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Self-Paced Pairwise Representation Learning for
Semi-Supervised Text Classification

Anonymous Author(s)∗

ABSTRACT
Text classification is one vital tool assisting web content mining.
Modern deep learning approaches heavily rely on ample annotated
data, which often comes at a considerable cost. Semi-supervised
text classification (SSTC) offers an approach to alleviate the burden
of annotation costs by harnessing the power of effective classifiers
trained on a limited number of labeled texts alongside a vast pool
of unlabeled texts. While existing SSTC methods have shown ef-
fectiveness by training a classifier on labeled texts and boosting
the model with pseudo-labeled data derived from unlabeled texts,
potential unsolved challenges are the overfitting problem caused
by the limited availability of labeled data during training and the
mislabeling problem stemming from an unreliable pseudo-labeling
process. To address these issues, this paper proposes a Self-Paced
PairWise representation learning (SPPW)model. Concretely, SPPW
alleviates the overfitting problem by replacing the overfitting-prone
learning of a parameterized classifier with representation learning
in a pair-wise manner. Besides, our findings highlight the potential
of utilizing text hardness as a complementary criterion to filter out
unreliable texts upon existing confidence-based methods. With this
insight, we propose a novel self-paced text filtering method that
effectively integrates both label confidence and text hardness to
reduce mislabeled texts synergistically. Extensive experiments on 3
benchmark SSTC datasets show that SPPW outperforms baselines
and is effective in mitigating overfitting and mislabeling problems.
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1 INTRODUCTION
Text data constitutes a crucial element of web content. The mining
of web text, including tasks such as clustering and classification,
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filtering by confidence

filtering by hardnessfiltering by confidence

(a) Existing SSTC Method

(b) Our SSTC Method

Figure 1: Illustration of existing SSTC models (the upper
part of the figure) and our SPPW model (the lower part of
the figure). (𝑥𝑙 , 𝑦) and 𝑥𝑢 represent the input labeled and
unlabeled texts, respectively. 𝑓 (·) denotes the representation
of the input text. 𝑦 is the pseudo-label for 𝑥𝑢 . 𝑝 (𝑦 |𝑥𝑢 ) and
ℓ (𝑥𝑢 , 𝑦) respectively denote the confidence and loss. 𝜂 and 𝛾
are thresholds for filtering the pseudo-labeled texts.

holds great significance for web applications. Modern deep learn-
ing approaches applied in text classification often require sufficient
labeled data. However, collecting plenty of annotated text data is ex-
pensive in some real-world scenarios. Semi-supervised learning [1]
that only requires a few labeled examples attached with many un-
labeled examples can significantly reduce the reliance on laborious
annotation. Semi-supervised text classification (SSTC) has recently
been extensively studied [8, 9, 22, 32, 41]. To improve the SSTC
results, existing works attempt to learn robust models by consis-
tency training with the assistance of adversarial examples [29] or
data augmentations [5, 39], or fine-tuning the model with the la-
beled texts under the regularization of unlabeled texts [10, 14]. To
maximize the use of unlabeled texts, other works explore assign-
ing pseudo labels for unlabeled texts and using them as additional
training data to boost the model [5, 13, 20, 21, 27, 37, 39].

Despite their success, existing SSTC models still need to over-
come two challenges that require further exploration: the overfitting
problem caused by training the classifier using a few labeled texts
and the mislabeling problem caused by assigning incorrect labels
using the unreliable classifier as the pseudo-label model. The over-
fitting problem is common in SSTC because the training of the
classifier relies on the few labeled texts that lead to a biased model.
Furthermore, as shown in Figure 1 (a), since the existing SSTC
models typically treat the classifier as the pseudo-label estimator
for unlabeled texts, an overfitted classifier may receive inadequate
accuracy and assign more error labels. For this reason, it is essential
to guarantee the accuracy of the initial classifier, which governs the
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label reliability assigned to unlabeled texts. Thus, we need to over-
come the overfitting problem and provide a more reliable classifier
for pseudo-labeling. Despite the partial mitigation of the overfit-
ting problem through various regularization techniques in existing
works, e.g., adversarial examples [29] or data augmentations [39], a
promising solution lies in the exploration of alternative techniques
that are not reliant on parameterized classifiers.

The mislabeling problem restricts the promotion gains from
pseudo-labeled texts. Existing models leverage several useful strate-
gies based on label confidence (as shown in Figure 1 (a)) to re-
duce unreliable labels assigned for unlabeled texts. For example,
UDA [39] and MixText [5] utilize the threshold of the confidence
score to filter the low-confidence examples and sharpen the pre-
dictions for consistency training. SALNet [21] leverages the high-
confidence classification and lexicon predictions as pseudo-labels.
Although these methods are effective, they only judge the validity of
the pseudo-labeled texts based on the predicted label confidence of
the classifiers. In this study, we uncover a novel insight unexplored
in existing SSTC approaches: the potential of incorporating the
hardness of texts as supplementary information of label confidence
to improve the reliability of pseudo-labels.

Concretely, we propose a Self-Paced Pairwise representation
learning (SPPW) model to address the problems mentioned above
in SSTC. As shown in Figure 1 (b), instead of using regularization
techniques, SPPW deals with the overfitting problem by converting
the learning of the classification model (an encoder followed by a
classifier) to only learning the representations (i.e., the encoder).
We introduce a pairwise representation learning module to train
the encoder to produce discriminative representations and infer
the labels by aligning text representations with corresponding pro-
totypes. This training strategy reduces learnable parameters and
avoids directly learning the classifier tending to overfit with a few
labeled texts, thus alleviating the overfitting problem.

