
Under review as a conference paper at ICLR 2024

ABNORMALLOG: A DEEP ANOMALY DETECTION
METHOD FOR LOG SEQUENCE DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Anomaly detection for computer log sequence data plays a very important role1

in various industries. Log data is complex time series with plenty of text infor-2

mation, which is difficult to process due to both its non-structural characteristics3

and temporal correlation. Existing log anomaly detection schemes do not utilize4

all available data information such as the semantic and parameter information,5

nor do they consider weighting of data based on time. The AbnormalLog algo-6

rithm proposed in this paper implements semantic parsing technique to expand7

current detection schemes by analyzing template and parameter information of8

the log data. AbnormalLog is comprised of four functional modules: Log Pars-9

ing, Semantic Embedding, Parameter Anomaly Detection and Template Anomaly10

Detection. We compare the proposed method to three most commonly used log11

anomaly detection methods in industry. The results demonstrate that Abnormal-12

Log is superior to the other algorithms with respect to common model evaluation13

criteria.14

1 INTRODUCTION15

The anomaly detection for sequence data has very important and extensive applications in various16

industry areas. The traditional anomaly detection problem, such as in Gao et al. (2019; 2020),17

focuses on the time series data that only contains numerical information and aims to study the change18

in the data generating schemes. However, with the development of large-scale computer servers, the19

sequential data has evolved from the traditional numerical data to the complicated unstructured20

data, which contains a large amount of text information and numerical information. One typical21

example of such data is the log data, which is essentially a time series text data generated from the22

operating system automatically. The log data is composed of the original content and time stamp23

of the computer log. It records the detailed event information of the system operation, which can24

help the system administrator to quickly target problems and find errors efficiently. Therefore, log25

data is treated as one of the most critical information resources for the anomaly detection tasks of26

the system. The artificial intelligence for IT operations (AIOps) utilizes the log data which contains27

key information about the operation and maintenance of the IT system to reduce the need for human28

intervention which reduces costs. The difficulty of log data processing lies on the non-structural29

characteristics of log data itself and its temporal correlation.30

The traditional log detection methods require a lot of expert experience, and do not take advantage31

of the temporal nature of the log data. Xu et al. (2009a) proposed an analysis method based on32

PCA. Schölkopf et al. (2001) proposed the One-Class SVM method. Liu et al. (2008) proposed the33

IsolationForest algorithm. These methods are essentially looking for outliers in the cluster, which34

are usually treated as abnormalities. Although these methods perform well in general anomaly de-35

tection studies, they have very obvious deficiencies in log exception detection. Firstly, it simply36

characterizes the log data as a vector, and then detects outliers of the vector. Secondly, some impor-37

tant temporal information is missing, where the time stamp of log is not considered as a feature in38

the analysis. Vaarandi and Pihelgas (2015) proposed the LogCluster algorithm to detect the anomaly39

of log sequence by comparing the log to an existing cluster by utilizing the characteristics of log in-40

formation. However, their method failed in diagnoses the template and temporal characteristics of41

the logs thus cannot effectively distinguish two significant different logs under the same template.42

For example, “the running time is 1s" and “the running time is 5000s", these two logs with the43

1



Under review as a conference paper at ICLR 2024

same template but with contexts are quite different. The log template extraction methods, such as44

Drain (He et al., 2017), Spell (Du and Li, 2016), and MoLFI (Messaoudi et al., 2018), were then45

developed. Among these work, Drain achieved the best performance and the highest accuracy.46

