comparison against325

the NLI method. We follow the same procedure326

as Devlin et al. (2018); Soares et al. (2019) for these327

two scenarios. We also compare the methods in328

the more real-world setting where very little train-329

ing data is available by randomly sampling 20%330

datapoints as the training set for BERT and develop-331

ment set for our methods. These comparisons are332

shown in Table 9. We find that in the presence of333

small amounts of training data, the semi-supervised334

approaches perform much better. However, given335

a large amount of training data, the supervised336

method outperforms the semi-supervised methods.337

Method Full Data 20% Data

P R F P R F

PM+NLI 35.1 34.5 34.8 40.8 26.8 32.3
BERT 33.1 49.6 39.7 19.3 38.9 25.8

NLI 71.8 95.9 82.1 71.7 95.4 81.9
BERT 83.4 83.4 83.4 69.0 69.0 69.0

Table 9: Comparison of our best performing semi-
supervised models (PM+NLI and NLI) against a strong
supervised baseline based on BERT.

5.4 Manual Evaluation338

We also applied the three promising pattern match-339

ing based methods (1) PM+NLI, (2) PM+CP+NLI340

and (3) PM+NP+NLI on articles about COVID-19341

from Wikipedia. The collection consists of 236342

articles under the COVID-19 Pandemic category343

and its subcategories, crawled on May 6th 2020. 344

We evaluated the top 50 outputs from each of the 345

three methods (total 150 outputs) using three an- 346

notators experienced in this field. They followed a 347

variety of “tests for causality" (Grivaz, 2010; Duni- 348

etz et al., 2017a) to annotate the ambiguous cases. 349

Table 10 shows the precision of the three methods. 350

Overall, we observed 82.2% agreement between 351

annotators with Fleiss’s Kappa (Fleiss, 1971) of 352

0.6. We observe that for Wikipedia articles which 353

often have long and complex sentence structures, 354

PM+NLI method often gives non-precise extrac- 355

tions while both PM+CP+NLI and PM+NP+NLI 356

methods have a high precision. Table 1 shows some 357

examples from the PM+NP+NLI method. The high 358

precision of the PM+CP+NLI and PM+NP+NLI 359

methods shows the usefulness of these weakly su- 360

pervised approaches for generating high-quality 361

collections of cause-effect pairs that are directly 362

usable in decision support and risk management ap- 363

plications. We believe the lower precision of these 364

methods over the SemEval and BECauSE datasets 365

in our automated evaluation results in Table 8 is due 366

to the use of shorter cause and effect phrases and 367

sentences in these datasets, and show the need for 368

new and more diverse datasets for evaluation. The 369

MultiCause dataset is a step towards this direction. 370

All outputs from the three methods along with hu- 371

man judgments can be found in the supplementary 372

material. 373

Method Precision

PM + NLI 44.7
PM + CP + NLI 76.7
PM + NP + NLI 80.7

Table 10: Precision of the pattern matching and NLI
based methods over COVID-19 Wikipedia articles.

6 Future Work 374

In the future we would like to explicitly handle 375

cases (1) in which a cause prevents the effect from 376

occurring and (2) where multiple causes may lead 377

to multiple effects. Another possible future di- 378

rection is to use our pattern matching based ap- 379

proaches which only require text as input, to create 380

a seed causal graph and use it to create a distantly 381

supervised causal extractor. Finally, we are plan- 382

ning to explore the application of our framework 383

in decision support and event forecasting. All our 384

datasets and experimental results will be made pub- 385

licly available. 386
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