Inspired by the self-paced learning technique [19] that gradually
incorporates easier to harder samples into training, we propose a
confidence-aware self-paced text filtering approach to deal with
the mislabeling problem in SSTC. As shown in the lower part of
Figure 1, we combine label confidence and text hardness to make a
comprehensive decision on whether a pseudo-labeled text should
be taken into training. The motivation to leverage text hardness as
a reliability indicator is that the mislabeled texts tend to produce
higher losses like hard examples (as analyzed in Figure 4 (b)). Thus,
the mislabeled texts can be filtered by their hardness. The label
confidence and text hardness serve as complementaries to filtering
unreliable texts synergistically. Their interplay encourages self-
paced learning to exclude more unreliable pseudo-labeled texts
from training, thus mitigating the mislabeling problem in SSTC.

In a nutshell, our work makes the following contributions. (1) We
propose a pairwise representation learning approach to avoid train-
ing the overfitting-prone classifier, which significantly alleviates
the overfitting problem in SSTC. (2) We integrate label confidence
and text hardness in self-paced learning to comprehensively fil-
ter unreliable texts, effectively mitigating the mislabeling problem
in existing SSTC methods. (3) We conduct experiments on three
datasets and empirically show that SPPW outperforms baselines on
AGNews andDBPedia. The experiment analysis suggests that SPPW
significantly mitigates the overfitting and mislabeling problems.

2 RELATEDWORKS
Semi-supervised learning has become an emerging trend in text clas-
sification. One branch of works exploits regularization techniques
or consistency training in SSTC that may alleviate the overfitting
problem [14, 22, 24, 29, 40]. For example, UDA [39] substitutes
noising operations and then optimizes the semi-supervised text
classification model with consistency training. VAMPIRE [14] trains
a variational auto-encoder with the unlabeled texts and utilizes it
as a regularizer during training on labeled texts. Other works in-
vestigate data augmentations to compensate for the scarcity of
labeled data [5, 39]. For example, MixText [5] proposes a new data
augmentation method based on Mixup and includes the data aug-
mentations and label sharpness in semi-supervised training. An-
other branch of research looks into assigning pseudo labels to unla-
beled texts and utilizing them as additional training data [4, 13, 20–
23, 27, 37, 38, 40, 43]. For example, SALNet [21] constructs lexicons
based on attention weights and leverages the lexicons to improve
pseudo-labeling and bootstrap the semi-supervised training. This
study also builds upon the pseudo-labeling approach and aims to
address the overfitting and mislabeling problems.

Learning text representations has been intensively studied in the
Natural Language Processing community. Early works in sentence
representation are mainly motivated by the idea of embedding [28],
which learns representations based on the co-occurrence of n-gram
words. The learned sentence representations are utilized to predict
surrounding sentences [15, 18]. Recent studies have harnessed the
power of pre-trained language models, such as BERT [10], to en-
hance text representation learning, showcasing their effectiveness
and subsequent integration into numerous downstream applica-
tions. To further improve the expressive power, contrastive learn-
ing is leveraged for sentence representation learning [6, 35, 42, 44],
which forces the representations of matched instances to be closer
and unmatched instances to be distant. A similar idea has been
adopted in pairwise learning method [2, 7], which attempts to learn
discriminative representations in a pairwise manner. In this paper,
we apply the pairwise learning paradigm to the mini-batch training
of the text representations in SSTC. Unlike contrastive learning,
our method does not rely on data augmentations and is designed
to replace the classifier for mitigating overfitting.

Another direction related to our methods is the self-paced learn-
ing (SPL) approach. This learning paradigm is motivated by the
human-learning process that gradually incorporates easier to harder
samples during training [19]. The conventional self-paced learning
model takes both the difficulty and diversity of training examples
to rank the instances in self-paced learning [17]. The recent work
investigates the impact of closely-coupled classes on adversarial
attacks and develops a self-paced reweighting strategy in adver-
sarial training [16]. Another work proposes a margin-preserving
contrastive learning framework that utilizes self-paced learning for
domain adaptation [25]. These methods use the hardness (or loss)
of examples as critical evidence to determine the training order. In
this study, we treat self-paced learning as a weighting technique
to assess the reliability of pseudo labels, allowing us to filter misla-
beled texts with improved accuracy and effectiveness. The concept
of incorporating label confidence into self-paced learning holds
significant potential for inspiring applications in various domains.
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Figure 2: The structure of our SPPWmodel.

3 PROBLEM FORMULATION
Semi-supervised text classification (SSTC) attempts to learn effec-
tive text classification models from a training set that consists of a
few labeled texts and plenty of unlabeled texts. Formally, let Y be
the set of classes of interest, in which each class𝑦 ∈ Y denotes a spe-
cific text category from the class set. During training, we are given
a small set of labeled-texts D𝑙 = {(𝑥𝑙1, 𝑦1), (𝑥

𝑙
2, 𝑦2), · · · , (𝑥

𝑙
𝑛𝑙
, 𝑦𝑛𝑙 )},

where each class contains𝐾 labeled texts, and a large set of unlabeled-
texts D𝑢 = {𝑥𝑢1 , 𝑥

𝑢
2 , · · · , 𝑥

𝑢
𝑛𝑢

}, where (𝑥𝑙
𝑖
, 𝑦𝑖 ) represent the 𝑖th la-

beled text and its label, 𝑥𝑢
𝑗
denote the 𝑗 th unlabeled text, 𝑛𝑙 and

𝑛𝑢 denote the number of labeled and unlabeled texts, respectively.
In SSTC, the models need to train a classifier as robustly as pos-
sible with the few labeled texts and try to assist in training with
unlabeled texts to the utmost to improve the model’s performance.

4 METHODOLOGY
The structure of our SPPW model is shown in Figure 2, which
consists of a pairwise representation learningmodule that combines
a text encoder with the pairwise representation learning approach
and a self-paced text filtering module that comprehensively takes
the confidence of labels and the hardness of texts into account.