In recent years, log anomaly detection methods under the deep learning framework become more47

and more popular. As a very representative log detection method in recent years, DeepLog (Du48

et al., 2017) detect the exceptions in template with respect to both template Key and template Value49

after extracting the template information of the log sequence. However, DeepLog still has some50

drawbacks. Firstly, for the Key of the predicted log data template, DeepLog clusters logs only based51

on their One-Hot Encoding results, and does not fully consider the similarity of the semantic infor-52

mation in different templates. For example, "the running time is" and "the runtime of the procedure53

is" should express the same meaning on some levels. Therefore in our proposed method, if we can54

cluster these two logs together by considering the semantic information of the logs, it will produce55

more accurate anomaly analysis results. Loganomaly (Meng et al., 2019) is another popular method,56

which addressed the drawback of Deeplog, and extract the semantic information of the template by57

the weighted average of the semantic information using the positive and negative synonyms. In ad-58

dition, it also considers the anomaly detection in both sequence and quantity. Although this method59

takes the template information and semantics information into account at the same time, it still has60

some drawbacks. Firstly, after extracting the template, it does not use the parameter information61

of the log template. These parameter information usually contains some critical information of log62

exceptions. Secondly, the first procedure of their semantic embedding algorithm is to establish a63

special thesaurus for the positive and negative synonyms, and then assign specific weights to these64

positive and negative synonyms appeared in the log template according to the thesaurus. For exam-65

ple, "the running time is increasing · · · " and "the running time is decreasing · · · ", where "Increasing"66

and "Decreasing" are a pair of antonyms with key information. In a log sequence, antonyms always67

appear in the position where the log parameters are. Then the Word2vec technique (Mikolov et al.,68

2013) was developed to embed the log template to make up for the lack of parameter information.69

However, this technology has been gradually defeated by Bert (Devlin et al., 2019), which has a70

very high performance in the nature language processing field in recent years. Extensive profes-71

sional knowledge from the relevant fields is required in determining the size of the moving window72

and the embedding of positive and negative synonyms, which reduces the automation possibility of73

the whole method. RobustLog (Zhang et al., 2019) is another representative technology. Similar to74

Loganomaly, RobustLog converts each log template into a semantic vector with fixed dimensional-75

ity. Through the semantic analysis, this method can identify and process new and similar log events76

that arise from the constantly generated log statements and parsing errors. However, Robustlog also77

doesn’t utilize the log parameter information sufficiently.78

To overcome the drawbacks of the existing deep learning methods, we propose a new log anomaly79

detection method under the deep learning framework named as AbnormalLog. AbnormalLog makes80

comprehensive use of the log template information, the parameter information and the semantic in-81

formation to deeply analyze the log sequence and detect all possible log exceptions through well de-82

signed functional modules. We compare the performance of AbnormalLog to three commonly used83

deep learning methods, which are the unsupervised learning methods DeepLog and LogAnomaly,84

and the supervised learning method RobustLog on two public data sets, BGL and HDFS. The em-85

perical analysis shows the excellent performance of our proposed method.86

2 METHOD87

2.1 MODEL AND NOTATION88

The log data consists of the original contents of the log and the timestamp, which is essentially a89

time series composed of text information. The AbnormalLog model treats the streaming log data as90

a text time series data, and analyze it in combination of the natural language processing technology91

and time series anomaly detection technology. Suppose S = {Xt−k|k ∈ Z+, 0 ≤ k ≤ s − 1} be92

a log data stream generated from time t − s + 1 to t by the operating system. Within the entire log93

sequence S, the abnormal state Zt of the log Xt, which is the log generated at the tth moment, is94

Zt = I
{

ZT
t ∪ ZP

t

}
,

2



Under review as a conference paper at ICLR 2024

ZT
t = GθT

(ST ), and ZP
t = GθP

(SP ),

where, I{·} is an indicator function. ST = {XT
t−s+1, . . . , XT

t } and SP = {XP
t−s+1, . . . , XP

t } are95

the template information and parameter information of S, s ∈ Z+ is the size of the data processing96

window. GθT
(·) is the Template Anomaly Detection module with parameter set θT , and GθP

(·) is97

the Parameter Anomaly Detection module with parameter set θP . ZT
t , ZP

t and Zt are the corre-98

sponded template anomaly state, parameter anomaly state, and overall anomaly state of the log data99

Xt at time t. "0" represents normal and "1" represents abnormal.100

Algorithm 1: AbnormalLog
Input: The Log streaming data (Xt−s+1, . . . , Xt−k, . . . , Xt) at time t, where

0 ≤ k ≤ s − 1, and k, s ∈ Z+

Step 0: Create a log template sematic vector set: map a log templates set ΛT = {XT
1

, . . . , XT
n } into a log template semantic vector set ΩT = {(XT

i , ϕi)|i = 1, . . . , n} based
on the sentence-bert technique as shown in Section 2.3.1, where n is the total number of
templates found in log data.

