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ABSTRACT

Partial agent failure becomes inevitable when systems scale up, making it cru-
cial for defenders to proactively identify and defend against the subset of agents
whose compromise would most significantly degrade overall performance, using
adversarial attacks to simulate such failures. In this paper, we study this Vul-
nerable Agent Identification (VAI) problem in large-scale multi-agent reinforce-
ment learning (MARL). We frame VAI as a Hierarchical Adversarial Decentral-
ized Mean Field Control (HAD-MFC), where the upper level involves an NP-hard
combinatorial task of selecting the most vulnerable agents, and the lower level
learns worst-case adversarial policies for these agents using mean-field MARL.
The two problems are coupled together, making HAD-MFC difficult to solve.
To solve this, we first decouple the hierarchical process by Fenchel-Rockafellar
transform, resulting a regularized mean-field Bellman operator for upper level that
enables independent learning at each level, thus reducing computational complex-
ity. We then reformulate the upper-level combinatorial problem as a MDP with
dense rewards from our regularized mean-field Bellman operator, enabling us to
sequentially identify the most vulnerable agents by greedy and RL algorithms.
This decomposition provably preserves the optimal solution of the original HAD-
MFC. Experiments show our method effectively identifies more vulnerable agents
in large-scale MARL and the rule-based system, fooling system into worse fail-
ures, and reveals the vulnerability of each agent in large systems. Code available
at https://anonymous.4open.science/r/VAI-5F61/.

1 INTRODUCTION

Mean-field multi-agent reinforcement learning (MARL) (Yang et al., 2018; Subramanian et al.,
2022; Pasztor et al., 2021; Laurière et al., 2022) has significantly enhanced the scalability of MARL
through mean-field approximation, making it applicable to many large-scale real-world applications,
such as robot swarm control (Hüttenrauch et al., 2019; Zheng et al., 2018), voltage control (Wang
et al., 2021), and traffic control (Nguyen et al., 2018). However, given the large number of agents
in such systems, it is likely that a small portion will deviate from the original policy during real-
world deployment. For instance, in a thousand-robot swarm, individual robots may encounter action
uncertainty (Tessler et al., 2019) from software or hardware errors (Khalastchi & Kalech, 2019),
environmental hazards (Huang et al., 2019), or even be controlled by adversaries (Giray, 2013; Ly
& Ly, 2021; Gleave et al., 2019; Lin et al., 2020; Dinh et al., 2023). These individual failures can
ultimately lead to the failure of the entire team (Li et al., 2023a); In a power grid with hundreds
of nodes (Wang et al., 2021), failure of certain nodes can trigger cascading failures, leading to a
large-scale blackout (Liu et al., 2022). As agent policies are interconnected in mean-field MARL, it
is crucial for defenders to proactively evaluate the impact of the failure of a small group of agents
on the entire system, with worst-case failure generated by adversarial attack.

In this paper, we focus on vulnerable agent identification (VAI) in large-scale MARL systems. VAI
is an adversarial attack that defenders can use proactively to identify the most vulnerable agents in
large-scale multi-agent systems. Given the set of most vulnerable agents, we further evaluate the
system’s worst-case robustness under adversarial attacks (Gleave et al., 2019), offering practitioners
the worst-case performance of the system.
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Critics may argue that vulnerable agents do not exist, as theoretical Mean-Field Controls assume all
agents take identical actions (Lasry & Lions, 2007; Pasztor et al., 2021). However, in real-world
large-scale MARL systems, agents often have different initializations, local states, or interact with
limited neighbors (Zheng et al., 2018; Yang et al., 2018), leading to agent variability. In such cases,
a mean-field approximation remains relevant but does not assume full agent homogeneity. Research
in network science has tackled influence maximization (Kempe et al., 2003; Banerjee et al., 2020; Li
et al., 2023c), which seeks to select a group of nodes in rule-based social networks to maximize their
influence. However, these studies typically assume known graph structures, transition dynamics, and
influence rules, which are absent in our setting. Identifying vulnerable agents has also been explored
in small-scale MARL systems (Pham et al., 2022; Zan et al., 2023; Zhou & Liu, 2023). The primary
challenge arises from scale: a 10-agent system has only

(
10
1

)
possible scenarios, while a 1000-agent

system yields
(
1000
100

)
scenarios, an increase by a factor of 10139. This represents a coupled problem

where the upper level is a combinatorial problem, and the lower level involves mean-field MARL,
making the complexity the central difficulty.

