

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM GEOMETRY TO DYNAMICS: LEARNING OVERDAMPED LANGEVIN DYNAMICS FROM SPARSE OBSERVATIONS WITH GEOMETRIC CONSTRAINTS

Anonymous authors

Paper under double-blind review

ABSTRACT

How can we learn the laws underlying the dynamics of stochastic systems when their trajectories are sampled sparsely in time? Existing methods either require temporally resolved high-frequency observations, or rely on geometric arguments that apply only to conservative systems, limiting the range of dynamics they can recover. Here, we present a new framework that reconciles these two perspectives by reformulating inference as a stochastic control problem. Our method uses geometry-driven path augmentation, guided by the geometry in the system’s invariant density to reconstruct likely trajectories and infer the underlying dynamics without assuming specific parametric models. Applied to overdamped Langevin systems, our approach accurately recovers stochastic dynamics even from extremely undersampled data, outperforming existing methods in synthetic benchmarks. This work demonstrates the effectiveness of incorporating geometric inductive biases into stochastic system identification methods.

1 INTRODUCTION

How can we discover the underlying driving forces that govern the behaviour of complex, stochastic systems when we only measure their state at discrete time points? From pollen motion in a liquid medium (Einstein, 1905) and chemical reactions (Li, 2020) to population dynamics (Silva-Dias and López-Castillo, 2018; Fisher and Mehta, 2014) and cell growth (Alonso et al., 2014), many natural processes evolve following stochastic dynamics, best described by Langevin or stochastic differential equations (SDEs) of the form

$$d\mathbf{X}_t = \mathbf{f}(\mathbf{X}_t) dt + \boldsymbol{\sigma} d\mathbf{W}_t. \quad (1)$$

Under this formalism, the deterministic part of the equation $\mathbf{f}(\cdot) : \mathcal{R}^d \rightarrow \mathcal{R}^d$, the *drift* function, captures the long-term evolution of the state variables, while the stochastic part $\boldsymbol{\sigma} : \mathcal{R}^d \times \mathcal{R}^d$, the *diffusion*, accounts for the contribution of unresolved degrees of freedom. In practice, however, we rarely observe these systems at the fine time scales required by existing inference methods.

Recent advances in dynamical system inference have delivered valuable tools for identifying continuous-time *deterministic* systems from observations (Cremers and Hübler, 1987; Brunton et al., 2016; Daniels and Nemenman, 2015; McGoff et al., 2015; Kantz and Schreiber, 2004; Schmidt and Lipson, 2009). **Data-driven** (or **nonparametric**, or **equation-free**) approaches seek to reconstruct the governing equations of observed systems directly from state observations, without imposing explicit assumptions or inductive biases about the underlying dynamical models. They rely on function approximation to infer the system’s structure from observations, such as basis functions (Acosta, 1995; Small and Tse, 2002; Judd and Mees, 1995; Small and Judd, 1998; Brückner et al., 2020; Frishman and Ronceray, 2020), symbolic regression (Kaiser et al., 2018; Brunton et al., 2016; Bongard and Lipson, 2007; Daniels and Nemenman, 2015), spectral approximations (Kevrekidis et al., 2003; Theodoropoulos et al., 2000), Gaussian processes (Alvarez et al., 2009; Sanguinetti et al., 2006; Särkkä, 2019), or neural networks (Teng, 2018; Bhattoo et al., 2022; Jingling et al., 2019). However, extending these methods to *stochastic* systems remains difficult. In this setting, inference must disentangle the influence of underlying deterministic forces from random fluctuations, a task that is particularly difficult when sampling rates are low.

Two dominant perspectives for stochastic inference. Data-driven system identification for stochastic systems largely follows two tracks. **Temporal methods** (Fig. 1A.) rely on the tempo-

054
055
056
057
058
059
060
061
062
063
064
065
066
067

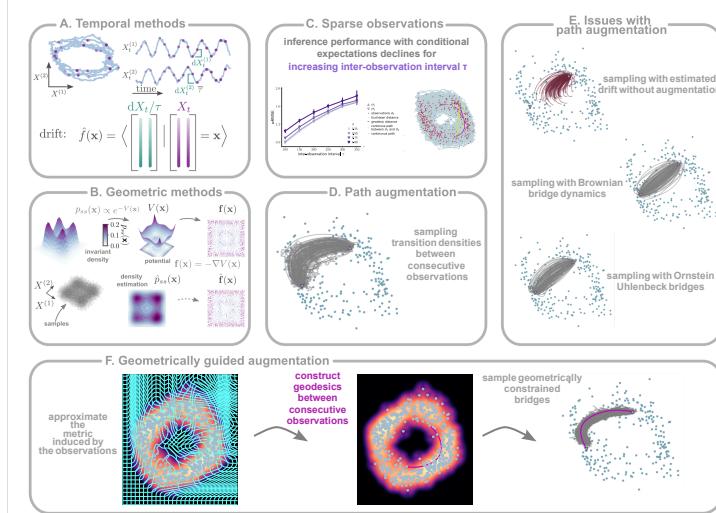


Figure 1

069 **Temporal and geometric perspectives for discovering stochastic dynamics and proposed inference**
070 **with geometrically guided augmentation.** (A.) Temporal methods consider the time-ordering
071 of observations $\{\mathcal{O}_k\}_{k=1}^K$ (purple dots) to approximate the drift $f(\mathbf{x})$ with conditional rescaled
072 state increments $\hat{f}(\mathbf{x}) = \langle \frac{d\mathbf{X}_t}{\tau} | \mathbf{X}_t = \mathbf{x} \rangle$. (B.) Geometric methods assume a conservative drift
073 $f(\mathbf{x}) = -\nabla V(\mathbf{x})$ as the gradient of a potential. (C.) With increasing inter-observation interval τ
074 performance of temporal methods degrades because Euclidean distances ignore the curvature of the
075 latent continuous path between consecutive observations. (D.) Path augmentation alternates between
076 state estimation - by sampling diffusion bridges for each inter-observation interval - and drift inference.
077 (E.) Commonly used path augmentation methods employ Brownian or Ornstein-Uhlenbeck
078 bridges that increasingly deviate from the unobserved path as τ grows. (lower) Illustration of the
079 ground truth (neon green) and geodesic (magenta) continuous path between two observations and
080 of that assumed during inference with Gaussian likelihood (yellow line). (F.) Geometrically guided
081 augmentation approximates first the metric induced by the invariant density, constructs geodesics
082 connecting consecutive observations, and samples geometrically constrained diffusion bridges.

083 **ral ordering** of measurements, regressing state increments against states to estimate the drift, which
084 works when the inter-observation interval (τ) is small (Batz et al., 2018; Friedrich and Peinke,
085 1997; Ragwitz and Kantz, 2001). **Geometric methods** on the other hand, approximate the **invariant**
086 **density** (Batz et al., 2016; Gu et al., 2021) or eigenstructure of the infinitesimal generator of the
087 diffusion process (Singer and Coifman, 2008; Nüske et al., 2021; Ionides et al., 2006; Talmon and
088 Coifman, 2015; Dsilva et al., 2016; Berry and Harlim, 2018)) (Fig. 1B.), but are nevertheless lim-
089 ited to systems with conservative forces (Berry and Harlim, 2015; Batz et al., 2016) or decoupled
090 state variables (Singer and Coifman, 2008). Each perspective has limitations: temporal approaches
091 deteriorate with increasing inter-observation intervals (Fig. 1C.), whereas geometric methods are
092 restricted to conservative flows.

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

093 **A unifying perspective: reconcile temporal and geometric methods by constraining**
094 **with most probable paths extracted from the invariant density.** Here, we recast in-
095 ference into a stochastic control problem and introduce **geometry-aware path augmenta-**
096 **tion.** Our method follows a simple premise that incorporates **geometric inductive biases**
097 informed by the system’s *invariant density* into dynamical inference: we postulate that the
098 augmented paths should lie **in the vicinity of geodesic curves** (Fig. 1F. middle, magenta
099 line) that connect consecutive measurements on the **empirical manifold** induced by the
100 observations. To achieve this, (i) we approximate the Riemannian metric induced by the
101 observations (Fig. 1F.) without the need to predefine the dimensionality of the empirical
102 manifold, (ii) compute geodesics between consecutive observations through nonparametric
103 approximation of shortest path distances between consecutive observations according to the
104 approximated metric, and (iii) estimate the unobserved path between consecutive observa-
105 tions by generating **geometrically constrained diffusion bridges** that both respect temporal
106 order and are guided toward identified geodesics (Fig. 1 F.). Nonparametric estimation of
107 the drift function based on the augmented paths within an Expectation Maximisation frame-
108 work (E.M.) (Dempster et al., 1977) results in accurate approximations of the underlying

108

109

110

111

112

stochastic dynamics. Extensive numerical experiments demonstrate the effectiveness of our proposed method in recovering the true stochastic dynamics, even in challenging scenarios where existing approaches fail.

113

2 SETUP AND BACKGROUND

114

115

116

117

Setting. We consider a system whose state evolves according to Eq. 1. Here, $\mathbf{X}_t \in \mathcal{R}^d$ denotes the state of the system, $\mathbf{f}(\cdot) : \mathcal{R}^d \rightarrow \mathcal{R}^d$ is the drift function, σ stands for the diffusion constant or matrix, and $\mathbf{W}_t \in \mathcal{R}^d$ is a d -dimensional Wiener process representing random noise input or unresolved degrees of freedom.

118

119

Data. We observe the system state at discrete time points $t_k = k\tau$ at **inter-observation intervals** of τ time units, obtaining a time-ordered set of observations $\{\mathcal{O}_k \doteq \mathbf{X}_{t_k}\}_{k=1}^K$.

120

121

Goal. Our goal is to estimate the drift function $\mathbf{f}(\cdot)$ representing the deterministic forces acting on the system of interest from the discrete state observations $\{\mathcal{O}_k\}_{k=1}^K$.

122

123

124

125

Background. Common inference methods for this setting consider observations from the system path $\mathbf{X}_{0:T}$ in (nearly) continuous time (Batz et al., 2018; Friedrich and Peinke, 1997). Under such conditions, the infinitesimal transition probability of the SDE between observations \mathbf{X}_t and \mathbf{X}_{t+dt} is Gaussian

126

127

$$P_f(\mathbf{X}_{0:T} \mid \mathbf{f}) \propto \exp \left(-\frac{1}{2dt} \sum_t \|\mathbf{X}_{t+dt} - \mathbf{X}_t - \mathbf{f}(\mathbf{X}_t)dt\|_D^2 \right), \quad (2)$$

128

129

130

131

132

where $\|\mathbf{u}\|_D \doteq \mathbf{u}^\top \cdot \mathbf{D}^{-1} \cdot \mathbf{u}$, denotes the weighted norm with $\mathbf{D} \doteq \sigma \sigma^\top$ indicating the noise covariance. The likelihood for the drift \mathbf{f} given the path $\mathbf{X}_{0:T}$ observed during $[0, T]$, results from the Radon-Nykodym derivative (likelihood ratio) between $P_f(\mathbf{X}_{0:T} \mid f)$ and the transition probability of a Wiener path $P_W(\mathbf{X}_{0:T}) = \exp \left(-\frac{1}{2dt} \sum_t \|\mathbf{X}_{t+dt} - \mathbf{X}_t\|_D^2 \right)$ as (Liptser and Shiryaev, 2013)

133

134

135

$$\mathcal{L}(\mathbf{X}_{0:T} \mid \mathbf{f}) = \exp \left(-\frac{1}{2} \sum_t \|\mathbf{f}(\mathbf{X}_t)\|_D^2 dt + \sum_t \langle \mathbf{f}(\mathbf{X}_t), \mathbf{X}_{t+dt} - \mathbf{X}_t \rangle_D \right). \quad (3)$$

136

137

138

This likelihood has a quadratic form in terms of the drift function. This makes **Gaussian process** priors a natural and widely employed approach for modelling \mathbf{f} (Ruttor et al., 2013; Hostettler et al., 2018; Zhao et al., 2020).

139

140

141

142

143

144

145

However, these approaches rely on *small* inter-observation intervals τ (Batz et al., 2018). As τ increases, the EuM approximation becomes inaccurate: transition densities are not Gaussian, and higher-order remainder terms related to the curvature of the flow field become important (see further theoretical analysis in Sec. G.3 and c.f. Fig. 6). Attempts to mitigate this problem by introducing bridge sampling to infer the unobserved path between observations (Batz et al., 2018; Sermaidis et al., 2013) provide small improvements, because these methods rely on linearised or otherwise simplified bridge dynamics that do not match the true transition densities (c.f. Sec. E).

146

147

148

Here, we target this large inter-observation interval setting by merging insights from both temporal and geometric perspectives. Specifically, our approach combines **nonlinear** bridge sampling with **a geometric approximation of the system's invariant density** as detailed in the following.

149

150

3 METHODOLOGY

151

152

153

154

155

156

157

158

159

Core idea. The invariant density of the observed system imposes a low-dimensional structure on the state space, within which the observations are confined. We propose that this low-dimensional structure is well approximated by a Riemannian manifold $\mathcal{M}_\infty \in \mathcal{R}^{m \leq d}$ in the ambient space, and that the ensemble of observations $\{\mathcal{O}_k\}_{k=1}^K$ offers a reliable discrete approximation to \mathcal{M}_∞ (Sec. ??). We term this observation-based approximation the *empirical manifold* \mathcal{M} . The central premise of our approach is that **unobserved paths between successive observations will be lying either on or in the vicinity of the empirical manifold \mathcal{M}** . In particular, we postulate that unobserved paths should lie **in the vicinity of geodesics that connect consecutive observations on \mathcal{M}** .

160

161

However, while this view of a lower dimensional manifold embedded in a higher dimensional ambient space helps to build intuition, for practical purposes we adopt a complementary view of the low dimensional manifold inspired by (Fröhlich et al., 2021). According to this view, we consider

the entire observation space \mathcal{R}^d as a smooth Riemannian manifold, $\mathcal{M} \doteq \mathcal{R}^d$, characterised by a Riemannian metric \mathfrak{h} . The effect of the nonlinear geometry of the observations is then captured by the metric \mathfrak{h} . Thus to approximate the geometric structure of the system's invariant density, we learn the Riemannian metric tensor $H : \mathcal{R}^d \rightarrow \mathcal{R}^{d \times d}$ and compute the geodesics between consecutive observations according to the learned metric. Intuitively according to this view the observations $\{\mathcal{O}_k\}_{k=1}^K$ introduce distortions in the way we compute distances on the state space. The advantage of this approach is that we do not have to estimate the dimensionality of the empirical manifold, which would have been difficult due to the presence of fluctuations in the system's dynamics. Instead, we still operate in the original space and the empirical manifold introduces distortions in the estimated metric (see Fig. 1F.i).

Inference framework. Our approach comprises three steps: **(α .)** Approximation of the geometric structure of the system’s invariant density with metric learning, **(β .)** estimation of the (latent) system state between consecutive observations guided by the invariant density (**path augmentation**), and **(γ .)** data-driven estimation of the drift function (Fig. 1). We perform the two final steps in an iterative manner within an Expectation Maximisation (**E.M.**) framework (Dempster et al., 1977).

(a.) Approximating the Riemannian geometry induced by the observations. Although there are many methods for approximating Riemannian manifolds (Tenenbaum et al., 2000; Balasubramanian and Schwartz, 2002; Mead, 1992; Roweis and Saul, 2000), our objective is to obtain a representation that acts as a *local* constraint for subsequent state estimation between consecutive observations. We achieve this in two steps: **(i.)** We approximate in the ambient space \mathcal{R}^d the metric \mathfrak{h} induced by the observations (see Fig. 1E.i.). This identifies regions of the state space with high observation density (represented with small metric values). **(ii.)** We construct geodesics between consecutive observations on the empirical manifold $(\mathcal{M} \doteq \mathcal{R}^d, \mathfrak{h})$ (see Fig. 1F.ii.). The geodesics identify the most probable paths between consecutive observations, and each such path subsequently functions as a constraint during latent state estimation.

186 **(i) Approximation of the invariant metric.** To approximate the (local) metric \mathfrak{h} in a nonpara-
 187 metric form at locations \mathbf{x} of the state space, we follow [Arvanitidis et al. \(2019\)](#), and consider the
 188 inverse of the weighted local diagonal covariance computed on the K observations as

$$H_{dd}(\mathbf{x}) = \left(\sum_{k=1}^K w_k(\mathbf{x}) \left(\mathcal{O}_k^{(d)} - x^{(d)} \right)^2 + \epsilon \right)^{-1}, \quad (4)$$

193 with weights $w_k(\mathbf{x}) = \exp\left(-\frac{\|\mathcal{O}_k - \mathbf{x}\|_2^2}{2\sigma_{\mathcal{M}}^2}\right)$, and $A^{(d)}$ denoting the d -th dimensional component of
 194 the vector \mathbf{A} for $\mathbf{A} \in \{\mathbf{x}, \mathcal{O}_k\}$. The parameter $\epsilon > 0$ is a small value ensuring non-zero diagonals
 195 of the weighted covariance matrix, while $\sigma_{\mathcal{M}}$ is a hyper-parameter characterising the curvature of
 196 the approximated manifold.
 197

(ii) Constructing geodesics between consecutive observations. To compute the geodesic curves connecting consecutive observations on the empirical manifold, we employ the approximated metric tensor $\mathbf{H}(\mathbf{x})$. We identify the geodesic curve $\gamma_{t'}^k$ between \mathcal{O}_k and \mathcal{O}_{k+1} as the curve with minimum energy that connects these two points, i.e., as the minimiser of the kinetic energy functional

$$\gamma_{t'}^{k*} = \arg \min_{\gamma_{t'}^k, \gamma_0^k = \mathcal{O}_k, \gamma_1^k = \mathcal{O}_{k+1}} \int_0^1 L_{\mathcal{M}}(\gamma_{t'}^k, \dot{\gamma}_{t'}^k) dt', \quad \text{with} \quad \int_0^1 L_{\mathcal{M}}(\gamma_{t'}^k, \dot{\gamma}_{t'}^k) dt' = \frac{1}{2} \int_0^1 \|\dot{\gamma}_{t'}^k\|_{\mathfrak{h}}^2 dt,$$

where $L_{\mathcal{M}}(\gamma_{t'}^k, \dot{\gamma}_{t'}^k)$ is an appropriately constructed Lagrangian. The minimising curve of this functional is the same as the minimiser of the curve length functional $\ell(\gamma_{t'})$ (c.f. Eq. 33), i.e., the geodesic (Do Carmo and Flaherty Francis, 1992). This results in a system of second order differential equations (Eq. 36) (Arvanitidis et al., 2017; Do Carmo and Flaherty Francis, 1992) (Sec. A.3.2) with boundary conditions $\gamma_0^k = \mathcal{O}_k$ and $\gamma_1^k = \mathcal{O}_{k+1}$ that we solve with a probabilistic differential equation solver as in (Arvanitidis et al., 2019).

(B.) Latent state estimation: Geometry-guided augmentation. To estimate the unobserved system state between consecutive observations \mathcal{O}_k and \mathcal{O}_{k+1} , we perform variational inference (Beal, 2003)(see Sec. A.3). Given a prior diffusion process with drift $\hat{f}(\cdot) : \mathcal{R}^d \rightarrow \mathcal{R}^d$ and diffusion σ ,

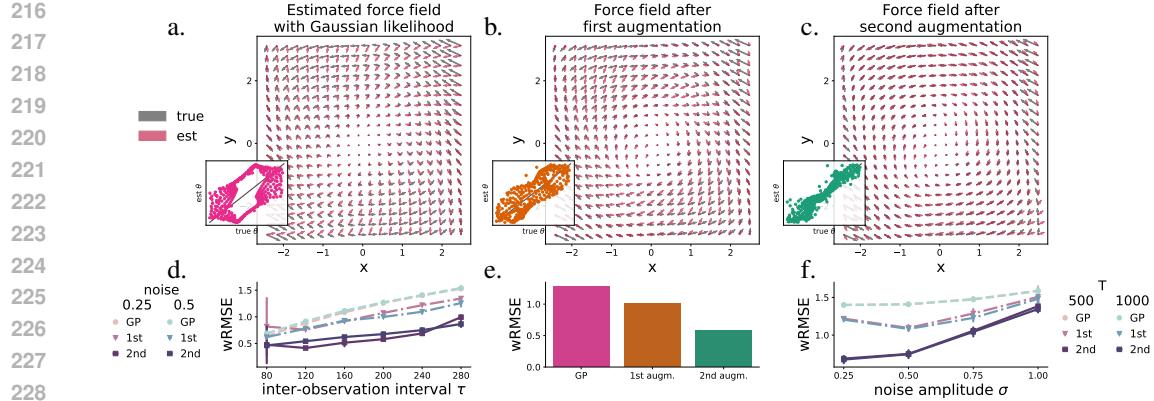


Figure 2

Geometry-aware path augmentation improves drift inference after two iterations. Estimated (red) vs. true (grey) force field with a.) Gaussian likelihood, b.) after one, and c.) after two augmentations. (Insets) True vs. estimated angles at grid points. d.) Weighted (by observation density) root mean square error (wRMSE) vs. inter-observation interval τ for different noise levels $\sigma = \{0.25, 0.5\}$ for drift estimated with a Gaussian likelihood (gaus-circles), after first augmentation (1st-triangles), and after second augmentation (2nd-squares) for $T = 500$ (time units). e.) wRMSE across iterations for the presented example. f.) wRMSE vs. noise amplitude σ for different trajectory durations $T = \{500, 1000\}$ (time units) for inter-observation interval $\tau = 240$ (dt). Markers in d.) and f.) indicate augmentation steps. Error bars: one standard deviation over five independent runs.

we construct an **approximating process** conditioned **i.)** to pass through the observations, and **ii.)** to respect the local geometry of the invariant density as it is represented by the geodesics. The conditioned process is also a diffusion process with the same diffusion constant and an effective drift function $\mathbf{g}(\mathbf{x}, t)$ (Chetrite and Touchette, 2015; Majumdar and Orland, 2015). The path probability measure $Q_X(\mathbf{X}_{0:T})$ induced by the approximating process

$$Q_X(\mathbf{X}_{0:T}) : d\mathbf{X}_t = \mathbf{g}(\mathbf{X}_t, t) dt + \sigma d\bar{\mathbf{W}}_t = \left(\hat{\mathbf{f}}(\mathbf{X}_t) + \mathbf{u}(\mathbf{X}_t, t) \right) dt + \sigma d\bar{\mathbf{W}}_t, \quad (6)$$

provides an approximation to the unobserved continuous system state. In Eq. 6 $\mathbf{u}(\cdot, \cdot) : \mathcal{R}^d \times \mathcal{R}^+ \rightarrow \mathcal{R}^d$ is a time-dependent control term that guides the approximating path distribution, through the observations, while staying in the vicinity of the corresponding geodesics between them.

More precisely, we obtain the controlled drift $\mathbf{g}(\mathbf{X}_t, t)$ from the solution of the variational problem of minimising the functional (see Sec. A.3.1)

$$\begin{aligned} \mathcal{F}[Q_X] &= \mathcal{KL}\left(Q_X(\mathbf{X}_{0:T}) \mid\mid \mathbf{P}(\mathbf{X}_{0:T} \mid \hat{\mathbf{f}})\right) - \sum_{k=1}^K \left\langle \ln \mathbf{P}(\mathcal{O}_k \mid \mathbf{X}_{t_k}) \right\rangle_Q + \left\langle \|\boldsymbol{\Gamma}_t - \mathbf{X}_{0:T}\|^2 \right\rangle_Q \\ &= \frac{1}{2} \int_0^T \int \left[\|\mathbf{g}(\mathbf{x}, t) - \hat{\mathbf{f}}(\mathbf{x})\|_{\mathbf{D}}^2 + U_{\mathcal{O}}(\mathbf{x}, t) + \beta U_{\mathcal{G}}(\mathbf{x}, t) \right] q_t(\mathbf{x}) d\mathbf{x} dt, \end{aligned} \quad (7)$$

where $\boldsymbol{\Gamma}_t$ denotes the sequence of K geodesics indexed by time t , $\boldsymbol{\Gamma}_t \doteq \{\boldsymbol{\gamma}_{t'}^k\}_{t=(k-1)\tau+t'\tau}$, where $\boldsymbol{\gamma}_{t'}^k$ is the geodesic connecting \mathcal{O}_k and \mathcal{O}_{k+1} , and $t' \in [0, 1]$ denotes a rescaled time variable, and β is a weighting term. In Eq. 7, the term $U_{\mathcal{O}}(\mathbf{x}, t) = -\sum_{t_k} \ln \mathbf{P}(\mathcal{O}_k \mid \mathbf{x}) \delta(t - t_k)$ **forces the augmentation to pass through the observations at each bridge boundary**, while $U_{\mathcal{G}}(\mathbf{x}, t) \doteq \|\boldsymbol{\Gamma}_t - \mathbf{x}\|^2$ **guides the latent path towards the identified geodesics**.

This minimisation can be construed as a stochastic control problem (Opper, 2019) with the objective to identify a time-dependent drift adjustment $\mathbf{u}(\mathbf{x}, t) := \mathbf{g}(\mathbf{x}, t) - \hat{\mathbf{f}}(\mathbf{x})$ for the system with drift $\hat{\mathbf{f}}(\mathbf{x})$ so that the controlled dynamics fulfil the path constraints $U_{\mathcal{O}}(\mathbf{x}, t)$ and $U_{\mathcal{G}}(\mathbf{x}, t)$.

270 The optimal time-dependent control for
 271 the interval between \mathcal{O}_k and \mathcal{O}_{k+1} results
 272 from the solution of the backward equation
 273 (Kappen, 2005a; Maoutsa and Opper,
 274 2022)

$$275 \frac{\partial \phi_t(\mathbf{x})}{\partial t} = -\mathcal{L}_f^\dagger \phi_t(\mathbf{x}) + U_{\mathcal{G}}(\mathbf{x}, t) \phi_t(\mathbf{x}), \quad (8)$$

276 with terminal condition $\phi_{t_{k+1}}(\mathbf{x}) =$
 277 $\chi(\mathbf{x}) = \delta(\mathbf{x} - \mathcal{O}_{k+1})$ and with \mathcal{L}_f^\dagger denoting the adjoint Fokker-Planck operator
 278 for the process of Eq. 26. As shown in (Maoutsa and Opper, 2022) the optimal drift adjustment $\mathbf{u}(\mathbf{x}, t)$ can be expressed
 279 in terms of the difference of the logarithmic gradients of two probability flows
 280

$$281 \mathbf{u}^*(\mathbf{x}, t) = D \left(\nabla \ln q_{T-t}(\mathbf{x}) - \nabla \ln \rho_t(\mathbf{x}) \right), \quad (9)$$

282 where ρ_t fulfills the forward (filtering) par-
 283 tial differential equation (PDE)

$$284 \frac{\partial \rho_t(\mathbf{x})}{\partial t} = \mathcal{L}_f \rho_t(\mathbf{x}) - U(\mathbf{x}, t) \rho_t(\mathbf{x}), \quad (10)$$

285 while q_t is the solution of a time-reversed PDE with initial condition $q_0(\mathbf{x}) \propto \rho_T(\mathbf{x}) \chi(\mathbf{x})$

$$286 \frac{\partial q_t(\mathbf{x})}{\partial t} = -\nabla \cdot \left[\left(\sigma^2 \nabla \ln \rho_{T-t}(\mathbf{x}) - \mathbf{f}(\mathbf{x}, T-t) \right) q_t(\mathbf{x}) \right] + \frac{\sigma^2}{2} \nabla^2 q_t(\mathbf{x}). \quad (11)$$

287 Thus, for each interval $[\mathcal{O}_k, \mathcal{O}_{k+1}]$ we identify the posterior path measure (minimiser of Eq. 37) by
 288 solving such a stochastic control problem for the time-varying control $\mathbf{u}(\mathbf{x}, t)$ of Eq. 9. This results
 289 in a set of $K-1$ independent optimal control problems, that are solved in parallel for efficiency.

