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Abstract: Most autonomous navigation systems assume wheeled robots are rigid1

bodies and their 2D planar workspaces can be divided into free spaces and obsta-2

cles. However, recent wheeled mobility research, showing that wheeled platforms3

have the potential of moving over vertically challenging terrain (e.g., rocky out-4

croppings, rugged boulders, and fallen tree trunks), invalidate both assumptions.5

Navigating off-road vehicle chassis with long suspension travel and low tire pres-6

sure in places where the boundary between obstacles and free spaces is blurry7

requires precise 3D modeling of the interaction between the chassis and the ter-8

rain, which is complicated by suspension and tire deformation, varying tire-terrain9

friction, vehicle weight distribution and momentum, etc. In this paper, we present10

a learning approach to model wheeled mobility, i.e., in terms of vehicle-terrain11

forward dynamics, and plan feasible, stable, and efficient motion to drive over12

vertically challenging terrain without rolling over or getting stuck. We present13

physical experiments on two wheeled robots and show that planning using our14

learned model can achieve up to 60% improvement in navigation success rate and15

46% reduction in unstable chassis roll and pitch angles.16

Figure 1: Front and side view (1st and 2nd row) of a wheeled robot navigating vertically challenging
terrain: (from left to right) large roll angle, stable chassis, suspended wheel, roll-over, and get-stuck.

1 Introduction17

Wheeled robots, arguably the most commonly used mobile robot type, have autonomously moved18

from one point to another in a collision-free and efficient manner in the real world, e.g., transporting19

materials in factories or warehouses [1], vacuuming our homes or offices [2], and delivering food20

or packages on sidewalks [3]. Thanks to their simple motion mechanism, most wheeled robots are21

treated as rigid bodies moving through planar workspaces. After tessellating their 2D workspaces22

into obstacles and free spaces, classical planning algorithms plan feasible paths in the free spaces23

that are free of collisions with the obstacles [4, 5, 6].24
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However, recent advances in wheeled mobility have shown that even conventional wheeled robots25

(i.e., without extensive hardware modification such as active suspensions [7, 8, 9] or adhesive ma-26

terials [10]) have previously unrealized potential to move over vertically challenging terrain (e.g.,27

in mountain passes with large boulders or dense forests with fallen trees) [11, 12, 13], where vehi-28

cle motion is no longer constrained to a 2D plane [14] (Figure 1). In those environments, neither29

assumptions of rigid vehicle chassis and clear delineation between obstacles and free spaces in a30

simple 2D plane are valid [15, 16, 17, 18]. Thanks to the long suspension travel and reduced tire31

pressure, off-road vehicle chassis are able to drive over obstacles (rather than to avoid them) and32

experience significant deformation to conform with the irregular terrain underneath the robot, which33

will be otherwise deemed as non-traversable according to conventional navigation systems. There-34

fore, autonomously navigating wheeled robots in vertically challenging terrain without rolling over35

or getting stuck requires a precise understanding of the 3D vehicle-terrain interaction.36

In this paper, we investigate learning approaches to model vehicle-terrain interactions and plan vehi-37

cle trajectories to drive wheeled robots on vertically challenging terrain. Considering the difficulty38

in analytically modeling and computing vehicle poses using complex vehicle dynamics [19, 20, 21]39

in real time, we adopt a data-driven approach to model the forward vehicle-terrain dynamics based40

on terrain elevation maps along potential future trajectories. We develop a Wheeled Mobility on Ver-41

tically Challenging Terrain (WM-VCT) planner, which uses our learned model’s output in a novel42

cost function and produces feasible, stable, and efficient motion plans to autonomously navigate43

wheeled robots on vertically challenging terrain. We present extensive physical experiment results44

on two wheeled robot platforms and compare our learning approach against four existing baselines45

and show that our learned model can achieve up to 60% improvement in navigation success rate and46

46% reduction in unstable chassis roll and pitch angles.47

2 Approach48

The difficulties in navigating a wheeled mobile robot on vertically challenging terrain are two fold:49