We begin by analyzing the complexity of the problem, which we formulate as a Hierarchical Ad-
versarial Decentralized Mean Field Control (HAD-MFC). At the upper level, the task is to select
M most vulnerable agents from a total of N , resulting in a combinatorial problem with complexity(
N
M

)
. We show that this problem is NP-hard by reducing it to the generalized maximum coverage

problem (Cohen & Katzir, 2008). The lower level involves a mean-field MARL task, where an ad-
versarial policy (Gleave et al., 2019) is trained for the selected M vulnerable agents to assess the
system’s worst-case robustness. Consequently, the overall challenge requires solving an NP-hard
upper-level problem followed by a downstream mean-field MARL task.

We propose a bi-level framework to identify vulnerable agents in large-scale MARL systems. We
decouple the problem into an upper-level agent selection task and a lower-level value evaluation
under worst-case attacks. The lower level is addressed by a novel regularized mean-field Bellman
operator derived from Fenchel-Rockafellar duality (Rockafellar, 1970). The NP-hard upper-level
problem is then formulated as an MDP with dense rewards from the learned value function, solved
via greedy or RL methods. We prove this decomposition is lossless, preserving the optimal solu-
tion. Our method significantly outperforms baselines across 17 of 18 tasks, successfully identifying
critical vulnerabilities and reveals the vulnerability of each agent in large-scale systems.

Contributions. Our contributions are twofold. First, we address the robustness of large-scale
MARL by proposing the problem of vulnerable agent identification (VAI), formulating it as a HAD-
MFC, and analyzing its hardness. Second, we show that HAD-MFC can be solved by decomposing
the hierarchical process into two separate problems via Fenchel-Rockafellar transform and solve the
upper-level NP-hard problem via formulating it as a MDP with dense reward.

2 RELATED WORK

Learning Large-Scale MARL. In MARL, modeling the interactions between individual agents
becomes impractical as the number of agents increases, making conventional MARL ineffective
in large-scale (Yang & Wang, 2020). Mean-Field Games (MFGs) (Huang et al., 2006; Lasry &
Lions, 2007) offer a solution by modeling the overall distribution of agents, instead of individual
agents. Recent advances in equilibrium learning for MFGs (Guo et al., 2019; Perolat et al., 2021;
Laurière et al., 2022; Muller et al., 2022; Carmona et al., 2023) have established strong theoretical
foundations. Mean-Field Control (MFC) serves as the cooperative counterpart to MFGs (Gu et al.,
2021; Mondal et al., 2022; Angiuli et al., 2022). Both frameworks assume a scenario where an
infinite number of agents follow the same action distribution forming an mean field. However, in
practical settings, agents need to take different actions based on their local states or specific policies.
To address this, Yang et al. (2018) extended the mean-field approximation to Markov games by
modeling opponents through an action mean field using a Taylor expansion. This approach has been
expanded to accommodate various MARL settings, including stationary (Subramanian & Mahajan,
2019), multi-type (Subramanian et al., 2020a), and partially observable environments (Subramanian
et al., 2020b). A more structured framework, known as decentralized MFGs (Subramanian et al.,
2022), has also been developed, with significant contributions from Sessa et al. (2022); Cui et al.
(2023; 2024). Our study utilizes this decentralized framework, which has been proven to be highly
effective in large-scale MARL (Zheng et al., 2018).
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Adversarial Attacks for MARL. The goal of adversarial attacks for MARL is to develop worst-
case adversarial attacks of MARL under uncertainties. This includes uncertainties in state (Lin
et al., 2020; Pham et al., 2022; Zan et al., 2023; Zhou & Liu, 2023), action (Guo et al., 2022; Li et al.,
2023a), or environment (Zhang et al., 2020; Shi et al., 2024) to cause a well-trained MARL algorithm
to fail during testing. Among these studies, several focus on selecting the most vulnerable agents
to attack. For instance, GMA-FGSM (Zan et al., 2023) groups agents by their features and selects
vulnerable agents based on their contribution to the total reward. ARTS (Phan et al., 2020) evaluates
system robustness by repeatedly selecting random groups of agents to act as attackers. The work
most similar to ours is RTCA (Zhou & Liu, 2023), which employs a differential evolution algorithm
to select vulnerable agents. However, these approaches are confined to small-scale MARL, and the
challenge of scaling them to large-scale MARL remains unexplored.