300 **(γ.) Estimating the drift.** We approximate the drift function in a model independent framework
 301 by imposing a Gaussian process prior on the function values $\mathbf{f} \sim P_o(\mathbf{f}) = \mathcal{GP}(\mathbf{m}^f, k^f)$, where \mathbf{m}^f
 302 and k^f denote the mean and covariance function of the Gaussian process. The optimal measure for
 303 the drift Q_f is a Gaussian process given by (Batz et al., 2018)

$$304 Q_f \propto P_o \exp \left(-\frac{1}{2} \int \|\mathbf{f}(\mathbf{x})\|_{\sigma^2}^2 A(\mathbf{x}) - 2 \langle \mathbf{f}(\mathbf{x}), B(\mathbf{x}) \rangle_{\sigma^2} \mathbf{d}\mathbf{x} \right), \quad (12)$$

305 with $A(\mathbf{x}) \doteq \int_0^T q_t(\mathbf{x}) dt$ and $B(\mathbf{x}) \doteq \int_0^T q_t(\mathbf{x}) \mathbf{g}(\mathbf{x}, t) dt$, where $q_t(\mathbf{x})$ denotes the marginal density
 306 of the constrained process' state obtained by the state estimation. The function $\mathbf{g}(\mathbf{x}, t)$ denotes the
 307 effective (time-dependent) drift of the constrained process (Eq. 6), resulting from the solution of the
 308 individual control problems accounting for the observations and the invariant geometry.

4 RESULTS

313 **Revealing stochastic dynamics in model systems.** To demonstrate the effectiveness of our ap-
 314 proach, we inferred the stochastic dynamics of model systems, and compared the resulting estimates
 315 to those obtained from: **(i.)** Gaussian process regression without state estimation (**GP**), **(ii.)** path
 316 augmentation with Ornstein-Uhlenbeck dynamics (**OU**) (Batz et al., 2018), **(iii.)** sparse variational
 317 inference with state estimation (**SVISE**) (Course and Nair, 2023a), **(iv.)** basis function approxima-
 318 tion of Kramers-Moyal coefficients, i.e. the drift function (**KM-basis**) (Nabeel et al., 2025), and **(v.)**
 319 latent SDE inference with amortized reparameterization with (**LatentSDE+GP-pre**) and without
 320 pre-training (**LatentSDE**) (Course and Nair, 2023b), **(vi.)** metric flow matching (**MFM**) (Kapus-
 321 niak et al., 2024) (with RBF (Arvanitidis et al., 2021) and LAND metric (Arvanitidis et al., 2019)
 322 metric approximations), **(vii.)** generalized Schrödinger bridge matching (**GSBM**) (Liu et al., 2023),
 323

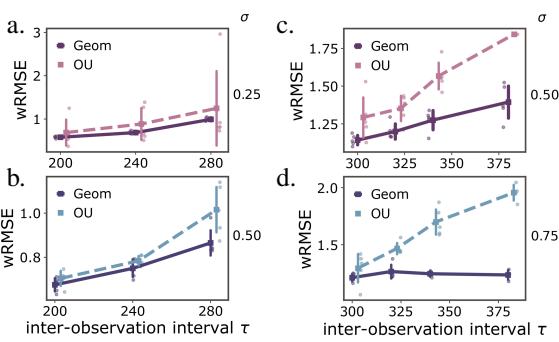


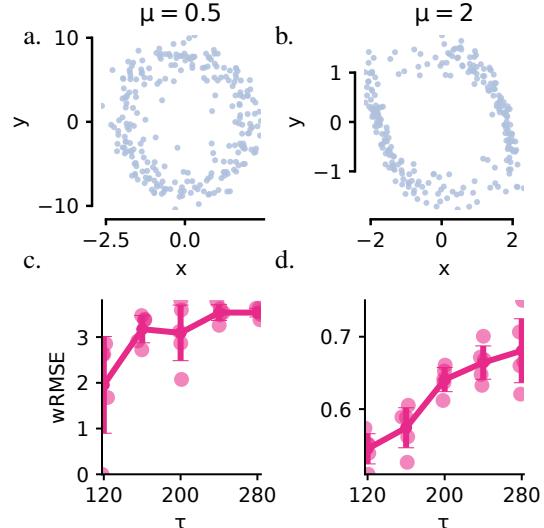
Figure 3

Comparison of geometry-aware inference against inference with Ornstein-Uhlenbeck augmentation. Weighted root mean square error (wRMSE) vs. different inter-observation intervals τ for different noise amplitudes for moderate inter-observation intervals with a.) $\sigma = 0.25$ and b.) $\sigma = 0.50$, and for large inter-observation intervals with c.) $\sigma = 0.50$ and d.) $\sigma = 0.75$, where only one observation per oscillation period is available. Error bars indicate one standard deviation over five independent runs.

Van der Pol								
wRMSE ↓	total duration T	$\tau = 80 \times dt$	$\tau = 120 \times dt$	$\tau = 160 \times dt$	$\tau = 200 \times dt$	$\tau = 240 \times dt$	$\tau = 280 \times dt$	
$\sigma = 0.25$								
GP	500	0.642 ± 0.006	0.879 ± 0.005	1.083 ± 0.015	1.258 ± 0.011	1.399 ± 0.003	1.528 ± 0.0153	
SVISE	500	1.465 ± 0.009	0.857 ± 0.021	0.740 ± 0.072	0.592 ± 0.026	0.587 ± 0.112	0.824 ± 0.003	
KM-basis	500	0.368 ± 0.054	0.452 ± 0.011	0.671 ± 0.023	1.588 ± 0.021	1.751 ± 0.008	1.735 ± 0.020	
LatentSDE	500	1.091 ± 0.316	1.091 ± 0.039	1.098 ± 0.023	1.089 ± 0.036	1.088 ± 0.038	1.091 ± 0.039	
LatentSDE+GP-pre	500	1.095 ± 0.038	1.085 ± 0.039	1.101 ± 0.034	1.089 ± 0.038	1.106 ± 0.045	1.102 ± 0.039	
GSBM	500	4.75	4.79	-	-	-	-	
[SF]2M	1500	1.741 ± 0.304	1.801 ± 0.226	1.745 ± 0.322	1.583 ± 0.132	1.816 ± 0.228	1.721 ± 0.094	
MFM _{RBF}	1500	1.462 ± 0.007	1.469 ± 0.005	1.470 ± 0.012	1.469 ± 0.008	1.469 ± 0.006	1.466 ± 0.008	
MFM _{LAND}	1500	1.463 ± 0.007	1.469 ± 0.005	1.469 ± 0.012	1.469 ± 0.008	1.469 ± 0.006	1.467 ± 0.008	
Geometric_{RBF} (our)	500	0.419 ± 0.052	0.458 ± 0.063	0.493 ± 0.031	0.517 ± 0.022	0.657 ± 0.040	1.001 ± 0.077	
Geometric (our)	500	0.474 ± 0.034	0.413 ± 0.016	0.514 ± 0.068	0.578 ± 0.022	0.687 ± 0.032	0.993 ± 0.037	
$\sigma = 0.50$								
GP	500	0.691 ± 0.029	0.916 ± 0.014	1.114 ± 0.15	1.272 ± 0.030	1.409 ± 0.019	1.542 ± 0.044	
SVISE	500	1.235 ± 0.083	0.9935 ± 0.015	0.7505 ± 0.052	0.736 ± 0.072	1.3565 ± 0.278	1.425 ± 0.086	
KM-basis	500	0.495 ± 0.010	0.727 ± 0.008	0.890 ± 0.024	1.683 ± 0.020	1.744 ± 0.038	1.732 ± 0.065	
LatentSDE	500	1.158 ± 0.036	1.151 ± 0.045	1.160 ± 0.032	1.151 ± 0.036	1.146 ± 0.033	1.176 ± 0.046	
LatentSDE+GP-pre	500	1.158 ± 0.045	1.159 ± 0.034	1.159 ± 0.027	1.151 ± 0.034	1.150 ± 0.028	1.191 ± 0.052	
GSBM	500	4.129	2.448	2.448	2.789	11.416	11.416	
[SF]2M	1500	1.869 ± 0.482	1.813 ± 0.286	1.484 ± 0.096	1.876 ± 0.247	1.753 ± 0.158	1.707 ± 0.233	
MFM _{RBF}	1500	1.516 ± 0.011	1.525 ± 0.006	1.538 ± 0.009	1.537 ± 0.017	1.528 ± 0.015	1.544 ± 0.019	
MFM _{LAND}	1500	1.517 ± 0.011	1.526 ± 0.006	1.536 ± 0.009	1.537 ± 0.017	1.528 ± 0.015	1.545 ± 0.019	
Geometric_{RBF} (our)	500	0.653 ± 0.014	0.690 ± 0.026	0.694 ± 0.026	0.761 ± 0.050	0.798 ± 0.047	0.933 ± 0.160	
Geometric (our)	500	0.462 ± 0.019	0.541 ± 0.023	0.621 ± 0.012	0.675 ± 0.030	0.750 ± 0.038	0.865 ± 0.057	

Table 1

Performance comparison in terms of weighted root mean square error (wRMSE) of considered frameworks for different noise conditions σ and inter-observation intervals τ for the Van der Pol system.

**Figure 4**

Geometry-aware inference provides accurate drift estimation for different empirical manifold geometries resulting from different parameter regimes of the Van der Pol system. (a.-b.) Empirical manifold for the Van der Pol system with different μ parameters. Notice the different scales on the axes. (c.-d.) Inference performance of the proposed framework against inter-observation interval τ . Error bars indicate one standard deviation over five independent runs.

(viii.) simulation-free Schrödinger bridges via score and flow matching ([SF]² M) (Tong et al., 2023) (c.f. Sec. H.1). We tested our method on non-conservative systems inducing diverse types of invariant geometries: **(a.)** a Van der Pol system, **(b.)** an out-of-equilibrium process with harmonic trapping and circulation and a Gaussian repulsive obstacle in the centre introduced in Frishman and Ronceray (2020), **(c.)** a Hopf system, and **(d.)** a Selkov glycolysis model (Selkov, 1968) (see Sec. H). For most settings, the proposed framework outperformed existing methods, especially for large inter-observation intervals (Table 2 and 1).

We quantified the quality of the inference in terms of weighted root mean square error (wRMSE) between the estimated and ground truth drift functions evaluated on a d -dimensional grid spanning the state space volume of the observations. The weights for each grid point were obtained from a kernel density estimation of the observations. Thus misalignment of ground truth and estimated dynamics were penalised stronger for regions of the state space visited more frequently by the observed process.

378	379	Out of equilibrium system			Hopf			Selkov		
		wRMSE ↓	$\tau = 150$	$\tau = 200$	$\tau = 250 \times dt$	$\tau = 200$	$\tau = 300$	$\tau = 400 \times dt$	$\tau = 100$	$\tau = 200 \times dt$
380	381	GP	2.632 \pm 0.007	3.387 \pm 0.012	3.733 \pm 0.011	0.781 \pm 0.006	0.969 \pm 0.015	1.069 \pm 0.006	0.550 \pm 0.021	0.682 \pm 0.040
		SVISE	35.204 \pm 39.888	3.462 \pm 0.129	7.540 \pm 7.602	2.113 \pm 0.658	4.960 \pm 2.687	3.936 \pm 1.063	5.793 \pm 0.028	2.028 \pm 0.045
		LatentSDE	2.348 \pm 0.032	2.340 \pm 0.047	2.356 \pm 0.042	1.168 \pm 0.052	1.161 \pm 0.053	1.173 \pm 0.046	0.742 \pm 0.022	0.747 \pm 0.021
		Geometric (ours)	2.762 \pm 0.132	3.034 \pm 0.143	2.693 \pm 0.992	0.210 \pm 0.013	0.237 \pm 0.010	0.255 \pm 0.028	0.414 \pm 0.245	0.682 \pm 0.071

Table 2

Performance comparison in terms of wRMSE for the considered frameworks for three different nonlinear dynamical systems and for increasing inter-observation interval τ . Numbers indicate mean wRMSE and standard deviation of five independent runs for each setting.

For a system with a drift function following Van der Pol dynamics, we found that only after two E.M. iterations, the estimated force field (red arrows) is well aligned to the true force field that generated the observations (grey arrows) (Fig. 2a.). For comparison we demonstrate also the result of the estimation with Gaussian likelihood (GP), which results in a flow field orthogonal to the ground truth one.

We performed systematic estimations for this system under different noise conditions σ , observed at different inter-observation intervals τ for different lengths of trajectories T (see Sec. H). For the examined noise amplitudes (Fig. 2 f.), the proposed path augmentation algorithm improves the naive estimation with Gaussian assumptions within two iterations (Fig. 2). For increasing noise the improvement contributed by our approach decreases (Fig. 2f.), as the invariant geometry is less well defined, but is still considerable.

Impact of the geometry of empirical manifold. We performed inference for different parameter values of the Van der Pol system ($\mu = 1$ (as above) and $\mu = 0.5$ and $\mu = 2$), that result in asymmetries of the invariant density (Fig. 4). We observed that the performance of all inference frameworks deteriorates for increasing asymmetry (larger dynamic range along one dimension), yet our method still delivered more accurate predictions compared to the other considered frameworks. Approximating the invariant geometry with a different metric learning method does not confer any considerable performance difference for our approach (c.f. Table 1 Geometric_{RBF} where we employed the metric introduced in Arvanitidis et al. (2021) and further developed in Kapusniak et al. (2024), where a diagonal metric is approximated in terms positive linear combination of Gaussian RBFs centred at selected cluster centres.

Impact of noise amplitude. For systems with small dynamical noise (small σ), geodesics approximate the manifold structure better, however the path integral control is limited by the control costs proportional to inverse noise covariance. Our framework had comparable accuracy for all inter-observation lengths, but improvement was small for small lengths since in that setting the estimation with Gaussian likelihood already provides a good approximation of the ground truth drift.

We compared our method to the approach proposed in Batz et al. (2018). In this work, the authors perform augmentation with Ornstein-Uhlenbeck bridges, i.e. assuming linear underlying dynamics. We found that our approach delivered more accurate estimates for larger inter-observation intervals. For inter-observation intervals with only one observation per oscillation period (Fig. 3c.,d.), our approach delivered better results by considering additionally knowledge of the direction of movement in the state space (c.f. Sec. H). The variance of estimates of the proposed method was smaller compared to Batz et al. due to consistency imposed by conditioning on the invariant geometry of the system. Predictions improve with longer observation intervals T , and for decreasing noise amplitude σ . In both settings the invariant geometry is more well approximated by the empirical manifold.

State estimation with linear (Ornstein-Uhlenbeck) dynamics (Batz et al., 2018), is in general less capable of correctly estimating the latent system state and subsequently correctly approximating the unknown drift function especially as the length of the inter-observation interval τ increases.

Effects of noise miss-estimation. We further investigated the impact of noise misestimation on the accuracy of drift inference (S.I. Fig. 5). Our findings indicate that after two augmentations conditioned on the invariant geometry, small inaccuracies in the employed dynamical noise during the simulation of augmented paths have a negligible effect on the overall accuracy of the inferred drift. In particular, for small inter-observation intervals, the inference procedure remains highly

robust to misestimated noise amplitudes. As the inter-observation intervals increase, the effect of noise deviations on performance remains minimal, provided the noise used in the augmentation deviates by at most ± 0.1 from the true noise amplitude. Thus, stochastic dynamics may still be identified even with inaccurate or misestimated diffusion constants.

Additional results are provided in the Supplement (see Sec. G).

5 DISCUSSION

Discovering unknown driving forces governing stochastic systems poses still a significant challenge, despite extensive existing research on that frontier. Our work demonstrates the benefits of integrating information from both the temporal and geometric structure of the observed data. Our findings showed a substantial improvement in estimating the underlying stochastic dynamics, especially in sparsely sampled, nonlinear systems driven by non-conservative forces.

We introduced **geometric inductive biases** into inference of stochastic systems by treating the deterministic flow field as a scaffold upon which system states fluctuate. We approximated this scaffold in terms of **distortions of a metric induced by the system’s measurements**. This approach effectively approximates the low-dimensional invariant density (empirical manifold) without the need to project to a lower dimensional space, whose dimensionality would be hard to estimate due to the presence of fluctuations. The key insight is that **geodesics** computed on the empirical manifold with respect to the approximated metric constitute the **most probable path** of the unknown system between consecutive observations in the Onsager-Machlup sense. Using these **geodesics as control constraints**, we formulated a path-augmentation scheme that bridges sparse observations with trajectories consistent with both the temporal order and the geometry of the data.

Widely used inference methods, predominantly developed within the statistics community, often employ path (*data*) augmentation to approximate transition densities between successive observations. However, this approach suffers from several challenges: **1.)** First, the unobserved information between successive observations is an infinite-dimensional object, requiring the solution of a complex and computationally intensive problem (bridge sampling) (Gronau et al., 2017). We addressed this challenging problem using the computationally efficient framework developed in Maoutsa and Opper (2022). **2.)** Second, direct drift estimation from sparse observations results in estimated dynamics that significantly deviate from the ground truth. Thereby consecutive observations of the system have small probability under the law of the estimated SDE. This discrepancy, in turn, leads to several computational difficulties: **i)** Most bridge sampling schemes become too computationally demanding, or even fail, when attempting to generate transition densities between atypical states for the considered stochastic dynamics. For instance, the method of (Maoutsa and Opper, 2021) successfully generates transition densities between atypical states only for conservative systems through a reweighting with Brownian bridge dynamics. Alternatively, an exceedingly large number of samples would be required for accurate numerical approximation. **ii)** Second, iterative algorithms, such as Expectation Maximisation, which exhibit only *local* convergence (Romero et al., 2019), may converge to inaccurate solutions, when the initial estimation significantly deviates from the ground truth.

To overcome these limitations, we proposed incorporating the information ingrained in the local geometric structure of the observations into the state estimation (path augmentation). This approach is motivated by the observation that commonly employed path augmentation methods often yield transition densities that deviate substantially from the true underlying densities when observations are sparse (Fig. 1E.). This discrepancy arises from the fact that these approaches rely on trivial stochastic dynamics that fail to adequately capture the curvature of the ground truth transition densities when the observed system is nonlinear (Sec. G.3). Our numerical experiments demonstrate that, indeed, the proposed approach effectively recovers the underlying drift function for systems with steady-state probability currents (Ding et al., 2020).

Relation to Schrödinger bridge sampling. The framework we employed for the augmentation relies on a deterministic particle formulation of the path integral control formalism (Kappen, 2005b). This framework can be connected to the dynamic Schrödinger bridge problem, if we consider transferring probability mass between two Dirac measures or very narrow Gaussians that sit on each observation, considering additionally a potential that constraints the intermittent dynamics similar

486 to the one considered in Neklyudov et al. (2023a). Thus, in principle, one can employ one of the
 487 recently developed alternative frameworks that solve the dynamic Schrödinger bridge problem for
 488 path augmentation. The recent Bridge and Flow Matching frameworks (Lipman et al., 2022; Al-
 489 bergo et al., 2023; Shi et al., 2023; Liu et al., 2023) correspond to the control problem we formulate
 490 in the SI Eq. 32, without the control constraints. In contrast, the Generalised Schrödinger Bridge
 491 Matching (GSBM) framework proposed by Liu et al. (2023) uses a cost functional that is equiv-
 492 alent to the controlled cost we employ to construct our augmentations. In this setting, the penalty
 493 term corresponds to the geodesic proximity constraint used in our framework. The GSBM could, in
 494 principle, replace the particle-based framework we use. However, here, we employed a framework
 495 that relies on particle representations of the involved densities, which can be later easily employed
 496 to formulate the Monte Carlo approximations of the integrals involved in the Gaussian process in-
 497 ference for the drift (Eq. 42). Yet, the Gaussian variant of the GSBM framework that incorporates
 498 time-dependent penalty constraints (analogous to our geodesic constraints), might be an interesting
 499 avenue to explore for potential incorporation in our framework (Tong et al., 2023).

500 Similarly, for approximating the metric induced by the observations, we employed the frame-
 501 work of Arvanitidis et al. (2019), while we could have employed alternative metric learning ap-
 502 proaches (Scarvelis and Solomon, 2022; Hauberg et al., 2012; Barua et al., 2025; Gruffaz and Sassen,
 503 2025). However, the framework of Arvanitidis et al. (2019) perfectly fits the purposes of our work,
 504 because it employs a non-parametric (kernel) estimation for approximating the metric and computes
 505 the geodesics through GP regression. This allows to evaluate the geodesic equation at different in-
 506 crements, that is necessary for imposing the time dependent geodesic constraint. A similar metric
 507 approximation has been recently employed in Kapusniak et al. (2024) for metric flow matching, i.e.,
 508 for augmentation that respects the geometry of the dataset. While our approach has a similar flavour
 509 to this work, our framework additionally requires the augmented data to be temporary ordered and
 510 to respect the stochastic flow of the estimated system. This results in learning a global drift that
 511 approximates the underlying stochastic dynamics, instead of learning a local drift that transports a
 512 snapshot of states from some initial to a final configuration.

513 **Limitations.** The proposed approach relies on the geometric characterisation of the invariant den-
 514 sity of the system’s dynamics. This requires sufficiently long observation windows to accurately
 515 characterise said density and correctly approximate the unobserved paths with geodesic curves.
 516 Thus, our approach is limited to systems where the invariant density can be approximated by a
 517 manifold where we can identify geodesics. An alternative method worth exploring would consider
 518 the learned invariant metric directly in the dynamics of the augmented process. Moreover, we have
 519 considered here inference of stochastic differential equations with known state independent diffu-
 520 sion. While this approach might seem limited, several processes with state dependent diffusion
 521 functions can be transformed into processes with state independent diffusions (Beskos et al., 2006a;
 522 Roberts and Stramer, 2001) through the Lambert transform if they fulfil the appropriate conditions
 523 for the drift function.

523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540

6 REPRODUCIBILITY STATEMENT

541
 542 We have taken several steps to ensure the reproducibility of our results. A detailed description of
 543 our methodology, including the inference framework and the geometry-aware path augmentation
 544 procedure, is provided in Section 2 of the main text and further elaborated in Appendix A. All
 545 theoretical aspects of our work, including the construction of the invariant metric, geodesics, and the
 546 stochastic control formulation, are presented in full in the supplementary material (Appendix A.3,
 547 A.3.2, and H). The implementation details of the Expectation–Maximisation scheme and Gaussian
 548 process inference are also included in the appendix. Our numerical experiments, benchmarks, and
 549 additional analyses (e.g., noise misestimation) are reported in the Supplement.

550

551 REFERENCES

- 552 Albert Einstein. *Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung
 553 von in ruhenden Flüssigkeiten suspendierten Teilchen*. *Annalen der Physik*, 4, 1905. (cited on
 554 page: [1](#))
- 555 Tao Li. *Chemical Langevin Equation for Complex Reactions*. *The Journal of Physical Chemistry A*, 124(5):810–816, 2020. (cited on page: [1](#))
- 556 L Silva-Dias and A López-Castillo. *Spontaneous symmetry breaking of population: Stochastic
 557 Lotka–Volterra model for competition among two similar preys and predators*. *Mathematical
 558 Biosciences*, 300:36–46, 2018. (cited on page: [1](#))
- 559 Charles K Fisher and Pankaj Mehta. *The transition between the niche and neutral regimes in ecology*.
 560 *Proceedings of the National Academy of Sciences*, 111(36):13111–13116, 2014. (cited on page: [1](#))
- 561 Antonio A Alonso, Ignacio Molina, and Constantinos Theodoropoulos. *Modeling bacterial popula-
 562 tion growth from stochastic single-cell dynamics*. *Applied and Environmental Microbiology*, 80
 563 (17):5241–5253, 2014. (cited on page: [1](#))
- 564 J Cremers and A Hübner. *Construction of differential equations from experimental data*. *Zeitschrift
 565 für Naturforschung A*, 42(8):797–802, 1987. (cited on page: [1](#))
- 566 Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. *Discovering governing equations from data
 567 by sparse identification of nonlinear dynamical systems*. *Proceedings of the National Academy of
 568 Sciences*, 113(15):3932–3937, 2016. (cited on page: [1](#))
- 569 Bryan C Daniels and Ilya Nemenman. *Automated adaptive inference of phenomenological dynam-
 570 ical models*. *Nature Communications*, 6(1):1–8, 2015. (cited on page: [1](#))
- 571 Kevin McGoff, Sayan Mukherjee, and Natesh Pillai. *Statistical inference for dynamical systems: A
 572 review*. *Statistics Surveys*, 9:209–252, 2015. (cited on page: [1](#))
- 573 Holger Kantz and Thomas Schreiber. *Nonlinear time series analysis*, volume 7. Cambridge univer-
 574 sity press, 2004. (cited on page: [1](#))
- 575 Michael Schmidt and Hod Lipson. *Distilling free-form natural laws from experimental data*. *Science*,
 576 324(5923):81–85, 2009. (cited on page: [1](#))
- 577 Felipe Miguel Aparicio Acosta. *Radial basis function and related models: an overview*. *Signal
 578 Processing*, 45(1):37–58, 1995. (cited on page: [1](#))
- 579 Michael Small and Chi Kong Tse. *Minimum description length neural networks for time series
 580 prediction*. *Physical Review E*, 66(6):066701, 2002. (cited on page: [1](#))
- 581 Kevin Judd and Alistair Mees. *On selecting models for nonlinear time series*. *Physica D: Nonlinear
 582 Phenomena*, 82(4):426–444, 1995. (cited on page: [1](#))
- 583 Michael Small and Kevin Judd. *Comparisons of new nonlinear modeling techniques with applica-
 584 tions to infant respiration*. *Physica D: Nonlinear Phenomena*, 117(1-4):283–298, 1998. (cited on
 585 page: [1](#))

- 594 David B Brückner, Pierre Ronceray, and Chase P Broedersz. **Inferring the dynamics of underdamped**
 595 **stochastic systems**. *Physical Review Letters*, 125(5):058103, 2020. (cited on page: [1](#))
- 596
- 597 Anna Frishman and Pierre Ronceray. **Learning force fields from stochastic trajectories**. *Physical*
 598 *Review X*, 10(2):021009, 2020. (cited on pages: [1](#), [7](#), and [42](#))
- 599
- 600 Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. **Sparse identification of nonlinear dynamics**
 601 **for model predictive control in the low-data limit**. *Proceedings of the Royal Society A*, 474(2219):
 602 20180335, 2018. (cited on page: [1](#))
- 603
- 604 Josh Bongard and Hod Lipson. **Automated reverse engineering of nonlinear dynamical systems**.
 605 *Proceedings of the National Academy of Sciences*, 104(24):9943–9948, 2007. (cited on page: [1](#))
- 606
- 607 Ioannis G Kevrekidis, C William Gear, James M Hyman, Panagiotis G Kevrekidis, Olof Runborg,
 608 Constantinos Theodoropoulos, et al. **Equation-free, coarse-grained multiscale computation: en-**
 609 **abling microscopic simulators to perform system-level analysis**. *Commun. Math. Sci*, 1(4):715–
 610 762, 2003. (cited on page: [1](#))
- 611
- 612 Constantinos Theodoropoulos, Yue-Hong Qian, and Ioannis G Kevrekidis. **“Coarse” stability and**
 613 **bifurcation analysis using time-steppers: A reaction-diffusion example**. *Proceedings of the Na-*
 614 *tional Academy of Sciences*, 97(18):9840–9843, 2000. (cited on page: [1](#))
- 615
- 616 Mauricio Alvarez, David Luengo, and Neil D Lawrence. **Latent force models**. In *Artificial Intelli-*
 617 *gence and Statistics*, pages 9–16. PMLR, 2009. (cited on page: [1](#))
- 618
- 619 Guido Sanguinetti, Neil D Lawrence, and Magnus Rattray. **Probabilistic inference of transcription**
 620 **factor concentrations and gene-specific regulatory activities**. *Bioinformatics*, 22(22):2775–2781,
 621 2006. (cited on page: [1](#))
- 622
- 623 Simo Särkkä. **The use of Gaussian processes in system identification**. *arXiv preprint*
 624 *arXiv:1907.06066*, 2019. (cited on page: [1](#))
- 625
- 626 Peiyuan Teng. **Machine-learning quantum mechanics: Solving quantum mechanics problems using**
 627 **radial basis function networks**. *Physical Review E*, 98(3):033305, 2018. (cited on page: [1](#))
- 628
- 629 Ravinder Bhattoo, Sayan Ranu, and NM Krishnan. **Learning the Dynamics of Particle-based Sys-**
 630 **tems with Lagrangian Graph Neural Networks**. *arXiv preprint arXiv:2209.01476*, 2022. (cited
 631 on page: [1](#))
- 632
- 633 Thomas Jüngling, Thomas Lymburn, Thomas Stemler, Débora Corrêa, David Walker, and Michael
 634 Small. **Reconstruction of complex dynamical systems from time series using reservoir computing**.
 635 In *2019 IEEE International Symposium on Circuits and Systems (ISCAS)*, pages 1–5. IEEE, 2019.
 636 (cited on page: [1](#))
- 637
- 638 Philipp Batz, Andreas Ruttner, and Manfred Opper. **Approximate Bayes learning of stochastic dif-**
 639 **fferential equations**. *Physical Review E*, 98(2):022109, 2018. (cited on pages: [2](#), [3](#), [6](#), [8](#), [21](#), [23](#),
 640 [32](#), and [43](#))
- 641
- 642 Rudolf Friedrich and Joachim Peinke. **Description of a turbulent cascade by a Fokker-Planck equa-**
 643 **tion**. *Physical Review Letters*, 78(5):863, 1997. (cited on pages: [2](#), [3](#), [21](#), [23](#), [32](#), and [36](#))
- 644
- 645 Mario Ragwitz and Holger Kantz. **Indispensable finite time corrections for Fokker-Planck equations**
 646 **from time series data**. *Physical Review Letters*, 87(25):254501, 2001. (cited on pages: [2](#), [21](#), [32](#),
 647 and [36](#))
- 648
- 649 Philipp Batz, Andreas Ruttner, and Manfred Opper. **Variational estimation of the drift for stochastic**
 650 **differential equations from the empirical density**. *Journal of Statistical Mechanics: Theory and*
 651 *Experiment*, 2016(8):083404, 2016. (cited on pages: [2](#) and [32](#))
- 652
- 653 Yiqi Gu, John Harlim, Senwei Liang, and Haizhao Yang. **Stationary density estimation of Itô diffu-**
 654 **sions using Deep Learning**, 2021. (cited on page: [2](#))
- 655
- 656 Amit Singer and Ronald R Coifman. **Non-linear independent component analysis with diffusion**
 657 **maps**. *Applied and Computational Harmonic Analysis*, 25(2):226–239, 2008. (cited on pages: [2](#)
 658 and [33](#))