(1) the high variability of vehicle poses due to the irregular terrain underneath the robot may over-50

turn the vehicle (rolling-over, 4th column in Figure 1); (2) not being able to identify that a certain51

terrain patch is beyond the robot’s mechanical limit and therefore needs to be circumvented may52

get the robot stuck (immobilization, 5th column in Figure 1). Therefore, this work takes a struc-53

tured learning approach to address both challenges by learning a vehicle-terrain forward dynamics54

model based on the vertically challenging terrain underneath the vehicle, using it to rollout sampled55

receding-horizon trajectories, and minimizing a cost function to reduce the chance of rolling-over56

and immobilization and to move the vehicle toward the goal.57

2.1 Motion Planning Problem Formulation58

Consider a discrete vehicle dynamics model of the form xt+1 = f(xt,ut), where xt ∈ X and59

ut ∈ U denote the state and input space respectively. In the normal case of 2D navigation planning60

(Figure 2 left), X ⊂ SE(2) and X = Xfree ∪ Xobs, where Xfree and Xobs denote free spaces and61

obstacle regions. xt includes translation along the x and y axis (x and y) and the rotation along the62

z = x × y axis (yaw) of a fixed global coordinate system. For input, U ⊂ R2 and ut = (vt, ωt),63

where vt and ωt are the linear and angular velocity. Finally, let Xgoal ⊂ X denote the goal region.64

The motion planning problem for the conventional 2D navigation case is to find a control function65

u : {t}T−1
t=0 → U that produces an optimal path xt ∈ Xfree,∀t ∈ {t}Tt=0 from an initial state66

x0 = xinit to the goal region xT ∈ Xgoal that follows the system dynamics f(·, ·) and minimizes67

a given cost function c(x), which maps from a state trajectory x : {t}Tt=0 → X to a positive real68

number. In many cases, c(x) is simply the total time step T to reach the goal. Considering the69

difficulty in finding the absolute minimal-cost state trajectory, many mobile robots use sampling-70

based motion planners to find near-optimal solutions [22, 23].71

Conversely, in our case of wheeled mobility on vertically challenging terrain, vehicle state X ⊂72

SE(3) (i.e., translations and rotations along the x, y, and z axis) with the same input ut = (vt, ωt) ∈73
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U ⊂ R2. The system dynamics enforces that xt is always “on top of” a subset of Xobs (i.e., vertically74

challenging terrain underneath and supporting the robot) or some boundary of X (i.e., on a flat75

ground) due to gravity, requiring a vehicle-terrain dynamics model (Figure 2 right).76

Figure 2: 2D navigation in SE(2) vs. navigation on vertically challenging terrain in SE(3).

2.2 Vehicle-Terrain Dynamics Model Learning77

Compared to the simple 2D vehicle dynamics in SE(2), our non-rigid vehicle-terrain dynamics on78

vertically challenging terrain in SE(3) becomes more difficult to model, considering the complex79

interaction between the terrain and chassis via the long suspension travel and deflated tire pressure80

of off-road vehicles to assure adaptivity and traction (Figure 1). Therefore, this work adopts a data-81

driven approach to learn the vehicle-terrain dynamics model, which can be used to rollout trajectories82

for subsequent planning.83

To be specific, xt = (xt, yt, zt, rt, pt, ϕt), where the first and last three denote the translational (x,84

y, z) and rotational (roll, pitch, yaw) component respectively along the x, y, and z axis. Note that85

unlike most 2D navigation problems in which the next vehicle state xt+1 only relies on the current86

vehicle state xt and input ut alone, our next vehicle state is additionally affected by the vertically87

challenging terrain underneath and in front of the vehicle in the current time step, denoted as mt.88

Therefore, the forward dynamics on vertically challenging terrain can be formulated as89

xt+1 = fθ(xt,ut,mt), (1)

which is parameterized by θ and will be learned in a data-driven manner. Training data of size N90

can be collected by driving a wheeled robot on different vertically challenging terrain and recording91

the current and next state, current terrain, and current input: D = {⟨xt,xt+1,mt,ut⟩Nt=1}. Then92

we learn θ by minimizing a supervised loss function:93

θ∗ = argmin
θ

∑
(xt,xt+1,mt,ut)∈D

∥fθ(xt,ut,mt)− xt+1∥H , (2)

where ||v||H = vTHv is the norm induced by a positive definite matrix H , used to weigh the94

learning loss of the different dimensions of the vehicle state xt. The learned vehicle-terrain forward95

dynamics model, fθ(·, ·, ·), can then be used to rollout future trajectories for minimal-cost planning.96