Influence Maximization. First proposed by Kempe et al. (2003), influence maximization involves
selecting a set of nodes in a social network to influence the opinions of others through predefined
rules. Kempe et al. (2003) demonstrated that this problem is NP-hard and introduced a greedy
algorithm to solve it. Early works relied on heuristics, such as degree centrality (Chen et al., 2009;
Wilson et al., 2009), graph structure (Chen et al., 2010; Cordasco et al., 2015), genetic algorithms
(Tsai et al., 2015; Bucur & Iacca, 2016), and community-based methods (Wang et al., 2010; Chen
et al., 2014). More recent works address the problem by combining graph neural networks and
reinforcement learning, learning a network embedding that serves as input to an RL algorithm for
sequential node selection (Meirom et al., 2021; Li et al., 2022; Chen et al., 2023). In contrast to these
approaches, Ling et al. (2023) demonstrated the potential to learn directly from network embeddings.
However, most influence maximization studies assume a known graph, transition dynamics, and
operate within a rule-based system. Our work does not rely on any of these assumptions.

3 PROBLEM FORMULATION

3.1 HIERARCHICAL ADVERSARIAL DECENTRALIZED MEAN-FIELD CONTROL

We formulate our problem as a Hierarchical Adversarial Mean-Field Control (HAD-MFC). To
model large-scale MARL that assumes heterogeneous agents with mean-field approximations, we
base our definition on decentralized Mean-Field Control (D-MFG) (Subramanian et al., 2022). Next,
HAD-MFC adapts D-MFG by fixing the victim policy and training an adversarial policy to (1) select
a subset of agents from the victim agents (i.e., agents not being attacked) and (2) replace the selected
agents’ policies with a worst-case adversarial policy. The HAD-MFC is defined as follows:

G := ⟨N ,S,A,P, R, µ0, ν0, γ⟩,
where N = {1, . . . , N} represents the set of N agents, S and A denote the finite state and action
spaces for each agent. P : S×A×∆(S)×∆(A)→ ∆(S) is the state transition probability function,
R : S ×A×∆(S)×∆(A)→ R is the shared reward function, µ0 ∈ ∆(S) and ν0 ∈ ∆(A) are the
initial state and action distributions, and γ ∈ [0, 1) is the discount factor. The interactions between
agents are modeled through the mean-field state ∆(S) and action distribution ∆(A) in both the
environment dynamics and rewards.