- 648 Feliks Nüske, Péter Koltai, Lorenzo Boninsegna, and Cecilia Clementi. **Spectral properties of effec-
649 tive dynamics from conditional expectations.** *Entropy*, 23(2):134, 2021. (cited on page: 2)
650
- 651 Edward L Ionides, Carles Bretó, and Aaron A King. **Inference for nonlinear dynamical systems.**
652 *Proceedings of the National Academy of Sciences*, 103(49):18438–18443, 2006. (cited on page: 2)
653
- 654 Ronen Talmon and Ronald R Coifman. **Intrinsic modeling of stochastic dynamical systems using**
655 **empirical geometry.** *Applied and Computational Harmonic Analysis*, 39(1):138–160, 2015. (cited
656 on pages: 2 and 33)
- 657 Carmeline J Dsilva, Ronen Talmon, C William Gear, Ronald R Coifman, and Ioannis G Kevrekidis.
658 **Data-driven reduction for a class of multiscale fast-slow stochastic dynamical systems.** *SIAM*
659 *Journal on Applied Dynamical Systems*, 15(3):1327–1351, 2016. (cited on page: 2)
660
- 661 Tyrus Berry and John Harlim. **Iterated diffusion maps for feature identification.** *Applied and Com-
662 putational Harmonic Analysis*, 45(1):84–119, 2018. (cited on page: 2)
663
- 664 Tyrus Berry and John Harlim. **Nonparametric uncertainty quantification for stochastic gradient**
665 **flows.** *SIAM/ASA Journal on Uncertainty Quantification*, 3(1):484–508, 2015. (cited on page: 2)
666
- 667 Arthur P Dempster, Nan M Laird, and Donald B Rubin. **Maximum likelihood from incomplete data**
668 **via the EM algorithm.** *Journal of the Royal Statistical Society: Series B (Methodological)*, 39(1):
669 1–22, 1977. (cited on pages: 2 and 4)
- 670 Robert S Liptser and Albert N Shiryaev. **Statistics of random processes II: Applications**, volume 6.
671 Springer Science & Business Media, 2013. (cited on pages: 3 and 22)
672
- 673 Andreas Rutar, Philipp Batz, and Manfred Opper. **Approximate Gaussian process inference for**
674 **the drift function in stochastic differential equations.** *Advances in Neural Information Processing*
675 *Systems*, 26, 2013. (cited on pages: 3, 22, 23, 28, 29, 30, 32, and 35)
676
- 677 Roland Hostettler, Filip Tronarp, and Simo Särkkä. **Modeling the drift function in stochastic differ-
678 ential equations using reduced rank Gaussian processes.** *IFAC-PapersOnLine*, 51(15):778–783,
679 2018. (cited on pages: 3 and 32)
680
- 681 Zheng Zhao, Filip Tronarp, Roland Hostettler, and Simo Särkkä. **State-space Gaussian process for**
682 **drift estimation in stochastic differential equations.** In *ICASSP 2020-2020 IEEE International*
683 *Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 5295–5299. IEEE,
684 2020. (cited on pages: 3 and 32)
- 685 Giorgos Sermaidis, Omiros Papaspiliopoulos, Gareth O Roberts, Alexandros Beskos, and Paul
686 Fearnhead. **Markov chain Monte Carlo for exact inference for diffusions.** *Scandinavian Jour-
687 nal of Statistics*, 40(2):294–321, 2013. (cited on pages: 3, 21, 23, and 32)
688
- 689 Christian Fröhlich, Alexandra Gessner, Philipp Hennig, Bernhard Schölkopf, and Georgios Arvan-
690 itidis. **Bayesian Quadrature on Riemannian Data Manifolds.** *International Conference on Ma-
691 chine Learning*, pages 3459–3468, 2021. doi: <https://doi.org/10.48550/arXiv.2102.06645>. (cited
692 on pages: 3 and 26)
- 693 Joshua B Tenenbaum, Vin de Silva, and John C Langford. **A global geometric framework for**
694 **nonlinear dimensionality reduction.** *Science*, 290(5500):2319–2323, 2000. (cited on page: 4)
695
- 696 Mukund Balasubramanian and Eric L Schwartz. **The isomap algorithm and topological stability.**
697 *Science*, 295(5552):7–7, 2002. (cited on page: 4)
- 698 AL Mead. **Review of the development of multidimensional scaling methods.** *Journal of the Royal*
699 *Statistical Society: Series D (The Statistician)*, 41(1):27–39, 1992. (cited on page: 4)
- 700 Sam T Roweis and Lawrence K Saul. **Nonlinear dimensionality reduction by locally linear embed-
701 ding.** *Science*, 290(5500):2323–2326, 2000. (cited on page: 4)
- 702 Georgios Arvanitidis, Soren Hauberg, Philipp Hennig, and Michael Schober. **Fast and robust short-
703 est paths on manifolds learned from data.** In *The 22nd International Conference on Artificial*
704 *Intelligence and Statistics*, pages 1506–1515. PMLR, 2019. (cited on pages: 4, 6, 10, 26, 27, 41,
705 42, and 44)

- 702 Manfredo Perdigao Do Carmo and J Flaherty Francis. *Riemannian geometry*, volume 6. Springer,
 703 1992. (cited on pages: 4, 25, and 27)
- 704
- 705 Georgios Arvanitidis, Lars Kai Hansen, and Søren Hauberg. *Latent space oddity: on the curvature
 706 of deep generative models*. *arXiv preprint arXiv:1710.11379*, 2017. (cited on pages: 4, 27, 33,
 707 and 41)
- 708
- 709 Matthew James Beal. *Variational algorithms for approximate Bayesian inference*. University of
 London, University College London (United Kingdom), 2003. (cited on pages: 4 and 24)
- 710
- 711 Raphaël Chetrite and Hugo Touchette. *Variational and optimal control representations of condi-
 712 tioned and driven processes*. *Journal of Statistical Mechanics: Theory and Experiment*, 2015
 713 (12):P12001, 2015. (cited on pages: 5 and 24)
- 714
- 715 Satya N Majumdar and Henri Orland. *Effective Langevin equations for constrained stochastic pro-
 716 cesses*. *Journal of Statistical Mechanics: Theory and Experiment*, 2015(6):P06039, 2015. (cited
 717 on pages: 5 and 24)
- 718
- 719 Manfred Opper. *Variational inference for stochastic differential equations*. *Annalen der Physik*, 531
 (3):1800233, 2019. (cited on pages: 5, 24, 25, 27, and 32)
- 720
- 721 Hilbert J Kappen. *Path integrals and symmetry breaking for optimal control theory*. *Journal of
 722 Statistical Mechanics: theory and experiment*, 2005(11):P11011, 2005a. (cited on page: 6)
- 723
- 724 Dimitra Maoutsas and Manfred Opper. *Deterministic particle flows for constraining stochastic non-
 725 linear systems*. *Phys. Rev. Research*, 4:043035, Oct 2022. (cited on pages: 6, 9, 21, 27, 28,
 726 and 42)
- 727
- 728 Kevin Course and Prasanth B Nair. *State estimation of a physical system with unknown governing
 729 equations*. *Nature*, 622(7982):261–267, 2023a. (cited on pages: 6 and 43)
- 730
- 731 Arshed Nabeel, Ashwin Karichannavar, Shuaib Palathingal, Jitesh Jhawar, David B Brückner,
 Danny Raj M, and Vishwesha Guttal. *Discovering stochastic dynamical equations from eco-
 732 logical time series data*. *The American Naturalist*, 205(4):E100–E117, 2025. (cited on pages: 6,
 32, and 43)
- 733
- 734 Kevin Course and Prasanth Nair. *Amortized reparametrization: efficient and scalable variational
 735 inference for latent SDEs*. *Advances in Neural Information Processing Systems*, 36:78296–78318,
 2023b. (cited on pages: 6, 33, and 43)
- 736
- 737 Kacper Kapusniak, Peter Potapchik, Teodora Reu, Leo Zhang, Alexander Tong, Michael Bronstein,
 Joey Bose, and Francesco Di Giovanni. *Metric flow matching for smooth interpolations on the
 738 data manifold*. *Advances in Neural Information Processing Systems*, 37:135011–135042, 2024.
 739 (cited on pages: 6, 8, 10, 34, 41, and 43)
- 740
- 741 Georgios Arvanitidis, Soren Hauberg, and Bernhard Schölkopf. *Geometrically Enriched Latent
 742 Spaces*. In *International Conference on Artificial Intelligence and Statistics*, pages 631–639.
 743 PMLR, 2021. (cited on pages: 6 and 8)
- 744
- 745 Guan-Horng Liu, Yaron Lipman, Maximilian Nickel, Brian Karrer, Evangelos A Theodorou, and
 Ricky TQ Chen. *Generalized Schrödinger Bridge Matching*. *arXiv preprint arXiv:2310.02233*,
 2023. (cited on pages: 6, 10, 34, and 43)
- 746
- 747 Alexander Tong, Nikolay Malkin, Kilian Fatras, Lazar Atanackovic, Yanlei Zhang, Guillaume
 748 Huguet, Guy Wolf, and Yoshua Bengio. *Simulation-free Schrödinger bridges via score and flow
 749 matching*. *arXiv preprint arXiv:2307.03672*, 2023. (cited on pages: 7, 10, and 43)
- 750
- 751 Evgeny Evgenievich Selkov. *Self-oscillations in glycolysis 1. a simple kinetic model*. *European
 752 Journal of Biochemistry*, 4(1):79–86, 1968. (cited on pages: 7 and 42)
- 753
- 754 Quentin F Gronau, Alexandra Sarafoglou, Dora Matzke, Alexander Ly, Udo Boehm, Maarten Mars-
 755 man, David S Leslie, Jonathan J Forster, Eric-Jan Wagenmakers, and Helen Steingroever. *A
 tutorial on bridge sampling*. *Journal of Mathematical Psychology*, 81:80–97, 2017. (cited on
 page: 9)

- 756 Dimitra Maoutsas and Manfred Opper. **Deterministic particle flows for constraining SDEs**. *Machine*
 757 *Learning and the Physical Sciences, Workshop at the 35th Conference on Neural Information*
 758 *Processing Systems (NeurIPS)*, arXiv preprint arXiv:2110.13020, 2021. (cited on pages: 9, 21,
 759 and 44)
- 760 Orlando Romero, Sarthak Chatterjee, and Sérgio Pequito. **Convergence of the expectation-**
 761 **maximization algorithm through discrete-time Lyapunov stability theory**. In *2019 American Con-*
 762 *trol Conference (ACC)*, pages 163–168. IEEE, 2019. (cited on pages: 9 and 48)
- 764 Mingnan Ding, Zhanchun Tu, and Xiangjun Xing. **Covariant formulation of nonlinear Langevin**
 765 **theory with multiplicative Gaussian white noises**. *Physical Review Research*, 2(3):033381, 2020.
 766 (cited on page: 9)
- 767 Hilbert J Kappen. **Linear theory for control of nonlinear stochastic systems**. *Physical Review Letters*,
 768 95(20):200201, 2005b. (cited on page: 9)
- 770 Kirill Neklyudov, Rob Brekelmans, Alexander Tong, Lazar Atanackovic, Qiang Liu, and Alireza
 771 Makhzani. **A computational framework for solving Wasserstein Lagrangian flows**. arXiv preprint
 772 arXiv:2310.10649, 2023a. (cited on page: 10)
- 773 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. **Flow matching**
 774 **for generative modeling**. arXiv preprint arXiv:2210.02747, 2022. (cited on page: 10)
- 776 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. **Stochastic interpolants: A unifying**
 777 **framework for flows and diffusions**. arXiv preprint arXiv:2303.08797, 2023. (cited on page: 10)
- 778 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. **Diffusion Schrödinger**
 779 **bridge matching**. *Advances in Neural Information Processing Systems*, 36:62183–62223, 2023.
 780 (cited on page: 10)
- 782 Christopher Scarvelis and Justin Solomon. **Riemannian metric learning via optimal transport**. arXiv
 783 preprint arXiv:2205.09244, 2022. (cited on page: 10)
- 784 Søren Hauberg, Oren Freifeld, and Michael Black. **A geometric take on metric learning**. *Advances*
 785 *in Neural Information Processing Systems*, 25, 2012. (cited on page: 10)
- 787 Arnab Barua, Haralampos Hatzikirou, and Sumiyoshi Abe. **Geodesic learning**. *Physica A: Statistical*
 788 *Mechanics and its Applications*, 669:130539, 2025. (cited on page: 10)
- 789 Samuel Gruffaz and Josua Sassen. **Riemannian metric learning: Closer to you than you imagine**.
 790 arXiv preprint arXiv:2503.05321, 2025. (cited on page: 10)
- 792 Alexandros Beskos, Omiros Papaspiliopoulos, Gareth O Roberts, and Paul Fearnhead. **Exact and**
 793 **computationally efficient likelihood-based estimation for discretely observed diffusion processes**
 794 **(with discussion)**. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 68
 795 (3):333–382, 2006a. (cited on page: 10)
- 796 Gareth O Roberts and Osnat Stramer. **On inference for partially observed nonlinear diffusion models**
 797 **using the Metropolis–Hastings algorithm**. *Biometrika*, 88(3):603–621, 2001. (cited on page: 10)
- 799 Andrew Golightly and Darren J Wilkinson. **Bayesian inference for nonlinear multivariate diffusion**
 800 **models observed with error**. *Computational Statistics & Data Analysis*, 52(3):1674–1693, 2008.
 801 (cited on pages: 21 and 23)
- 802 Omiros Papaspiliopoulos, Yvo Pokern, Gareth O Roberts, and Andrew M Stuart. **Nonparametric**
 803 **estimation of diffusions: a differential equations approach**. *Biometrika*, 99(3):511–531, 2012.
 804 (cited on pages: 21 and 23)
- 805 Alexandros Beskos, Omiros Papaspiliopoulos, and Gareth O Roberts. **Retrospective exact simula-**
 806 **tion of diffusion sample paths with applications**. *Bernoulli*, 12(6):1077–1098, 2006b. (cited on
 807 pages: 21 and 23)
- 809 Siddhartha Chib, Michael K Pitt, and Neil Shephard. **Likelihood based inference for diffusion driven**
 810 **state space models**. *Por Clasificar*, pages 1–33, 2006. (cited on pages: 21, 23, and 32)

- 810 Valentin De Bortoli, Arnaud Doucet, Jeremy Heng, and James Thornton. [Simulating Diffusion](#)
 811 [Bridges with Score Matching](#). *arXiv preprint arXiv:2111.07243*, 2021. (cited on page: 21)
- 812
- 813 Ge Liu, Peter F Craigmile, and Radu Herbei. [A study of the data augmentation strategy for stochastic](#)
 814 [differential equations](#). *Journal of Statistical Computation and Simulation*, 90(10):1753–1772,
 815 2020. (cited on page: 22)
- 816 Carl Edward Rasmussen. [Gaussian processes in machine learning](#). In *Summer School on Machine*
 817 *Learning*, pages 63–71. Springer-Verlag, 2003. (cited on pages: 22 and 29)
- 818
- 819 Steven J Lade. [Finite sampling interval effects in Kramers–Moyal analysis](#). *Physics Letters A*, 373
 820 (41):3705–3709, 2009. (cited on pages: 23 and 34)
- 821 Christoph Honisch and Rudolf Friedrich. [Estimation of Kramers-Moyal coefficients at low sampling](#)
 822 [rates](#). *Physical Review E*, 83(6):066701, 2011. (cited on page: 23)
- 823
- 824 John M Lee. [Introduction to Riemannian manifolds](#), volume 176. Springer, 2018. (cited on page: 25)
- 825 Stephen Wiggins. [Normally hyperbolic invariant manifolds in dynamical systems](#), volume 105.
 826 Springer Science & Business Media, 1994. (cited on page: 26)
- 827
- 828 Salah-Eldin A Mohammed and Michael KR Scheutzow. [The stable manifold theorem for stochastic](#)
 829 [differential equations](#). *Annals of Probability*, pages 615–652, 1999. (cited on page: 26)
- 830 TV Girya and Igor Dmitrievich Chueshov. [Inertial manifolds and stationary measures for stochasti-](#)
 831 [cally perturbed dissipative dynamical systems](#). *Sbornik: Mathematics*, 186(1):29–45, 1995. (cited
 832 on page: 26)
- 833
- 834 Neil Fenichel and JK Moser. [Persistence and smoothness of invariant manifolds for flows](#). *Indiana*
 835 *University Mathematics Journal*, 21(3):193–226, 1971. (cited on page: 26)
- 836 Ludwig Arnold. [Stochastic differential equations as dynamical systems](#). In *Realization and Mod-*
 837 *elling in System Theory*, pages 489–495. Springer, 1990. (cited on page: 26)
- 838
- 839 Andrew Carverhill. [Flows of stochastic dynamical systems: ergodic theory](#). *Stochastics: An In-*
 840 *ternational Journal of Probability and Stochastic Processes*, 14(4):273–317, 1985. (cited on
 841 page: 26)
- 842 Ofir Pele and Michael Werman. [Fast and robust earth mover’s distances](#). In *2009 IEEE 12th In-*
 843 *ternational Conference on Computer Vision*, pages 460–467. IEEE, September 2009. (cited on
 844 page: 28)
- 845
- 846 Sebastian Reich. [A nonparametric ensemble transform method for Bayesian inference](#). *SIAM Jour-*
 847 *nal on Scientific Computing*, 35(4):A2013–A2024, 2013. (cited on page: 28)
- 848
- 849 Michalis Titsias. [Variational learning of inducing variables in sparse Gaussian processes](#). *Artificial*
 850 *Intelligence and Statistics*, pages 567–574, 2009. (cited on page: 29)
- 851
- Lehel Csató and Manfred Opper. [Sparse on-line Gaussian processes](#). *Neural computation*, 14(3):
 641–668, 2002. (cited on page: 29)
- 852
- 853 Lars Onsager and Stefan Machlup. [Fluctuations and irreversible processes](#). *Physical Review*, 91(6):
 1505, 1953. (cited on page: 30)
- 854
- 855 Tooru Taniguchi and EGD Cohen. [Onsager-Machlup theory for nonequilibrium steady states and](#)
 856 [fluctuation theorems](#). *Journal of Statistical Physics*, 126(1):1–41, 2007. (cited on page: 31)
- 857
- 858 Artur B Adib. [Stochastic actions for diffusive dynamics: Reweighting, sampling, and minimization](#).
 859 *The Journal of Physical Chemistry B*, 112(19):5910–5916, 2008. (cited on page: 31)
- 860
- Robert Graham. [Path integral formulation of general diffusion processes](#). *Zeitschrift für Physik B*
 861 *Condensed Matter*, 26(3):281–290, 1977. (cited on page: 31)
- 862
- 863 Ruslan Leontievich Stratonovich. [On the probability functional of diffusion processes](#). *Selected*
 864 *Translations in Mathematical Statistics and Probability*, 10:273–286, 1971. (cited on page: 31)

- 864 Detlef Dürr and Alexander Bach. **The Onsager-Machlup function as Lagrangian for the most proba-**
- 865 **ble path of a diffusion process.** *Communications in Mathematical Physics*, 60(2):153–170, 1978.
- 866 *(cited on page: 31)*
- 867
- 868 Y Takahashi and S Watanabe. **The probability functionals (Onsager-Machlup functions) of diffusion**
- 869 **processes.** In *Stochastic Integrals*, pages 433–463. Springer, 1981. *(cited on page: 31)*
- 870
- 871 Robert Graham. **Onsager-Machlup Function of Nonlinear Non-Equilibrium Thermodynamics.** In
- 872 *Functional Integration*, pages 263–280. Springer, 1980. *(cited on page: 31)*
- 873 Erlend Grong and Stefan Sommer. **Most probable flows for Kunita SDEs.** *arXiv preprint*
- 874 *arXiv:2209.03868*, 2022. *(cited on page: 31)*
- 875 Mireille Capitaine. **On the Onsager-Machlup functional for elliptic diffusion processes.** *Séminaire*
- 876 *de Probabilités XXXIV*, pages 313–328, 2000. *(cited on page: 31)*
- 877
- 878 Bernt Øksendal. **Stochastic differential equations.** In *Stochastic differential equations*, pages 65–84.
- 879 Springer, 2003. *(cited on page: 31)*
- 880 Cagatay Yildiz, Markus Heinonen, Jukka Intosalmi, Henrik Mannerstrom, and Harri Lahdesmaki.
- 881 Learning stochastic differential equations with gaussian processes without gradient matching. In
- 882 *2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP)*,
- 883 pages 1–6. IEEE, 2018. *(cited on page: 32)*
- 884
- 885 J Peinke, R Friedrich, and Antoon Naert. **A new approach to characterize disordered structures.**
- 886 *Zeitschrift für Naturforschung A*, 52(8-9):588–592, 1997. *(cited on page: 32)*
- 887
- 888 Rudolf Friedrich, Silke Siegert, Joachim Peinke, Marcus Siefert, Michael Lindemann, Jan Raethjen,
- 889 Güntner Deuschl, Gerhard Pfister, et al. Extracting model equations from experimental data.
- 890 *Physics Letters A*, 271(3):217–222, 2000. *(cited on page: 32)*
- 891
- 892 Federica Ferretti, Victor Chardès, Thierry Mora, Aleksandra M Walczak, and Irene Giardina. **Building**
- 893 **general Langevin models from discrete datasets.** *Physical Review X*, 10(3):031018, 2020.
- 894 *(cited on page: 32)*
- 895
- 896 Lorenzo Boninsegna, Feliks Nüske, and Cecilia Clementi. **Sparse learning of stochastic dynamical**
- 897 **equations.** *The Journal of chemical physics*, 148(24):241723, 2018. *(cited on page: 32)*
- 898
- 899 Yunfei Huang, Youssef Mabrouk, Gerhard Gompper, and Benedikt Sabass. Sparse inference and
- 900 active learning of stochastic differential equations from data. *arXiv preprint arXiv:2203.11010*,
- 901 2022. *(cited on page: 32)*
- 902
- 903 David Lamouroux and Klaus Lehnertz. **Kernel-based regression of drift and diffusion coefficients**
- 904 **of stochastic processes.** *Physics Letters A*, 373(39):3507–3512, 2009. *(cited on page: 32)*
- 905
- 906 George J Jiang and John L Knight. A nonparametric approach to the estimation of diffusion pro-
- 907 cesses, with an application to a short-term interest rate model. *Econometric Theory*, 13(5):615–
- 908 645, 1997. *(cited on page: 32)*
- 909
- 910 Stefan Klus, Feliks Nüske, Sebastian Peitz, Jan-Hendrik Niemann, Cecilia Clementi, and Christof
- 911 Schütte. **Data-driven approximation of the Koopman generator: Model reduction, system identi-**
- 912 **fication, and control.** *Physica D: Nonlinear Phenomena*, 406:132416, 2020. *(cited on page: 32)*
- 913
- 914 Richard Stanton. **A nonparametric model of term structure dynamics and the market price of interest**
- 915 **rate risk.** *The Journal of Finance*, 52(5):1973–2002, 1997. *(cited on page: 32)*
- 916
- 917 Lars P Hansen and Jose A Scheinkman. Back to the future: Generating moment implications for
- 918 continuous-time markov processes, 1993. *(cited on page: 32)*
- 919
- 920 Mario Ragwitz and Holger Kantz. Ragwitz and kantz reply. *Physical Review Letters*, 89(14):149402,
- 921 2002. *(cited on page: 32)*
- 922
- 923 D Kleinhans, R Friedrich, A Nawroth, and J Peinke. **An iterative procedure for the estimation of**
- 924 **drift and diffusion coefficients of Langevin processes.** *Physics Letters A*, 346(1-3):42–46, 2005.
- 925 *(cited on page: 32)*

- 918 David Kleinhans and Rudolf Friedrich. **Maximum likelihood estimation of drift and diffusion func-**
 919 **tions.** *Physics Letters A*, 368(3-4):194–198, 2007. (*cited on page: 32*)
 920
- 921 Bjørn Eraker. **MCMC analysis of diffusion models with application to finance.** *Journal of Business*
 922 *& Economic Statistics*, 19(2):177–191, 2001. (*cited on page: 32*)
 923
- 924 Monica Billio, Alain Monfort, and Christian Robert. **The simulated likelihood ratio method.** *Institut*
 925 *National de la Statistique et des Etudes Economiques*, 1998. (*cited on page: 32*)
 926
- 927 Lea Duncker, Gergo Bohner, Julien Boussard, and Maneesh Sahani. **Learning interpretable**
 928 **continuous-time models of latent stochastic dynamical systems.** In *International conference on*
 929 *machine learning*, pages 1726–1734. PMLR, 2019. (*cited on page: 32*)
 930
- 931 Prakhar Verma, Vincent Adam, and Arno Solin. **Variational Gaussian process diffusion processes.**
 932 In *International Conference on Artificial Intelligence and Statistics*, pages 1909–1917. PMLR,
 2024. (*cited on page: 32*)
 933
- 934 Cédric Archambeau, Manfred Opper, Yuan Shen, Dan Cornford, and John Shawe-Taylor. **Variational**
 935 **inference for diffusion processes.** *Advances in Neural Information Processing Systems*, 20:17–24,
 2007. (*cited on page: 32*)
 936
- 937 Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. **Scalable gradients**
 938 **for Stochastic Differential Equations**, 2020. (*cited on page: 32*)
 939
- 940 Yury A Kutoyants and Jurij A Kutojanc. **Statistical inference for ergodic diffusion processes.**
 941 Springer Science & Business Media, 2004. (*cited on page: 33*)
 942
- 943 Ronald R Coifman, Stephane Lafon, Ann B Lee, Mauro Maggioni, Boaz Nadler, Frederick Warner,
 944 and Steven W Zucker. **Geometric diffusions as a tool for harmonic analysis and structure defi-**
 945 **nition of data: Diffusion maps.** *Proceedings of the National Academy of Sciences of the United*
 946 *States of America*, 102(21):7426–7431, 2005. (*cited on page: 33*)
 947
- 948 Boaz Nadler, Stéphane Lafon, Ronald R Coifman, and Ioannis G Kevrekidis. **Diffusion maps,**
 949 **spectral clustering and reaction coordinates of dynamical systems.** *Applied and Computational*
 950 *Harmonic Analysis*, 21(1):113–127, 2006. (*cited on page: 33*)
 951
- 952 Dimitrios Giannakis. **Data-driven spectral decomposition and forecasting of ergodic dynamical sys-**
 953 **tems.** *Applied and Computational Harmonic Analysis*, 47(2):338–396, 2019. (*cited on pages: 33*
 954 and 34)
 955
- 956 Andrew L Ferguson, Athanassios Z Panagiotopoulos, Ioannis G Kevrekidis, and Pablo G
 957 Debenedetti. **Nonlinear dimensionality reduction in molecular simulation: The diffusion map**
 958 **approach.** *Chemical Physics Letters*, 509(1-3):1–11, 2011. (*cited on page: 33*)
 959
- 960 Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. **Action matching: Learn-**
 961 **ing stochastic dynamics from samples.** In *International Conference on Machine Learning*, pages
 962 25858–25889. PMLR, 2023b. (*cited on pages: 33 and 43*)
 963
- 964 Andres F Duque, Sacha Morin, Guy Wolf, and Kevin R Moon. **Geometry regularized autoencoders.**
 965 *IEEE transactions on pattern analysis and machine intelligence*, 45(6):7381–7394, 2022. (*cited*
 966 *on page: 33*)
 967
- 968 Dimitris Kalatzis, David Eklund, Georgios Arvanitidis, and Søren Hauberg. **Variational autoen-**
 969 **coders with Riemannian Brownian motion priors.** *arXiv preprint arXiv:2002.05227*, 2020. (*cited*
 970 *on page: 33*)
 971
- 972 Emile Mathieu and Maximilian Nickel. **Riemannian continuous normalizing flows.** *Advances in*
 973 *neural information processing systems*, 33:2503–2515, 2020. (*cited on page: 34*)
 974
- 975 Valentin De Bortoli, Emile Mathieu, Michael Hutchinson, James Thornton, Yee Whye Teh, and
 976 Arnaud Doucet. **Riemannian score-based generative modelling.** *Advances in neural information*
 977 *processing systems*, 35:2406–2422, 2022. (*cited on page: 34*)
 978