Step 1: Log parsing parse each log data Xt−k using Drain to get the their and templates
and parameters information {XT

t−k, XP
t−k} = Drain(Xt−k).

Step 2: Template anomaly detection
Step 2.1: Semantic embedding: according to ΩT , map each log template XT

t−k

obtained in Step 1 into a semantic vector ϕt−k =
∑n

i=1 ϕi × I(XT
t−k = Xi).

If (XT
t−k, ϕt−k) /∈ ΩT , do

- include XT
t−k into the log template set ΛT ;

- repeat Step 0 to update ΩT ;
- return back to Step 2.

Step 2.2: Template anomaly status evaluation for the target log:

ZT
t = GθT

({ϕt−k|k = 0, . . . , s − 1}).

Step 3: Parameter anomaly detection: obtain the anomaly status of the parameters for the
target log

ZP
t = GθP

({XP
t−k|k = 0, . . . , s − 1}).

Step 4: Obtain the overall anomaly status of the target log:

Zt = I
{

ZT
t ∪ ZP

t

}
.

Output: The anomaly status Zt of the target log Xt.

Algorithm 1 is the computational process of our proposed AbnormalLog method. Abnormal-101

Log consists of four functional modules, which are Log Parsing, Semantic Embedding, Parameter102

Anomaly Detection and Template Anomaly Detection. Since the template part and parameter part103

of the log data provide different level of semantic information, it is necessary to detect the exception104

status of the template and parameter separately. The next challenge is how to design the correspond-105

ing anomaly detection scheme for the template and parameters. Usually, the anomaly log detected106

by the algorithm needs to be checked manually. In practice, people always have different definitions107

of exceptions based on their own perceptions. Therefore, in the process of model training, we need108

to establish different annotation schemes to adapt to different scenes. The computational workflow109

of the AbnormalLog algorithm is summarized as follows. First, the log sequence at time t is parsed110

to obtain all template and parameter information. Then the abnormality detection of the template111

and parameter are carried out simultaneously. Finally, whether the log sequence generated at time t112

is abnormal or not, will be determined by the results of the template anomaly detection model and113

the parameter anomaly detection model through the indicator function I{·}.114

3



Under review as a conference paper at ICLR 2024

2.2 LOG PARSING115

For log streaming data, because the log parameters and templates are of slightly different importance,116

it is necessary to design different anomaly detection schemes for these two parts. In the log parsing117

phase, we use Drain to separate the template and the parameter information. For log streaming data,118

because the log parameters and templates are of slightly different in importance, it is very necessary119

to design different anomaly detection schemes for these two parts in algorithm construction. In the120

log parsing phase, we use Drain (He et al., 2017) to separate the template and parameter information.121

That is122

{XT
t , XP

t } = Drain(Xt),

where Drain(·) is the log parse tree of Drain with fixed depth. Its performance has achieved SOTA.123

The template and the parameter information can be obtained well through log parse tree constructed124

from Drain.125

2.3 TEMPLATE ANOMALY DETECTION MODULE126

2.3.1 SEMANTIC EMBEDDING127

Sentence-bert (Reimers and Gurevych, 2019) is chosen as the modeling tool for semantic embed-128

ding. Sentence-bert is a variant of BERT, and it has great advantages in computational speed com-129

pared to the traditional Bert. The Sentence-bert uses pairwise comparison to quickly obtain the130

embedding of sentences. In the pooling stage, the token mean or max or other criteria can be used.131