Let T = {0, 1, . . . , T} represent the set of time steps. At t = 0, the attacker selects k agents to
form an attack set K, where K ⊆ N and |K| = k, which remains fixed in the episode. At each
time step t ∈ T , each agent i receives a local state sit ∈ S and estimates the empirical mean-field
state µt(s) =

1
N

∑
j∈N δ(sjt = s), with δ the Dirac’s delta. Each agent first executes a fixed, well-

trained cooperative policy πβ(a
i
t|sit, µt) : S ×∆(S)→ ∆(A). To model the policy deviation under

uncertainty, we assign a perturbation budget ϵi ∈ [0, 1] for each agent. If agent i is in attack set K,
the adversary learns an adversarial action perturbation policy πα(a

i
t|sit, µt) : S ×∆(S) → ∆(A),

and yields a perturbed policy π̂i = ϵiπi
α + (1 − ϵi)πi

β ∈ ∆(A), following the definition of PR-
MDP in Tessler et al. (2019). Here, ϵi limits the deviation of agents from the original policy, while
assuming that attackers do not have access to the victim’s policy. If agent i is fully controlled by
the attacker, this corresponds to the case where ϵi = 1. If agent i is not in attack set K, the victim
executes π̂ = πβ with ϵi = 0. The empirical mean-field action is νt(a) = 1

N

∑
j∈N δ(ajt = a).

The reward at time t is given by rt = R(sit, a
i
t, µt, νt), which is shared across agents. The game

3
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then transitions to time t+ 1, generating a new local state for each agent based on the environment
transition p(sit+1|sit, ait, µt, νt). The expected reward is:

J(π̂) ≡ J(πα, πβ) = Eπα,πβ

[ ∞∑
t=0

γtR(sit, a
i
t, µt, νt)

]
. (1)

Attacker’s goal. The attacker’s goal is to select an attack set K such that the agents in K learn an
adversarial policy to minimize the expected reward:

min
K⊆N ,|K|=k

min
πα

J(πα, πβ). (2)

Complexity issue. The attacker face a hierarchical problem. The upper level face a combinatorial
problem to select the k most vulnerable agents, and the lower level learns an adversarial policy for
these selected agents. The coupled nature characterize the complexity issue of our problem.

Relation to existing formulations. Our definition of HAD-MFC is distinct yet related to several
existing formulations in the literature. Our study focus on control of practical large-scale MARL
with mean-field approximation (Subramanian et al., 2022; Mondal et al., 2022) rather than theoreti-
cal MFGs and MFCs (Guo et al., 2019; Muller et al., 2022; Gu et al., 2021), and specifically focuses
on the selection of vulnerable agents rather than equilibrium learning and optimal agent control. Our
upper-level problem of selecting vulnerable agents is conceptually similar to influence maximiza-
tion (IM) (Kempe et al., 2003). However, unlike IM, where influencing agents follow predefined
rules, our framework requires agents to learn an adversarial policy and to cooperate optimally with
other adversarial agents. Our lower-level problem is related to adversarial attacks in MARL (Gleave
et al., 2019). Existing works either do not involve the selection of vulnerable agents (Lin et al.,
2020; Li et al., 2023a), or are limited to small-scale settings (Pham et al., 2022; Zhou & Liu, 2023).
Our approach addresses adversarial attacks in large-scale MARL environments using mean-field
approximations, which are significantly more complex than previously studied methods.

3.2 ASSUMPTIONS AND THEORETICAL ANALYSIS

In this section, we outline the assumptions underlying our attack model. Building on existing studies
on adversarial MARL (Tessler et al., 2019; Gleave et al., 2019; Li et al., 2023b; Dinh et al., 2023),
we introduce a practical threat model based on specific assumptions regarding the capabilities of
both victims and attackers at different levels.
Assumption 3.1 (Victim’s capability). Victims follow a fixed, well-trained policy πβ that remains
unchanged during the attack.

We assume that the victim policies are fixed to simulate an attack scenario at test time, where the
large-scale MARL system is deployed and its policy does not adapt in response to the attack (Tessler
et al., 2019; Gleave et al., 2019). We now describe the assumptions concerning the attackers.
Assumption 3.2 (Upper-level attacker’s capabilities and limitations). The upper-level attacker can
select k agents from N and assign individual perturbation budgets ϵi, i ∈ K only at the beginning
of an episode. The upper-level attacker has access to all agents’ trajectories under the cooperative
case, τ = [{si0}i∈N , {ai0}i∈N , µ0, ν0, r0, . . . , {siT }i∈N , {aiT }i∈N , µT , νT , rT ]. During the attack,
it can also access the local state {sit}i∈N of all agents at t = 0 and the cumulative reward r =∑

t∈T γtrt. It does not have access to the policy parameters of the victim agents.
Proposition 3.3 (Hardness). The problem faced by the upper-level attacker is NP-hard.

