Beyond QA Pairs: Assessing Parameter-Efficient Fine-Tuning
for Fact Embedding in LLLMs

Shivam Ratnakar'-2, Abhiroop Talasila', Raghav Chamadiya',
Nikhil Agarwal', Vinayak K Doifode!

'Equinix, >University of Southern California
shivam.ratnakar@usc.edu

Abstract

This paper presents an extensive examination of Parameter-
Efficient Fine-Tuning (PEFT) for embedding domain spe-
cific facts into Large Language Models (LLMs), focusing on
improving the fine-tuning process by categorizing question-
answer (QA) pairs into ‘Factual’ and ‘Conceptual’ classes us-
ing a BERT-based classifier. Two distinct Llama-2 models are
fine-tuned based on these classifications and evaluated using
larger models like GPT-3.5 Turbo and Gemini. Our results in-
dicate that models trained on conceptual datasets outperform
those trained on factual datasets. Additionally, we compare
the efficiency of two synthetic fine-tuning dataset generation
techniques, D-RAG and D-Naive, with D-Naive demonstrat-
ing superior performance. Although PEFT has shown effec-
tiveness, our research indicates that it may not be the most op-
timal method for embedding facts into LLMs. However, it has
demonstrated exceptional performance in instruction-based
tasks. Our findings are reinforced by a 1000-sample dataset
in the data center domain, where the fine-tuned Llama-2 7B
model significantly outperforms the baseline model in gen-
erating product recommendations. Our study highlights the
importance of QA pair categorization and synthetic dataset
generation techniques in enhancing the performance of LLMs
in specific domains.

Introduction

Parameter-Efficient Fine-Tuning (PEFT) has emerged as a
highly effective strategy for refining Large Language Mod-
els (LLMs) on domain-specific data, thanks to its reduced
computational and time requirements compared to full fine-
tuning. This technique has seen widespread adoption in the
industry for embedding domain knowledge into LLMs. Plat-
forms like Azure, Google Cloud Platform, Mistral, AWS,
and Lamini offer fine-tuning as a service using methods
like Low Rank Adaptation (LoRA), making PEFT accessi-
ble and user-friendly (Hu et al. 2021). These low code/no
code solutions have become popular among developers due
to their simplicity. However, the ease of use of these plat-
forms can create a misconception that merely having a large
quantity of question-answer (QA) pairs is sufficient for ef-
fective domain adaptation. This misunderstanding may lead
to the utilization of low-quality datasets, compromising the

Presented at the Workshop on Preparing Good Data for Generative
Al: Challenges and Approaches (Good-Data) in conjunction with
AAAI 2025. The authors retain the copyright.

effectiveness of the fine-tuning process. In this paper, we
address this issue by proposing a set of metrics to assess
the quality and appropriateness of QA datasets for PEFT.
We introduce a novel method for categorizing QA pairs into
‘Factual’ and ‘Conceptual’ classes using a BERT-based clas-
sifier. By separating the original dataset based on these cat-
egories, we fine-tune two distinct sets of Llama-2 models
using LoRA. Our evaluation, conducted with larger mod-
els such as GPT-3.5 Turbo, Gemini 1.5 Pro (Reid et al.
2024), and Prometheus (Kim et al. 2024), reveals that mod-
els trained on conceptual datasets significantly outperform
those trained on factual datasets. Furthermore, we investi-
gate the effectiveness of two synthetic dataset generation
techniques, D-RAG and D-Naive (depicted in Figure 1). Our
results show that the D-Naive approach produces superior
fine-tuning datasets compared to D-RAG. Additionally, we
suggest that while PEFT is highly effective, it may not be
optimal for embedding factual information into LLMs. In-
stead, it excels in instruction-based tasks. To support our as-
sertion, we conducted an experiment using a 1000-sample
dataset for sales product recommendation in the data center
domain. The results clearly demonstrate that the fine-tuned
Llama-2 7B model (Touvron et al. 2023) outperforms the
baseline model.

Background: Fine-tuning LLLMs for Domain
Adaptation

Domain adaptation of LLMs involves tailoring LLMs, ini-
tially trained on diverse and extensive public datasets, to en-
hance their performance and relevance for specific domains
or use cases. This process is critical for organizations aiming
to leverage LLMs and their reasoning capabilities to address
unique concepts and knowledge pertinent to their fields.