4.1 Pairwise Representation Learning Module
Our solution to the overfitting problem is reducing parameters by
replacing the learning of the overfitting-prone classifiers with only
learning the representations of texts. To that end, we propose a
pairwise representation learning approach that respectively con-
verges text representations of the same class and differentiates text
representations from different classes in a pairwise way. To predict
labels without a classifier, we introduce class prototypes and infer
the labels of texts by aligning their representations with prototypes.

4.1.1 Text Encoder. Recent works introduce the pre-trained lan-
guage models, such as BERT [10], as the encoder to learn text
representations [11] and achieve remarkable performance. Existing

works in SSTC [5, 22, 39] utilize BERT as their text classification
models for label prediction or pseudo-label estimation. Following
these works, we also utilize BERT as our text encoder. Unlike exist-
ing SSTC models, we omit the classification component of BERT
and only keep the encoding component as our text encoder. Specif-
ically, given a text 𝑥𝑖 (either labeled or unlabeled), we get its BERT
embedding 𝒙𝑖 ∈ R𝑑𝑥 by the following BERT encoding function

𝒙𝑖 = BERT(𝑥𝑖 , 𝜃 ), (1)

where 𝜃 denotes the parameters of the BERT encoder. The text
representation 𝒛𝑖 ∈ R𝑑𝑧 of 𝑥𝑖 is then obtained through a projection
followed by a tanh activation function

𝒛𝑖 = tanh(W𝒙𝑖 + 𝑏), (2)

where W ∈ R𝑑𝑧×𝑑𝑥 and 𝑏 respectively denote the parameters of
the projection matrix and bias. For later use, we denote the text
encoding process as a function 𝑓 (·), i.e., 𝒛𝑖 = 𝑓 (𝑥𝑖 ) and represent
its parameter set {𝜃,W, 𝑏} as𝛩 .

4.1.2 Pairwise Representation Learning Approach. Learning dis-
criminative text representations in the supervised setting has been
widely studied. The general idea is to pull closer the text represen-
tations with the same label and push away the representations with
different labels. Inspired by the pairwise learning method used in
[2, 7], we propose to apply the pairwise learning paradigm to the
mini-batch training of the text representations.

Specifically, let B represent a batch of text examples drawn from
the labeled or unlabeled text set. Then, for each text pair 𝑥𝑖 and 𝑥 𝑗
in B, the pairwise loss ℓ (𝑥𝑖 , 𝑥 𝑗 ) is

ℓ (𝑥𝑖 ,𝑥 𝑗 )=−I𝑦𝑖=𝑦 𝑗
log[𝜎 (𝑓 (𝑥𝑖 )⊤𝑓 (𝑥 𝑗 ))]

−(1−I𝑦𝑖=𝑦 𝑗
)log[1−𝜎 (𝑓 (𝑥𝑖 )⊤𝑓 (𝑥 𝑗 ))],

(3)

where 𝜎 is the logistic function. 𝑦𝑖 and 𝑦 𝑗 respectively denote the
labels (or pseudo labels) of the 𝑖th and 𝑗 th example in batch B. I
indicates whether two texts have the same label. Namely, if 𝑦𝑖 = 𝑦 𝑗 ,
we have I𝑦𝑖=𝑦 𝑗

=1, else if 𝑦𝑖 ≠ 𝑦 𝑗 , then we get I𝑦𝑖=𝑦 𝑗
=0.
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Suppose we use D to denote the training dataset (either from
D𝑙 or D𝑢 ). To perform pairwise representation learning, we can
minimize the following objective

L𝑝 (D;𝛩 ) =
∑︁
B⊆D

∑︁
(𝑥𝑖 ,𝑥 𝑗 ) ∈B

ℓ (𝑥𝑖 , 𝑥 𝑗 ) (4)

The aforementioned pairwise loss fosters the generation of dis-
criminative text representations while mitigating overfitting issues
by excluding learnable classifiers. As a result, it strengthens the
model and offers a more reliable pseudo-label estimator for assign-
ing labels to unlabeled texts. The pairwise loss will be first used to
pre-train the representation learning model with labeled texts and
then fine-tune the model with labeled and pseudo-labeled texts.

4.1.3 Prototype-Based Label Inference. Since the representation
learning model is trained without classifiers, we are unable to make
predictions based on any trained classifier. Hence, we must rely
solely on the learned text representations to infer labels. Fortunately,
the prototypes can be utilized for label inference even in the absence
of a classifier. This approach has been widely used in few-shot learn-
ing [6, 33, 36]. Specifically, to obtain the prototype for each class
𝑦 ∈ Y, we randomly sample 𝑘 examples from the 𝐾 labeled texts of
each class in D𝑙 . Let P = {(𝑥𝑙1, 𝑦1), (𝑥

𝑙
2, 𝑦2), · · · , (𝑥

𝑙
𝑘×|Y | , 𝑦𝑘×|Y | )}

denote the sampled 𝑘 × |Y| labeled texts, then we can compute the
prototype 𝜇𝑦 for class 𝑦 by the following formulation

𝜇𝑦 =
1
𝑘

∑︁
(𝑥𝑙

𝑖
,𝑦𝑙

𝑖
) ∈P
I𝑦𝑖=𝑦 𝑓 (𝑥𝑙𝑖 ) (5)

Let 𝑝 (𝑦 |𝑥) denote the probability (or confidence) of 𝑥 belonging to
label 𝑦, which is defined as follows

𝑝 (𝑦 |𝑥) =
exp(𝜇⊤𝑦 𝑓 (𝑥))∑

𝑦′∈Y exp(𝜇⊤
𝑦′ 𝑓 (𝑥))

(6)

Then, the inferred label for input text 𝑥 , which is denoted as 𝑦, can
be found by the following argmax operation

𝑦 = argmax
𝑦∈Y

𝑝 (𝑦 |𝑥) (7)

The above label inference function can be used to estimate the
pseudo-label of an unlabeled text during training or predict the
label of a test example during evaluation.