In general, Sentence-bert greatly improves the operational speed of obtaining the sentence embed-132

ding information, while retaining semantic information.133

In the AbnormalLog algorithm, we first need to semantically embed the existing n templates134

into a template set ΛT = {XT
1 , . . . , XT

n } and generate a template semantic vector set ΩT =135

{(XT
i , ϕi)|i = 1, . . . , n} through a pre-training procedure with template vectors and semantic vec-136

tors matched one by one. The pre-training process of the template semantic vector set ΩT is as137

follows. First, we map all the template information in the template library into the semantic vector138

set {ϕ1, . . . , ϕk, . . . , ϕn} through the model Q(·), which is the Paraphrase-Multilingual-MiniLM-139

L12-v2 model based on Sentence-bert proposed by Lab (2021) (Note: if possible, using a large140

amount of log data to perform the pre-training is suggested). The input here is a collection of all n141

log templates, and the output is a multidimensional semantic vector sets {ϕ1, . . . , ϕk, . . . , ϕn}.142

{ϕ1, . . . , ϕk, . . . , ϕn} = Sentence-bert
(

{XT
1 , . . . , XT

k , . . . , XT
n }

)
,

where, ϕi is the semantic vector for the ith log template XT
i , n is the total number of templates, and143

Q is the Sentence-bert model that maps the template set to the vector set. The dimension of semantic144

vector ϕi is determined by Sentence-bert model. For any new log data generated at time t, use the145

template XT
t to find the corresponded semantic vector ϕt in ΩT . That is146

ϕt =
n∑

i=1
ϕi × I(XT

t = Xi).

If (XT
t , ϕt) /∈ ΩT , put XT

t into the template set ΛT . Then retrain the model to update ΩT .147

2.3.2 TEMPLATE ANOMALY STATUS EVALUATION148

In the template anomaly detection, the model used to analyze log time series data needs to have the149

ability to process sequential data. RNN related models or Transformer are all capable to process se-150

quence data. Therefore, the Template Anomaly Detection module is a set of deep learning detection151

framework based on LSTM and Attention mechanism. Since the sequence length of the log data152

is limited in a few words, we adopt double-layer bidirectional LSTM stack as the core algorithm153

structure for our template anomaly detection algorithm to capture the sequence characteristics. The154

4



Under review as a conference paper at ICLR 2024

bidirectional LSTM can capture the forward sequence information, as well as the feature informa-155

tion from the inverse direction. The stacking model structure can improve the learning ability of the156

model by increasing the model structure depth. In this work, a two-layer network is built to improve157

the complexity of the model structure and increase the number of effective model parameters, which158

improve the expressive effect of the model. Also, since the bidirectional double-layer LSTM stack159

model has outputs in both directions, the bidirectional LSTM will splice the two outputs together.160

Then the spliced vectors are weighted by a layer of Attention. Then the results will be projected to161

the 2-dimensional space through a Full Connection layer for classification. Finally, a SoftMax layer162

is used to calculate the final classification probability.163

Figure 1 is the framework of the log template anomaly detection module. FC is the Full Connection164

layer. Xt is the semantic vector of the tth log template. Hklt is the hidden state of the output of the165

tth LSTM module in layer l. k = 1 represents the forward LSTM, and k = 2 represents the reverse166

model. Similar to the above notation, Cklt is the cell state output of the tth LSTM module in layer167

l. k = 1 represents the forward LSTM, and k = 2 represents the reverse model. Yt is the output of168

the tth sequence, which is the splicing result of two outcomes from the bidirectional LSTM module.169

The Attention layer processes the output from the LSTM stack. In the Attention layer,170

ui = Tanh(WwYi), αi = exp(u⊤
i uw)∑

i exp(u⊤
i uw)