Proof sketch. We prove this by reducing the maximum coverage problem, which is known to be
NP-hard, to our upper-level attack. See full proof in Appendix A.1.
Assumption 3.4 (Lower-level attacker’s capabilities and limitations). The lower-level attacker
minπα

J(πα, πβ) has access to its local state sit, the empirical mean field µt, νt, and the reward
rt. It does not have access to the policies, value functions, or local states of other agents.

Our upper-level attacker only requires access to cooperative trajectory data, which is relatively easy
to obtain. Furthermore, our attack model is black-box for both upper-level and lower-level, without
the need of victim’s policy (note that for lower-level attacker, its policy is added on, yet irrelevant to
victim policy). Lastly, we establish the existence of an optimal adversary.

4
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Proposition 3.5 (Existence of optimal adversary). For any HAD-MFC, there exists an optimal (i.e.,
most harmful) upper-level adversary K and a corresponding lower-level adversary πα.

Proof sketch. The upper-level attack is a finite combinatorial problem with an optimal solution. At
the lower level, with fixed victim policies treated as part of the environment, the attacker solves
a MFC problem with optimal solution. The optimal adversary exists by exploring all upper-level
configurations and selecting the best lower-level policy. See full proof in Appendix. A.2.

4 METHOD

In this section, we propose algorithms to solve the complexity issue of HAD-MFC. We begin by
decoupling the hierarchical problem, eliminating the need to train a worst-case lower-level adversary
by reformulating it into a regularized mean-field Bellman operator. We then formulate the upper-
level combinatorial task as a MDP with dense reward computed from the value function from the
regularized mean-field Bellman operator, and solve it via greedy algorithm or RL.

4.1 DECOUPLING THE HIERARCHICAL PROBLEM

Training the worst-case adversary πα is computationally expensive since it requires solving the RL
problem minπα

J(πα, πβ). To address this, we propose a regularized mean-field Bellman operator
that efficiently estimates the value function under a worst-case adversary, using cooperative trajecto-
ries only. Our approach involves defining the Bellman function for the adversary, characterizing the
uncertainty set induced by πα, and applying Fenchel-Rockafellar transform to derive the solution.

Bellman operators. To begin, we define the value function V i(si, µ) for our problem:

V i(si, µ) = E

[ ∞∑
t=0

γtrt

∣∣∣∣s0 = s, µ0 = µ, ait ∼ π̂(·|sit, µt)

]
. (3)

The Bellman operator Bπ̂ with victim and adversary policy can be defined as:

(Bπ̂V i)(si, µ) =
∑
a∈A

π̂(ai|si, µ)ν(a)
[
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V (s′i, µ′)
]
. (4)

With worst-case adversary, we can further define the worst-case Bellman operator as:

(B̂π̂V i)(si, µ) = min
πα

(Bπ̂V i)(si, µ) (5)

Uncertainty set characterization. We proceed by characterizing the impact of πα on perturbed
policy π̂ and the perturbed mean-field action ν(a). We expand them as:

π̂i = ϵiπi
α + (1− ϵi)πi

β , lim
N→∞

ν(a) = ξνα(a) + (1− ξ)νβ(a),

where ξ =
1

N

∑
i∈N

ϵi, να(a) =
1

N

∑
i∈N

δ(ait = a|πα), νβ(a) =
1

N

∑
i∈N

(1− ϵi)δ(ait = a|πβ).
(6)