4.2 Self-Paced Text Filtering Module
After training the model on the labeled texts in D𝑙 , we may assign
pseudo-labels for the unlabeled texts in D𝑢 and include these texts
to further fine-tune the model. To mitigate the mislabeling prob-
lem when pseudo-labeling unlabeled texts during fine-tuning, we
propose a confidence-aware self-paced learning approach to filter
out unreliable texts, excluding mislabeled texts from training by
considering both label confidence and text hardness.

4.2.1 Prototype Calibration. During the fine-tuning stage, if the
labeled texts used to compute the prototypes are excluded from
training, the learned representations may shift from the prototypes
and degrade the accuracy of label inference. To fix this problem,

we introduce the following prototype calibration loss for each un-
labeled text 𝑥𝑢

𝑖
∈ D𝑢 defined as

𝑐 (𝑥𝑢𝑖 ) = − log
exp(𝜇⊤

𝑦̂𝑖
𝑓 (𝑥𝑢

𝑖
))∑

𝑦∈Y exp(𝜇⊤𝑦 𝑓 (𝑥𝑢𝑖 ))
(8)

The calibration loss can be trained in conjunction with the pairwise
representation learning loss to ensure alignment between text repre-
sentations and their corresponding prototypes, thereby preventing
undesired shifts in the text representations.

4.2.2 Text Filtering with Label Confidence. Existing works filter
unreliable pseudo-labeled texts by setting label confidence criteria
based on the assumption that reliable pseudo-labeled texts are often
associated with high label confidence [5, 21, 27, 37, 39]. In this paper,
we also utilize label confidence as an indicator to filter mislabeled
texts pseudo-labeling from the unlabeled text set.

Specifically, we introduce two binary indicators 𝛼𝑖 𝑗 , 𝛽𝑖 ∈ {0, 1}
attached to the pairwise loss ℓ (𝑥𝑢

𝑖
, 𝑥𝑢

𝑗
) and the prototype calibration

loss 𝑐 (𝑥𝑢
𝑖
), respectively, each determining whether the loss will be

maintained for updating the model parameters or discarded. We
define the resulting objective as

L𝑐 (D𝑢 ;𝛩 ) =
∑︁

B⊆D𝑢

∑︁
(𝑥𝑢

𝑖
,𝑥𝑢

𝑗
) ∈B

𝛼𝑖 𝑗 ℓ (𝑥𝑢𝑖 , 𝑥
𝑢
𝑗 )

+
∑︁

B⊆D𝑢

∑︁
𝑥𝑢
𝑖
∈B

𝛽𝑖𝑐 (𝑥𝑢𝑖 )
(9)

The values of 𝛼𝑖 𝑗 and 𝛽𝑖 are determined by the label confidence of
the pseudo-labeled text as follows

𝛼𝑖 𝑗 =

{
1 𝑝 (𝑦𝑖 ), 𝑝 (𝑦 𝑗 )>𝜂,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

𝛽𝑖 =

{
1 𝑝 (𝑦𝑖 )>𝜂,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(10)

where the probabilities 𝑝 (𝑦𝑖 ) and 𝑝 (𝑦 𝑗 ) denote the label confidence
𝑝 (𝑦𝑖 |𝑥𝑢𝑖 ) and 𝑝 (𝑦 𝑗 |𝑥

𝑢
𝑗
), respectively. And the parameter𝜂 is a thresh-

old used to control the values of 𝛼𝑖 𝑗 and 𝛽𝑖 , which is treated as a
hyper-parameter during training.

4.2.3 Confidence-Aware Self-Paced Learning Approach. The con-
cept of self-paced learning suggests that model generalization can
be enhanced by initially training the model with easier examples
and progressively introducing harder ones [17]. Building upon this
notion, we expect to employ self-paced learning to filter out un-
reliable pseudo-labeled texts based on the hardness of examples.
Our findings from the empirical studies (see Figure 4 (b)) suggest
that mislabeled texts tend to output large losses like hard examples,
allowing us to filter them based on their losses (or hardness). Thus,
we design the following confidence-aware self-paced learning loss

L𝑠 (D𝑢 ;𝛩 ) =
∑︁

B⊆D𝑢

∑︁
(𝑥𝑢

𝑖
,𝑥𝑢

𝑗
) ∈B

𝛼𝑖 𝑗 ℓ (𝑥𝑢𝑖 , 𝑥
𝑢
𝑗 )

+
∑︁

B⊆D𝑢

∑︁
𝑥𝑢
𝑖
∈B

𝛽𝑖 [𝑤𝑖𝑐 (𝑥𝑢𝑖 ) − 𝛾𝑤𝑖 ],
(11)

where the calibration loss 𝑐 (𝑥𝑢
𝑖
) is used as the indicator to measure

the hardness of 𝑥𝑢
𝑖
, because it reflects howmuch 𝑥𝑢

𝑖
matches with its

pseudo-label, i.e., a higher calibration loss implies that the example
is a harder example. The parameter𝑤𝑖 ∈ {0, 1} is a binary weight
on the loss 𝑐 (𝑥𝑢

𝑖
), i.e., when𝑤𝑖 = 0, the loss 𝑐 (𝑥𝑢

𝑖
) will be filtered
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and will not be used to update the model parameters. The hyper-
parameter 𝛾 is a parameter to control the learning pace. According
to [17],𝑤𝑖 has a global optimum with fixed𝛩 as

𝑤𝑖 =

{
1 𝑐 (𝑥𝑢

𝑖
) < 𝛾,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(12)

Here𝛾 could be viewed as a threshold to filter the pseudo-labeled
texts according to the hardness of the texts.

We additionally design a confidence-aware value adaptation
strategy to adjust the learning pace 𝛾 during the fine-tuning stage.
Specifically, we call every𝑚 SGD steps a training episode and will
update 𝛾 every training episode. In the current training episode, we
compute a temporal loss 𝜏 by weighted sum losses in the training
episode, i.e., 𝜏 =

∑
𝑖 𝑝 (𝑦𝑖 )𝑐 (𝑥𝑢𝑖 ). 𝛾 is then updated by 𝛾 = 𝛾 ′𝜏/𝜏 ′,

where 𝛾 ′ and 𝜏 ′ are the learning pace and temporal loss of the
last training episode. Note that the label confidence 𝑝 (𝑦𝑖 ) will be
leveraged to weigh the losses when updating parameter 𝛾 .