, θ =
∑

i

αiYi,

Figure 1: The framework of the Log Template Anomaly Detection Module

where ui is the output vector of the hyperbolic tangent activation function Tanh, with each of its171

element uij ∈ [−1, 1]. αi is the weight of sequence Yi. θ is the output of the Attention layer. Ww172

is the weight projection matrix. uw is the sequence weight adjustment vector. Plug the output of173

the Attention layer into the Full Connection layer, and finalize the classification probability result174

through a Softmax classification layer.175

For example, plug the log sequence data obtained at time t into a size s analysis window. At this176

moment, the window contains s different log sequences {Xt−s+1, . . . , Xt}. Next, we use the first177

s − 1 log sequences information {Xt−s+1, . . . , Xt−1} to predict the abnormal status of the last178

log sequence Xt. The overall operation process of the model is as follows. We first convert all log179

sequences in the analysis window into semantic vectors based on semantic analysis module and plug180

the results into the template exception detection model. Initialize the LSTM stack by initializing the181

hidden state H and cell state C in a random fashion. Then splice the positive and negative LSTM182

5



Under review as a conference paper at ICLR 2024

outputs. Which is Yi = {H11i+1, H21i}, where the dimensionality of Yi is twice that of the183

hidden state H . Then, all feature weights are learned through the Attention module. As mentioned184

above, Ww and uw are initialized randomly. After the Attention layer, a Full Connection layer185

with two-dimensional output is designed to calculate the score of abnormal status of the template.186

Finally, the probability of the anomaly status of the template Xt is computed through the SoftMax187

layer. The template exception detection model are optimized by minimizing the cross entropy loss188

H(p, q) = −
∑

j pj ln qj , where pj is the true probability distribution of the event and qj is our189

predicted probability distribution.190

2.4 PARAMETER ANOMALY DETECTION MODULE191

In the parameter anomaly detection, parameters can be distinguished as numeric parameters and192

character parameters. The difficulty of parameter anomaly detection is the design of the parameter193

exception detection scheme is a case driven study, and there is no way to setup a general detection194

scheme for different application scenarios. Even though there are numerical parameter appears, it195

may not either represent the quantity or quality. For example, "the type number of the car is 911"196

and "the type number of the car is 350", the digital parameters 911 and 350 are categorical variables197

and have no numerical significance. Therefore, it is not feasible to simply adopt the quantitative198

analysis method for all digital parameters. Similarly, if all parameters are treated as character data,199

the problem that lack of sensitivity to the numerical values will show up. In previous example, "the200

running time is ⋆ seconds". Generally, the value of ⋆ will be about 100, but there will be significant201

difference when the value grows to 10, 000. Therefore, a universal parameter exception detection202

scheme may not be a reasonable choice. For different service scenarios, the business party should203

always design a personalized parameter anomaly detection scheme according to the characteristics204

of their service.205

In this paper, we adopt the Isolation Forest for the anomaly detection of numeric parameters. The206

computational logic is quit straightforward. Based on the historical parameter information of the207

corresponded log template, by comparing with the threshold to judge the abnormal status of the new208

parameter in the target log data. For character parameters, our approach is identifying outliers based209

on their frequencies. These character parameters that have never appeared in any existing templates210

are treated as exceptions directly. Those with cumulative frequency lower than the predetermined211

threshold δ are also treated as exceptions. Note that the choices of δ varies in different application212

scenarios.213

3 EXPERIMENT214

In the empirical analysis, we compare the performance of our proposed AbnormalLog algorithm215

to three commonly used deep learning algorithms DeepLog, LogAnomaly and RobustLog. Among216

these methods, DeepLog and LogAnomaly are unsupervised methods, while RobustLog and our217

proposed AbnormalLog are supervised methods. We set the size of sequence analysis window218

s = 10, which means there will be 10 log sequences in the analysis window at any time t. We219

use the first 9 log sequences’ abnormal informations to predict the anomaly status of the last log220

sequence.221

In our experiments, we found that the unsupervised learning methods have two very obvious draw-222

backs. Section 3.2.1 shows that the unsupervised learning methods are highly depends on the hyper223

parameter K, which is the number of candidate templates with the Top-K largest probabilities in the224

template anomaly detection procedure. The optimal value of K varies greatly in different data appli-225

cation scenarios, and the optimization of the hyper parameter K cost too much labor and time. In our226

experiment, after a large amount of model debugging works, we get the optimal value of K for the227