We can then derive the uncertainty set induced by πα:
Proposition 4.1. The difference of perturbed policy and victim policy, as well as perturbed mean-
field action and victim mean-field action can be (approximately) bounded in ℓp norm:

||π̂i − πi
β ||p ≤ 21/pϵi, p

(∣∣||ν(a)− νβ(a)||p − 21/pξ
∣∣ ≥ δ

)
≤ 2 exp

(
−2Nδ2

)
, ∀δ > 0. (7)

Proof sketch. The proof for π̂ is by expanding itself and ||πα − πβ ||p ≤ 21/p. The proof for ν is
by Jensen’s inequality and the probability is by Hoeffding’s inequality. Since the factor 21/p is a
constant independent of the parameters, we absorb it into ϵi and ξ in subsequent derivations to avoid
cluttered expression, without loss of generality. See full proof in Appendix.A.3.

Fenchel-Rockafellar transform. With uncertainty set defined, we simplify the notation by π̂i
α =

π̂i−πi
β and ν̂α(a) = ν(a)−νβ(a), which is bounded by ||π̂i

α||p ≤ ϵi and ν̂α(a) ⪅ ξ by Proposition.
4.1. We proceed by expanding the Bellman equation in Eqn. 5:

(Bπ̂V i)(si, µ) =
∑
ai,a∈A

(
π̂i
α + πi

β

)
(ν̂α(a) + νβ(a))

[
rt + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V (s′i, µ′)
]
. (8)

5
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As proven in Proposition 3.5, an optimal adversary always exists. With (B̂π̂V i)(si, µ)
= minπα

(Bπ̂V i)(si, µ), we then have the following robust Bellman inequality (Iyengar, 2005):

V i(si, µ) = (B̂π̂V i)(si, µ) ≤ (Bπ̂V i)(si, µ), V i(si, µ)− (Bπ̂V i)(si, µ) ≤ 0, (9)

with equality holds when πα reach optimality π∗
α. Thus, we are solving the following problem via

Fenchel-Rockafellar transform (Rockafellar, 1970; Nachum & Dai, 2020):

max
πα

V i(si, µ)− (Bπ̂V i)(si, µ). (10)

Proposition 4.2. The Fenchel-Rockafellar transform of Eqn. 10 results in:

max
πα

V i(si, µ)− (Bπ̂V i)(si, µ) = V i(si, µ)− BRϵi,ξV
i(si, µ, ϵi, ξ)

= V i(si, µ)− (BπβV i)(si, µ) + (ϵi + ξ + ϵiξ)||Qi(si, ai, µ, ν)||q.
(11)

A change of variable yields the regularized mean-field Bellman operator BRϵi,ξ:

BRϵi,ξV
i(si, µ, ϵi, ξ) = (BπβV i)(si, µ) + (ϵi + ξ + ϵiξ)||Qi(si, ai, µ, ν)||q. (12)

Here, 1/p + 1/q = 1 is the dual of ℓp norm via Fenchel-Rockafellar transform. In this way, our
learned value function V i(si, µ, ϵi, ξ) estimated from our Bellman estimator BRϵi,ξ quantifies agent
i’s performance under attack, condition on two factors: (1) the agent’s own perturbation status ϵi, and
(2) the mean-field approximation on ξ, which indicates the number of its teammates gets perturbed.

Proof sketch. We first expand π̂ and ν(a) in Eqn. 5, resulting in a Q function with uncertainty.
Applying Fenchel-Rockafellar transform completes the proof. See full proof in Appendix. A.4.
Proposition 4.3 (Contraction). The regularized mean-field Bellman operator BRϵi,ξV

i(si, µ, ϵi, ξ) =

(BπβV i)(si, µ) + (ϵi + ξ + ϵiξ)||Qi(si, ai, µ, ν)||q is a contraction operator.