4.2.4 The SSTC Training Procedure. Our SSTC model combines the
pairwise representation learning module and the self-paced text
filtering approach. We can adopt an iterative optimization process
like self-training [12, 13, 20, 21] to train our model by the following
pre-training and fine-tuning stages:
(1) Pre-training with labeled texts: Pre-train the pairwise repre-

sentation learning module using the labeled text dataset D𝑙

by minimizing the summed pairwise loss min𝛩 L𝑝 (D𝑙 ;𝛩 ) and
use it for prediction. For later use, we name the model trained
in this stage PW. This model is used as a baseline.

(2) Fine-tuning with labeled and unlabeled texts: Estimate pseudo-
labels for the unlabeled texts in D𝑢 via label inference in Equa-
tion (7) with current parameter 𝛩 of PW, then fine-tune the
model by minimizing the loss L𝑠 (D𝑢 ;𝛩 ) with pseudo-labeled
texts filtered by label confidence and text hardness. This model
is our ultimate model and we name it SPPW.

5 EXPERIMENT
5.1 Datasets and Experiment Setting
Following the previous works in semi-supervised text classifica-
tion [5, 21, 22, 39], we evaluate SPPW on three datasets: AGNews,
DBPedia and Yahoo.
AGNews [31] is a subdataset of AG news created by compiling the
titles and descriptions of articles. It contains 127600 texts examples
from the 4 categories, includingWorld, Sports, Business and Sci/Tech.
DBPedia [26] is a query understanding dataset extracted from
Wikipedia. This dataset contains 630000 texts from 14 classes for
text classification, including Company, Educational Institution, etc.
Yahoo [3] is a question classification dataset. The question/answer
pairs are extracted from the Yahoo! Answers website with 10 top-
level categories, which contains 1460000 texts from 10 classes, in-
cluding Society & Culture,Health,Education & Reference, etc.

We use the available datasets in MixText [5] and split training
sets to 𝐾 =10, 50 and 200 labeled texts and 5000 unlabeled texts for
each class. We keep the unlabeled texts, validation, and test sets the
same as MixText. Following the previous works, we use FairSeq1
to get back-translated texts as data augmentations for unlabeled
1https://github.com/pytorch/fairseq

Table 1: Statistics of the datasets. # labeled denote labeled
texts for each class, and #unl., #val and #test denote total
examples for unlabeled, validation and test set, respectively.

Dataset #labeled #unl. #val #test |Y|
AGNews 10/50/200 20000 8000 7600 4
DBPedia 10/50/200 70000 28000 70000 14
Yahoo 10/50/200 50000 50000 60000 10

texts. We adopt Accuracy (Acc) and F1 as the evaluation metrics.
The statistics of the datasets are shown in Table 1.

5.2 Implementation and Baseline Models
5.2.1 Implementation. Our model is implemented with PyTorch
and is released anonymously for reproduction2. All hyper-parameters
are selected by grid search on the validation set. The dimension of
word embedding 𝑑𝑥 is 768. The hidden size 𝑑𝑧 of SPPW is set as 128
on AGNews and DBPedia, and 512 on Yahoo. The training batch size
is set to 8. During pre-training PW, we adopt early stopping based
on the performance of the validation set. To obtain prototypes, we
set 𝑘 = 10 for 𝐾 = 10 setting and 𝑘 = 20 on DBPedia, 𝑘 = 50 on
AGNews, Yahoo for other settings. During the fine-tuning stage, we
set 𝜂 = 0.95, 0.7, 0.9 respectively on AGNews, DBPedia and Yahoo
for the self-paced text filtering approach. On AGNews and DBPedia,
𝛾 is initialized with 0.3, and we set𝑚 = 6 for a training episode. On
Yahoo, the training episode is set to𝑚 = 7, and 𝛾 is initialized with
1. The learning rate is set to 1𝑒 − 5 during pre-training and 1𝑒−7
for fine-tuning on Yahoo, and 1𝑒−3 during pre-training and 1𝑒−5
for fine-tuning on other datasets. All experiments are conducted
on an NVIDIA A100-PCIE GPU with 40GB memory.

5.2.2 Baseline Models. We evaluate the models on the three bench-
marks and compare them with the following baselines:
BERT [10] utilizes the BERT-based-uncased model for text classifi-
cation without using the unlabeled texts and data augmentations
for additional training.
UDA [39] substitutes noising operations with data augmentations
and then optimizes the semi-supervised text classification model
with consistency training.
MixText [5] proposes a new data augmentation method based on
Mixup and includes the data augmentations and label sharpness in
consistency training.
SALNet [21] constructs lexicons based on attention weights and
leverages the lexicons to improve pseudo-labeling and bootstrap
the semi-supervised training.

To make fair comparisons with the baselines, we use the released
code in their original papers to run experiments with the split
data. For BERT, UDA, MixText, PW and SPPW, we utilize the same
BERT encoder and data augmentations as MixText. We run each
model 5 times for all experimental settings and report the mean and
standard deviation. To showcase the superior efficacy of our model,
we further conduct a comprehensive comparison with the reported
results of recent SSTC models, including FixMatch [34], UST [30],
FLiText [24], S2TC-BDD [22], DPS [23], SAT [4] and CEST [38].

2Anonymous link for code and data: https://file.io/xJeAgDGjnusb
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Table 2: The semi-supervised text classification results on AGNews, Yahoo and DBPedia. † Note that the reproduced results are
generally consistent with the reported results in the original paper with a similar number of labeled texts.