HDFS data set is K = 10, and is K = 20 for the BGL data set. Section 3.2.2 shows that the highly228

duplication nature of the log data makes the test performance of the unsupervised learning methods229

unexpected inflated. To explore the true detection ability of these four methods, a comprehensive230

test is conducted on the deduplicated HDFS and BGL data sets. We compare the performance of231

these four methods based on several commonly used model evaluation criteria, Precision, Recall232

and F1 score.233

6



Under review as a conference paper at ICLR 2024

All experiments are performed on a Windows PC with Intel I-7 9750cpu @ 2.60GHz and 2.60GHz.234

To avoid the influence of randomness, all the following experimental results are the average of five235

replicated experiments.236

3.1 DATA PREPARATION237

We conduct the experiments on two public data sets, which are the HDFS data set (Xu et al., 2009b),238

and the BGL data set (Oliner and Stearley, 2007)two classical log data sets, the HDFS data (Xu239

et al., 2009b) and the BGL data (Oliner and Stearley, 2007). In the log anomaly detection field,240

scholars often use these two data sets to testify the performance of their methods. HDFS is collected241

by Amazon, which has tens of millions of log records from different data block operation systems242

with unique IDs. BGL contains millions of system log records generated by the supercomputer243

BlueGene/L in Lawrence Livermore’s National Laboratory. Both HDFS and BGL have their abnor-244

mality status labels marked by experts for all logs. Normal logs are al started with a symbol of "-",245

while the abnormal logs are not marked specifically.246

In our experiments, for the HDFS data, we directly use the well-designed experimental framework247

provided by Deeplee-Afar (2020). This framework has nearly 0.57 millions logs, which are used248

as the HDFS experiment data in this paper. For the BGL data, we designed our own experimental249

framework. We extract the first 0.5 millions logs from the BGL data pool and use them as our250

experiment data. Then we perform our experiments based on the BGL sample data, including the251

extraction of log template sequences, the semantic embedding of different log templates, and the252

division of the training set and test set of the experiment. Finally, the total number of templates in253

our HDFS data set is 28 and that in BGL data set is 178. In order to properly apply the unsupervised254

learning algorithms, the data set has to be preprocessed. DeepLog only needs template sequence255

information, while LogAnomaly only needs the quantity information of template sequences. We256

split data into training sets and test sets as shown in Table 1. In the log anomaly detection, validation257

sets only contains normal logs. All models are trained on the original duplicated training sets, and258

tested on both the duplicated test sets and the deduplicated test sets.259

Table 1: The data sets setup

Data Method Trainning Test (duplicated) Test (deduplicated)

HDFS

DeepLog 12,000 563,060 17,095
LogAnomaly 12,000 563,060 17,095
RobustLog 12,000 563,060 17,095

AbnormalLog 12,000 563,060 17,095

BGL

DeepLog 11,883 480,268 7,667
LogAnomaly 11,883 480,268 7,667
RobustLog 11,883 480,268 7,667

AbnormalLog 11,883 480,268 7,667

3.2 EXPERIMENT RESULTS260

3.2.1 CHOICE OF HYPER PARAMETER K FOR UNSUPERVISED LEARNING METHODS261

For these unsupervised algorithms (DeepLog and LogAnomaly), we evaluated the impact of the262

hyper parameter K on the model performance. Figure 2 is the trace plot of F1 score at different263

values of the hyper parameter K. The major problem is that the performance of the unsupervised264

algorithms relies too much on the choice of K, and fluctuates greatly with respect to different K265

values. For example, for the DeepLog on the BGL data set, when K = 40, the F1 score for the266

DeepLog on the BGL data set is 0.83; when K = 50, the F1 score drops sharply to 0 approximately.267

Besides, the selection of K is not a easy work. It requires a lot of labor and time due to the repeated268

debugging.269

3.2.2 EXPERIMENT RESULTS ON THE DUPLICATED DATA AND DEDUPLICATED DATA270

In this section, we compare the perofrmance of four methods on both the duplicated and dedupli-271

cated HDFS and BGL data sets. For the HDFS data set, before deduplication, there are 16,838272