There are primarily two approaches to creating domain-
specific LLMs: training from scratch or adapting existing
general LLMs through continued pre-training. The former is
typically cost-prohibitive and less common unless there is a
highly specialized requirement. The latter approach, involv-
ing fine-tuning existing LLLMs, is more efficient and increas-
ingly accessible due to advancements in fine-tuning method-
ologies and tools.

A significant portion of domain adaptation efforts has
concentrated on fine-tuning LLMs using domain-specific

i,

7

Document

—
[—]
[—]
[——]

QA pairs

O-fa 5

Domain Specific =,h
Courpus = [ITTTTTT T T
[TIITILITTT]
\ L= — e
= [T TTTTTT 11
Text chunks Chunk embeddings

@

D Naive Q’s

Generating answer for
/ D-Naive Q’s using RAG

Vector Database

)

D-RAG

Figure 1: Pipeline to generate D-RAG and D-Naive

QA datasets (Zhou et al. 2024; Gupta et al. 2024; Li et al.
2023). These datasets are commonly generated through
pipelines where another LLM (e.g., GPT-3.5 Turbo or GPT-
4 Turbo) extracts QA pairs from domain resources like
text documents, wiki pages, and web content. Alternatively,
datasets can be manually curated and annotated by domain
experts or compiled from community-driven Q&A websites
like Reddit, WikiHow, and Stack Exchange, often combin-
ing multiple approaches for comprehensive coverage.

High-quality data selection has therefore garnered sig-
nificant attention and indicates that only a small fraction
of high-quality data may be necessary to achieve perfor-
mance comparable to fine-tuning on entire datasets. Tech-
niques to optimize data selection have been developed, with
algorithms and heuristics identifying the most effective data
subsets, enhancing efficiency and reducing resource require-
ments for domain adaptation (Zhou et al. 2024; Chen et al.
2023; Shen 2024; Li et al. 2023).

Is PEFT suitable for embedding facts?

PEFT techniques like LoRA affect a very small fraction of
the weights primarily in the Self-Attention module, whereas
LLM’s knowledge is thought to be stored in the Feedforward
Network module. Therefore, our hypothesis is that these
techniques are suitable for influencing the writing style or in-
corporating specific logic into the text generation process of
LLMs. For instance, in domain-specific text summary gen-
eration, crafting sales pitches from product descriptions, se-
lecting the most suitable product based on descriptions and
customer requirements, etc. These use-cases are better suited
for PEFT instead of use-cases where the LLM needs to learn
certain facts about the domain. To test this hypothesis, we
generate two types of datasets. First category represents the
task that would require a business logic to be embedded
into the LLM or some change in the LLM’s text generat-
ing style. The second category of datasets represents factual
information based QA bot for a specialized domain. With
these datasets, we trained a Llama-2 7B model and com-

pared the performance of on the two categories. We also ar-
gue that the change in writing style category of use-cases
requires very little amount of data when compared to fac-
tual embedding use-cases. Through are experiments, we also
showcase the effectiveness of conceptual QA pairs over fac-
tual QA pairs for domain specific QA bot use-cases. Our
experiments indicate that a question like “What is a patch
panel?” is a better data point for fine-tuning in comparison
to “How many patch panels are there in the XYZ Silicon
Valley data-center?”.

Related Work

The task of optimizing data quality for fine-tuning LLMs
intersects with various facets of model training, including
the evaluation of minimal data requirements, domain adap-
tation, and instruction tuning. This section highlights ap-
proaches that have informed the development of our pro-
posed framework.

Minimal Data Requirements and Efficiency Recent
studies emphasize the efficacy of fine-tuning LLMs with
minimal but high-quality datasets. The LIMA model (Zhou
et al. 2024) demonstrated that fine-tuning a 65B parameter
Llama model with just 1,000 curated prompts yielded per-
formance on par with models trained on extensive datasets,
underscoring that most knowledge is acquired during pre-
training. Similarly, “Maybe Only 0.5% of Data is Needed”
(Chen et al. 2023) explores reducing data usage in instruc-
tion tuning, revealing that models can achieve better task-
specific performance with significantly less data, challeng-
ing the necessity of large datasets for fine-tuning.