Method
AGNews Yahoo DBPedia

10 50 200 10 50 200 10 50 200

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

BERT 72.65 70.14 85.31 85.32 87.98 87.84 56.11 55.80 65.19 65.08 68.78 68.63 96.08 95.86 98.35 98.34 98.82 98.81
±1.77 ±2.01 ±0.05 ±0.10 ±0.20 ±0.40 ±1.04 ±1.15 ±0.53 ±0.66 ±0.34 ±0.24 ±0.18 ±0.29 ±0.12 ±0.12 ±0.03 ±0.04

UDA 84.15 84.10 88.02 88.01 88.92 88.91 62.83 59.91 68.42 67.35 70.52 70.05 98.38 98.37 98.85 98.84 98.92 98.92
±1.10 ±1.05 ±0.31 ±0.32 ±0.10 ±0.12 ±0.88 ±1.36 ±0.57 ±0.68 ±0.28 ±0.14 ±0.21 ±0.21 ±0.04 ±0.04 ±0.03 ±0.03

MixText 86.57 86.28 87.24 87.17 88.65 88.54 65.40 64.25 68.69 67.92 70.49 69.97 97.67 97.67 98.46 98.46 98.83 98.82
±0.56 ±0.61 ±0.42 ±0.44 ±0.11 ±0.05 ±1.72 ±1.46 ±0.44 ±0.45 ±0.29 ±0.22 ±0.09 ±0.10 ±0.03 ±0.03 ±0.06 ±0.07

SALNet† 77.61 77.61 86.17 86.21 88.25 88.23 52.43 52.30 53.65 53.45 59.08 59.02 95.39 95.39 97.08 97.08 98.66 98.65
±3.17 ±3.17 ±0.32 ±0.36 ±0.15 ±0.14 ±0.27 ±0.16 ±0.95 ±1.02 ±0.76 ±0.52 ±0.17 ±0.15 ±0.25 ±0.25 ±0.04 ±0.05

PW 81.13 81.13 86.38 86.33 87.89 87.86 62.89 61.03 66.67 66.21 69.07 68.71 96.97 96.96 98.42 98.42 98.76 98.75
±2.23 ±2.24 ±0.48 ±0.53 ±0.14 ±0.14 ±1.93 ±3.03 ±0.46 ±0.57 ±0.26 ±0.18 ±0.23 ±0.23 ±0.08 ±0.07 ±0.03 ±0.04

SPPW 88.59 88.54 89.13 89.10 89.38 89.36 64.86 63.76 68.80 67.95 71.12 70.39 98.43 98.43 98.88 98.88 98.93 98.93
±0.44 ±0.43 ±0.14 ±0.14 ±0.11 ±0.11 ±1.48 ±1.75 ±0.13 ±0.30 ±0.09 ±0.15 ±0.25 ±0.27 ±0.07 ±0.06 ±0.03 ±0.02

Table 3: Additional results compared to reported results in
recent works. The bold values denote the best results.

AGNews

Scale of K Model 𝐾 Acc F1

SPPW 10 88.59 88.54
FixMatch 10 80.22 79.98

10 ⩽ 𝐾 < 50 SAT 10 86.38 86.29
UST 30 86.90 -
CEST 30 87.05 -

SPPW 50 89.13 89.10
50 ⩽ 𝐾 < 200 S2TC-BDD 100 - 87.20

DPS 100 - 88.70

𝐾 ⩾ 200 SPPW 200 89.38 89.36

Yahoo

SPPW 10 64.86 63.76
10 ⩽ 𝐾 < 50 FixMatch 10 60.17 59.86

SAT 20 61.51 61.09

SPPW 50 68.80 67.95
50 ⩽ 𝐾 < 200 S2TC-BDD 100 - 61.80

DPS 100 - 63.20

𝐾 ⩾ 200 SPPW 200 71.12 70.39
FLiText 500 65.08 -

DBPedia

SPPW 10 98.43 98.43
10 ⩽ 𝐾 < 50 UST 30 98.30 -

CEST 30 98.61 -

50 ⩽ 𝐾 < 200 SPPW 50 98.88 98.88

𝐾 ⩾ 200 SPPW 200 98.93 98.93

5.3 SSTC Evaluation Results
5.3.1 Comparison with Baseline Models. The semi-supervised text
classification results of the compared models are shown in Table 2.
It illustrates that SPPW outperforms baseline models in all settings
except the 𝐾 =10 setting on Yahoo. This observation manifests that
our SPPW model achieves improvements in SSTC, especially when
the labeled data is rare, e.g., 𝐾 =10 setting on AGNews, suggesting
that our pair-wise representation learning combinedwith self-paced
text filtering is effective for SSTC. Between the models only trained
with labeled texts, PW significantly outperforms the BERT model
with a few labeled texts (e.g., about 7% and 2% gains on AGNews
and Yahoo with 10 labeled texts per class), which demonstrates
that mitigating the overfitting problem using PW helps improve
the SSTC performance. Another observation is that SPPW achieves
little gain or performs worse than MixText on Yahoo. The reason
behind this may be attributed to the implementation of the pseudo-
labeling framework in SPPW, as its effectiveness may be tied to
the performance of the initial pseudo-labeler. Thus, SPPW achieves
limited gain on Yahoo with a relatively poor performance of PW.

5.3.2 Comparison with Reported Results of Recent Works. To make
a comprehensive evaluation, we compare SPPW with the reported
results of the recent semi-supervised text classification model in
Table 3. Acknowledging the potential discrepancies in data splitting
and experimental settings across various studies, it becomes crucial
to recognize the challenges of making a fair comparison with them.
However, to ensure an equitable evaluation, we conduct our analy-
sis under the constraint that our model utilizes an equal or smaller
number of 𝐾 labeled texts. Namely, our model is disadvantaged in
comparison because the results are significantly influenced by the
quantity of labeled data. The results show that SPPW achieves the
best results on almost all settings of all datasets, even with fewer
labeled texts. The obtained results clearly demonstrate the effective-
ness of SPPW in semi-supervised text classification, establishing it
as a robust and powerful model in this domain.
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Table 4: The evaluation results of ablated models. We report
the ablation study results on the AGNews dataset.