7



Under review as a conference paper at ICLR 2024

Figure 2: F1 score of unsupervised methods under different values of hyper parameter K

abnormal sequences and 553,366 normal sequences. Normal means that the sequence does not con-273

tain any exception logs. After data deduplication, there are 14,177 normal sequences and 4,123274

abnormal sequences. For the BGL data set, before data deduplication, there are 285,396 normal log275

sequences and 206842 abnormal sequences. After data deduplication, 7,506 normal sequences and276

299 abnormal sequences are obtained.277

Table 2 shows the performance of unsupervised algorithm on the test data sets with severe dupli-278

cation problem. The analysis results of the DeepLog, the LogAnomaly, the RobustLog and the279

AbnormalLog algorithms on the deduplicated HDFS and BGL data sets are summarized in Table 3.280

By comparing the results from Table 2 and Table 3, we can see that the test results of unsupervised281

algorithms are highly inflated while there is severe duplication problem. For example, on the HDFS282

data set, the F1 score decreases from 0.93 to 0.29 and Precision decreases from 0.87 to 0.17 for283

the LogAnomaly method, which indicates that the F1 score of the LogAnomoly algorithm is seri-284

ously inflated by the data duplication. The similar conclusion can be also obtained for the DeepLog285

method.286

Table 2: Performance of Unsupervised Learning Methods on Datasets with Duplications

Data Algorithm Precision Recall F1

HDFS DeepLog 0.92 0.95 0.94
LogAnomaly 0.87 0.99 0.93

BGL DeepLog 0.96 0.75 0.84
LogAnomaly 0.98 1.00 0.99

From Table 3 we can conclude that supervised algorithms are significantly better than that of un-287

supervised algorithms with respect to the Precision and F1 criteria. Moreover, among the four288

algorithms, the AbnormalLog method proposed in this work achives the highest F1 score with other289

model evaluation vriteria retain at good levels.290

Table 3: Performance Comparison of Methods on the Deduplicated Data Sets

Data Algorithm Precision Recall F1

HDFS

DeepLog 0.12 0.98 0.21
LogAnomaly 0.17 1.00 0.29
RobustLog 0.85 0.83 0.84
AbnormalLog 0.82 0.92 0.87

BGL

DeepLog 0.75 0.90 0.82
LogAnomaly 0.80 0.94 0.88
RobustLog 0.88 0.82 0.85
AbnormalLog 1.00 0.82 0.90

In summary, unlike the strong dependence of unsupervised algorithm on the hyper parameter K, the291

proposed supervised learning method AbnormalLog does not rely on any hyper parameter. There-292

8



Under review as a conference paper at ICLR 2024

fore, there is no extra cost in the training process. Compared with RobustLog, which is also a293

supervised learning method, AbnormalLog has obvious advantages in the performance with respect294

to the model evaluation criteria Recall and F1 score, except that its Precision = 0.82 on the HDFS295

data set is slightly lower than that of the RobustLog.296

4 CONCLUSION297

In this paper, we presented a new log anomaly detection algorithm, AbnormalLog. From the per-298

spective of deep learning model architecture, AbnormalLog comprehensively uses the non-structural299

characteristics of log data to detect anomalies from both templates and parameters. From the em-300

pirical analysis, we demonstrate that the performance of AbnormalLog is better than three other301

commonly used algorithms for log anomaly detection. Particularly, AbnormalLog has the highest302

F1 score on two common data sets BGL and HDFS, and it does not rely on the hyper parameter303