2.3 Sampling-Based Receding-Horizon Planning97

We adopt a sampling-based receding-horizon planning paradigm, in which the planner first uni-98

formly samples input sequences up until a short horizon H , uses the learned model fθ to rollout99

state trajectories, evaluates their cost based on a pre-defined cost function, finds the minimal-cost100

trajectory, executes the first input, replans, and thus gradually moves the horizon closer to the final101

goal. In this way, the modeling error can be corrected by frequent replanning. However, an under-102

actuated wheeled robot, i.e., using ut = (vt, ωt) ∈ U ⊂ R2 to actuate xt = (xt, yt, zt, rt, pt, ϕt) ∈103

X ⊂ SE(3) subject to fθ, may easily end up in many terminal states outside of Xgoal, which104

the vehicle cannot escape and recover from, i.e., rolling over or immobilization (getting stuck)105

due to excessive roll and pitch angles, irregular terrain geometry, and large height change, e.g.,106
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on a large rock. Therefore, while our goal is still to minimize the traversal time T leading to107

Xgoal, for our receding-horizon planner, we seek to optimize five cost terms on a state trajectory108

x0:H = {xt}Ht=0, s.t.,xt+1 = fθ(xt,ut,mt),∀t < H , which starts at the current time 0 and ends109

at the horizon H , to avoid these two types of terminal states on vertical challenging terrain and also110

move the robot towards the goal:111

c(x0:H) = w1crp(x0:H) + w2ctg(x0:H) + w3chc(x0:H)

+w4cmb(x0:H) + w5cest(xH),
(3)

where crp(·), ctg(·), and chc(·) denote the cost corresponding to the robot’s (extensive) roll and pitch112

angle, (irregular) underneath terrain geometry, and (large) terrain height change respectively; cmb(·)113

is the cost of moving out of the observable map boundary; cest(·) is the estimated cost to reach the114

final goal region Xgoal from the state on the horizon xH , which can be computed by the Euclidean115

distance cest(xH) = ||xH − xG||2, where xG is any state inside Xgoal. w1 to w5 are corresponding116

weights for the cost terms.117

3 Experiments and Results118

Figure 3: Physical Experiments
Our proposed WM-VCT navigation planner is compared against a Behavior Cloning (BC) base-119

line [14]. In Figure 3, we show the V6W navigating the testbed (top middle), front (top left) and top120

(top right) view of the elevation map with the planned 6-DoF vehicle state trajectory, and pitch and121

roll values in two example environments (bottom left and right). In the first environment, while both122

BC (red) and WM-VCT (green) succeed, the former experiences larger roll and pitch values; in the123

second environment, BC (red) fails due to the excessive roll angle around 7.5s, while WM-VCT is124

able to successfully navigate through.125

Table 1 shows our experiment results in three obstacle courses with three difficulty levels, five tri-126

als each. In general, our WM-VCT planner achieves better results on both six-wheeled and four-127

wheeled platforms, compared to BC, the only baseline that can occasionally navigate through, in128

terms of navigation success rate and average roll and pitch angles. In general, WM-VCT finishes129

more trials, is slower but more stable, and achieves lower roll and pitch angles overall.130

Table 1: Number of successful trials, mean successful traversal time, and average roll/pitch angles.

V6W V4W

BC WM-VCT BC WM-VCT

Easy 5, 15.8s, 7.3°/7.9° 5, 24s, 5.1°/7.5° 2, 18.0s, 9.2°/17.5° 2, 27.5s, 5.8°/9.5°
Medium 3, 17.0s, 9.4°/8.3° 4, 24.5s, 6.1°/8.6° 1, 16.0s, 12°/8.5° 2, 32.5s, 7.9°/11.4°
Difficult 1, 20.0s, 8.3°/10.7° 4, 22.7s, 6.2°/7.4° N/A N/A
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