- 972 Yunyi Shen, Renato Berlinghieri, and Tamara Broderick. **Multi-marginal schrödinger bridges**
 973 **with iterative reference refinement.** *arXiv preprint arXiv:2408.06277*, 2024. (cited on page: 34)
 974
- 975 Nina Miolane, Nicolas Guigui, Alice Le Brigant, Johan Mathe, Benjamin Hou, Yann Thanwerdas,
 976 Stefan Heyder, Olivier Peltre, Niklas Koep, Hadi Zaatiti, et al. **Geomstats: a Python package for**
 977 **Riemannian geometry in machine learning.** *Journal of Machine Learning Research*, 21(223):1–9,
 978 2020. (cited on page: 34)
- 979 Stefan Sommer. **Probabilistic approaches to geometric statistics: Stochastic processes, transition**
 980 **distributions, and fiber bundle geometry.** In *Riemannian Geometric Statistics in Medical Image*
 981 *Analysis*, pages 377–416. Elsevier, 2020. (cited on page: 34)
- 982 Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. **Testing the manifold hypothesis.**
 983 *Journal of the American Mathematical Society*, 29(4):983–1049, 2016. (cited on page: 34)
 984
- 985 Tal Shnitzer, Ronen Talmon, and Jean-Jacques Slotine. **Manifold Learning for Data-Driven Dy-**
 986 **namical System Analysis.** In *The Koopman Operator in Systems and Control*, pages 359–382.
 987 Springer, 2020. (cited on page: 34)
- 988 Jared L Callaham, J-C Loiseau, Georgios Rigas, and Steven L Brunton. **Nonlinear stochastic mod-**
 989 **elling with Langevin regression.** *Proceedings of the Royal Society A*, 477(2250):20210092, 2021.
 990 (cited on page: 34)
- 991 Alexander Tong, Jessie Huang, Guy Wolf, David Van Dijk, and Smita Krishnaswamy. **Trajecto-**
 992 **ryNet: A dynamic optimal transport network for modeling cellular dynamics.** In *International*
 993 *conference on Machine Learning*, pages 9526–9536. PMLR, 2020. (cited on page: 34)
- 994
- 995 Tal Shnitzer, Ronen Talmon, and Jean-Jacques Slotine. **Manifold learning with contracting observers**
 996 **for data-driven time-series analysis.** *IEEE Transactions on Signal Processing*, 65(4):904–918,
 997 2016. doi: <https://doi.org/10.1109/TSP.2016.2616334>. (cited on page: 34)
- 998
- 999 Nelida Črnjarić-Žic, Senka Maćešić, and Igor Mezić. **Koopman operator spectrum for random**
 1000 **dynamical systems.** *Journal of Nonlinear Science*, 30(5):2007–2056, 2020. (cited on page: 34)
- 1001 Arnulf Jentzen and Peter E Kloeden. **Taylor approximations for stochastic partial differential equa-**
 1002 **tions.** SIAM, 2011. (cited on page: 37)
- 1003
- 1004 Wolfgang Kühnel. **Differential geometry: Curves - Surfaces - Manifolds**, Second edition. American
 1005 *Mathematical Society, Providence, RI*, 2, 2002. (cited on page: 39)
- 1006 Evelyn Fix. **Discriminatory analysis: nonparametric discrimination, consistency properties**, vol-
 1007 ume 1. USAF School of Aviation Medicine, 1985. (cited on page: 43)
- 1008
- 1009 Thomas Cover and Peter Hart. **Nearest neighbor pattern classification.** *IEEE transactions on infor-*
 1010 *mation theory*, 13(1):21–27, 1967. (cited on page: 43)
- 1011
- 1012
- 1013
- 1014
- 1015
- 1016
- 1017
- 1018
- 1019
- 1020
- 1021
- 1022
- 1023
- 1024
- 1025

1026	SUPPLEMENTARY INFORMATION	
1027		
1028		
1029	A Drift inference for high and low frequency observations	21
1030	A.1 High frequency observations	22
1031	A.2 Low frequency observations	23
1032	A.3 Approximate posterior over paths.	24
1033	A.3.1 Approximate posterior over paths <u>without</u> geometric constraints	24
1034	A.3.2 Approximate posterior over paths with geometric constraints	25
1035	Riemannian geometry.	25
1036	Riemannian geometry of observations.	26
1037	Extended free energy functional.	27
1038	A.4 Approximate posterior over drift functions.	28
1039		
1040		
1041		
1042	B Sparse Gaussian process estimation	29
1043		
1044	C Theoretical evidence that may support the use of geodesics as geometric constraints	30
1045		
1046	D Does the proposed approach invalidate the Markovian property of the diffusion process?	31
1047		
1048		
1049	E Related work and positioning of the present work	32
1050		
1051	▷ Modelling general SDEs from state observations.	32
1052	▷ Modelling SDEs from population level snapshots/boundary conditions. .	33
1053	Geometry aware generative methods	33
1054	Approximating observation geometry in the ambient space.	33
1055	Positioning of the present work.	34
1056		
1057		
1058		
1059		
1060		
1061	F Geometric constraints on inference.	34
1062		
1063		
1064	G Additional results	35
1065		
1066	G.1 Inference with noise miss-estimation	35
1067	G.2 Inference performance deteriorates with increasing inter-observation interval for existing frameworks	35
1068		
1069	G.3 Inference based on Euler-Maruyama discretisation does not account for the curvature of the trajectories in the state space	36
1070		
1071	G.3.1 First remainder term $R_{1,a}$	37
1072	First component $R_{1,a}^1$ of remainder term $R_{1,a}$: Flow curvature term.	38
1073	Second component $R_{1,a}^2$ of remainder term $R_{1,a}$	40
1074	Third component $R_{1,a}^3$ of remainder term $R_{1,a}$	41
1075		
1076		
1077	G.4 Ablations with respect to metric learning algorithm	41
1078		
1079	H Details on numerical experiments	42

1080	H.0.1	On computation of geodesic curves	42
1081	H.1	Details on baseline methods	43
1082	I	Algorithmic details	44
1083	J	Impact Statement	48
1084	K	LLMs usage statement	48

A DRIFT INFERENCE FOR HIGH AND LOW FREQUENCY OBSERVATIONS

Effective dynamics of systems with many degrees of freedom or inherently stochastic are often described in terms of a stochastic differential equation (SDE)

$$d\mathbf{X}_t = \mathbf{f}(\mathbf{X}_t)dt + \boldsymbol{\eta}(t)dt = \mathbf{f}(\mathbf{X}_t)dt + \boldsymbol{\sigma}d\mathbf{W}_t, \quad (13)$$

where the drift $\mathbf{f}(\cdot) : \mathcal{R}^d \rightarrow \mathcal{R}^d$ describes the deterministic forces acting on the system, while the delta-correlated Gaussian white noise term $\boldsymbol{\eta}(t)$, $\langle \boldsymbol{\eta}(t)\boldsymbol{\eta}(t') \rangle = \boldsymbol{\sigma}\delta(t - t')$ describes the effect of stochastic forces as a product of a diffusion matrix (or constant) $\boldsymbol{\sigma} : \mathcal{R}^{d \times d}$ that accounts for the magnitude of the stochastic forces acting on the system, and a d -dimensional Wiener process \mathbf{W}_t that contributes random influences.

Often the detailed equation that governs the evolution of the state of the system is unknown. Therefore, understanding a system of interest often requires identification from time series observations of its state. In more practical terms, given some **prior probability** for the drift function, we want to compute the **posterior probability** $P(\mathbf{f}|\{\mathcal{O}_k\}_{k=1}^K)$ that identifies the unknown drift function of Eq. 13 that most likely gave rise to the observations of the system state $\{\mathcal{O}_k\}_{k=1}^K$. The exact relationship between the observations and the system state will be defined more precisely in the following.

When a system is observed nearly continuously (inter-observation interval length τ much smaller than the characteristic time scale of the system $\tau \ll \tau_{\text{char}}$), temporal methods regress the system state \mathbf{X}_t against the state increments $\mathbf{Y}_t \doteq \frac{\mathbf{X}_{t+\tau} - \mathbf{X}_t}{\tau}$ to identify the drift function (Friedrich and Peinke, 1997; Ragwitz and Kantz, 2001). In a Bayesian framework, this corresponds to Gaussian process regression with a Gaussian likelihood (SI A.1). However, for large inter-observation intervals τ , these methods fail (Batz et al., 2018), as the Gaussian likelihood assumption is invalid for general nonlinear systems with sparse observations (Fig. 1C.). In such cases, the likelihood is a *path integral* over continuous trajectories of the unobserved process (SI A.2), making Gaussian-based estimates inaccurate (Fig. 1C.).

This underwhelming performance has motivated the development of methods that combine state estimation (or **path augmentation**) and dynamical inference. These methods reconstruct continuous paths to approximate transition densities between observations, enabling inference by estimating the system's state between observations. However, for large time intervals, transition densities are usually analytically intractable, except in a few trivial cases of scalar or linear processes. As a result, the prevailing strategy is to approximate transition densities by sampling marginal distributions of **diffusion bridges**, which are diffusion processes constrained by their initial and terminal states (Golightly and Wilkinson, 2008; Papaspiliopoulos et al., 2012; Sermaidis et al., 2013; Beskos et al., 2006b; Chib et al., 2006). Yet, existing methods employ path augmentation with simplified bridge dynamics (e.g., Brownian (Chib et al., 2006; Golightly and Wilkinson, 2008) or Ornstein-Uhlenbeck bridges (Batz et al., 2018)) that do not accurately reflect the underlying transition densities for nonlinear systems (Fig. 1E.).

An alternative path augmentation strategy would obtain a coarse drift estimate, typically achieved by assuming a Gaussian likelihood between observations (see SI Eq. 16), and would subsequently employ a stochastic bridge sampler (De Bortoli et al., 2021; Maoutsou and Opper, 2022; 2021) to construct stochastic bridges using the coarsely estimated nonlinear drift. However, for large inter-observation intervals, the coarsely estimated drift function often deviates significantly from the true function that generated the observations. Consequently, the observations frequently fall into low-

1134 probability regions of the estimated diffusion dynamics (Fig. 1 E.), rendering the construction of
 1135 diffusion bridges either too computationally demanding or impossible (Liu et al., 2020).
 1136

1137 A.1 HIGH FREQUENCY OBSERVATIONS

1139 In an optimal but rather practically unrealistic scenario, we would observe the system (path) $\mathbf{X}_{0:T}$ in
 1140 (nearly) continuous time, and thus we would try to identify the drift from $P(\mathbf{f} | \mathbf{X}_{0:T})$. In such a case,
 1141 the infinitesimal transition probabilities of the diffusion process between consecutive time-points are
 1142 Gaussian, i.e.,

$$1143 \quad 1144 \quad 1145 \quad P_f(\mathbf{X}_{0:T} | \mathbf{f}) \propto \exp \left(-\frac{1}{2dt} \sum_t \|\mathbf{X}_{t+dt} - \mathbf{X}_t - \mathbf{f}(\mathbf{X}_t)dt\|_D^2 \right). \quad (14)$$

1146 Here we have introduced the weighted norm $\|\mathbf{u}\|_D \doteq \mathbf{u}^\top \cdot \mathbf{D}^{-1} \cdot \mathbf{u}$, with $\mathbf{D} \doteq \boldsymbol{\sigma} \boldsymbol{\sigma}^\top$ indicating the noise
 1147 covariance.

1148 In turn, the transition probabilities of a discretised drift-less process (a Wiener path) $P_W(\mathbf{X}_{0:T})$ with
 1149 same diffusion σ is

$$1151 \quad 1152 \quad P_W(\mathbf{X}_{0:T}) = \exp \left(-\frac{1}{2dt} \sum_t \|\mathbf{X}_{t+dt} - \mathbf{X}_t\|_D^2 \right). \quad (15)$$

1153 We can thus express the likelihood for the drift f as the likelihood ratio between the transition
 1154 probabilities of Eq. 14 and Eq. 15, which for diffusion processes is expressed by the Radon-
 1155 Nykodym derivative between $P_f(\mathbf{X}_{0:T} | f)$ and $P_W(\mathbf{X}_{0:T})$ for paths $\mathbf{X}_{0:T}$ within the time interval
 1156 $[0, T]$ (Liptser and Shiryaev, 2013)

$$1158 \quad 1159 \quad 1160 \quad \mathcal{L}(\mathbf{X}_{0:T} | \mathbf{f}) = \exp \left(-\frac{1}{2} \sum_t \|\mathbf{f}(\mathbf{X}_t)\|_D^2 dt + \sum_t \langle \mathbf{f}(\mathbf{X}_t), \mathbf{X}_{t+dt} - \mathbf{X}_t \rangle_D \right), \quad (16)$$

1161 where for brevity we have introduced the notation $\langle \mathbf{u}, \mathbf{v} \rangle_D \doteq \mathbf{u}^\top \cdot \mathbf{D}^{-1} \cdot \mathbf{v}$ for the weighted inner
 1162 product with respect to the inverse noise covariance \mathbf{D}^{-1} . This expression results from applying the
 1163 Girsanov theorem on the path measures induced by a process with drift f and a Wiener process, with
 1164 same diffusion σ , and employing an Euler-Maruyama discretisation on the continuous path $\mathbf{X}_{0:T}$.

1165 The likelihood of a continuously observed path of the SDE (Eq. 16) has a quadratic form in terms
 1166 of the drift function. Therefore a Gaussian measure over function values (Gaussian process) is a
 1167 natural conjugate prior for this likelihood. Thus, to identify the drift in a non-parametric form, we
 1168 assume a Gaussian process prior for the function values $\mathbf{f} \sim P_0(\mathbf{f}) = \mathcal{GP}(\mathbf{m}^f, k^f)$, where \mathbf{m}^f and
 1169 k^f denote the mean and covariance function of the Gaussian process (Ruttor et al., 2013). The prior
 1170 measure can be written as

$$1171 \quad 1172 \quad 1173 \quad P_0(\mathbf{f}) = \exp \left(-\frac{1}{2} \int \int \mathbf{f}(\mathbf{x}) (k^f(\mathbf{X}, \mathbf{X}'))^{-1} \mathbf{f}(\mathbf{X}') d\mathbf{X} d\mathbf{X}' \right), \quad (17)$$

1174 if we consider a zero mean Gaussian process $\mathbf{m}^f = \mathbf{0}$.

1175 Bayesian inference for the drift function f requires the computation of a probability distribution in
 1176 the function space, the posterior probability distribution $P_f(\mathbf{f} | \mathbf{X}_{0:T})$. From the Bayes' rule the
 1177 posterior can be written as

$$1179 \quad P_f(\mathbf{f} | \mathbf{X}_{0:T}) = \frac{P_0(\mathbf{f}) \mathcal{L}(\mathbf{X}_{0:T} | \mathbf{f})}{Z} \propto P_0(\mathbf{f}) \mathcal{L}(\mathbf{X}_{0:T} | \mathbf{f}), \quad (18)$$

1181 where Z denotes a normalising factor defined as

$$1183 \quad Z = \int P_0(\mathbf{f}) \mathcal{L}(\mathbf{X}_{0:T} | \mathbf{f}) \mathcal{D}\mathbf{f}, \quad (19)$$

1184 where $\mathcal{D}\mathbf{f}$ denotes integration over the Hilbert space $\mathbf{f} : H_0[\mathbf{f}] < \infty$. Here we have expressed
 1185 the prior probability over functions as $P_0(\mathbf{f}) = e^{-H_0[\mathbf{f}]}$. In Ruttor et al. (2013) the authors show
 1186 that in this continuous-time setting, nonparametric estimation of the drift can be attained through
 1187 a Gaussian process regression (Rasmussen, 2003) with the objective to identify the mapping from

1188 the system state \mathbf{X}_t to state increments $d\mathbf{X}_t$. More precisely, we consider as the regressor the N
 1189 observations of the system state \mathbf{X}_t and as the associated response variables the state increments
 1190

$$1191 \mathbf{Y}_t = \frac{\mathbf{X}_{t+dt} - \mathbf{X}_t}{dt}, \quad (20)$$

1193 and select the kernel function of the Gaussian process as $k^f(\mathbf{X}, \mathbf{X}')$.
 1194

1195 If we denote with $\mathcal{X} = \{\mathbf{X}_t\}_{t=0}^{T-dt}$ and $\mathcal{Y} = \{\mathbf{Y}_t\}_{t=0}^{T-dt}$ the set of state observations and observation
 1196 increments, the mean of the posterior process over drift functions \mathbf{f} can be expressed as
 1197

$$1198 \bar{\mathbf{f}}(\mathbf{x}) = k^f(\mathbf{x}, \mathcal{X})^\top \left(\mathcal{K} + \frac{\mathbf{D}}{dt} I_N \right)^{-1} \mathcal{Y}, \quad (21)$$

1200 where we abused the notation and denoted with $k^f(\mathbf{x}, \mathcal{X})$ the vector resulting from evaluating the
 1201 kernel k^f at points \mathbf{x} and $\{\mathcal{O}_k\}_{k=1}^{K-1}$. Similarly $\mathcal{K} = k^f(\mathcal{X}, \mathcal{X})$ stands for the $(K-1) \times (K-1)$
 1202 matrix resulting from evaluation of the kernel on all observation pairs. In a similar vein, the posterior
 1203 variance can be written as
 1204

$$1205 \Sigma^2(\mathbf{x}) = k^f(\mathbf{x}, \mathbf{x}) - k^f(\mathbf{x}, \mathcal{X})^\top \left(\mathcal{K} + \frac{\mathbf{D}}{dt} \right)^{-1} k^f(\mathbf{x}, \mathcal{X}), \quad (22)$$

1207 where the term \mathbf{D}/dt plays the role of observation noise.
 1208

1209 A.2 LOW FREQUENCY OBSERVATIONS

1212 As the inter-observation interval increases (*low frequency observations*), the validity of the Gaussian
 1213 likelihood used in drift estimation diminishes as the transition density is no longer Gaussian.
 1214 Consequently, methods for drift estimation with Gaussian assumptions (Friedrich and Peinke, 1997;
 1215 Ruttor et al., 2013) become increasingly inaccurate. To discount the effects of low frequency sam-
 1216 pling, Lade (Lade, 2009) proposed a method to compute finite-time corrections for drift estimates,
 1217 which has been mainly applied to one-dimensional problems (Honisch and Friedrich, 2011). In
 1218 parallel, the statistics community has proposed path augmentation techniques that involve sampling
 1219 with a simplified system’s dynamics between time-consecutive observations to augment the ob-
 1220 served trajectory to a nearly continuous-time path (Golightly and Wilkinson, 2008; Papaspiliopoulos
 1221 et al., 2012; Sermaidis et al., 2013; Beskos et al., 2006b; Chib et al., 2006). However, for large
 1222 inter-observation intervals and nonlinear systems, the augmented trajectories match poorly the un-
 1223 derlying path statistics and these methods often exhibit poor convergence rates or fail to identify the
 1224 correct dynamics (Figure 1 c. and d.). We note that path augmentation using Ornstein-Uhlenbeck
 1225 bridges and local linearisation of the **ground truth** dynamics provides a reasonable approximation
 1226 of the underlying transition density up to a certain inter-observation interval. Nevertheless, during
 1227 inference, the ground truth dynamics is unknown, and the proposed local linearisations based on
 1228 inaccurate drift estimates (Batz et al., 2018) perform poorly in this sparsely sampled regime.
 1229

1230 As the inter-observation interval τ increases, if the system is nonlinear, the likelihood assumed be-
 1231 tween two consecutive observations is no longer Gaussian, but is rather expressed as a *path integral*
 1232

$$1233 P(\mathcal{O}_{1:K} | \mathbf{f}) = \int P(\mathcal{O}_{1:K} | \mathbf{X}_{0:T}) P(\mathbf{X}_{0:T} | \mathbf{f}) \mathcal{D}(\mathbf{X}_{0:T}), \quad (23)$$

1234 where $\mathcal{O}_{1:K} \doteq \{\mathcal{O}_k\}_{k=1}^K$ identifies the set of K observations collected within the interval $[0, T]$,
 1235 $P(\mathbf{X}_{0:T} | \mathbf{f})$ the prior path probability resulting from a diffusion process with drift $\mathbf{f}(\mathbf{x})$, $\mathcal{D}(\mathbf{X}_{0:T})$
 1236 identifies the formal volume element on the path space, and $P(\mathcal{O}_{1:K} | \mathbf{X}_{0:T})$ stands for the likeli-
 1237 hood of observations given the latent path $\mathbf{X}_{0:T}$.

1238 However, the path integral of Eq. 23 is in general intractable for nonlinear systems.
 1239 thus we need to simultaneously estimate the drift and latent state of the diffusion pro-
 1240 cess, i.e., to approximate the joint posterior measure of latent paths and drift functions
 1241 $P(\mathbf{X}_{0:T}, \mathbf{f} | \mathcal{O}_{1:K})$. Therefore we consider the unobserved continuous path $\mathbf{X}_{0:T}$ as la-
 1242 tent random variables and employ an Expectation Maximisation (EM) algorithm to identify

a maximum a posteriori estimate for the drift function. More precisely, we follow an iterative algorithm, where at each iteration n we alternate between the two following steps: An **Expectation** step, where given a drift estimate $\hat{\mathbf{f}}^n(\mathbf{x})$ we construct an approximate posterior over the latent variables $Q(\mathbf{X}_{0:T}) \approx P(\mathbf{X}_{0:T} | \mathcal{O}_{1:K}, \hat{\mathbf{f}}^n(\mathbf{x}))$, and compute the expected log-likelihood of the augmented path

$$\mathcal{L}(\hat{\mathbf{f}}^n(\mathbf{x}), Q) = \mathbb{E}_Q \left[\ln \mathcal{L}(\mathbf{X}_{0:T}, \mathcal{O}_{1:K} | \hat{\mathbf{f}}^n(\mathbf{x})) \right]. \quad (24)$$

A **Maximisation** step, where we update the drift estimation by maximising the expected log likelihood

$$\mathbf{f}^{n+1}(\mathbf{x}) = \arg \max_f \left[\mathcal{L}(\mathbf{f}^n(\mathbf{x}), Q) - \ln P_0(\mathbf{f}^n(\mathbf{x})) \right]. \quad (25)$$

In Eq. 25, P_0 denotes the Gaussian process prior over function values.

A.3 APPROXIMATE POSTERIOR OVER PATHS.

To obtain an approximate posterior over the latent paths we perform **variational inference** (Beal, 2003). In this section, we first formulate the approximate posterior over paths (conditional distribution for the path given the observations) by considering only individual observations as constraints (Section A.3.1). However, this approach results computationally taxing calculations during path augmentation, since the observations are atypical states of the initially estimated drift. To overcome this issue, we subsequently extend the formalism (Section A.3.2) to incorporate constraints that consider also the local geometry of the observations.

A.3.1 APPROXIMATE POSTERIOR OVER PATHS WITHOUT GEOMETRIC CONSTRAINTS

Given a drift function (or a drift estimate) $\hat{\mathbf{f}}(\mathbf{x})$ we can apply variational techniques to approximate the posterior measure over the latent path conditioned on the observations $\mathcal{O}_{1:K}$. We consider that the **prior process** (the process without considering the observations $\mathcal{O}_{1:K}$) is described by the equation

$$P(\mathbf{X}_{0:T} | \hat{\mathbf{f}}) : \quad d\mathbf{X}_t = \hat{\mathbf{f}}(\mathbf{X}_t)dt + \sigma d\mathbf{W}_t. \quad (26)$$

We will define an approximating (posterior) process that is conditioned on the observations. The conditioned process is also a diffusion process with the same diffusion as Eq. 26 but with a modified, time-dependent drift $g(x, t)$ that accounts for the observations (Chetrite and Touchette, 2015; Majumdar and Orland, 2015). We identify the approximate posterior measure Q with the posterior measure induced by an approximating process that is conditioned by the observations $\mathcal{O}_{1:K}$ (Opper, 2019), with governing equation

$$Q(\mathbf{X}_{0:T}) : \quad d\mathbf{X}_t = \mathbf{g}(\mathbf{X}_t, t)dt + \sigma dW_t = \left(\hat{\mathbf{f}}(\mathbf{X}_t) + \mathbf{u}(\mathbf{X}_t, t) \right) dt + \sigma d\mathbf{W}_t. \quad (27)$$

The effective drift $\mathbf{g}(\mathbf{X}_t, t)$ of Eq. 27 may be obtained from the solution of the variational problem of minimising the free energy

$$\mathcal{F}[Q] = \mathcal{KL}\left(Q(\mathbf{X}_{0:T}) || P(\mathbf{X}_{0:T} | \hat{\mathbf{f}})\right) - \sum_{k=1}^K \left\langle \ln P(\mathcal{O}_k | \mathbf{X}_{t_k}) \right\rangle_Q. \quad (28)$$

1296 By applying the Cameron-Girsanov-Martin theorem we can express the Kullback-Leibler divergence
 1297 between the two path measures induced by the diffusions with drift $\hat{\mathbf{f}}(\mathbf{x})$ and $\mathbf{g}(\mathbf{x}, t)$ as
 1298

$$1299 \mathcal{KL}\left(Q(\mathbf{X}_{0:T}) \mid\mid P(\mathbf{X}_{0:T} \mid \hat{\mathbf{f}})\right) = \left\langle \ln \left(\frac{dQ(\mathbf{X}_{0:T})}{dP(\mathbf{X}_{0:T} \mid \hat{\mathbf{f}})} \right) \right\rangle_Q \quad (29)$$

$$1300 = \left\langle \left(-\frac{1}{2} \int_0^T \|\hat{\mathbf{f}}(\mathbf{X}_t) - \mathbf{g}(\mathbf{X}_t, t)\|_{\mathbf{D}}^2 dt + \int_0^T \frac{\hat{\mathbf{f}}(\mathbf{X}_t) - \mathbf{g}(\mathbf{X}_t, t)}{\mathbf{D}} d\mathbf{W}_t \right) \right\rangle_Q$$

$$1301 = \left\langle \left(-\frac{1}{2} \int_0^T \|\hat{\mathbf{f}}(\mathbf{X}_t) - \mathbf{g}(\mathbf{X}_t, t)\|_{\mathbf{D}}^2 dt + V_T \right) \right\rangle_Q \quad (30)$$

$$1302 = \frac{1}{2} \int_0^T \int \|\mathbf{g}(\mathbf{x}, t) - \hat{\mathbf{f}}(\mathbf{x})\|_{\mathbf{D}}^2 q_t(\mathbf{x}) d\mathbf{x} dt + \mathfrak{C}, \quad (31)$$

1312 where $q_t(\mathbf{x})$ stands for the marginal density for \mathbf{X}_t of the approximate process. In the third line
 1313 we have introduced the random variable $V_T = \int_0^T \frac{\hat{\mathbf{f}}(\mathbf{X}_t) - \mathbf{g}(\mathbf{X}_t, t)}{\mathbf{D}} d\mathbf{W}_t$. Under the assumption that
 1314 the function $\ell(\mathbf{X}_t) = \hat{\mathbf{f}}(\mathbf{X}_t) - \mathbf{g}(\mathbf{X}_t, t)$ is bounded, piece-wise continuous, and in $L^2[0, \infty)$, V_T
 1315 follows the distribution $\mathcal{N}\left(V_T \mid 0, \int_0^T \ell^2(s) ds\right)$, which for a given T will result into a constant \mathfrak{C} .
 1316 Thus the second term in Eq. 31 is not relevant for the minimisation of the free energy and will be
 1317 omitted.
 1318

1319 We can thus express the free energy of Eq. 28 as (Opper, 2019)

$$1320 \mathcal{F}[Q] = \frac{1}{2} \int_0^T \int \left[\|\mathbf{g}(\mathbf{x}, t) - \hat{\mathbf{f}}(\mathbf{x})\|_{\mathbf{D}}^2 + U(\mathbf{x}, t) \right] q_t(\mathbf{x}) d\mathbf{x} dt, \quad (32)$$

1324 where the term $U(\mathbf{x}, t)$ accounts for the observations $U(\mathbf{x}, t) = -\sum_{t_k} \ln P(\mathcal{O}_k \mid \mathbf{x}) \delta(t - t_k)$.
 1325

1326 The minimisation of the functional of the free energy can be construed as a stochastic control
 1327 problem (Opper, 2019) with the objective to identify a time-dependent drift adjustment $\mathbf{u}(\mathbf{x}, t) :=$
 1328 $\mathbf{g}(\mathbf{x}, t) - \hat{\mathbf{f}}(\mathbf{x})$ for the system with drift $\hat{\mathbf{f}}(\mathbf{x})$ so that the controlled dynamics fulfil the constraints
 1329 imposed by the observations.