Domain-Specific Adaptation Fine-tuning for domain-
specific tasks has been extensively explored. The RAFT ap-
proach (Zhang et al. 2024) combines Retrieval-Augmented
Generation (RAG) with fine-tuning to enhance LLM perfor-
mance in specific domains by training models to disregard
irrelevant retrieved documents, improving focus and accu-
racy. Similarly, “RAG vs Fine-tuning” (Gupta et al. 2024)

compares both approaches across various LLMs, demon-
strating how each method can be effectively employed
for domain-specific applications, particularly in underex-
plored sectors like agriculture. Additionally, “Fine-tuning
Language Models for Factuality” (Tian et al. 2023) lever-
ages recent innovations in factuality judgment and prefer-
ence optimization algorithms to improve the factual accu-
racy of LLMs, offering a novel approach to mitigating mis-
information.

Instruction Tuning and Data Selection Efficient data
selection for instruction tuning is crucial for optimizing
LLM performance. “From Quantity to Quality” (Li et al.
2023) introduces a self-guided methodology that employs
the Instruction-Following Difficulty metric to identify high-
quality instruction data, enhancing training efficiency. Ad-
ditionally, “Rethinking Data Selection for Supervised Fine-
Tuning” (Shen 2024) argues that selecting data reflecting
human-like interactions, rather than purely based on qual-
ity and diversity, yields better results in aligning models
with human expectations. The MoDS approach (Du, Zong,
and Zhang 2023) further refines data selection by focusing
on quality, coverage, and necessity, demonstrating improved
performance with a significantly reduced dataset. Address-
ing LLM limitations such as hallucinations and weak nu-
merical reasoning, ToolQA (Zhuang et al. 2024) introduces
a dataset to evaluate LLMSs’ ability to use external tools for
question answering, providing insights into their strengths
and weaknesses.

Experiments and Results

In order to test the hypothesis of ineffectiveness of PEFT on
factual embedding based use-cases like QA bots, we gen-
erated 5 datasets that can be used to fine-tune an LLM.
All these datasets were generated using GPT-4 Turbo. The
data for generating QA pairs and prompt response pairs was
scraped from publicly available websites of a data center
company. These websites belong to different logical groups,
ensuring that the datasets cover a diverse range of informa-
tion within the specific domain. The authors manually re-
viewed the generated QA/prompt-response pairs to elimi-
nate any erroneous data points from the datasets. The first
four of these five datasets represent the use-case of QA bots
and the last one is a product recommendation dataset. We
describe these datasets as follows:

* D-RAG and D-Naive Figure 1 visualizes our synthetic
dataset creation technique, depicting the pipeline for gen-
erating two QA datasets, D-Naive and D-RAG, from
a domain-specific corpus. In the D-Naive approach, an
LLM is used to directly generate QA pairs from docu-
ments. The process is straightforward, wherein each doc-
ument is fed into the LLM prompted to generate QA
pairs. On the other hand, the D-RAG approach uses RAG
over the questions generated by the D-Naive method
and regenerates answers by querying the vector database.
This approach enhances the quality of answers by lever-
aging the entire corpus’s context rather than relying on
single documents. This essentially improves the QA pairs
generated by D-Naive by providing more contextually

rich answers. Each of these datasets contain 20,000 QA
pairs, out of which 1000 pairs were used for testing.

* Conceptual and Factual These datasets were derived
from the D-Naive dataset, with each containing 5,000
QA pairs. The total dataset consists of 10,000 QA pairs,
which is a subset of the original 20,000 QA pairs in
the D-Naive dataset. The dataset is divided into two
classes: conceptual and factual. The conceptual dataset
consists of questions that require a deeper understanding
of the domain rather than relying solely on factual knowl-
edge. An example of a conceptual question is “What is a
patch panel?” On the other hand, the factual dataset con-
tains questions that necessitate specific factual knowl-
edge about the domain. An example of a factual ques-
tion is “How many XYZ Inc. data centers are located in
California?” A BERT-based classifier was used to clas-
sify the pairs as conceptual or factual. This classifier was
trained on a corpus of 5,000 QA pairs annotated by GPT-
4 Turbo. Training the BERT-based classifier helped save
time and cost in annotating QA pairs at scale.

* Product Recommendation This dataset consists of 1000
prompt-response pairs created from product descriptions
scraped from the websites. The prompts include a list of
products and a data-center requirement, and the LLM is
tasked with selecting the most suitable product for the
given requirement.