Model 𝐾 = 10

PW 81.13

+hardness filtering component (𝛾 ) 85.64
+confidence filtering component (𝜂) 86.93

+𝛾+𝜂 87.22

+𝛾+data augmentation 87.82
+𝜂+data augmentation 88.01

+𝛾+𝜂+data augmentation (SPPW) 88.59

5.3.3 Ablation Study. To analyze the contributions of each compo-
nent in our model, we make ablation studies on three components
of SPPW: the data augmentations, the hardness filtering compo-
nent with threshold 𝛾 and the confidence filtering component with
threshold 𝜂. As illustrated in Table 4, adding the hardness or confi-
dence filtering component improves upon PW. This result suggests
that both label confidence and text hardness may help filter unreli-
able pseudo-labeled texts and the designed text filtering approaches
in our model indeed improve the SSTC performance. The model
utilizing both the hardness filtering and confidence filtering com-
ponents outperforms the models that only use hardness filtering
or confidence filtering. This result demonstrates that the interplay
of hardness and confidence in our self-paced filtering approach ef-
fectively excludes unreliable pseudo-labeled texts and boosts SSTC
training. The data augmentations further improve our models and
build SPPW as the new state-of-the-art on AGNews.

5.4 The Detailed Analysis of SPPW
5.4.1 Effectiveness in Alleviating Overfitting. To investigate the
effectiveness of our pair-wise representation learning module in
alleviating the overfitting problems, we report the training and
validation records of the pure BERT model shared in most baselines
and our PWmodel in different training epochs in Figure 3. As shown
in Figure 3 (a), the training accuracy of BERT quickly increases to 1
at the early training stage (near epoch 5). Conversely, the training
accuracy of PW increases relatively slower and reaches 1 at later
training stage near epoch 50. In Figure 3 (b), the validation accuracy
of BERT increases quickly and achieves the peak (about 0.7) at
the early training stage near epoch 10. But the validation accuracy
of PW slowly increases and achieves a much better peak value
(about 0.8) at the latter training stage near epoch 60. The validation
accuracy of PW continues increasing after 50 epochs because the
training loss still decreases, although the training accuracy nearly
stops increasing. The curves imply that BERT is prone to overfit on
a few labeled texts, and PW significantly mitigate the overfitting
problem by learning representations with pair-wise losses.

5.4.2 Effectiveness in Text Filtering. A precise text filtering ap-
proach holds paramount importance in SSTC as it ensures the
effectiveness of leveraging pseudo-labeled texts to enhance model
training. To study our self-paced approach, we analyse the text
filtering process in training. Specifically, we respectively combine
the PW model with the confidence filtering component 𝜂 and the
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Figure 3: The curves of training-accuracy (a) and validation-
accuracy (b) for BERT and PW on the AGNews dataset.
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Figure 4: The text filtering processes on AGNews.

hardness filtering component 𝛾 and record the average label confi-
dence and text hardness (or loss) over the correctly pseudo-labeled
texts and mislabeled texts. The visualization results are illustrated
in Figure 4, which shows that the mislabeled texts generally have
lower confidence and higher hardness than the correctly labeled
texts. Our hyper-parameter setting 𝜂 = 0.95 and the adapted 𝛾
generally separate the correctly labeled and mislabeled texts. These
visualization results demonstrate that our self-paced text filtering
approach that considers both label confidence and text hardness is
effective in excluding unreliable pseudo-labeled texts.

5.4.3 The Interplay Between 𝜂 and 𝛾 Filtering. To study the inter-
play between the confidence filtering component𝜂 and the hardness
filtering component 𝛾 , we report the number of texts that are kept
for training in an epoch in Figure 5 (a) and the number of mislabeled
texts in these kept examples in Figure 5 (b) after filtering by 𝜂, 𝛾 , or
both 𝜂 and 𝛾 (All). From Figure 5 (a), we observe that using the 𝜂
component to filtering texts will keep more texts in training than
using the 𝛾 component. When we combine 𝜂 and 𝛾 components for
text filtering, much fewer texts will be kept in training, i.e., more
pseudo-labeled texts are filtered than using only 𝜂 or 𝛾 component.
From Figure 5 (b), we observe that when both 𝜂 and 𝛾 components
are not used (Total), around 3400 ∼ 3600 mislabeled texts will be
included into the training. Using either 𝜂 or 𝛾 for filtering reduces
the mislabeled texts and using both 𝜂 and 𝛾 for filtering (All) keeps
the least mislabeled texts. These results suggest that combining
the 𝜂 and 𝛾 components for text filtering excludes more mislabeled
texts from training than using either of them.
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Table 5: Case study on two selected text examples from the AGNews dataset.

id Text Golden Label Pesudo Label Loss 𝛾 Confidence 𝜂

1

SAN FRANCISCO - Omar Vizquel hopes to revitalize
his career with a new team in a new league. The San F-
rancisco Giants just hope the veteran shortstop has a f-
ew more good years in him.

Sports Business 0.119 0.240 0.5684 0.95

2
Internet users at home are not nearly as safe online as t-
hey believe, according to a nationwide inspection by re-
searchers.

Sci/Tech World 0.028 0.006 0.9680 0.95
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Figure 5: The interplay between 𝜂 and 𝛾 on AGNews.