1330 A.3.2 APPROXIMATE POSTERIOR OVER PATHS WITH GEOMETRIC CONSTRAINTS

1332 The previously described construction of the approximate measure in terms of stochastic bridges is
 1333 relevant when the observations have non vanishing probability under the law of the prior diffusion
 1334 process of Eq. 26. However, when the prior process (with the estimated drift \hat{f}) differs consider-
 1335 ably from the process that generated the observations, such a construction might either provide a
 1336 bad approximation of the underlying path measure, or show slow numerical convergence in the
 1337 construction of the diffusion bridges. To overcome this issue, we consider here additional constraints
 1338 for the posterior process that force the paths of the posterior measure to respect the local geometry
 1339 of the observations. In the following we provide a brief introduction on the basics of Riemannian
 1340 geometry and consequently continue with the geometric considerations of the proposed method.

1341 **Riemannian geometry.** A d -dimensional **Riemannian manifold** (Do Carmo and Flaherty Fran-
 1342 cis, 1992; Lee, 2018) $(\mathcal{M}, \mathfrak{h})$ embedded in a d -dimensional ambient space $\mathcal{X} = \mathbb{R}^d$ is a smooth
 1343 curved d -dimensional surface endowed with a smoothly varying inner product (Riemannian) **metric**
 1344 $\mathfrak{h} : \mathbf{x} \rightarrow \langle \cdot | \cdot \rangle_{\mathbf{x}}$ on $\mathcal{T}_{\mathbf{x}}\mathcal{M}$. A tangent space $\mathcal{T}_{\mathbf{x}}\mathcal{M}$ is defined at each point $\mathbf{x} \in \mathcal{M}$. The Riemannian
 1345 metric \mathfrak{h} defines a canonical volume measure on the manifold \mathcal{M} . Intuitively this characterises
 1346 how to compute inner products locally between points on the tangent space of the manifold \mathcal{M} , and
 1347 therefore determines also how to compute norms and thus distances between points on \mathcal{M} .

1348 A **coordinate chart** (G, ϕ) provides the mapping from an open set G on \mathcal{M} to an open set V in
 1349 the Euclidean space. The dimensionality of the manifold is d if for each point $\mathbf{x} \in \mathcal{M}$ there exists

1350 a local neighborhood $G \subset \mathcal{R}^d$. We can represent the metric \mathfrak{h} on the local chart (G, ϕ) by the
 1351 positive definite matrix (**metric tensor**) $H(\mathbf{x}) = (\mathfrak{h}_{i,j})_{\mathbf{x}, 0 \leq i,j \leq d} = \left(\langle \frac{\partial}{\partial x_i} | \frac{\partial}{\partial x_j} \rangle_{\mathbf{x}} \right)_{0 \leq i,j \leq d}$ at each
 1352 point $\mathbf{x} \in G$.
 1353

1354 For $\mathbf{v}, \mathbf{w} \in \mathcal{T}_{\mathbf{x}}\mathcal{M}$ and $\mathbf{x} \in G$, their inner product can be expressed in terms of the matrix representation
 1355 of the metric \mathfrak{h} on the tangent space $\mathcal{T}_{\mathbf{x}}\mathcal{M}$ as $\langle \mathbf{v} | \mathbf{w} \rangle_{\mathbf{x}} = \mathbf{v}^\top H(\mathbf{x}) \mathbf{w}$, where $H(\mathbf{x}) \in \mathcal{R}^{d \times d}$
 1356 .

1357 The **length of a curve** $\gamma : [0, 1] \rightarrow \mathcal{M}$ on the manifold is defined as the integral of the norm of the
 1358 tangent vector
 1359

$$1360 \ell(\gamma_{t'}) = \int_0^1 \|\dot{\gamma}_{t'}\|_{\mathfrak{g}} dt' = \int_0^1 \sqrt{\dot{\gamma}_{t'}^\top H(\gamma_{t'}) \dot{\gamma}_{t'}} dt', \quad (33)$$

1361 where the dotted letter indicates the velocity of the curve $\dot{\gamma}_{t'} = \partial_{t'} \gamma_{t'}$. A **geodesic curve** is a locally
 1362 length minimising smooth curve that connects two given points on the manifold.
 1363

1364 **Riemannian geometry of observations.** For approximating the posterior over paths we take into
 1365 account the geometry of the invariant density as it is represented by the observations. To that end,
 1366 we consider systems whose dynamics induce invariant (inertial) manifolds that contain the global at-
 1367 tractor of the system and on which system trajectories concentrate (Wiggins, 1994; Mohammed and
 1368 Scheutzow, 1999; Giry and Chueshov, 1995; Fenichel and Moser, 1971; Arnold, 1990; Carverhill,
 1369 1985). We assume thus that the continuous-time trajectories $\mathbf{X}_{0:T} \in \mathcal{R}^d$ of the underlying system
 1370 concentrates on an invariant manifold $\mathcal{M} \in \mathcal{R}^{m \leq d}$ of dimensionality m (possibly) smaller than d .
 1371 The discrete-time observations \mathcal{O}_k are thus samples of the manifold \mathcal{M} . The central premise of our
 1372 approach is that **unobserved paths between successive observations will be lying either on or**
 1373 **in the vicinity of the manifold \mathcal{M}** . In particular, we postulate that unobserved paths should lie **in**
 1374 **the vicinity of geodesics that connect consecutive observations** on \mathcal{M} . To that end we propose a
 1375 path augmentation framework that constraints the augmented paths to lie in the vicinity of identified
 1376 geodesics between consecutive observations.
 1377

1378 However, while this view of a lower dimensional manifold embedded in a higher dimensional am-
 1379 bient space helps to build our intuition for the proposed method, for computational purposes we
 1380 adopt a complementary view inspired by the discussion in (Fröhlich et al., 2021). According to
 1381 this view, we consider the entire observation space \mathcal{R}^d as a smooth Riemannian manifold, $\mathcal{M} = \mathcal{R}^d$,
 1382 characterised by a Riemannian metric \mathfrak{h} . The effect of the nonlinear geometry of the observations is
 1383 then captured by the metric \mathfrak{h} . Thus to approximate the geometric structure of the system’s invariant
 1384 density, we learn the Riemannian metric tensor $H : \mathcal{R}^d \rightarrow \mathcal{R}^{d \times d}$ and compute the geodesics
 1385 between consecutive observations according to the learned metric. Intuitively according to this view
 1386 the observations $\{\mathcal{O}_k\}_{k=1}^K$ introduce distortions in the way we compute distances on the state space.
 1387

1388 In effect this approach does not reduce the dimensionality of the space we operate, but changes
 1389 the way we compute inner products and thus distances, lengths, and geodesic curves on \mathcal{M} . The
 1390 alternative perspective of working on a lower dimensional manifold would strongly depend on the
 1391 correct assessment of the dimensionality of said manifold. For example, one could use a Variational
 1392 Autoencoder to approximate the observation manifold and subsequently obtain the Riemannian met-
 1393 ric from the embedding of the manifold mediated by the decoder. However, our preliminary results
 1394 of such an approach revealed that such a method requires considerable fine tuning to adapt to the
 1395 characteristics of each dynamical system and is sensitive to the estimation of the dimensionality of
 1396 the approximated manifold.
 1397

1398 To learn the Riemannian metric and compute the geodesics we follow the framework proposed by
 1399 Arvanitidis et al. in (Arvanitidis et al., 2019). In particular, we approximate the local metric induced
 1400 by the observations at location \mathbf{x} of the state space, in a non-parametric form by the inverse of the
 1401 weighted local diagonal covariance computed on the observations as (Arvanitidis et al., 2019)
 1402

$$1403 H_{dd}(\mathbf{x}) = \left(\sum_{i=1}^K w_i(\mathbf{x}) (x_i^{(d)} - x^{(d)})^2 + \epsilon \right)^{-1}, \quad (34)$$

1404 with weights $w_i(\mathbf{x}) = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}\|_2^2}{2\sigma_{\mathcal{M}}^2}\right)$, and $x^{(d)}$ denoting the d -th dimensional component of the
 1405 vector \mathbf{x} . The parameter $\epsilon > 0$ ensures non-zero diagonals of the weighted covariance matrix, while
 1406 $\sigma_{\mathcal{M}}$ characterises the curvature of the manifold.
 1407

1404 Between consecutive observations for each interval $[\mathcal{O}_k, \mathcal{O}_{k+1}]$, we identify the geodesic
 1405 $\gamma_{t'}^k$ as the energy minimising curve, i.e., as the minimiser of the kinetic energy functional
 1406 $\mathcal{E}(\gamma_{t'}^k) = \int_0^1 L_{\mathcal{M}}(\gamma_{t'}^k, \dot{\gamma}_{t'}^k) dt'$
 1407

$$1408 \quad \gamma_{t'}^{k*} = \arg \min_{\gamma_{t'}^k, \gamma_0^k = \mathcal{O}_k, \gamma_1^k = \mathcal{O}_{k+1}} \int_0^1 L_{\mathcal{M}}(\gamma_{t'}^k, \dot{\gamma}_{t'}^k) dt',$$

$$1412 \quad \text{with } \int_0^1 L_{\mathcal{M}}(\gamma_{t'}^k, \dot{\gamma}_{t'}^k) dt' = \frac{1}{2} \int_0^1 \|\dot{\gamma}_{t'}^k\|_{\mathfrak{h}}^2,$$

1414 where $L_{\mathcal{M}}(\gamma_{t'}^k, \dot{\gamma}_{t'}^k)$ denotes the Lagrangian. The minimising curve of this functional is the same
 1415 as the minimiser of the curve length functional $\ell(\gamma_{t'})$ (Eq. 33), i.e., the geodesic (Do Carmo and
 1416 Flaherty Francis, 1992).

1417 By applying calculus of variations, the minimising curve of the functional $\mathcal{E}(\gamma_{t'}^k)$ can be obtained
 1418 from the Euler-Lagrange equations, resulting in the following system of second order differential
 1419 equations (Arvanitidis et al., 2017; Do Carmo and Flaherty Francis, 1992)

$$1421 \quad \ddot{\gamma}_t^k = -\frac{1}{2} H(\gamma_t^k)^{-1} \left(2 \left(I \otimes (\dot{\gamma}_t^k)^\top \right) \frac{\partial \text{vec}[H(\gamma_t^k)]}{\partial \gamma_t^k} \dot{\gamma}_t^k - \frac{\partial \text{vec}[H(\gamma_t^k)]^\top}{\partial \gamma_t^k} (\dot{\gamma}_t^k \otimes \dot{\gamma}_t^k) \right), \quad (36)$$

1424 with boundary conditions $\gamma_0^k = \mathcal{O}_k$ and $\gamma_1^k = \mathcal{O}_{k+1}$, where \otimes stands for the Kroenecker product,
 1425 and $\text{vec}[A]$ denotes the vectorisation operation of matrix A through stacking the columns of A into
 1426 a vector. We follow Arvanitidis et al. (2019) and obtain the geodesics by approximating the solution
 1427 of the boundary value problem of Eq. 36 with a probabilistic differential equation solver.

1429 **Extended free energy functional.** We denote the collection of individual geodesics by
 1430 $\Gamma \doteq \{\gamma_{t'}^k\}_{t=(k-1)\tau+t'\tau}$, where $\gamma_{t'}^k$ is the geodesic connecting \mathcal{O}_k and \mathcal{O}_{k+1} , and $t' \in [0, 1]$ de-
 1431 notes a rescaled time variable. Additional to the constraints imposed in the previously explained
 1432 setting (Sec A.3.1), here we add an extra term in the free energy $U_{\mathcal{G}}(\mathbf{x}, t) \doteq \|\Gamma_t - \mathbf{x}\|^2$ that accounts
 1433 for the local geometry of the invariant density, and guides the latent path towards the geodesic curves
 1434 $\gamma_{t'}^k$ that connect consecutive observations

$$1435 \quad \mathcal{F}[Q] = \frac{1}{2} \int_0^T \int \left[\|g(\mathbf{x}, t) - \hat{f}(\mathbf{x})\|_D + U_{\mathcal{O}}(\mathbf{x}, t) + \beta U_{\mathcal{G}}(\mathbf{x}, t) \right] q_t(\mathbf{x}) d\mathbf{x} dt. \quad (37)$$

1438 Here we denote the observation term by $U_{\mathcal{O}}(\mathbf{x}, t) \doteq -\sum_{t_k} \ln P(\mathcal{O}_k | \mathbf{x}) \delta(t - t_k)$, while β stands for a
 1439 weighting constant that determines the relative weight of the geometric term in the control objective.

1441 Following (Opper, 2019), for each inter-observation interval $[\mathcal{O}_k, \mathcal{O}_{k+1}]$ we identify the poste-
 1442 rior path measure (minimiser of Eq. 37) by the solution of a stochastic optimal control prob-
 1443 lem (Maoutsa and Opper, 2022) with the objective to obtain a time-dependent drift adjustment
 1444 $\mathbf{u}(\mathbf{x}, t) := \mathbf{g}(\mathbf{x}, t) - \hat{f}(\mathbf{x})$ for the system with drift $\hat{f}(\mathbf{x})$ with initial and terminal constraints defined
 1445 by $U_{\mathcal{O}}(\mathbf{x}, t)$, and additional path constraints $U_{\mathcal{G}}(\mathbf{x}, t)$.

1446 For the case of exact observations, i.e., for an observation process $\psi(\mathbf{x}) = \mathbf{x}$, we can compute the
 1447 drift adjustment for each of the $K - 1$ inter-observation intervals independently. Thus for each inter-
 1448 val between consecutive observations, we identify the optimal control $\mathbf{u}(\mathbf{x}, t)$ required to construct
 1449 a stochastic bridge following the dynamics of Eq. 26 with initial and terminal states the respective
 1450 observations \mathcal{O}_k and \mathcal{O}_{k+1} .

1451 The optimal drift adjustment for such a stochastic control problem for the inter-observation interval
 1452 between \mathcal{O}_k and \mathcal{O}_{k+1} can be obtained from the solution of the backward equation (see (Maoutsa
 1453 and Opper, 2022))

$$1454 \quad \frac{\partial \phi_t(\mathbf{x})}{\partial t} = -\mathcal{L}_{\hat{f}}^\dagger \phi_t(\mathbf{x}) + U_{\mathcal{G}}(\mathbf{x}, t) \phi_t(\mathbf{x}), \quad (38)$$

1455 with terminal condition $\phi_T(\mathbf{x}) = \chi(\mathbf{x}) = \delta(\mathbf{x} - \mathcal{O}_{k+1})$ and with $\mathcal{L}_{\hat{f}}^\dagger$ denoting the adjoint Fokker-
 1456 Planck operator for the process of Eq. 26. As shown in (Maoutsa and Opper, 2022) the optimal drift

adjustment $\mathbf{u}(\mathbf{x}, t)$ can be expressed in terms of the difference of the logarithmic gradients of two probability flows

$$\mathbf{u}^*(\mathbf{x}, t) = D \left(\nabla \ln q_{T-t}(\mathbf{x}) - \nabla \ln \rho_t(\mathbf{x}) \right), \quad (39)$$

where ρ_t fulfils the forward (filtering) partial differential equation (PDE)

$$\frac{\partial \rho_t(\mathbf{x})}{\partial t} = \mathcal{L}_f \rho_t(\mathbf{x}) - U_{\mathcal{G}}(\mathbf{x}, t) \rho_t(\mathbf{x}), \quad (40)$$

while q_t is the solution of a time-reversed PDE that depends on the logarithmic gradient of $\rho_t(\mathbf{x})$

$$\frac{\partial q_t(\mathbf{x})}{\partial t} = -\nabla \cdot \left[\left(\sigma^2 \nabla \ln \rho_{T-t}(\mathbf{x}) - \mathbf{f}(\mathbf{x}, T-t) \right) q_t(\mathbf{x}) \right] + \frac{\sigma^2}{2} \nabla^2 q_t(\mathbf{x}), \quad (41)$$

with initial condition $q_0(\mathbf{x}) \propto \rho_T(\mathbf{x}) \chi(\mathbf{x})$.

For the numerical solution of the control problem we use the numerical framework accompanying [Maoutsou and Opper \(2022\)](#), where the path constraints associated with the geodesic curves are imposed through the two staged process for particle propagation described in the paper for path constraints, with the particle reweighting being performed through optimal transport implemented using the PyEMD python toolbox ([Pele and Werman, 2009](#)).

More precisely, according to this framework we propagate a particle representation of the probability density $\rho_t(\mathbf{x})$ according to the filtering equation of Eq. 40. This follows the dynamics of the uncontrolled process with drift $\hat{\mathbf{f}}$ and particle reweighting at each time step as determined by the path constrained (potential) $U_{\mathcal{G}}(\mathbf{x}, t)$, that quantifies the proximity to the geodesic at each time point. In the particle representation we apply this reweighting in the form of a deterministic optimal transportation of the particles

([Reich, 2013](#))

A.4 APPROXIMATE POSTERIOR OVER DRIFT FUNCTIONS.

For a fixed path measure Q , the optimal measure for the drift Q_f is a Gaussian process given by

$$Q_f \propto P_f \exp \left(-\frac{1}{2} \int \|\mathbf{f}(\mathbf{x})\|_D^2 A(\mathbf{x}) - 2\langle \mathbf{f}(\mathbf{x}), B(\mathbf{x}) \rangle_D d\mathbf{x} \right), \quad (42)$$

with

$$A(\mathbf{x}) \doteq \int_0^T q_t(\mathbf{x}) dt,$$

and

$$B(\mathbf{x}) \doteq \int_0^T q_t(\mathbf{x}) g(\mathbf{x}, t) dt,$$

where $q_t(\mathbf{x})$ denotes the marginal constrained density of the state \mathbf{X}_t . The function $g(\mathbf{x}, t)$ denotes the effective drift.

We assume a Gaussian process prior for the unknown function \mathbf{f} , i.e., $\mathbf{f} \sim P_0(\mathbf{f}) = \mathcal{GP}(\mathbf{m}^f, k^f)$ where \mathbf{m}^f and k^f denote the mean and covariance function of the Gaussian process. Following [Ruttor et al. \(Ruttor et al., 2013\)](#), we employ a sparse kernel approximation for the drift f by optimising the function values over a sparse set of S inducing points $\{Z_i\}_{i=1}^S$. We obtain the resulting drift from

$$\hat{\mathbf{f}}_S(\mathbf{x}) = k^f(\mathbf{x}, \mathcal{Z}) (I + \Lambda \mathcal{K}_S)^{-1} \mathbf{d}, \quad (43)$$

where we have defined introduced the notation $\mathcal{K}_S \doteq k^f(\mathcal{Z}, \mathcal{Z})$

$$\Lambda = \frac{1}{\sigma^2} \mathcal{K}_S^{-1} \left(\int k^f(\mathcal{Z}, \mathbf{x}) A(\mathbf{x}) k^f(\mathbf{x}, \mathcal{Z}) d\mathbf{x} \right) \mathcal{K}_S^{-1}. \quad (44)$$

$$\mathbf{d} = \frac{1}{\sigma^2} \mathcal{K}_S^{-1} \left(\int k^f(\mathcal{Z}, \mathbf{x}) B(\mathbf{x}) d\mathbf{x} \right) \mathcal{K}_S^{-1}, \quad (45)$$

1512 The associated variance results similarly from the equation
 1513

$$1514 \Sigma_S^2(\mathbf{x}) = k^f(\mathbf{x}, \mathbf{x}) - k^f(\mathbf{x}, \mathcal{Z}) (I + \Lambda \mathcal{K}_S)^{-1} \Lambda k^f(\mathcal{Z}, \mathbf{x}). \quad (46)$$

1516 We employ a sample based approximation of the densities in Eq. 42 resulting from the particle
 1517 sampling of the path measure Q resulting from the geometric augmentation, i.e. the integrals over
 1518 $\int q_t(\mathbf{x})$ are over the samples of the augmented paths. Thus by representing the densities by samples,
 1519 we can rewrite the density $p_t(x)$ in terms of a sum of Dirac delta functions centered around the
 1520 particles positions
 1521

$$1522 p_t(\mathbf{x}) \approx \frac{1}{N} \sum_{j=1}^N \delta(\mathbf{x} - \mathbf{X}_j(t)),$$

1525 and replace the Riemannian integrals with summation over particles, i.e. perform a Monte Carlo
 1526 integration. Here $\mathbf{X}_j(t)$ represents the position of the j -th particle at time point t .
 1527

1529 B SPARSE GAUSSIAN PROCESS ESTIMATION

1531 Since the amount of required observations for accurate drift estimation is generally large for systems
 1532 with nonlinear dynamics, regular Gaussian process regression becomes computationally intensive.
 1533 Its computational complexity scales as $\mathcal{O}(N^3)$ with the number of observations N due to the $N \times N$
 1534 kernel matrix inversions required for inference (c.f. Eq. 22 and Rasmussen (2003)). Therefore,
 1535 Ruttor et al. (2013) employ the sparse (low dimensional approximation) counterpart of Gaussian
 1536 process regression (Titsias, 2009; Csató and Opper, 2002) that reduces significantly the computation
 1537 time by reducing the computational complexity to $\mathcal{O}(NM^2)$, where $M \ll N$ denotes the number
 1538 of selected sparse (inducing) points. Here we present briefly the derivation.

1539 For sparse Gaussian process drift inference, we augment the distributions with M inducing points
 1540 $\mathbf{z} = [z_1, \dots, z_M]$ with inducing values $\mathbf{u} = [\mathbf{f}(z_m)]_{m=1}^M$ that are jointly Gaussian distributed with
 1541 the latent function values $\{\mathbf{f}(\mathbf{X}_t)\}_{t=0}^T$.
 1542

1543 As demonstrated previously the true posterior for function values \mathbf{f} is expressed as a product

$$1544 P_f(\mathbf{f}) = \frac{1}{Z} P_o(\mathbf{f}) e^{-\mathcal{A}(\mathbf{f})}, \quad (47)$$

1547 where Z a normalisation constant, $\mathcal{A}(\mathbf{f}) = \frac{1}{2} \mathbf{f}^T \Lambda \mathbf{f} - \mathbf{a}^T \mathbf{f}$ a quadratic form of \mathbf{f} (see Eq. 16), while
 1548 $P_o(\mathbf{f})$ denotes a prior Gaussian measure. Thus the posterior $P_f(\mathbf{f})$ is also Gaussian. In Eq. 47
 1549 $\Lambda \doteq \text{diag}[\Delta t D^{-1}, \dots, \Delta t D^{-1}]$, and $\mathbf{a}^T = [\mathbf{D}^{-1} \Delta X_0, \dots, \mathbf{D}^{-1} \Delta X_{T-1}]$.
 1550

1551 To employ sparse Gaussian process inference, we approximate P_f with $Q_f = \mathcal{GP}(m^q(\cdot), k^q(\cdot, \cdot))$,
 1552 with mean and variance functions to be calculated, depending only on the *smaller* subset ($M \ll N$)
 1553 of inducing function values \mathbf{u} ,

$$1554 Q_f(\mathbf{f}) \propto R(\mathbf{u}) P_o(\mathbf{f}). \quad (48)$$

1555 The effective likelihood $R(\mathbf{u})$ is chosen as the minimiser of the Kullback-Leibler divergence
 1556 $\mathcal{KL}(Q_f || P_f)$.

1558 We may now express the prior $P_o(\mathbf{f})$ and the approximate marginal $Q_f(\mathbf{f})$ in terms of the inducing
 1559 points

$$1560 P_o(\mathbf{f}) = P_o(\mathbf{f} | \mathbf{u}) P_o(\mathbf{u}), \quad (49)$$

1562 and

$$1564 Q_f(\mathbf{f}) = Q_f(\mathbf{f} | \mathbf{u}) Q_f(\mathbf{u}) = P_o(\mathbf{f} | \mathbf{u}) Q_f(\mathbf{u}), \quad (50)$$

1565 under the assumption that the posterior conditional $Q_f(\mathbf{f} | \mathbf{u})$ matches the prior conditional $P_o(\mathbf{f} | \mathbf{u})$.

1566 We select the effective likelihood $R(\mathbf{u})$ as the minimiser of the relative entropy between Q_f and P_f
 1567

$$\begin{aligned}
 1568 \mathcal{KL}(Q_f || P_f) &= \int Q_f(\mathbf{f}) \ln \frac{Q_f(\mathbf{f})}{P_f(\mathbf{f})} d\mathbf{f} \\
 1569 &= \int P_o(\mathbf{f}|\mathbf{u}) Q_f(\mathbf{u}) \ln \frac{P_o(\mathbf{f}) R(\mathbf{u})}{\frac{1}{Z} P_o(\mathbf{f}) e^{-\mathcal{A}(\mathbf{f})}} d\mathbf{f} d\mathbf{u} \\
 1570 &= \int P_o(\mathbf{f}|\mathbf{u}) Q_f(\mathbf{u}) \ln \frac{P_o(\mathbf{f}) R(\mathbf{u})}{\frac{1}{Z} P_o(\mathbf{f}|\mathbf{u}) e^{-\mathcal{A}(\mathbf{f}|\mathbf{u})} P_o(\mathbf{u})} d\mathbf{f} d\mathbf{u} \\
 1571 &= \int P_o(\mathbf{f}|\mathbf{u}) Q_f(\mathbf{u}) \ln \frac{P_o(\mathbf{u}) R(\mathbf{u})}{\frac{1}{Z} e^{-\mathcal{A}(\mathbf{f}|\mathbf{u})} P_o(\mathbf{u})} d\mathbf{f} d\mathbf{u} \\
 1572 &= \int P_o(\mathbf{f}|\mathbf{u}) Q_f(\mathbf{u}) \ln \frac{R(\mathbf{u})}{\frac{1}{Z} e^{-\mathcal{A}(\mathbf{f}|\mathbf{u})}} d\mathbf{f} d\mathbf{u} \\
 1573 &= \ln Z + \int Q_f(\mathbf{u}) \ln \left(\frac{e^{\ln R(\mathbf{u})}}{e^{-\mathbb{E}_o[\mathcal{A}(\mathbf{f}|\mathbf{u})]}} \right) d\mathbf{u}.
 \end{aligned} \tag{51}$$

1583 In Eq. 51 in the second line, we have introduced Eq. 47-Eq. 50. In the third line we have introduced
 1584 $\frac{P_o(\mathbf{f})}{P_o(\mathbf{f}|\mathbf{u})} = P_0(\mathbf{u})$ from Eq. 49. In the final line we rearranged the terms that do not depend on
 1585 \mathbf{f} outside of the integral over \mathbf{f} , moved the $\ln Z$ term out of the integration over \mathbf{u} , and denoted
 1586 $\mathbb{E}_0[\cdot] = \int P_0(\mathbf{f}|\mathbf{u}) d\mathbf{f}$.