Fine-tuning A Llama-2 7B model from NousResearch
hosted on HuggingFace was fine-tuned on each of these
datasets using LoRA. Training parameters were optimized to
balance performance and learning efficiency. Notable con-
figurations included a training and evaluation batch size of
8 per device, gradient accumulation across four steps, and
gradient check pointing to enhance memory efficiency. The
training included 5 epochs with an initial learning rate of
2e-4, employing mixed precision (bfloatl6) to expedite
computation. AdamW with blockwise model-update filter-
ing was used as the optimizer, and a cosine scheduler man-
aged the learning rate with a warm-up ratio of 5%.

We opted for the Llama-2 7B model due to its widespread
availability and compatibility with low-code and no-code
fine-tuning platforms. This particular model has gained sig-
nificant traction among industry developers, who frequently
utilize it to construct domain-specific question-and-answer
bots. Consequently, we sought to assess the effectiveness
of PEFT on this model for these specialized applications.
By doing so, we aim to understand its potential and perfor-
mance in real-world scenarios, thereby contributing valuable
insights to the ongoing discourse in the field.

Proctor LLMs Proprietary LLMs like GPT-4 Turbo are
widely used to assess the quality of responses from vari-
ous LLMs. However, issues with transparency, tuning, and
cost highlight the need for open-source LLMs specialized in
evaluation. Current proctor LLMs often produce scores that
diverge significantly from human ratings and are limited to
general criteria like helpfulness and harmlessness, lacking
the ability to assess based on custom evaluation metrics.
We use three proctor LLMs: GPT-3.5 Turbo, Gemini
1.5 Pro (Reid et al. 2024), and Prometheus 2 7B (Kim

Methods GPT

D-RAG 3.67 £1.504
D-Naive 3.93 +1.073
Factual 3.62 +1.178

Conceptual 4.02 + 1.213

Gemini Prometheus
2.72+143 3.23+1.60
281 +1.22 3.194+1.40

224+£132 281+141
2.84+1.26 3.34+1.33

Table 1: Average evaluation scores and standard deviation of different evaluator LLMs on our four QA datasets

et al. 2024) to score our generated QA datasets according
to a predefined rubric (Evaluation Prompt in Appendix).
Prometheus has demonstrated strong evaluation capabilities,
closely aligning with both human and GPT-4 Turbo assess-
ments while being significantly smaller in size.

Our evaluation framework systematically compares the
performance of these proctor LLMs. Each model scored a
diverse set of QA pairs generated by various LLLMs, using a
consistent rubric that included custom evaluation metrics.

Evaluation results The mean and standard deviation of
LLM scores of all 4 QA pairs datasets are shown in Ta-
ble 1. The proctor models compare the output generated by
the LLM against the ground truth answer in the test dataset.
The test dataset consists of 1000 QA pairs each for every
category of the training dataset. The prompt and rubric pro-
vided to the LLMs to generate these scores are provided in
the Appendix.

The findings reveal that the model trained on conceptual
data exhibits superior performance compared to the model
trained on factual data. Surprisingly, the D-Naive evalua-
tion scores surpass those of D-RAG, contrary to our ini-
tial expectation. Further investigation of the D-RAG dataset
revealed that the retriever failed to retrieve the appropriate
documents, resulting in lower-quality answers compared to
D-Naive. In the product recommendation dataset, the trained
model successfully recommended the correct product in 70
out of 100 test queries. In contrast, the vanilla Llama-2
7B model performed significantly worse, accurately recom-
mending the right product in only 30 queries.

Conclusions

Our research highlights the paramount importance of the
quality and categorization of QA pairs in PEFT, providing
profound insights into optimizing the fine-tuning process of
LLMs for domain-specific applications. The outcomes of
our fine-tuning experiments reveal that PEFT is particularly
advantageous for scenarios requiring minimal factual infor-
mation embedding into LL.Ms. Notably, the LLM trained
on a conceptual dataset significantly outperformed the one
trained on a factual dataset. This trend was consistently ob-
served across all three proctor models, underscoring that the
sheer volume of QA pairs is insufficient for the effective de-
ployment of PEFT in developing domain-specific QA bots.
It is crucial to judiciously select the use-case when lever-
aging PEFT. Our product recommendation experiment fur-
ther illustrates that for instruction-based applications, even a
dataset as modest as 1,000 prompt-response pairs can yield
a high-quality fine-tuned model.