5.4.4 Impact of Confidence Threshold 𝜂. In the self-paced text fil-
tering module, the hyper-parameter 𝜂 is treated as the threshold to
identify unreliable pseudo-labeled texts, which is important for text
filtering with label confidence. To study whether SPPW is sensitive
to the confidence threshold 𝜂, we make an analysis on different set-
tings of hyper-parameter 𝜂. Concretely, we first reduce the search
range according to the confidence score on the validation set, then
train SPPWwith different 𝜂 within the search range. The evaluation
results with various 𝜂 on AGNews are shown in Figure 6 (a). The
performance change in the figure manifests that the model perfor-
mance is sensitive to the confidence threshold 𝜂. Thus, 𝜂 needs to
be searched on the validation set for different datasets. The results
show that the best configuration of 𝜂 on AGNews is 0.90.

5.4.5 Impact of Update Step 𝑚. In our self-paced text filtering
approach, we use the hyper-parameter 𝛾 as the threshold to exclude
unreliable texts based on their hardness. The configuration of 𝛾 is
not sensitive to the model performance because it is automatically
updated based on the training status. Nevertheless, the number of
SGD steps𝑚 in each training episode can be sensitive as it governs
the pace at which the learning progresses and updates. Too large
or too small𝑚 may result in sub-optimal updating of 𝛾 . To analyze
how𝑚 affects the text filtering process. We report the results of
SPPW with different 𝑚 in Figure 6 (b). The results demonstrate
that the update step𝑚 indeed affects the training of SPPW and the
optimal value of𝑚 can be easily determined by grid search on the
validation set. For example, the optimal𝑚 on AGNews is 7.

5.4.6 Case Study. Text filtering with either 𝜂 or 𝛾 component may
sometimes fail. Nevertheless, when the two components are com-
bines, these mislabeled texts may be correctly filtered. To verify
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Figure 6: Analysis of the confidence threshold 𝜂 and update
step𝑚 on AGNews.

this, we study on two examples selected from AGNews in Table 5.
In case 1, the text is pseudo-labeled as Business, but the golden label
is Sports. This text output a loss of 0.119 and a confidence of 0.5684.
If we only use the hardness filtering component, this mislabeled
text will be taken into training because its loss 0.119 < 𝛾 = 0.240.
Nevertheless, if we incorporate the confidence filtering component,
it will be filtered because its confidence 0.5684 < 0.95 = 𝜂. Simi-
larly, in case 2, if we only use the confidence filtering component,
the mislabeled text will include in training because its confidence
0.9680 > 0.95 = 𝜂. And if we also integrate the hardness filtering
component, this mislabeled text will be filtered because its loss
0.028> 0.006=𝛾 . These cases suggest that considering label con-
fidence and text hardness is necessary for SSTC and demonstrate
that our self-paced text filtering approach is effective.

6 CONCLUSION
We introduce a self-paced pairwise representation learning (SPPW)
model as a solution to address the challenges of overfitting and
mislabeling in SSTC. SPPW mitigates the issue of overfitting by
replacing the learnable classifiers with pairwise representation
learning, while simultaneously reducing mislabeled texts through
self-paced text filtering that considers both label confidence and
text hardness. Empirical studies on three benchmarks show that
SPPW outperforms baseline models and effectively mitigates the
overfitting and mislabelling problems. Our pairwise representation
learning method has the potential to be extended to other classifi-
cation tasks characterized by limited labeled data, such as few-shot
learning. The self-paced filtering method, which takes into account
both the confidence and hardness of examples, offers an alternative
for training machine learning models under unreliable data.
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A APPENDIX A
A.1 Additional Results and Analysis
A.1.1 Training with Various Number of Unlabeled Texts. To evalu-
ate themodels with different number of unlabeled texts, we compare
the models training with 1000 / 3000 / 5000 / 7000 unlabeled texts
for each class on AGNews. The evaluation results in Table 6 show
that the performance of both Mixtext and SPPW increase when the
unlabeled texts increase, but SPPW perform better than Mixtext
when using fewer unlabeled texts for training. This fact demon-
strate that our SPPW model can more efficiently learn from the
few labeled data. Another observation is that when the unlabeled
texts are more than 5000 for each class, the models only get little
improvements. Thus, we fixed the unlabeled texts for each class
as 5000 when evaluating the models, which is the same as in the
Mixtext paper.

Table 6: The evaluation results of using various number of
unlabeled texts on the AGNews dataset.

Model 1000 3000 5000 7000

Mixtext 82.61 84.33 86.80 87.21
SPPW 87.52 88.34 89.21 89.28

A.1.2 Evaluation on Synthetic Imbalanced Datasets. To examine
whether the models work well on imbalanced unlabeled texts, we
create synthetic datasets using from the AGNews dataset and use
them to train Mixtext and SPPW. Specifically, for the 4 classes
in AGNews, we random select 1000 / 2000 / 5000 / 8000 texts as
imbalanced unlabeled texts. For simplicity, we use [1:2:5:8] to denote
the ratio of unlabeled texts for the 4 classes, andwe report the results
in Table 7. The results show that Mixtext is sensitive to unbalanced
data and SPPW is robust to unbalanced data. The main reason we
guess is that our pair-wise representation learning is not sensitive
to unbalanced data.

Table 7: The evaluation results on synthetic imbalanced
datasets constructed from the AGNews dataset.

Model [5:1:2:8] [8:5:2:1] [2:8:5:1] Average

Mixtext 86.46 83.78 76.89 80.34
SPPW 87.58 87.84 87.13 87.52

Table 8: The evaluation results of SPPWusing different batch
sizes on the AGNews dataset.

Batch Size Performance (Accuracy) Average

4 86.78 / 88.32 / 88.67 88.59
8 88.47 / 88.72 / 88.20 88.46
16 89.21 / 88.22 / 88.33 88.59

A.1.3 Impact of Batch Size. Our pair-wise representation learning
select texts pairs within a batch of data. Thus, the batch size may
impact the training efficiency. To investigate how batch size impacts
the training of SPPW, we run SPPW with batch size 4 / 8 / 16 three
times and report the results in Table 8. The results show that the
batch size has little impacts on the averaged performance of SPPW.
It means that our method is not sensitive to batch size.
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