1587 To minimise the relative entropy $\mathcal{KL}[Q_f || P_f]$ we conclude that the optimal choice for the effective
 1588 likelihood $R(\mathbf{u})$ is

$$R(\mathbf{u}) \propto e^{-\mathbb{E}_o[\mathcal{A}(\mathbf{f}|\mathbf{u})]}. \tag{52}$$

1589 Given the quadratic form of $A(\mathbf{f})$ we may write the conditional expectation in Eq. 52 as a quadratic
 1590 form too

$$\begin{aligned}
 1591 \mathbb{E}_o[\mathcal{A}(\mathbf{f}|\mathbf{u})] &= \frac{1}{2} \mathbb{E}_o[\mathbf{f}|\mathbf{u}]^T \Lambda \mathbb{E}_o[\mathbf{f}|\mathbf{u}] + \frac{1}{2} \text{Tr}(\text{Cov}_o[\mathbf{f}|\mathbf{u}] \Lambda) - a^T \mathbb{E}_o[\mathbf{f}|\mathbf{u}] \\
 1592 &= \frac{1}{2} \mathbb{E}_o[\mathbf{f}|\mathbf{u}]^T \Lambda \mathbb{E}_o[\mathbf{f}|\mathbf{u}] - a^T \mathbb{E}_o[\mathbf{f}|\mathbf{u}] + \text{const.},
 \end{aligned} \tag{53}$$

1593 where in the last line we take into account that the term $\text{Tr}(\text{Cov}_o[\mathbf{f}|\mathbf{u}] \Lambda)$ is independent of the sparse
 1594 function values \mathbf{u} (c.f. Ruttor et al. (2013)).

1595 In particular, the conditional expectation of function values f conditioned on the inducing point
 1596 function values $\mathbf{u} \equiv \mathcal{U}$ at inducing point locations $\mathbf{z} \equiv \mathcal{Z}$ equals

$$\bar{f}^s(\mathbf{x}) = \mathbb{E}_o[f|\mathbf{u}] = k(\mathbf{x}, \mathcal{Z}) k(\mathcal{Z}, \mathcal{Z})^{-1} \mathcal{U}, \tag{54}$$

1597 while the covariance equals

$$(\Sigma^s)^2(\mathbf{x}) = k(\mathbf{x}, \mathbf{x}) - k(\mathbf{x}, \mathcal{Z}) k(\mathcal{Z}, \mathcal{Z})^{-1} k(\mathcal{Z}, \mathbf{x}), \tag{55}$$

1598 where we have employed similar notation for the kernel functions as in Eqs. 21-22.

C THEORETICAL EVIDENCE THAT MAY SUPPORT THE USE OF GEODESICS AS GEOMETRIC CONSTRAINTS

1600 The Onsager-Machlup functional for diffusion processes has been known in theoretical physics as
 1601 a characteriser of the most probable path (MPP) between two pre-defined states of the process.
 1602 In (Onsager and Machlup, 1953), Onsager and Machlup used the thermal fluctuations of a diffusion
 1603 process to show that the probability density of a path $\gamma \in C^1([0, T], \mathcal{R}^d)$ in \mathcal{R}^d over finite interval
 1604 can be expressed as a Boltzmann factor

$$P(\gamma) \sim \exp \left[- \int_0^T L(\gamma(t), \dot{\gamma}(t)) dt \right], \tag{56}$$

1620 where

1621
$$L(\gamma(t), \dot{\gamma}(t)) = \frac{1}{2} \left\| \frac{\dot{\gamma}(t) - \mathbf{f}(\gamma(t))}{\mathbf{D}} \right\|^2 + \frac{1}{2} \nabla \cdot \mathbf{f}(\gamma(t)).^1 \quad (57)$$
 1622

1623 The function $L(\gamma(t), \dot{\gamma}(t))$ is known as the **Onsager-Machlup** function (action), while its integral
1624 over time is known as Onsager-Machlup action functional. It has been used as Lagrangian in Euler-
1625 Lagrange minimisation schemes to identify the **most probable path (MPP)** of a diffusion process
1626 between two given points in the state space (Graham, 1977; Stratonovich, 1971).1627 Stratonovich (Stratonovich, 1971) considered the probability that a sample of a multidimensional
1628 diffusion process will lie in the vicinity of (within a tube of infinitesimal thickness around) an ide-
1629 alised smooth path in the state space. To compute this probability he constructed a probability
1630 functional which is identical to the Onsager-Machlup functional considered as Lagrangian for the
1631 diffusion process. Duerr et al. (Dürr and Bach, 1978) considered scalar diffusion processes and
1632 constructed the Onsager-Machlup function from the asymptotic limit of the transition probability
1633 between the starting and end state of the path using a Girsanov transformation.1634 Considering Brownian motions defined on a Riemannian manifold $(\mathcal{M}, \mathbf{g})$ with associated Rie-
1635 mannian metric \mathbf{g} , the Onsager-Machlup functional can be expressed as the integral over the La-
1636 grangian (Takahashi and Watanabe, 1981; Graham, 1980; Grong and Sommer, 2022)

1637
$$L(\gamma, \dot{\gamma}) = \frac{1}{2} \|\dot{\gamma}(t)\|_{\mathbf{g}}^2 - \frac{1}{12} S(\gamma(t)), \quad (58)$$
 1638

1640 where $\|\cdot\|_{\mathbf{g}}$ denotes the Riemannian norm on the tangent space $\mathcal{T}_X \mathcal{M}$ of the manifold with respect
1641 to the metric \mathbf{g} , and $S(\cdot)$ stands for the scalar curvature of the manifold at each point. The first term
1642 is the Lagrangian used to identify geodesic curves on manifolds (c.f. A.3.2)1643 In our proposed formalism, for computational purposes we have assumed the entire \mathcal{R}^d as smooth
1644 manifold. We can identify the first term of Eq. 58 with the Lagrangian we optimised for computing
1645 the geodesics on the manifold $(\mathcal{R}^d, \mathbf{g})$, where \mathbf{g} is the metric learned from the observations.1646 However the system we observed was a diffusion process defined in \mathcal{R}^d with an Euclidean metric.
1647 Constructing a path augmentation scheme that guides the augmented paths towards the geodesics
1648 of a diffusion defined with respect to a different metric raises questions about the validity of our
1649 approach. Here we should note that diffusions with a general state dependent diffusion coefficient
1650 $\sigma \in \mathcal{R}^{d \times m}$, and m -dimensional Brownian motion, can be considered as evolving on the manifold
1651 $(\mathcal{R}^d, \mathbf{g})$, with the associated metric $\mathbf{g} = (\sigma \sigma^\top)^{-1}$ (Capitaine, 2000). Thus it may be possible to
1652 associate the metric learned from the data with the metric arising from a state dependent diffusion by
1653 applying a transformation akin to an inverse Lamperti transform (Øksendal, 2003) to transform our
1654 learned SDE to one that would have induced the learned metric due to the state dependent diffusion.
1655 The existence of such a transformation would justify the proposed method. Our empirical results
1656 demonstrate that such a transformation may be possible.1657
1658

D DOES THE PROPOSED APPROACH INVALIDATE THE MARKOVIAN 1659 PROPERTY OF THE DIFFUSION PROCESS?

 16601661 The proposed path augmentation seemingly invalidates the Markovian property of the diffusion
1662 process. According to the Markov property of the diffusion of Eq. 1, the system state $\mathbf{X}_{k\tau+\delta t}$
1663 should depend only the state $\mathbf{X}_{k\tau}$, i.e., the observation \mathcal{O}_k . The proposed augmentation makes the
1664 state $\mathbf{X}_{k\tau+\delta t}$ depending not only on the next observation $\mathcal{O}_{k+1} = \mathbf{X}_{(k+1)\tau}$, but also on past and
1665 future states that lie in the vicinity of these observations.1666 We effectively construct the augmented paths to compute the likelihood of a drift estimate. To
1667 compute this likelihood we require to evaluate the transition probabilities between consecutive ob-
1668 servations. Since for general nonlinear systems the transition probabilities are in general intractable,
1669 we have to resort to numerical approximations. Ideally we would approximate the transition density1670
1671

1672 ¹Onsager and Machlup's initial work concentrated around linear processes and therefore the functional
1673 initially introduced by the did not include the second term with the divergence of \mathbf{f} as this is a constant for
linear \mathbf{f} . It was later added to the OM function to account for trajectory entropy corrections (Taniguchi and
Cohen, 2007; Adib, 2008)

1674 with a bridge sampler that would consider the nonlinear estimated SDE conditioned to pass though
 1675 consecutive observations. However for coarse drift estimates, the observations have zero probability
 1676 under the law of the estimated SDE, and construction of those bridges would result either in very
 1677 taxing computations or would fail altogether. Instead, here, we compute the likelihood of a "cor-
 1678 rected" estimate (the correction resulting from the invariant density) under which the observations
 1679 have non-zero probability, and subsequently re-estimate the drift on the augmented path with this
 1680 "corrected" estimate. By taking into account the local geometry of the observations, we provide
 1681 systematic corrections for the misestimated drift function to generate the augmented paths. This ef-
 1682 fectively nudges the augmentation process towards the second observation of each inter-observation
 1683 interval through the path constraint that forces the augmented paths towards the geodesics.

1684 E RELATED WORK AND POSITIONING OF THE PRESENT WORK

1685 Here, we briefly review further related work on inference or modelling of SDEs and position our
 1686 work further with respect to the existing literature.

1687 **Modelling general SDEs from state observations.** As already mentioned in the Introduction
 1688 and in Sec. A existing inference methods for SDEs can be broadly clustered in temporal and geo-
 1689 metric methods, where the former accounts for the temporal order of the observations, while the
 1690 latter approximate the invariant system density and discard any time information.

1691 **Temporal methods** rely on the Euler-Maruyama discretisation of the SDE paths approximating
 1692 conditional expectations of state increments (i.e. the Krammers Moyal coefficients). They model
 1693 the drift either in terms of Gaussian processes (Ruttor et al., 2013; Batz et al., 2018; Hostettler et al.,
 1694 2018; Zhao et al., 2020; Yildiz et al., 2018), basis functions (Nabeel et al., 2025; Ragwitz and Kantz,
 1695 2001; Friedrich and Peinke, 1997; Peinke et al., 1997; Friedrich et al., 2000; Ferretti et al., 2020) or
 1696 libraries of functions (Boninsegna et al., 2018; Huang et al., 2022), kernel regression (Lamouroux
 1697 and Lehnertz, 2009; Jiang and Knight, 1997), dynamic mode decomposition to learn the eigenfunc-
 1698 tions of the Koopman operator (Klus et al., 2020), by approximating the central moments of the
 1699 transition densities (Stanton, 1997), or by applying generalised methods of moments (Hansen and
 1700 Scheinkman, 1993).

1701 As explicitly detailed in Sec. A, most temporal methods do not provide accurate drift estimates when
 1702 the interval between observations is large. The two prevailing approaches to mitigate this finite
 1703 sampling rate effects is to either account for the systematic bias introduced by the finite sampling
 1704 rate by estimating an explicit correction term for the inferred drift (Ragwitz and Kantz, 2001; 2002;
 1705 Kleinhans et al., 2005; Kleinhans and Friedrich, 2007), or by performing state estimation for the
 1706 unobserved paths (also known as path or data augmentation) and then estimating the drift from the
 1707 continuous paths.

1708 The former approach works only for scalar systems, while the latter employs simplified bridge dy-
 1709 namics (e.g., Brownian (Chib et al., 2006; Eraker, 2001; Sermaidis et al., 2013) or Ornstein Uhlen-
 1710 beck (Batz et al., 2018; Billio et al., 1998) bridges) that are analytically tractable or computationally
 1711 non-demanding. However, for large τ and for nonlinear systems, these simplified bridge dynamics
 1712 match poorly the underlying path statistics. (Fig. 1 D.). It is important to mention here, that path
 1713 augmentation with Ornstein Uhlenbeck bridges similar to Batz et al. (2018) provides a good ap-
 1714 proximation of the underlying transition density, when the underlying linear process employed for
 1715 each bridge has a drift that comes from the local linearisation of the **ground truth** drift function.
 1716 However, during inference the true dynamics are unknown and the local linearisations on inaccurate
 1717 drift estimates employed in Batz et al. (2018) provide imprecise approximations for large τ .

1718 Alternative methods, employ variational inference (Batz et al., 2016; Opper, 2019; Duncker et al.,
 1719 2019; Verma et al., 2024) and approximate the posterior path measure with a tractable Gaussian
 1720 process induced by a time-varying linear SDE. This results in ODEs for the posterior mean and
 1721 covariance matrix and an ELBO that is optimized directly (Archambeau et al., 2007; Duncker et al.,
 1722 2019).

1723 Building on the building on a rich line of work on neural ODEs, neural SDEs (Li et al., 2020) em-
 1724 ploy gradient-based stochastic variational inference and the stochastic adjoint sensitivity method to
 1725 compute gradients of solutions of stochastic equations with respect to their parameters. Building on

1728 these methods, Course and Nair (2023b) remove the need for adjoint-based gradient computations
 1729 by combining amortized inference with a reparametrization of the ELBO by assuming a latent linear
 1730 process that generates the latent path.

1731 **Geometric approaches** on the other hand, discard the temporal structure of the observations, and
 1732 treat them as samples of the invariant density. Thereby these methods either employ density estimation
 1733 to identify the drift as the gradient of a potential Kutoyants and Kutojanc (2004), or resort to
 1734 spectral approximations of the generator of the diffusion process through manifold learning.
 1735

1736 Manifold learning methods employ often the *diffusion maps* algorithm, introduced by Coiffman and
 1737 colleagues Singer and Coifman (2008), to learn the dominant part of the spectrum of the transfer
 1738 operator of the observed diffusion process Coifman et al. (2005); Nadler et al. (2006); Giannakis
 1739 (2019); Ferguson et al. (2011); Talmor and Coifman (2015). In essence, these methods, learn
 1740 from the data the few leading eigenfunctions of the Laplace–Beltrami operator that captures the
 1741 Riemannian geometry of the observations, and consider them as a parametrisation of the manifold
 1742 representing the invariant density.

1743 ▷ **Modelling SDEs from population level snapshots/boundary conditions.** With the recent com-
 1744 putational advances in solving optimal transport problems, a large volume of recent works focuses
 1745 on implementations of solutions of the Schroedinger bridge sampling problem with potential addi-
 1746 tional path constraints. These mostly generative methods focus on transporting the data distribution
 1747 from some initial boundary condition to some terminal one, and most of these learn an stochastic
 1748 equation to perform this transport through Schroedinger bridge sampling. Generalized Schroedinger
 1749 Bridge Matching (GSBM) follows an alternating scheme that learns both drift and marginals. Given
 1750 the boundary conditions, the framework minimises a kinetic term, that is then used in a stochastic
 1751 optimal control problem conditioned on the initial and terminal conditions and a path cost that ac-
 1752 counts for additional constraints. Action matching Neklyudov et al. (2023b) introduces a simulation-
 1753 free variational objective that identifies a time-dependent scalar potential (entropic action) s_t whose
 1754 gradient ∇s_t transports the densities via the continuity from the initial to the boundary condition
 1755 through the continuity equation. In its entropic formulation the ∇s_t can be considered as drift of
 1756 the underlying SDE whose marginal match the boundary conditions. However, by construction,
 1757 the framework can only recover gradient drifts and are therefore not suitable for identifying general
 1758 stochastic systems with rotational dynamics.

1759 **Geometry aware generative methods** MFM generalizes CFM by learning interpolants that ac-
 1760 count for the geometry of the data. However MFM does not assume a stochastic underlying process,
 1761 as our framework does, only a deterministic interpolation (transport) that respects the data manifold.
 1762 However, by assuming a specific noise amplitude for the underlying SDE, one can consider the flow
 1763 field as generated by the effective drift of a probability flow ODE associated with the considered
 1764 SDE and make inferences about the underlying drift function.

1765 **Approximating observation geometry in the ambient space.** In our work, we approximate the
 1766 geometry induced by the observations by endowing the ambient space \mathcal{R}^d with an observation-
 1767 dependent Riemannian metric $H(x)$ (Eq. 4) that encodes the local anisotropy of the data distribution.
 1768 In our framework this metric acts as a constraint for data-augmentation and as a geometric inductive
 1769 bias for drift function inference: augmented paths are encouraged to remain in regions where the
 1770 metric $H(x)$ induces smaller distances, i.e. in the vicinity of geodesics computed with respect to
 1771 this metric, thereby aligning the augmented paths with the empirical observation geometry.
 1772

1773 This perspective connects to a growing body of work that **approximates Riemannian metrics di-**
 1774 **rectly in the ambient space** as a proxy for the unknown curved low-dimensional data manifold,
 1775 instead of first estimating its intrinsic dimensionality and then constructing explicit low-dimensional
 1776 embeddings.

1777 In parallel, an increasing body of literature focuses on endowing generative models with geometric
 1778 constraints or inductive biases. While most methods function in autoencoder-like setting, by learn-
 1779 ing an embedding function for projecting to a lower dimensional space that respects prescribed or
 1780 learned geometric constraints Duque et al. (2022); Kalatzis et al. (2020); Arvanitidis et al. (2017)
 1781 geometry, "Riemannian", similar to our proposed method, operate in the ambient space by directly
 a Riemannian geometry embedded there and define normalizing flows or other generative processes

1782 directly on the manifold of interest. Mathieu and Nickel (2020) introduce a framework for continuous
 1783 normalizing flows defined in the ambient space, respecting a prescribed Riemannian geometry.
 1784 Similarly, De Bortoli et al. (2022) proposed a score-based generative model that models target
 1785 densities with support on prescribed Riemannian manifolds in terms of a time-reversal of Langevin
 1786 dynamics.

1787 Metric flow matching (Kapusniak et al., 2024) interpolates data distributions that respect the
 1788 geodesic interpolants computed according to the metric induced by the observations. They em-
 1789 ploy data-dependent metrics in the ambient high dimensional space to design interpolants with low
 1790 kinetic energy under the learned geometry and to constrain generative paths to the data manifold.
 1791 Our construction is conceptually similar with these approaches in that we also avoid explicit low-
 1792 dimensional embeddings and instead approximate the observation manifold through a Riemannian
 1793 metric living in the ambient space. However, in contrast to methods focused on deterministic trans-
 1794 port or simulation-free matching, we use the learned metric to regularize continuous-time diffusion
 1795 bridges and drift inference, so that the recovered stochastic dynamics are geometrically consistent
 1796 with the observation-induced invariant measure.

1797 **Positioning of the present work.** Our approach combines the nonparametric flexibility of
 1798 Gaussian-process-based drift inference from time-series data with recent geometric ideas for
 1799 population-level SDE modeling. Similar to Metric Flow Matching (Kapusniak et al., 2024), we
 1800 posit that augmented trajectories should remain on the manifold induced by the observations: both
 1801 frameworks estimate a data-adapted Riemannian metric and construct interpolants (geodesics and
 1802 bridges) that respect this geometry. The GSBM framework (Liu et al., 2023) employs a stochastic
 1803 control objective that is similar to the objective we consider for constructing the augmented paths.
 1804 However, unlike our framework, GSBM does not introduce geometric constraints for the augmented
 1805 paths. However, the path constraint they consider can be formulated with geometric considera-
 1806 tions as we did in our comparisons here. Finally, whereas these methods typically learn a drift that
 1807 transports a single source distribution to a single terminal snapshot, yielding thus a locally valid
 1808 dynamics, our method, akin to multi-marginal bridge sampling (Shen et al., 2024), fits a sequence
 1809 of bridges across multiple time points to recover a **single global drift** consistent with the underlying
 1810 drift dynamics.

1811 F GEOMETRIC CONSTRAINTS ON INFERENCE.

1812 Our method bridges the gap between approaches that rely only on the temporal structure of observa-
 1813 tions and those that approximate the invariant density, while ignoring temporal order. Motivated by
 1814 advances in geometric statistics (Miolane et al., 2020; Sommer, 2020), and the growing interest on
 1815 the concept of manifold hypothesis (Fefferman et al., 2016; Shnitzer et al., 2020), i.e., the considera-
 1816 tion that the state of multi-dimensional dynamical systems often resides in low-dimensional regions
 1817 of the state space, several recent methods integrate geometric and temporal constraints in stochastic
 1818 system identification. In *Langevin regression* framework (Callaham et al., 2021), the Kramers-
 1819 Moyal (KM) coefficients are estimated and low sampling effects are accounted for by solving an
 1820 adjoint Fokker-Planck equation, with regularisation via moment matching (Lade, 2009). Tong et al.
 1821 (2020) consider the manifold of the observations for inference of cellular dynamics. Their method
 1822 employs dynamic optimal transport to interpolate between measured distributions constrained to lie
 1823 in the vicinity of the observations. While sharing similar intuitions with our method, Tong et al.
 1824 do not employ SDE modelling for inherently stochastic cellular dynamics and do not consider the
 1825 underlying geometry of the observations, relying solely on constraints penalizing pairwise distances
 1826 between them. Shnitzer et al. (Shnitzer et al., 2020; 2016) employ diffusion maps to approximate
 1827 the eigenfunctions of the backward Kolmogorov operator (the generator of the stochastic Koopman
 1828 operator (Giannakis, 2019; Črnjarić-Žic et al., 2020)). By evolving the dominant operator eigen-
 1829 spectrum with a Kalman filter, they account for the temporal order of observations. However, their
 1830 approach is limited to conservative systems and requires the presence of a spectral gap in the ap-
 1831 proximated operator's spectrum.

G ADDITIONAL RESULTS

G.1 INFERENCE WITH NOISE MISS-ESTIMATION

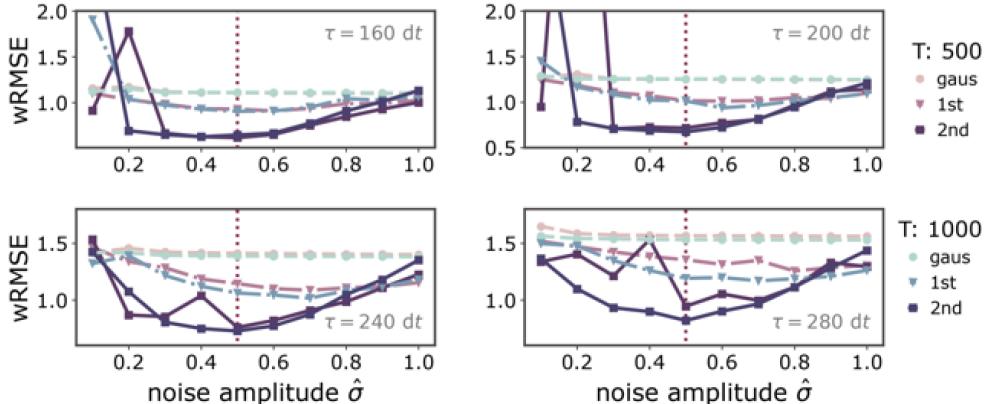


Figure 5

Small noise misestimation has small impact on estimation accuracy. Weighted root mean square error (wRMSE) vs. noise amplitude σ employed in the augmentation for different inter-observation intervals with **a.)** $\tau = 160 dt$ **b.)** $\tau = 200 dt$, **c.)** $\tau = 240 dt$ **d.)** $\tau = 280 dt$. Pink-purple lines correspond to estimation with total simulation length $T = 500$ time units, and blue markers correspond to total simulation length of $T = 1000$ time units. Red dotted line identifies the noise amplitude employed in the simulation of the observations.

G.2 INFERENCE PERFORMANCE DETERIORATES WITH INCREASING INTER-OBSERVATION INTERVAL FOR EXISTING FRAMEWORKS

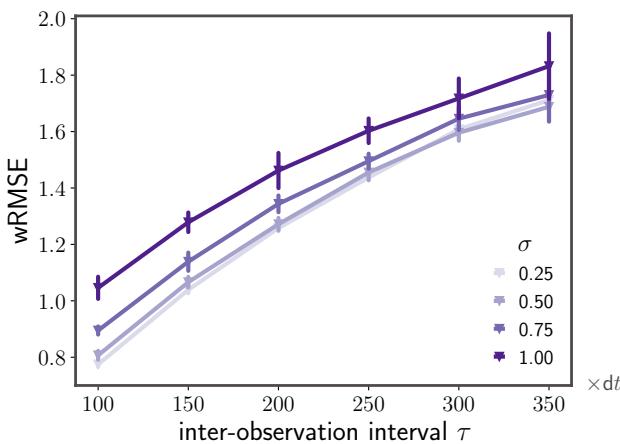


Figure 6

Increasing observation interval between successive observations τ deteriorates performance quantified by increasing weighted root mean squared error (wRMSE) for Gaussian process-based inference. Weighted root mean square error between estimated and ground truth drift vector fields for increasing observation interval τ between subsequent observations for different noise conditions (indicated by different hues). Observations were collected from a Van der Pol oscillator system simulated with $dt = 0.01$ for $T = 500$ time units. Error bars indicate one standard deviation over ten independent realizations.

We computed the weighted root mean square error (wRMSE) between ground truth flow fields and estimated ones for several commonly applied inference frameworks. We observed that the performance of all of them deteriorates once the inter-observation interval becomes large.

We started with the method that motivated our research, approximating drift functions through Gaussian processes, the method outlined in Ruttor et al. (2013). The method approximates the drift

functions with Gaussian process regression, using the system state \mathbf{X}_t as the regressor and state increments as the response variable $\mathbf{Y}_t \doteq \frac{\mathbf{X}_{t+\tau} - \mathbf{X}_t}{\tau}$. This is the Bayesian counterpart of earlier methods encountered in physics literature (Friedrich and Peinke, 1997; Ragwitz and Kantz, 2001), providing additionally uncertainty estimation through the Gaussian process approximation.

As is evident from Figure 6 the discrepancy between ground truth and estimated vector fields increases for increasing temporal distance between successive observations. This should be understood, under the consideration that inference of the drift based on regression on state increments results from an approximation relying on a truncated Ito-Taylor expansion. This is also the starting point of the Euler Maruyama discretisation. As the time interval between successive steps of this approximation increases, the truncated approximation does not longer hold, and higher order terms should be considered.

1902 G.3 INFERENCE BASED ON EULER-MARUYAMA DISCRETISATION DOES NOT ACCOUNT FOR 1903 THE CURVATURE OF THE TRAJECTORIES IN THE STATE SPACE

1905 To be more precise, a general SDE of the form

$$1906 \quad d\mathbf{X}_t = \mathbf{f}(\mathbf{X}_t, t)dt + \boldsymbol{\sigma}(\mathbf{X}_t, t)d\mathbf{W}_t. \quad (59)$$

1908 is a shorthand for the integral equation

$$1909 \quad \mathbf{X}_t = \mathbf{X}_{t_0} + \int_{t_0}^t \mathbf{f}(\mathbf{X}_s, s) ds + \int_{t_0}^t \boldsymbol{\sigma}(\mathbf{X}_s, s) d\mathbf{W}_s, \quad (60)$$

1912 where as previously in this manuscript, we consider the stochastic integrals in the **Itô sense**. (Here
1913 we start from a more general formulation of the stochastic equation with both diffusion and drift
1914 terms being state- and time-dependent to highlight that also for more general SDEs our geometric
1915 argument is valid.)