Although our experiments with D-RAG and D-Naive did

not demonstrate that the D-RAG technique for synthetic
training data generation is more efficient, we believe that
this avenue warrants further exploration. The potential of
D-RAG to generate more comprehensive and complete an-
swers remains promising. In this particular instance, the
technique’s shortcomings were primarily due to the subop-
timal performance of the vector database retriever. By ad-
dressing these retrieval inefficiencies, future research could
unlock the full potential of D-RAG, thereby contributing to
more effective and nuanced fine-tuning methodologies for
LLMs. Thus, while current findings emphasize the impor-
tance of careful use-case selection and QA pair quality in
PEFT, they also open the door for continued innovation in
synthetic data generation techniques.

Limitations and Future Work

In this paper, our research has been constrained to a knowl-
edge base derived from a single domain. While the findings
provide valuable insights into the impact of data quality on
PEFT, expanding these experiments to encompass a broader
range of domains would significantly enhance our under-
standing. Such expansion could reveal domain-specific nu-
ances and broaden the applicability of our conclusions.

The techniques and experiments presented herein are in-
herently versatile and can be applied across various do-
mains. We posit that, irrespective of the domain, instruction-
based datasets are inherently more suitable for PEFT. This
hypothesis is grounded in our findings, which consis-
tently demonstrated superior performance with conceptual
datasets over factual ones.

Looking forward, we plan to incorporate alternative fine-
tuning techniques, such as full parameter fine-tuning, partic-
ularly for use-cases that require substantial factual informa-
tion embedding. This comparative analysis will help delin-
eate the strengths and limitations of PEFT relative to other
fine-tuning methodologies, providing a more comprehensive
framework for optimizing LLMs for diverse applications.

Our current research exclusively employs Llama-2 7B,
chosen for its widespread adoption in industry applications,
robust performance across various benchmarks, and estab-
lished credibility. However, to generalize our findings and
explore the scalability of our approach, future work will ex-
tend these experiments to include other LLMs of compa-
rable parameter sizes, as well as larger models. Evaluating
the performance of these models on factual embedding use-
cases will provide deeper insights and potentially uncover
new avenues for enhancing fine-tuning processes.

By addressing these limitations and pursuing these future
directions, we aim to contribute to the ongoing evolution of
fine-tuning methodologies, ensuring that LLMs can be more

effectively tailored to meet the specific needs of diverse and
complex domain-specific applications.

References

Chen, H.; Zhang, Y.; Zhang, Q.; Yang, H.; Hu, X.; Ma, X.;
Yanggong, Y.; and Zhao, J. 2023. Maybe only 0.5% data
is needed: A preliminary exploration of low training data
instruction tuning. arXiv preprint arXiv:2305.09246.

Du, Q.; Zong, C.; and Zhang, J. 2023. Mods: Model-
oriented data selection for instruction tuning. arXiv preprint
arXiv:2311.15653.

Gupta, A.; Shirgaonkar, A.; Balaguer, A. d. L.; Silva, B.;
Holstein, D.; Li, D.; Marsman, J.; Nunes, L. O.; Rouzbah-
man, M.; Sharp, M.; et al. 2024. RAG vs Fine-tuning:
Pipelines, Tradeoffs, and a Case Study on Agriculture. arXiv
preprint arXiv:2401.08406.

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:2106.09685.
Kim, S.; Suk, J.; Longpre, S.; Lin, B. Y.; Shin, J.; Welleck,
S.; Neubig, G.; Lee, M.; Lee, K.; and Seo, M. 2024.
Prometheus 2: An open source language model special-
ized in evaluating other language models. arXiv preprint
arXiv:2405.01535.

Li, M.; Zhang, Y.; Li, Z.; Chen, J.; Chen, L.; Cheng,
N.; Wang, J.; Zhou, T.; and Xiao, J. 2023. From quan-
tity to quality: Boosting 1lm performance with self-guided
data selection for instruction tuning. arXiv preprint
arXiv:2308.12032.

Reid, M.; Savinov, N.; Teplyashin, D.; Lepikhin, D.; Lilli-
crap, T.; Alayrac, J.-b.; Soricut, R.; Lazaridou, A.; Firat, O.;
Schrittwieser, J.; et al. 2024. Gemini 1.5: Unlocking mul-
timodal understanding across millions of tokens of context.
arXiv preprint arXiv:2403.05530.

Shen, M. 2024. Rethinking Data Selection for Supervised
Fine-Tuning. arXiv preprint arXiv:2402.06094.