K as is the case for the unsupervised algorithms. Furthermore, based on the philosophy of our pro-304

posed algorithm, it can not only detect common exceptions in the log templates but also diagnose305

those customized exception patterns.306

AUTHOR CONTRIBUTIONS307

ACKNOWLEDGMENTS308

9



Under review as a conference paper at ICLR 2024

REFERENCES309

Deeplee-Afar (2020). logdeep. https://github.com/donglee-afar/logdeep.310

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2019, June). BERT: Pre-training of deep311

bidirectional transformers for language understanding. In Proceedings of the 2019 Conference312

of the North American Chapter of the Association for Computational Linguistics: Human Lan-313

guage Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 4171–4186.314

Association for Computational Linguistics.315

Du, M. and F. Li (2016). Spell: Streaming parsing of system event logs. In 2016 IEEE 16th316

International Conference on Data Mining (ICDM), pp. 859–864.317

Du, M., F. Li, G. Zheng, and V. Srikumar (2017). Deeplog: Anomaly detection and diagnosis from318

system logs through deep learning. In Proceedings of the 2017 ACM SIGSAC Conference on Com-319

puter and Communications Security, CCS ’17, New York, NY, USA, pp. 12851298. Association320

for Computing Machinery.321

Gao, Z., P. Du, R. Jin, and J. Robertson (2020). Surface temperature monitoring in liver procurement322

via functional variance change-point analysis. The Annals of Applied Statistics 14, 143–159.323

Gao, Z., Z. Shang, P. Du, and J. L. Robertson (2019). Variance change point detection under a324

smoothly-changing mean trend with application to liver procurement. Journal of the American325

Statistical Association 114(526), 773–781.326

He, P., J. Zhu, Z. Zheng, and M. R. Lyu (2017). Drain: An online log parsing approach with fixed327

depth tree. 2017 IEEE International Conference on Web Services (ICWS), 33–40.328

Lab, U. K. P. (2021). sentence-transformer. https://github.com/UKPLab/329

sentence-transformers.330

Liu, F. T., K. M. Ting, and Z.-H. Zhou (2008). Isolation forest. In 2008 eighth ieee international331

conference on data mining, pp. 413–422. IEEE.332

Meng, W., Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang, S. Tao, P. Sun, et al. (2019).333

Loganomaly: Unsupervised detection of sequential and quantitative anomalies in unstructured334

logs. In IJCAI, Volume 19, pp. 4739–4745.335

Messaoudi, S., A. Panichella, D. Bianculli, L. Briand, and R. Sasnauskas (2018). A search-based ap-336

proach for accurate identification of log message formats. In 2018 IEEE/ACM 26th International337

Conference on Program Comprehension (ICPC), pp. 167–16710.338

Mikolov, T., K. Chen, G. S. Corrado, and J. Dean (2013). Efficient estimation of word representa-339

tions in vector space. In International Conference on Learning Representations.340

Oliner, A. and J. Stearley (2007). What supercomputers say: A study of five system logs. In 37th341

Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’07),342

pp. 575–584. IEEE.343

Reimers, N. and I. Gurevych (2019). Sentence-bert: Sentence embeddings using siamese bert-344

networks. arXiv preprint arXiv:1908.10084.345

Schölkopf, B., J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson (2001). Estimating346

the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471.347

Vaarandi, R. and M. Pihelgas (2015). Logcluster-a data clustering and pattern mining algorithm for348

event logs. In 2015 11th International conference on network and service management (CNSM),349

pp. 1–7. IEEE.350

Xu, W., L. Huang, A. Fox, D. Patterson, and M. I. Jordan (2009a). Detecting large-scale system351

problems by mining console logs. In Proceedings of the ACM SIGOPS 22nd symposium on352

Operating systems principles, pp. 117–132.353

i

https://github.com/donglee-afar/logdeep
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers


Under review as a conference paper at ICLR 2024

Xu, W., L. Huang, A. Fox, D. Patterson, and M. I. Jordan (2009b). Detecting large-scale system354

problems by mining console logs. In Proceedings of the ACM SIGOPS 22nd symposium on355

Operating systems principles, pp. 117–132.356

Zhang, X., Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang, Q. Cheng, Z. Li, et al.357

(2019). Robust log-based anomaly detection on unstable log data. In Proceedings of the 2019358

27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the359

Foundations of Software Engineering, pp. 807–817.360

ii