1916 Applying the Itô formula on each integrand, and integrating from t_0 to t , we obtain the Itô-Taylor
1917 expansion of Eq. 59

$$1918 \quad \mathbf{f}(\mathbf{X}_t, t) = \mathbf{f}(\mathbf{X}_{t_0}, t_0) + \int_{t_0}^t \frac{\partial \mathbf{f}(\mathbf{X}_s, s)}{\partial s} ds + \int_{t_0}^t \sum_u \frac{\partial \mathbf{f}(\mathbf{X}_s, s)}{\partial X^{(u)}} f_u(\mathbf{X}_s, s) ds \\ 1919 \quad + \int_{t_0}^t \sum_u \frac{\partial \mathbf{f}(\mathbf{X}_s, s)}{\partial X^{(u)}} [\boldsymbol{\sigma}(\mathbf{X}_s, s) d\mathbf{W}_s]_u + \int_{t_0}^t \frac{1}{2} \sum_{u,v} \frac{\partial^2 \mathbf{f}(\mathbf{X}_s, s)}{\partial X^{(u)} \partial X^{(v)}} [\boldsymbol{\sigma}(\mathbf{X}_s, s) \boldsymbol{\sigma}^\top(\mathbf{X}_s, s)]_{uv} ds \\ 1920 \\ 1921 \\ 1922 \\ 1923 \\ 1924 \\ 1925 \quad = \mathbf{f}(\mathbf{X}_{t_0}, t_0) + \int_{t_0}^t \mathcal{L}_s^\dagger \mathbf{f}(\mathbf{X}_s, s) ds + \sum_\nu \int_{t_0}^t \mathcal{L}_{W,\nu} \mathbf{f}(\mathbf{X}_s, s) dW_s^{(\nu)}, \quad (61)$$

1926 and

$$1928 \quad \boldsymbol{\sigma}(\mathbf{X}_t, t) = \boldsymbol{\sigma}(\mathbf{X}_{t_0}, t_0) + \int_{t_0}^t \frac{\partial \boldsymbol{\sigma}(\mathbf{X}_s, s)}{\partial s} ds + \int_{t_0}^t \sum_u \frac{\partial \boldsymbol{\sigma}(\mathbf{X}_s, s)}{\partial X^{(u)}} f_u(\mathbf{X}_s, s) ds \\ 1929 \\ 1930 \\ 1931 \\ 1932 \\ 1933 \\ 1934 \\ 1935 \quad + \int_{t_0}^t \sum_u \frac{\partial \boldsymbol{\sigma}(\mathbf{X}_s, s)}{\partial X^{(u)}} [\boldsymbol{\sigma}(\mathbf{X}_s, s) d\mathbf{W}_s]_u + \int_{t_0}^t \frac{1}{2} \sum_{u,v} \frac{\partial^2 \boldsymbol{\sigma}(\mathbf{X}_s, s)}{\partial X^{(u)} \partial X^{(v)}} [\boldsymbol{\sigma}(\mathbf{X}_s, s) \boldsymbol{\sigma}^\top(\mathbf{X}_s, s)]_{uv} ds \\ 1936 \\ 1937 \\ 1938 \\ 1939 \\ 1940 \\ 1941 \\ 1942 \\ 1943 \quad = \boldsymbol{\sigma}(\mathbf{X}_{t_0}, t_0) + \int_{t_0}^t \mathcal{L}_s^\dagger \boldsymbol{\sigma}(\mathbf{X}_s, s) ds + \sum_\nu \int_{t_0}^t \mathcal{L}_{W,\nu} \boldsymbol{\sigma}(\mathbf{X}_s, s) dW_s^{(\nu)}, \quad (62)$$

1936 where we have used the fact that the product of stochastic differentials due to the Ito isometry and
1937 multiplication rules equals the noise covariance times the time step

$$1938 \quad dX_t^{(u)} dX_t^{(v)} = [\boldsymbol{\sigma} \boldsymbol{\sigma}^\top]_{uv} dt,$$

1940 where

$$1941 \quad dX_s^{(u)} = f_u ds + \sum_{j=1}^m \sigma_{uj} dW_s^{(j)},$$

1943 while the superscripts/subscripts u, v indicate dimensional components.

1944 In the above equations, we have introduced the operators acting on test-functions $\mathbf{h} : \mathcal{R}^D \rightarrow \mathcal{R}^D$
 1945

$$1946 \quad \mathcal{L}_t^\dagger \mathbf{h} = \frac{\partial \mathbf{h}}{\partial t} + \sum_u \frac{\partial \mathbf{h}}{\partial X^{(u)}} f_u + \frac{1}{2} \sum_{u,v} \frac{\partial^2 \mathbf{h}}{\partial X^{(u)} \partial X^{(v)}} [\boldsymbol{\sigma}(\mathbf{X}_s, s) \boldsymbol{\sigma}^\top(\mathbf{X}_s, s)]_{uv} \quad (63)$$

1947
 1948 and
 1949

$$1950 \quad \mathcal{L}_{W,v} \mathbf{h} = \sum_u \frac{\partial \mathbf{h}}{\partial X^{(u)}} \boldsymbol{\sigma}_{uv}, \quad \text{for } v = 1, \dots, n. \quad (64)$$

1951

1952 With these expressions, the original integral equation for \mathbf{X}_t can be written as
 1953

$$1954 \quad \mathbf{X}_t = \mathbf{X}_{t_0} + \mathbf{f}(\mathbf{X}_{t_0}, t_0)(t - t_0) + \boldsymbol{\sigma}(\mathbf{X}_{t_0}, t_0) (\mathbf{W}_t - \mathbf{W}_{t_0}) + \quad (65)$$

1955
 1956
 1957

$$1958 \quad R_1 = \begin{cases} + \int_{t_0}^t \int_{t_0}^s \mathcal{L}_u^\dagger \mathbf{f}(\mathbf{X}_u, u) du ds + \sum_\nu \int_{t_0}^t \int_{t_0}^s \mathcal{L}_{W,\nu} \mathbf{f}(\mathbf{X}_u, u) dW_u^{(\nu)} ds \\ + \int_{t_0}^t \int_{t_0}^s \mathcal{L}_u^\dagger \boldsymbol{\sigma}(\mathbf{X}_u, u) du d\mathbf{W}_s + \sum_\nu \int_{t_0}^t \int_{t_0}^s \mathcal{L}_{W,\nu} \boldsymbol{\sigma}(\mathbf{X}_u, u) dW_u^{(\nu)} d\mathbf{W}_s. \end{cases}$$

1959
 1960

1961 In the last equation, dropping the terms in the remainder R_1 results in the Euler–Maruyama integration scheme (Jentzen and Kloeden, 2011). Introducing the discrete time and noise increments
 1962

$$1964 \quad \Delta t_n = t_{n+1} - t_n = \int_{t_n}^{t_{n+1}} ds, \quad \Delta \mathbf{W}_n = \mathbf{W}_{t_{n+1}} - \mathbf{W}_{t_n} = \int_{t_n}^{t_{n+1}} d\mathbf{W}_s, \quad (66)$$

1965

1966 we result in the discrete time equation commonly used for numerical integration of SDEs
 1967

$$1968 \quad \mathbf{X}_{n+1} = \mathbf{X}_n + \mathbf{f}(\mathbf{X}_n, t_n) \Delta t_n + \boldsymbol{\sigma} \Delta \mathbf{W}_n. \quad (67)$$

1969

1970 This is also the starting point of most inference methods that employ the regression scheme mentioned above by approximating the drift as
 1971

$$1972 \quad \hat{\mathbf{f}}(\mathbf{X}_n, t_n) \approx \frac{\mathbf{X}_{n+1} - \mathbf{X}_n}{\Delta t} \sim \mathcal{N}\left(\mathbf{0}, \frac{\boldsymbol{\sigma} \boldsymbol{\sigma}^\top}{\Delta t}\right). \quad (68)$$

1973

1974 This discretisation is a zero-order approximation of the true dynamics, and assumes that $\mathbf{f}(\cdot)$ remains
 1975 constant throughout the interval Δt , i.e. throughout the inter-observation interval τ in the inference
 1976 setting. However as τ increases, higher-order terms in the remainder R_1 of the Itô–Taylor expansion
 1977 become significant, since the assumption that the drift is approximately constant over τ does not
 1978 hold.

1979 We can glean onto the terms that become important once the inter-observation interval becomes
 1980 large, by applying the Itô formula onto each one of the integrands in R_1 separately **for the spe-**
 1981 **cific setting we consider in this manuscript**, i.e. that of time-independent drift function $\mathbf{f}(\mathbf{x})$ and
 1982 constant diffusion matrix $\boldsymbol{\sigma}$. In the following, we demonstrate that the leading-order error of this
 1983 approximation is governed by the intrinsic geometry of the drift vector field. This provides fur-
 1984 ther insight and a geometric explanation for the deterioration of inference methods for increasing
 1985 inter-observation interval τ .

1986 In short we show that, inference methods based on the Euler–Maruyama discretisation-based in-
 1987 ference effectively assume that the vector field between consecutive observations \mathbf{X}_n and \mathbf{X}_{n+1}
 1988 does not change. Our analysis shows this is equivalent to assuming trajectories are straight lines
 1989 ($\mathbf{J}_f \mathbf{f} \parallel \mathbf{f}$) and the Itô correction is constant. In reality, trajectories curve ($\mathbf{J}_f \mathbf{f}$ has also a perpen-
 1990 dicular component), and this curvature itself changes along the vector field. The Euler–Maruyama
 1991 discretisation-based inference scheme systematically misses these higher-order geometric features,
 1992 leading to biased drift estimates.

1993 G.3.1 FIRST REMAINDER TERM $R_{1,a}$

1994

1995 We denote the first term of the reminder by $R_{1,a}$
 1996

$$1997 \quad R_{1,a} = \int_{t_0}^t \int_{t_0}^s \mathcal{L}_u^\dagger \mathbf{f}(\mathbf{X}_u) du ds. \quad (69)$$

1998 Applying Itô's formula to the integrand $\mathcal{L}_t^\dagger \mathbf{f}(\mathbf{X}_u, u)$, we get
 1999

$$2000 \quad d\mathcal{L}_u^\dagger \mathbf{f}(\mathbf{X}_u) = \frac{\partial}{\partial u} \mathcal{L}_u^\dagger \mathbf{f}(\mathbf{X}_u) du + \sum_{j=1}^d \frac{\partial \mathcal{L}_u^\dagger \mathbf{f}}{\partial X^{(j)}}(\mathbf{X}_u) dX_u^{(j)} + \frac{1}{2} \sum_{j,k=1}^d \frac{\partial^2 \mathcal{L}_u^\dagger \mathbf{f}}{\partial X^{(j)} \partial X^{(k)}}(\mathbf{X}_u) [\boldsymbol{\sigma} \boldsymbol{\sigma}^\top]_{jk} du. \quad (70)$$

2004
 2005 Plugging in the original SDE $dX_u^{(j)} = f_j du + \sum_{\nu=1}^m \sigma_{j\nu} dW_u^{(\nu)}$, and integrating over the time from
 2006 t_0 to u

$$2008 \quad \mathcal{L}_u^\dagger \mathbf{f}(\mathbf{X}_u) = \mathcal{L}_{t_0}^\dagger \mathbf{f}(\mathbf{X}_{t_0}) + \int_{t_0}^u \left(\frac{\partial}{\partial w} (\mathcal{L}_w^\dagger \mathbf{f}(\mathbf{X}_w)) + \sum_j \frac{\partial (\mathcal{L}_w^\dagger \mathbf{f})}{\partial X^{(j)}} f_j + \frac{1}{2} \sum_{j,k} \frac{\partial^2 (\mathcal{L}_w^\dagger \mathbf{f})}{\partial X^{(j)} \partial X^{(k)}} [\boldsymbol{\sigma} \boldsymbol{\sigma}^\top]_{jk} \right) dw \\ 2009 \quad + \int_{t_0}^u \sum_j \frac{\partial (\mathcal{L}_w^\dagger \mathbf{f})}{\partial X^{(j)}} [\boldsymbol{\sigma} d\mathbf{W}_w]_j dw. \quad (71)$$

2014 Applying Fubini's theorem in the original double integral, we change the order of integration
 2015

$$2016 \quad \int_{t_0}^t \int_{t_0}^s \phi(u) du ds = \int_{t_0}^t (t-u) \phi(u) du, \quad (72)$$

2019 and we obtain

$$2022 \quad R_{1,a} = \int_{t_0}^t \int_{t_0}^s \mathcal{L}_u^\dagger \mathbf{f}(\mathbf{X}_u) du ds = \int_{t_0}^t (t-u) \left[\underbrace{\sum_j \frac{\partial \mathcal{L}_u^\dagger \mathbf{f}}{\partial X^{(j)}} f_j}_{R_{1,a}^1} + \underbrace{\frac{1}{2} \sum_{j,k} \frac{\partial^2 \mathcal{L}_u^\dagger \mathbf{f}}{\partial X^{(j)} \partial X^{(k)}} [\boldsymbol{\sigma} \boldsymbol{\sigma}^\top]_{jk}}_{R_{1,a}^2} \right] du \\ 2024 \quad + \int_{t_0}^t (t-u) \underbrace{\sum_j \frac{\partial \mathcal{L}_u^\dagger \mathbf{f}}{\partial X^{(j)}} [\boldsymbol{\sigma} d\mathbf{W}_u]_j du}_{R_{1,a}^3} + \frac{\tau^2}{2} \mathcal{L}_t^\dagger \mathbf{f}(\mathbf{X}_{t_0}). \quad (73)$$

2031 In the previous equation we have dropped the term $\frac{\partial}{\partial w} (\mathcal{L}_w^\dagger \mathbf{f}(\mathbf{X}_w))$ that is equal to zero and that
 2032 would require the drift \mathbf{f} to be time-dependent to be non-negligible.
 2033

2034 **First component $R_{1,a}^1$ of remainder term $R_{1,a}$: Flow curvature term.** The Itô/Backward Kol-
 2035 mogorov generator applied to a vector field \mathbf{f} can be written as
 2036

$$2037 \quad \mathcal{L}^\dagger \mathbf{f} = \mathbf{J}_f \mathbf{f} + \frac{1}{2} \Delta_D \mathbf{f}. \quad (74)$$

2039 In Eq. 74, $\mathbf{J}_f \doteq \nabla \mathbf{f}$ denotes the Jacobian of \mathbf{f} , $\mathbf{D} \doteq \boldsymbol{\sigma} \boldsymbol{\sigma}^\top$ the noise covariance, and
 2040 $\Delta_D \doteq \sum_{j,k} \mathbf{D}_{jk} \frac{\partial^2}{\partial X^{(j)} \partial X^{(k)}}$ is the noise-covariance weighted Laplacian operator. Thus each component of $\mathcal{L}^\dagger \mathbf{f}$ comprises the directional derivative of the drift $\mathbf{J}_f \mathbf{f}$ plus an anisotropic/noise-covariance
 2041 weighted Laplacian of \mathbf{f} , which in component-wise form is expressed as
 2043

$$2044 \quad [\mathcal{L}^\dagger \mathbf{f}]_i = \sum_k \frac{\partial f_i}{\partial X^{(k)}} f_k + \frac{1}{2} \sum_{k,\ell} \mathbf{D}_{k\ell} \frac{\partial^2 f_i}{\partial X^{(k)} \partial X^{(\ell)}}. \quad (75)$$

2047 Differentiating wrt to $X^{(j)}$ yields
 2048

$$2049 \quad \frac{\partial}{\partial X^{(j)}} [\mathcal{L}^\dagger \mathbf{f}]_i = \sum_k \frac{\partial^2 f_i}{\partial X^{(j)} \partial X^{(k)}} f_k + \sum_k \frac{\partial f_i}{\partial X^{(k)}} \frac{\partial f_k}{\partial X^{(j)}} + \frac{1}{2} \sum_{k,\ell} \mathbf{D}_{k\ell} \frac{\partial^3 f_i}{\partial X^{(j)} \partial X^{(k)} \partial X^{(\ell)}}, \quad (76)$$

2052 and thus we rewrite the i -th component of the term $R_{1,a}^1$ as
 2053

$$2054 [R_{1,a}^1]_i = \int_{t_0}^t (t-u) \left[\sum_{j,k} \frac{\partial^2 f_i}{\partial X^{(j)} \partial X^{(k)}} f_k f_j + \sum_{j,k} \frac{\partial f_i}{\partial X^{(k)}} \frac{\partial f_k}{\partial X^{(j)}} f_j + \frac{1}{2} \sum_{j,k,\ell} \mathbf{D}_{k\ell} \frac{\partial^3 f_i}{\partial X^{(j)} \partial X^{(k)} \partial X^{(\ell)}} f_j \right] du. \quad (77)$$

2058 The third-order state-derivative in the last summand of Eq. 77, indicates that this term is inactive for
 2059 linear or quadratic drift functions \mathbf{f} .
 2060

2061 We re-write again this part of the remainder in a more compact vector notation in terms of the
 2062 directional derivative of $(\mathbf{J}_f \mathbf{f})$ and $\frac{1}{2} \Delta_D \mathbf{f}$ along the vector field as
 2063

$$2064 R_{1,a}^1 = \int_{t_0}^t (t-u) \left[\underbrace{\nabla(\mathbf{J}_f \mathbf{f}) \cdot \mathbf{f}}_{\text{flow curvature}} + \underbrace{\nabla\left(\frac{1}{2} \Delta_D \mathbf{f}\right) \cdot \mathbf{f}}_{\text{diffusive term along the flow}} \right] du. \quad (78)$$

2067 This part of the remainder captures two geometric effects that standard inference methods neglect:
 2068 the **intrinsic curvature of deterministic flow trajectories in state space**, and the **systematic bias**
 2069 **introduced by the spatial variation of both drift and diffusion** along these trajectories, when both
 2070 drift and diffusion are assumed as constant between inter-observation intervals.
 2071

- 2072 • To understand the **first term**, $\nabla(\mathbf{J}_f \mathbf{f}) \cdot \mathbf{f}$, from a geometric perspective, let us consider a
 2073 deterministic dynamical system with dynamics $\dot{\mathbf{x}}_t = \mathbf{f}(\mathbf{x}_t)$. A trajectory initiated from an
 2074 initial condition \mathbf{x}_0 traces a streamline in the state space \mathcal{R}^d . We express the acceleration
 2075 of this trajectory in terms of the directional derivative

$$2076 \ddot{\mathbf{x}}_t = \frac{d}{dt} \mathbf{f}(\mathbf{x}_t) = \mathbf{J}_f(\mathbf{x}_t) \cdot \mathbf{f}(\mathbf{x}_t) = \mathbf{J}_f \cdot \mathbf{f}. \quad (79)$$

2079 The acceleration vector admits a natural orthogonal decomposition comprising a component
 2080 parallel to the vector field \mathbf{f} and an orthogonal component to \mathbf{f}

$$2081 \mathbf{J}_f \cdot \mathbf{f} = P_{\parallel}(\mathbf{f}) \mathbf{J}_f \cdot \mathbf{f} + P_{\perp}(\mathbf{f}) \mathbf{J}_f \cdot \mathbf{f}. \quad (80)$$

2083 Here $P_{\parallel}(\mathbf{f}(\mathbf{x})) = \frac{\mathbf{f}(\mathbf{x}) \mathbf{f}^{\top}(\mathbf{x})}{\|\mathbf{f}(\mathbf{x})\|^2}$ and $P_{\perp}(\mathbf{f}(\mathbf{x})) = \mathbb{I} - P_{\parallel}(\mathbf{f}(\mathbf{x}))$ stand for the parallel and orthog-
 2084 onal projectors. The parallel component quantifies the rate of change of speed along the tra-
 2085 jectory, whilst the perpendicular component defines the **curvature vector** $\kappa_{\text{flow}}(\mathbf{x})$ (Kühnel,
 2086 2002), which quantifies the bending of the trajectories
 2087

$$2088 \kappa_{\text{flow}}(\mathbf{x}) = \frac{P_{\perp}(\mathbf{f}(\mathbf{x})) \mathbf{J}_f(\mathbf{x}) \mathbf{f}(\mathbf{x})}{\|\mathbf{f}(\mathbf{x})\|^2}. \quad (81)$$

2090 When $\kappa_{\text{flow}} = 0$, the trajectories are straight lines in the state space, while when
 2091 $\|\kappa_{\text{flow}}\| > 0$ they are curved.
 2092

2093 The term $\nabla(\mathbf{J}_f \mathbf{f}) \cdot \mathbf{f}$ quantifies the **evolution of the trajectory curvature**² as the system
 2094 moves along the flow field. From Eq. 77 we have for each dimensional component i of this
 2095 term

$$2096 [\nabla(\mathbf{J}_f \mathbf{f}) \cdot \mathbf{f}]_i = \sum_{j,k} \frac{\partial^2 f_i}{\partial X^{(j)} \partial X^{(k)}} f_k f_j + \sum_{j,k} \frac{\partial f_i}{\partial X^{(k)}} \frac{\partial f_k}{\partial X^{(j)}} f_j \\ 2097 = [\mathbf{f}^{\top}(\nabla^2 f_i) \mathbf{f}] + [\mathbf{J}_f^2 \mathbf{f}]_i. \quad (82)$$

2100 We observe that this term captures the effects of how both second-order spatial variation of
 2101 the flow field (the Hessian $\nabla^2 f_i$) and the Jacobian of the acceleration ($\mathbf{J}_f^2 \mathbf{f}$) influence the
 2102 evolution of trajectories.
 2103

2104 ²More precisely the directional derivative of the acceleration, $\mathbf{J}_f(\mathbf{x}) \cdot \mathbf{f}$ along the flow direction, or the **rate**
 2105 **at which the acceleration changes along the flow, or a measure of how the local curvature of \mathbf{f} as a vector**
field influences trajectory evolution.

- 2106 – In Eq. 82, the **first sub-term**, $\mathbf{f}^\top (\nabla^2 f_i) \mathbf{f}$, represents the **second directional derivative**
 2107 of f_i along the flow direction. In regions where the Hessian $\nabla^2 \mathbf{f}$ is large (as is for
 2108 the case of a highly nonlinear drift), this term becomes significant, and it vanishes for
 2109 linear or constant drift \mathbf{f} .
 2110 – The **second sub-term**, $\mathbf{J}_f^2 \mathbf{f} = \mathbf{J}_f (\mathbf{J}_f \mathbf{f})$, of Eq. 82 represents the action of the Ja-
 2111 cobian operator on the acceleration vector. Geometrically, it describes how the local
 2112 linearised field acts on the acceleration as we move an infinitesimal step along the flow
 2113 field.

2114 By temporal integration we have

2116
$$R_{1,a}^1 = \int_{t_0}^t (t-u) \nabla(\mathbf{J}_f \mathbf{f}) \cdot \mathbf{f} \, du \sim \frac{\tau^2}{2} \nabla(\mathbf{J}_f \mathbf{f}) \cdot \mathbf{f}, \quad (83)$$

2118 indicating that the evolution of trajectory curvature introduces an $O(\tau^2)$ correction to the
 2119 transition density.

2120 Drift inference based on Euler–Maruyama–type discretisation ignores between others the
 2121 term $R_{1,a}^1$ introducing thereby a mean bias at each point \mathbf{x} in the state space,

2123
$$\beta_{1,a}^1(\mathbf{x}) = \frac{1}{\tau} R_{1,a}^1 \approx \frac{\tau}{2} [\nabla(\mathbf{J}_f \mathbf{f}) \cdot \mathbf{f}](\mathbf{x}). \quad (84)$$

- 2125 • The **second term** in Eq. 78, $\nabla(\frac{1}{2} \Delta_D \mathbf{f}) \cdot \mathbf{f}$, accounts for the diffusion part of the backward
 2126 generator acting on the vector field \mathbf{f} . The anisotropic Laplacian $\Delta_D \mathbf{f}$ quantifies the **diffu-**
 2127 **sion-weighted second-order spatial variation of the vector field**

2128
$$[\Delta_D \mathbf{f}]_i = \sum_{j,k} D_{jk} \frac{\partial^2 f_i}{\partial X^{(j)} \partial X^{(k)}} = \nabla \cdot (\mathbf{D} \nabla f_i). \quad (85)$$

2131 The directional derivative quantifies how this term evolves along the flow field

2133
$$[\nabla(\frac{1}{2} \Delta_D \mathbf{f}) \cdot \mathbf{f}]_i = \frac{1}{2} \sum_{j,k,\ell} D_{k\ell} \frac{\partial^3 f_i}{\partial X^{(j)} \partial X^{(k)} \partial X^{(\ell)}} f_j. \quad (86)$$

2136 This term captures how the diffusion-weighted spatial variation of the flow field varies
 2137 across the state space. As trajectories traverse regions of varying drift curvature, the ef-
 2138 fective Itô correction itself changes, introducing systematic bias in inference methods that
 2139 assume that drift is piece-wise constant in-between observations.