Tian, K.; Mitchell, E.; Yao, H.; Manning, C. D.; and Finn,
C. 2023. Fine-tuning language models for factuality. arXiv
preprint arXiv:2311.08401.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.

Zhang, T.; Patil, S. G.; Jain, N.; Shen, S.; Zaharia, M.;
Stoica, I.; and Gonzalez, J. E. 2024. Raft: Adapting
language model to domain specific rag. arXiv preprint
arXiv:2403.10131.

Zhou, C.; Liu, P;; Xu, P; Iyer, S.; Sun, J.; Mao, Y.; Ma, X;
Efrat, A.; Yu, P.; Yu, L.; et al. 2024. Lima: Less is more
for alignment. Advances in Neural Information Processing
Systems, 36.

Zhuang, Y.; Yu, Y.; Wang, K.; Sun, H.; and Zhang, C. 2024.

Toolqga: A dataset for 1lm question answering with external

tools. Advances in Neural Information Processing Systems,
36.

GPT
D-RAG

GPT
D-Naive

GPT
Factual

GPT
Conceptual

Prometheus
D-RAG

Prometheus
D-Naive

Prometheus
Factual

Prometheus
Conceptual

Gemini
D-RAG

Gemini
D-Naive

Gemini
Factual

Gemini
Conceptual

[} 1 2 3 4 5

Figure 2: Comparison of score distribution of different eval-
uators. Refer to Table 1 for empirical results

Appendix

Training Details

The experiments were conducted on a high-capacity Azure
Standard NC96ads_A100_v4 compute instance, featur-
ing 880 GB of RAM, 4 NVIDIA A100 PCIe GPUs each
with 80 GB of memory, for a total GPU memory of 320 GB,
and 96 processor cores. This setup was chosen to effectively
manage the computational demands of fine-tuning LLMs.

eval/loss

train/loss
T T 1..05 T T
— drag — drag
2.00 —— dnaive | \ — dnaive
1.00
175 \\
0.95
1.50 0.20 \\
g 1.25 E 0.85 \\
3 3 \\
1.00 L 0.80
0.75 \
0.75 \
0.70 J f
0.50 _f_
WW oo /
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Step Step
Figure 3: Train and Eval loss - D-RAG vs D-Naive
train/loss evallloss
— conceptual 095 — conceptual
200 —— factual — factual
175 0.90
1.50
0.85
E]
T 125 s
100 080
075
075
050
0 250 500 750 1000 1250 1500 1750 250 500 750 1000 1250 1500 1750

Step

Figure 4: Train and Eval loss - Conceptual vs Factual

Step

Value

Value

Value

train/loss

— call franscript

225

200

175

150

125

1.00

075

0.50

225

200

175

150

125

1.00

075

20 40 60 80 100 120 140
Step

Figure 5: Train loss - Call Transcript

train/loss

—— product recommendation

0 100 200 300 400
Step

Figure 6: Train loss - Product Recommendation

train/loss

—— product recommendation

0 100 200 300 400
Step

Figure 7: Train loss - Sales Pitch

Task Description:

An instruction (might include an Input inside it), a response to evaluate, a
reference answer that gets a score of 5, and a score rubric representing a
evaluation criteria are given.

1. Write a detailed feedback that assess the quality of the response strictly
based on the given score rubric, not evaluating in general.

2. After writing a feedback, write a score that is an integer between 1 and 5.
You should refer to the score rubric.

3. The output format should look as follows: Feedback: {{write a feedback for
criteria}l} [RESULT] {{an integer number between 1 and 5}}

4. Please do not generate any other opening, closing, and explanations. Be sure

to include [RESULT] in your output.

The instruction to evaluate: {instruction}
Response to evaluate: {response}

Reference Answer (Score 5): {reference_answer}

Score Rubrics:
Is the response correct, accurate, and factual based on the reference answer?

Score 1: The response is completely incorrect, inaccurate, and/or not factual.
Score 2: The response is mostly incorrect, inaccurate, and/or not factual.
Score 3: The response is somewhat correct, accurate, and/or factual.

Score 4: The response is mostly correct, accurate, and/or factual.

Score 5: The response is completely correct, accurate, and factual.

Feedback:

Question: How does <COMPANY> Fabric simplify the configuration of networking
for a Metal-hosted cluster?