2140 **Second component $R_{1,a}^2$ of remainder term $R_{1,a}$.**

2142
$$R_{1,a}^2 = \int_{t_0}^t (t-u) \frac{1}{2} \sum_{j,k} \frac{\partial^2 (\mathcal{L}_u^\dagger \mathbf{f})}{\partial X^{(j)} \partial X^{(k)}} [\boldsymbol{\sigma} \boldsymbol{\sigma}^\top]_{jk} \, du. \quad (87)$$

2145 For the i -th dimensional component we have

2148
$$\begin{aligned} \frac{\partial^2}{\partial X^{(h)} \partial X^{(j)}} [\mathcal{L}_u^\dagger f]_i &= \sum_k \frac{\partial^3 f_i}{\partial X^{(h)} \partial X^{(j)} \partial X^{(k)}} f_k + \sum_k \frac{\partial^2 f_i}{\partial X^{(j)} \partial X^{(k)}} \frac{\partial f_k}{\partial X^{(h)}} \\ 2149 &+ \sum_k \frac{\partial^2 f_i}{\partial X^{(h)} \partial X^{(k)}} \frac{\partial f_k}{\partial X^{(j)}} + \sum_k \frac{\partial f_i}{\partial X^{(k)}} \frac{\partial^2 f_k}{\partial X^{(h)} \partial X^{(j)}} \\ 2150 &+ \frac{1}{2} \sum_{k,\ell} \mathbf{D}_{k\ell} \frac{\partial^4 f_i}{\partial X^{(h)} \partial X^{(j)} \partial X^{(k)} \partial X^{(\ell)}}. \end{aligned} \quad (88)$$

2156 For this remainder term, we have for each dimensional component i

2158
$$[R_{1,a}^2]_i = \int_{t_0}^t (t-u) \frac{1}{2} \sum_{j,k} \mathbf{D}_{jk} \left[\frac{\partial^2}{\partial X^{(k)} \partial X^{(j)}} [\mathcal{L}_u^\dagger \mathbf{f}]_i \right] \, du. \quad (89)$$

2160 Geometrically, $R_{1,a}^2$ captures the **diffusion-weighted second-order spatial variation** of the generator $\mathcal{L}_u^\dagger \mathbf{f}$ across the $\sqrt{\tau}$ -sized ellipsoid set by \mathbf{D} , i.e. the anisotropic Laplacian $\Delta_D(\mathcal{L}_u^\dagger \mathbf{f})$,
 2161 the diffusion-weighted second spatial variation of the drift along the flow. Dropping this term
 2162 in inference amounts to assuming $\mathcal{L}_u^\dagger \mathbf{f}$ is locally flat and results in an $O(\tau)$ drift bias of size
 2163 $\beta_{1,a}^2 \approx (\tau/4) \Delta_D(\mathcal{L}_u^\dagger \mathbf{f})$, underestimating anisotropy and the evolution of curvature of the flow
 2164 field, so inferred flowlines appear too straight.
 2165

2167 **Third component $R_{1,a}^3$ of remainder term $R_{1,a}$.**

$$2169 \quad R_{1,a}^3 = \int_{t_0}^t (t-u) \sum_j \frac{\partial \mathcal{L}_u^\dagger \mathbf{f}}{\partial X^{(j)}} [\sigma \mathbf{dW}_u]_j \mathbf{d}u, \quad (90)$$

$$2173 \quad [R_{1,a}^3]_i = \int_{t_0}^t (t-u) \sum_{j,m} \frac{\partial}{\partial X^{(j)}} [\mathcal{L}_u^\dagger \mathbf{f}]_i \sigma_{jm} \mathbf{dW}_u^{(m)} \mathbf{d}u, \quad (91)$$

2175 This is a martingale term capturing the stochastic coupling between diffusion and the spatial inhomogeneity of the generator. In inference, this term doesn't introduce bias, since $\langle R_{1,a}^3 \rangle = 0$. However,
 2176 neglecting this term, ignores a second-order variance contribution with $\text{Var}(R_{1,a}^3/\tau) = O(\tau)$.
 2177

2179 To understand better when these remainder terms contribute significantly to the discretisation, we
 2180 study here closer how each term contributes to the remainder term $R_{1,a}$ for **(i)** a linear system under
 2181 different parameter regimes that influence the curvature of the flow field, **(ii)** a nonlinear system.
 2182

2183 G.4 ABLATIONS WITH RESPECT TO METRIC LEARNING ALGORITHM

2185 To probe the robustness of our framework, when we employ a different approach to estimate the
 2186 metric, following (Kapusniak et al., 2024) we tested our method when we employ an radial based
 2187 function approximation to estimate the diagonal metric, similar to Arvanitidis et al. (2017). In the
 2188 following table we report the performance of our method when we employ the locally adaptive nor-
 2189 mal distribution framework (LAND) for approximation the metric (as in the main text) Arvanitidis
 2190 et al. (2019) and when we employ the radial basis function variant of the metric approximation
 2191 (RBF) for the Van der Pol system for different inter-observation intervals and noise conditions.
 2192

2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213

2214

H DETAILS ON NUMERICAL EXPERIMENTS

2215

2216 We simulated a two dimensional Van der Pol oscillator with drift function
2217

2218
$$f_1(x, y) = \mu(x - \frac{1}{3}x^3 - y) \quad (92)$$
2219

2220
$$f_2(x, y) = \frac{1}{\mu}x, \quad (93)$$
2221

2222 starting from initial condition $x_0 = [1.81, -1.41]$ and under noise amplitudes $\sigma = \{0.25, 0.50, 0.75, 1.00\}$ for total duration of $T = \{500, 1000\}$ time units. The employed inter-
2223 observation intervals $\tau = \{80, 120, 160, 200, 240, 280, 320\} \times dt$. The last inter-observation interval
2224 exceeds the half period of the oscillator and thus samples only a single state per period. This resulted
2225 in erroneous estimates. In this setting this indicates the upper limit of τ for which we can provide
2226 estimates. However for any inference method, if the observation process samples only one observa-
2227 tion per period, identifying the underlying force field without additional assumptions is not possible
2228 with temporal methods. The discretisation time-step used for simulation of the ground truth dynam-
2229 ics, and path augmentation $\delta t = 0.01$. For sampling the controlled bridges we employed $N = 100$
2230 particles evolving the associated ordinary differential equation as described in (Maoutsa and Opper,
2231 2022). The logarithmic gradient estimator used $M = 40$ inducing points. The sparse Gaussian
2232 process for estimating the drift was based on a sparse kernel approximation of $S = 300$ points. In
2233 the presented simulation we have employed a weighting parameter $\beta = 0.5$ (Eq. 37). This provides
2234 a moderate pull towards the invariant density. The example in Figure 2 was constructed with $\beta = 1$
2235 and provides a better approximation of the transition density, than $\beta = 0.5$.

2236 For the **out-of-equilibrium process** with harmonic trapping and circulation and a Gaussian repul-
2237 sive obstacle in the centre we followed the description presented in Frishman and Ronceray (2020)
2238 following the drift

2239
$$f_\mu(\mathbf{x}) = -\Omega_{\mu\nu}x_\nu + \alpha e^{-x^2/2\sigma^2}x_\mu \quad \text{with} \quad \Omega = \begin{pmatrix} 2 & 2 \\ -2 & 2 \end{pmatrix}, \quad (94)$$
2240

2241 for $\alpha = 10$ and simulated the stochastic system with noise amplitude $\sigma = 0.5$ on a time grid of
2242 $dt = 0.01$ steps, observed at inter-observation intervals $\tau = \{150, 200, 250\} \times dt$ and for total
2243 duration $T = 1000$ time units.

2244 For the **Hopf system** we used the drift

2245
$$f_1(x_1, x_2) = z_2, \quad (95)$$
2246

2247
$$f_2(x_1, x_2) = -z_1 + (\mu - z_1^2)z_2, \quad (96)$$
2248

2249 with $\mu = 0.35$ and integrated the system with noise amplitude $\sigma = 0.15$ on a timegrid with $dt =$
2250 0.01 resolution, observed at $\tau = \{200, 300, 400\} \times dt$ time intervals. This is the normal form of the
2251 Hopf bifurcation.

2252 For the **Selkov glycolysis model** (Selkov, 1968) we employed the drift

2253
$$f_1(x_1, x_2) = -x_1 + \alpha x_2 + x_1^2 x_2, \quad (97)$$
2254

2255
$$f_2(x_1, x_2) = 0.6 - \alpha x_2 - x_1^2 x_2, \quad (98)$$
2256

2257 with $\alpha = 0.06$ and noise amplitude $\sigma = 0.05$ for inter-observation intervals $\tau = \{100, 200\} \times dt$
2258 and simulation time grid of $dt = 0.01$ spacing and for total duration $T = 1000$ time units.

2259 This model is a minimal two-variable model of glycolytic oscillations, first introduced in (Selkov,
2260 1968). It describes the autocatalytic feedback processes in the glycolysis pathway, focusing on how
2261 simple nonlinear interactions can give rise to oscillatory dynamics in concentrations of intermedi-
2262 ates. The first state variable x_1 represents the concentration of adenosine diphosphate, while x_2
2263 represents the concentration of a glycolytic intermediate.

2264

H.0.1 ON COMPUTATION OF GEODESIC CURVES

2265

2266 For the computation of geodesic curves we followed the framework introduced in (Arvanitidis et al.,
2267 2019). The geodesic equation relies on a non-parametric estimation of the Riemannian metric, which

2268 is constructed using kernel-weighted local diagonal covariances, and has computational complexity
 2269 $\mathcal{O}(ND)$, where D is the dimensionality of the problem and N denotes the number of samples. The
 2270 computational cost of solving the geodesic equation scales sublinearly with increasing dimension-
 2271 ality.

2272

2273 H.1 DETAILS ON BASELINE METHODS

2274

2275 We compared the performance of our method against a series of competing methods for inference of
 2276 stochastic dynamics. In particular, we compared our method against methods specifically designed
 2277 for inference of stochastic systems from single trajectories, and against systems that infer population
 2278 dynamics.

2279 We employed the following methods that assume single trajectories for drift inference:

2280

1. Gaussian process regression without state estimation (**GP**)
2. path augmentation with Ornstein-Uhlenbeck dynamics with Gaussian process inference (**OU**) (Batz et al., 2018)
3. sparse variational inference with state estimation (**SVISE**) (Course and Nair, 2023a)
4. basis function approximation of Kramers-Moyal coefficients, i.e. the drift function (**KM-basis**) (Nabeel et al., 2025)
5. latent SDE inference with amortized reparameterization with (**LatentSDE+GP-pre**) and without pre-training (**LatentSDE**) (Course and Nair, 2023b).

2290

2291 We further compared our method with recent Schrödinger bridge generating frameworks that primary
 2292 aim to infer population dynamics from snapshot data. In particular we considered the following
 2293 frameworks:

2294

- I. Metric Flow Matching (**MFM**) (Kapusniak et al., 2024)
- II. Generalized Schrödinger Bridge Matching (**GSBM**) (Liu et al., 2023)
- III. Wasserstein Lagrangian Flows-Action Matching (**WLF-AM**) (Neklyudov et al., 2023b)
- IV. Simulation-free Schrödinger bridges via score and flow matching ($[\text{SF}]^2 \text{ M}$) (Tong et al., 2023)

2295

2296 For these methods, we clustered the observations of each system into *disjoint* subsets of adjacent
 2297 points. We employed the k-Nearest neighbours algorithm (Fix, 1985; Cover and Hart, 1967) to
 2298 construct the clusters as local neighbourhoods on the state space, comprising each at most 64 and
 2299 minimum 20 observations. We paired each cluster \mathcal{J}_b with the set $\mathcal{J}_b^+ \doteq \{ \mathcal{O}_{k+1} : \mathcal{O}_k \in \mathcal{J}_b \}$ of
 2300 the next observation of each cluster member. We then considered each cluster pair $(\mathcal{J}_b, \mathcal{J}_b^+)$ as the
 2301 initial and terminal condition for a Schrödinger bridge problem, i.e.

2302

$$\pi_0^b \doteq \{ \mathcal{O}_k : \mathcal{O}_k \in \mathcal{J}_b \} \quad (99)$$

2303

$$\pi_1^b \doteq \{ \mathcal{O}_\ell : \mathcal{O}_\ell \in \mathcal{J}_b^+ \}. \quad (100)$$

2304

2305

2306 These serve as samples of the densities required as boundaries conditions for the Schrödinger
 2307 bridges.

2308

2309 For the multi-marginal setting, starting from the cluster that contained the observation \mathcal{O}_1 and sub-
 2310 sequently created a sequence of cluster following the time ordering of the observations, i.e.

2311

$$\pi_i^0 = \{ \mathcal{O}_{k+i} : k \in \mathcal{J}_0 \}. \quad (101)$$

2312

2313

2314 We then employed a sequence of 50 marginal densities $\{\pi_i^0\}_{i=0}^{49}$ as snapshot observations required
 2315 by the framework.

2316

2317

2318 **Metric Flow Matching.** For the Metric Flow Matching framework, we trained on observations
 2319 resulting from total simulation length $T_{\text{MFM}} = 3T = 1500$ (time units) to ensure sufficient data
 2320 for each bridge. For each constructed bridge indexed by b , the flow network trained with the flow
 2321 matching objective represents the velocity of the samples $\mathbf{u}_b(\mathbf{x}, t)$ transferred within the normalised

time $t \in [0, 1]$ from the initial boundary condition to the terminal one. We approximate a time-independent local drift $\hat{\mathbf{f}}_b(\mathbf{x})$ by rescaling the velocity field $\mathbf{u}_b(\mathbf{x}, t)$ with the inter-observation interval τ , i.e.,

$$\hat{\mathbf{f}}_b(\mathbf{x}) = \frac{1}{\tau} \mathbf{u}_b(\mathbf{x}, t). \quad (102)$$

To obtain a global drift estimate from the individual local estimates, we compute "responsibilities" or weights of each individual drift for each point \mathbf{x}_m of a pre-defined two-dimensional evaluation grid that covers the state space region occupied by the observations. These weights indicate how relevant each bridge b was for estimating the drift at each grid point \mathbf{x}_m . For each bridge, we compute support weights $\omega_b(\mathbf{x})$ on the grid employing kernel density estimation (KDE) over the bridge boundary condition samples. Then, for each grid point \mathbf{x}_m , we compute bridge responsibilities as

$$\rho_b(\mathbf{x}_m) = \frac{\omega_b(\mathbf{x}_m)}{\sum_{j=1}^B \omega_j(\mathbf{x}_m)}, \quad \sum_{b=1}^B \rho_b(\mathbf{x}_m) = 1. \quad (103)$$

We estimate the global drift at each grid point by weighting the local estimated drifts with the corresponding bridge responsibility, i.e.,

$$\hat{\mathbf{f}}(\mathbf{x}_m) = \sum_{b=1}^B \rho_b(\mathbf{x}_m) \hat{\mathbf{f}}_b(\mathbf{x}_m). \quad (104)$$

I ALGORITHMIC DETAILS

Here we provide the outline algorithm for each constituent component of our work. Algorithm A1 provides the main skeleton of the framework. For the geometric approximation and the construction of the geodesics we defer the readers to Arvanitidis et al. (2019). Algorithm A2 outlines the solution of the control problem that implements the path augmentation. This part is an adapted version of the main algorithm proposed by Maoutsu and Opper (2021). Finally, Algorithm A3 describes the solution of the Gaussian process inference given the path augmentations (bridges) created for each augmentation pair.

Algorithm A1: Skeleton of the proposed framework.

Input: $\mathcal{O} = \{(\mathbf{x}_k, t_k)\}_{k=1}^K$: observed states at timepoint t_k

Output: $\hat{\mathbf{f}}$: posterior estimate of the drift function

$\mathcal{B}^{(j)}$: augmented paths of latent states (optional)

// initialise $\hat{\mathbf{f}}$ with a coarse drift estimate

1 Initialise drift estimate $\hat{\mathbf{f}}^{(0)}$ according to Eq. 20

// Approximate Riemannian metric from observations (Eq. 34)

2 $H_{dd} = \text{ApproximateMetric}(\{\mathcal{O}_k\}_{k=1}^K)$

//

3 $\Gamma^{(\ell)} = \text{ConstructGeodesics}(\mathcal{O}_k, \mathcal{O}_{k+1}, H_{dd})$
// $\Gamma^k = \{\gamma_{t'}^k\}_{k=1}^K$ geodesic curves between selected observation pairs

4 for each iteration j do

// augment paths along geodesics using particle flow

5 $\mathcal{B}^{(j)} = \text{AugmentPaths}(\{\mathcal{O}\}_{k=1}^K, \Gamma^{(j)}, \hat{\mathbf{f}}^{(j-1)})$

// uses the deterministic particle flow / bridge construction
(Alg. A2) to sample augmented trajectories with $\hat{\mathbf{f}}^{(j-1)}$

// Gaussian process inference of the drift function

6 $\hat{\mathbf{f}}^{(\ell)} = \text{GPDriftInference}(\{\mathcal{O}\}_{k=1}^K, \mathcal{B}^{(j)})$

// update GP posterior over \mathbf{f} using original and augmented data

7 end

Algorithm A2: Path augmentation algorithm employing Deterministic Particle Flow control

Input: N, M : scalars, number of particles and number of inducing points
 t_k, t_{k+1}, dt : scalars, initial and final timepoints, and discretisation step
 $\mathcal{O}_k, \mathcal{O}_{k+1}$: $1 \times d, 1 \times d$ initial and target state
 $\hat{\mathbf{f}}$: current drift estimate
 σ : noise amplitude
 γ_t : geodesic curve in functional representation

Output: F : $d \times N \times (t_{k+1} - t_k)/dt$, sample representation of $q_t(x)$

1 $\ell = \frac{(t_{k+1} - t_k)}{dt}$ // number of timesteps

2 $\epsilon = 10^{-3}$

3 $\mathbf{Z}_{ti=0} = \mathcal{N}(\mathcal{O}_k, \epsilon \mathbf{I}_d)$ // initialise particles' positions

4 $\mathbf{Z}_{ti=1} = \mathbf{Z}_0 + dt \left(\hat{\mathbf{f}}(\mathbf{Z}_0, t_0) - \frac{1}{2} \sigma^2 \frac{\mathbf{Z}_0 - \mathcal{O}_k}{\epsilon} \right)$ // 1st step is with analytic score

5 For $ti = 2 : \ell$ // deterministic propagation

6 $\mathbf{Z}_{ti+1} = \mathbf{Z}_{ti} + dt \left(\hat{\mathbf{f}}(\mathbf{Z}_{ti}, t) - \frac{1}{2} \sigma^2 \nabla \log \rho(\mathbf{Z}_{ti}; \mathbf{Z}_{ti}) \right)$

7 $W = \exp(-U(\mathbf{Z}_{ti+1}, t) dt)$

8 $T^* = \text{EnsembleTransformParticleFilter}(\mathbf{Z}_{ti+1}, W)$

9 $\mathbf{Z}_{ti+1} = \mathbf{Z}_{ti+1} \cdot T^*$

10 $\mathbf{B}_{ti=\ell} = \mathcal{N}(\mathcal{O}_{k+1}, \epsilon \mathbf{I}_d)$ // initialise particles' positions

11 $\mathbf{B}_{ti=\ell-1} = \mathbf{B}_\ell - dt \left(\hat{\mathbf{f}}(\mathbf{B}_\ell, t_1) + \frac{1}{2} \sigma^2 \nabla \log \rho(\mathbf{B}_\ell; \mathbf{Z}_\ell) - \frac{1}{2} \sigma^2 \frac{\mathbf{B}_\ell - \mathcal{O}_{k+1}}{\epsilon} \right)$

12 For $ti = \ell - 2 : 0$ // deterministic propagation

13 $\mathbf{B}_{ti-1} = \mathbf{B}_{ti} - dt \left(\hat{\mathbf{f}}(\mathbf{B}_{ti}, t) - \frac{1}{2} \sigma^2 \nabla \log \rho(\mathbf{B}_{ti}, \mathbf{Z}_{ti}) + \frac{1}{2} \sigma^2 \nabla \log q(\mathbf{B}_{ti}, \mathbf{B}_{ti}) \right)$

14 For $ti = 1 : \ell$

15 $\mathbf{u}(\mathbf{x}, ti) = \sigma^2 \nabla \log q(\mathbf{x}; \mathbf{B}_{ti}) - \sigma^2 \nabla \log \rho(\mathbf{x}; \mathbf{Z}_{ti})$

16 $\mathbf{F}_{ti+1} = \mathbf{F}_{ti} + dt \left(\hat{\mathbf{f}}(\mathbf{F}_{ti}, t) + \mathbf{u}(\mathbf{F}_{ti}, ti) - \frac{1}{2} \sigma^2 \frac{\mathbf{F}_0 - \mathcal{O}_k}{\epsilon} \right)$

With the notation $\nabla \log q(\mathbf{x}; \mathbf{B}_{ti})$ we indicate the score function estimation in a functional form (\mathbf{x}) based on the density represented by the particles \mathbf{B}_{ti} , while $\nabla \log q(\mathbf{F}_{ti}; \mathbf{B}_{ti})$ indicates the same score function evaluated at locations \mathbf{F}_{ti} .

2430
2431 **Algorithm A3:** Gaussian process drift inference from an augmented path measure (part I)
2432 **Input:** $\mathcal{Z} = \{\mathbf{z}_i\}_{i=1}^S$: inducing points for the sparse GP (Sp)
2433 $\{\mathbf{X}_j(t_\ell)\}_{j=1,\dots,N}^{\ell=1,\dots,T'}$: particle positions from the path measure Q (BALL2)
2434 $\{\mathbf{g}(\mathbf{X}_j(t_\ell), t_\ell)\}$: effective drift evaluated along particles (gbALL2)
2435 k^f : kernel with lengthscales ℓ_1, ℓ_2, ℓ_3 (shared across dimensions)
2436 g : diffusion amplitude, $\sigma^2 = g^2$
2437 Δt : time step of the particle simulation
2438 d : state dimension, N : number of particles, T' : number of time steps
2439 **Output:** Approximations $I_1^{(i)}, I_2^{(i)}$ of the integrals over $A(\mathbf{x})$ and $B(\mathbf{x})$
2440 // 0. shorthand and initialisation
2441 1 Set $S \leftarrow |\mathcal{Z}|$ (number of inducing points)
2442 2 Initialise $I_1 \in \mathcal{R}^{S \times S \times d}$ and $I_2 \in \mathcal{R}^{S \times d}$ to zero
2443 3 Initialise $\Lambda \in \mathcal{R}^{S \times S \times d}$ and $\mathbf{d} \in \mathcal{R}^{S \times d}$ to zero
2444 // 1. compute kernel matrices on the inducing points
2445 4 Construct the inducing-inducing kernel matrix
2446
2447 $\mathcal{K}_S = k^f(\mathcal{Z}, \mathcal{Z}) \in \mathcal{R}^{S \times S}$
2448 and compute a regularised inverse
2449
2450 $\mathcal{K}_S^{-1} = (\mathcal{K}_S + \varepsilon I)^{-1}, \quad \varepsilon \approx 10^{-3}.$
2451
2452 5 Define the kernel map to inducing points
2453
2454 $k^f(\mathcal{Z}, \mathbf{x}) = (k^f(\mathbf{z}_i, \mathbf{x}))_{i=1}^S \in \mathcal{R}^S.$
2455
2456 // 2. sample-based approximation of $A(\mathbf{x})$ and $B(\mathbf{x})$
2457 6 **for** $i = 1, \dots, d$ **do** // loop over state dimensions
2458 7 **for** $\ell = 1, \dots, T'$ **do** // loop over time
2459 8 Let $\mathbf{X}(t_\ell) \in \mathcal{R}^{d \times N}$ be the particle positions at time t_ℓ
2460 9 For each particle position $\mathbf{X}_j(t_\ell)$, compute
2461
2462 10 $\mathbf{k}_j = k^f(\mathcal{Z}, \mathbf{X}_j(t_\ell)) \in \mathcal{R}^S.$
2463
2464 Stack them column-wise to obtain
2465
2466 $K_\ell = [\mathbf{k}_1, \dots, \mathbf{k}_N] \in \mathcal{R}^{S \times N}.$
2467
2468 11 Let $g_i(\mathbf{X}_j(t_\ell), t_\ell)$ denote the i -th component of the effective drift at particle j and time
2469 t_ℓ // accumulate Monte Carlo estimates of the integrals
2470 Update
2471 $I_1^{(i)} \leftarrow I_1^{(i)} + K_\ell K_\ell^\top, \quad I_2^{(i)} \leftarrow I_2^{(i)} + K_\ell \mathbf{g}_i(t_\ell),$
2472 where $\mathbf{g}_i(t_\ell) = (g_i(\mathbf{X}_1(t_\ell), t_\ell), \dots, g_i(\mathbf{X}_N(t_\ell), t_\ell))^\top$.
2473
2474 12 **end** // normalise by time and number of particles
2475
2476 13 $I_1^{(i)} \leftarrow \frac{\Delta t}{N} I_1^{(i)}, \quad I_2^{(i)} \leftarrow \frac{\Delta t}{N} I_2^{(i)}.$
2477
2478 14 **end**
2479
2480 In this algorithm Here $I_1^{(i)}$ approximates $\int k^f(\mathcal{Z}, \mathbf{x}) A(\mathbf{x}) k^f(\mathbf{x}, \mathcal{Z}) d\mathbf{x}$, and $I_2^{(i)}$ approximates
2481 $\int k^f(\mathcal{Z}, \mathbf{x}) B_i(\mathbf{x}) d\mathbf{x}$.
2482
2483

Algorithm A4: Gaussian process drift inference from an augmented path measure (part II)

Input: Same inputs as Alg. 3
 $I_1^{(i)}, I_2^{(i)}$: Monte Carlo approximations from Alg. 3
 $\mathcal{K}_S, \mathcal{K}_S^{-1}$: inducing-inducing kernel matrix and its regularised inverse

Output: Component-wise drift estimators $\hat{f}_i(\mathbf{x}), i = 1, \dots, d$
Expected negative log data likelihood $\mathcal{L}_{\text{path}}$ under Q_f

// 3. compute Λ and \mathbf{d} for each component

1 **for** $i = 1, \dots, d$ **do**
// match Eq. equation 42 with sparse GP parametrisation

2 $\Lambda^{(i)} \leftarrow \frac{1}{\sigma^2} \mathcal{K}_S^{-1} I_1^{(i)} \mathcal{K}_S^{-1}, \quad \mathbf{d}^{(i)} \leftarrow \frac{1}{\sigma^2} \mathcal{K}_S^{-1} I_2^{(i)}.$

3 **end**

4 This matches the definitions

5 $\Lambda = \frac{1}{\sigma^2} \mathcal{K}_S^{-1} \left(\int k^{\mathbf{f}}(\mathcal{Z}, \mathbf{x}) A(\mathbf{x}) k^{\mathbf{f}}(\mathbf{x}, \mathcal{Z}) d\mathbf{x} \right) \mathcal{K}_S^{-1}, \quad \mathbf{d} = \frac{1}{\sigma^2} \mathcal{K}_S^{-1} \left(\int k^{\mathbf{f}}(\mathcal{Z}, \mathbf{x}) B(\mathbf{x}) d\mathbf{x} \right).$

// 4. define the component-wise drift estimators

6 For each component $i = 1, \dots, d$, define

7 $\hat{f}_i(\mathbf{x}) = k^{\mathbf{f}}(\mathbf{x}, \mathcal{Z}) \left(I + \Lambda^{(i)} \mathcal{K}_S \right)^{-1} \mathbf{d}^{(i)},$

so that the full drift estimate is

8 $\hat{\mathbf{f}}_S(\mathbf{x}) = (\hat{f}_1(\mathbf{x}), \dots, \hat{f}_d(\mathbf{x}))^\top.$

// 5. compute expected negative log data likelihood under Q_f

9 Initialise accumulators $S_{\|f\|} \leftarrow 0, S_{\nabla \cdot f} \leftarrow 0, S_{f \cdot g} \leftarrow 0$

10 **for** $\ell = 1, \dots, T'$ **do**

11 For all particle positions $\mathbf{X}_j(t_\ell)$, evaluate $\hat{\mathbf{f}}_S(\mathbf{X}_j(t_\ell))$

12 Accumulate

13 $S_{\|f\|} \leftarrow S_{\|f\|} + \sum_{j=1}^N \|\hat{\mathbf{f}}_S(\mathbf{X}_j(t_\ell))\|^2,$

14 $S_{f \cdot g} \leftarrow S_{f \cdot g} + \sum_{j=1}^N \hat{\mathbf{f}}_S(\mathbf{X}_j(t_\ell))^\top \mathbf{g}(\mathbf{X}_j(t_\ell), t_\ell),$

15 and compute the trace of the Jacobian $\nabla \cdot \hat{\mathbf{f}}_S(\mathbf{X}_j(t_\ell))$ via automatic differentiation,
accumulating it into $S_{\nabla \cdot f}$

16 **end**

17 Approximate the expected negative log data likelihood (up to constants) as

18 $\mathcal{L}_{\text{path}} = \frac{\Delta t}{N} \left(\frac{1}{2} S_{\|f\|} + S_{\nabla \cdot f} + S_{f \cdot g} \right),$

19 which corresponds to evaluating the quadratic form in Eq. equation 42 under the approximate posterior Q_f .

2538 **J IMPACT STATEMENT**
25392540 The aim of this work is to advance the field of dynamical inference for stochastic systems. While we
2541 do not foresee any direct societal consequences directly impinging from our work, we recognize that
2542 stochastic systems could be applied in military contexts, financial engineering, or more recently in
2543 machine learning for data (such as image, audio, video) generation. Still, the proposed method does
2544 not propose interventions that might lead to unfavourable societal outcomes. Overdamped Langevin
2545 systems are widespread in areas such as physics, biology, neuroscience, and ecology. We anticipate
2546 that our contributions will thus help these disciplines by offering a tool to identify and further study
2547 relevant systems.
25482549 Our contribution emphasises the importance of incorporating concepts from the evolving field of ge-
2550 ometric statistics into system identification methods for stochastic systems. Although geometric and
2551 topological properties of invariant densities have been extensively studied in the context of deter-
2552 ministic systems, comparable attention is lacking for their stochastic counterparts. Our work further
2553 highlights that in settings where the amount of augmented data exceeds the number of observations,
2554 data augmentation frameworks can enhance inference accuracy by incorporating domain knowledge
2555 or other relevant information, such as the geometry of the system’s invariant density we consider
2556 here. Many algorithms used for data augmentation, including the expectation maximisation algo-
2557 rithm employed in our work (Romero et al., 2019), show only **local convergence**. As a result, when
2558 the initial estimate deviates significantly from the true value, naive data augmentation methods may
2559 converge to suboptimal solutions that fail to accurately identify the underlying system.
25602561 **K LLMS USAGE STATEMENT**
25622563 During the preparation of this manuscript, we used general-purpose large language models (e.g.,
2564 the GPT family) for grammar and writing polishing, minor rephrasing and condensing parts of the
2565 text, for limited code assistance (such as handling error messages and for parallelising and speeding
2566 up parts of the code), and for getting feedback on the finished draft. We did not rely on LLMs
2567 to generate research ideas, methods, experimental designs, analyses, or conclusions. All technical
2568 content, experiments, and claims were designed, implemented, and verified by the authors, who take
2569 full responsibility for the paper. Moreover, we did not embed any executable instructions, hidden
2570 prompts, or other mechanisms intended to influence the peer-review process in the manuscript or its
2571 supplementary materials.
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591