D-RAG Answer: <COMPANY> Fabric simplifies the configuration of networking for a
Metal-hosted cluster by providing a global software-defined interconnection
platform. It allows you to connect the Metal site to remote cloud or other
infrastructure easily. With <COMPANY> Fabric, you can set up a fabric-based
networking configuration, which not only makes the setup process easy but also
allows you to keep your inter-cluster traffic private if desired. Additionally,
<COMPANY> Fabric supports a container network interface (CNI) plugin designed
for multi-cluster networking, making it relatively easy to configure. This
simplifies the networking setup for Metal-hosted clusters and provides
flexibility for future changes to the Kubernetes environment or architecture.

D-Naive Answer: <COMPANY> Fabric simplifies the configuration of networking for
a Metal-hosted cluster by providing a global software-defined interconnection
platform. By using <COMPANY> Fabric, you can easily connect the Metal site to
other remote cloud or infrastructure where your other cluster is hosted. This
allows for seamless communication between clusters and eliminates the
complexities of configuring networking tools that may vary from site to site.
Additionally, <COMPANY> Fabric enables you to keep your inter-cluster traffic
private if desired.

Sales: Hi, John here from the sales team. I wanted to discuss a new feature
idea for our product.
Developer: Hi John, sure. What's the feature you have in mind?

Sales: I was thinking of adding a chatbot feature that can assist customers
with their inquiries.
Developer: That sounds interesting. How do you envision the chatbot to work?

Sales: The chatbot should be able to answer frequently asked questions, provide
product information, and guide customers through the purchasing process.
Developer: Okay. Are there any specific platforms or technologies you would
like us to use for building the chatbot?

Sales: We're open to suggestions, but it would be great if the chatbot can be
integrated into our existing website and mobile app.

Developer: Got it. I'll look into the available chatbot frameworks and APIs
that we can leverage for this project.

Sales: Perfect. Let's also consider personalization options and the ability to
hand over to a human agent if needed.

Developer: Definitely, we can add those features as well. I'll start working on
the requirements and come up with a development plan.

Sales: Great! Once we have the chatbot ready, we can demonstrate it to
potential customers and gather feedback.

Developer: That's a good plan. We'll need to involve the marketing team to
create awareness and promote the new feature.

Sales: Absolutely. I'll reach out to the marketing team and coordinate with
them to align our strategies.

Next Steps:

Sales: Coordinate with the marketing team to align strategies and create
awareness about the new chatbot feature.

Developer: Research chatbot frameworks and APIs, and come up with a development
plan for the chatbot feature.

Product Description:

<COMPANY> Metal is a global platform that allows users to easily provision bare
metal servers anywhere in the world. It provides state-of-the-art hardware
without any virtualization layer, offering pure, unadulterated iron. With
<COMPANY> Metal, users can experience the ease and convenience of deploying
servers from the comfort of their laptop.

Product Pitch:

Experience the power of <COMPANY> Metal, the global platform for bare metal
server provisioning. With state-of-the-art hardware and easy deployment
process, <COMPANY> Metal allows you to spin up servers anywhere in the world.
Say goodbye to virtualization layers and enjoy the pure performance of
unadulterated iron.

For the following customer requirement and given list of product description,
output the name of the product which can be recommended to customer to solve
their problem

Customer requirement:

The customer requires a networking solution that enables seamless communication
between clusters in a multi-cluster Kubernetes environment, running at
different sites.

Products:

<COMPANY> Metal offers bare metal servers that are ready to use when and where
needed. They provide the flexibility and reliability required to navigate
challenging supply chains and ensure on-time delivery of IT hardware.

Network Edge is a service offered by <COMPANY> that allows users to create
virtual devices with primary and secondary redundancy. It provides a flexible
and scalable networking solution for businesses.

The Unified Cross Connects Portal is a platform provided by <COMPANY> that
allows customers to manage and order Cross Connects with ease. It provides a
centralized interface for accessing Cross Connect services, enabling customers
to efficiently configure and schedule their connections.

<COMPANY> Fabric is a global software-defined interconnection platform provided
by <COMPANY>. It allows for easy networking configuration in a multi-cluster
Kubernetes environment, enabling seamless communication between clusters
running at different sites. With <COMPANY> Fabric, you can ensure secure and
private inter-cluster traffic while simplifying your networking setup.

<COMPANY> Metal is a cloud infrastructure offering that allows users to manage
Metal resources in event-driven configurations. It provides a growing Ansible

collection as a provider for seamless integration.

Output: <COMPANY> Fabric