Proof sketch. To proof that, we find ||Qi(si, ai, µ, ν)||q term cancels each other and the rest follows
standard approach. See full proof in Appendix. A.5.
Proposition 4.4 (Relation to worst-case Q function). To understand our Bellman operator, we show
ϵiξ||Qi(si, ai, µ, ν)||q is identical to the gap between the cooperative and worst-case Q function
under ℓ1 norm bounded perturbed action aiα and mean-field action να induced by πα:

ϵiξ||Qi(si, ai, µ, ν)||q = max
||ai

α||p≤ϵi,||να||p≤ξ
||Qi(si, ai, µ, ν)−Qi(si, (ai + aiα), µ, (ν + να))||1. (13)

Proof sketch. The proof is done by first making a linear approximation of Q function, then applying
Hölder’s inequality. See full proof in Appendix. A.6.

Remark 1. The regularization terms in BR arises from uncertainties in agents and the mean-field.
To clarify, the term ϵi||Qi(si, ai, µ, ν)||q capture agent vulnerability, ξ||Qi(si, ai, µ, ν)||q capture
mean-field vulnerability, and ϵiξ||Qi(si, ai, µ, ν)||q capture vulnerability of their interactions. Each
term yields more pessimistic value estimation when there are larger uncertainties in its actions,
mean-field, or their interactions.

Remark 2. Notably, our approach does not assume πβ to be optimal, which means it can be extended
to agent-based systems governed by predefined rules (An et al., 2021), provided these rules can be
derived from Q-functions (e.g., using a Boltzmann-based policy).

Remark 3. The dual formulation in Proposition 4.2 relies on the Fenchel–Rockafellar transform,
which is exact whenever the underlying uncertainty set is convex, proper, and lower semicontinuous.
As shown in Proposition 4.1, our uncertainty set is ℓp-bounded, which naturally satisfies these con-
ditions. Therefore, the Fenchel–Rockafellar transform yields the exact optimal value of the inner
minimization over adversarial perturbations, rather than a relaxation or bound. In practice, when
Qi is approximated by a neural network, any discrepancy between Qi and the optimal robust value
arises solely from standard function-approximation and Bellman-residual errors, and propagates in
the same way as in conventional robust RL—not from the Fenchel–Rockafellar transform itself.
Notably, this exactness property depends only on the convexity structure of the uncertainty set and
does not require the value function or the policy to be convex.

6
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4.2 ALGORITHM FOR VULNERABLE AGENT IDENTIFICATION

In this section, we give a practical algorithm to solve upper-level vulnerable agent identification.
Since we have proven that this problem is NP-hard (Proposition 3.3), which is computationally in-
tractable for large-scale systems. Therefore, we seek efficient approximate solutions. We formulate
this NP-hard problem as a MDP with dense reward calculated by regularized mean-field Bellman
operator. We next propose RL and greedy algorithm for solving this MDP. Finally, we theoretically
prove that our MDP formulation is a lossless decomposition of the original problem (Proposition
4.5), ensuring that any sub-optimality arises solely from the algorithmic approximation rather than
the problem formulation itself.

Problem formulation. The problem faced by the upper-level adversary can be formulated as a
Markov Decision Process, defined based on HAD-MFC:

M := ⟨S, ϵ,N , P̃, R̃, γ⟩,
where S = ×i∈NSi is the local state space of each agent. The game proceeds in K steps, with K
the number of adversaries we select. At step k, ϵk ∈ [0, 1]N = {ϵik}i∈N is the perturbation budget
of each agent at step k, with ϵi0 = 0, ∀i ∈ N . N is the action space, where agents could be selected
as vulnerable agent, P̃ : S × N → S is the state transition, and R̃ : S × N × [0, 1] → R is the
reward function, γ is the discount factor. At each step k, we select the most vulnerable agent n, and
update the value of ϵk. Note that if we merge ϵ in S, the problem becomes a standard MDP.

Reward. Reward specifies the objective of MDP. In our case, the reward is defined as: given the set
of selected vulnerable agents Kk−1 and the new selected agent nk at step k, what is the amount of
reward the victim large-scale MARL system going to decrease, had it face the worst-case adversary
trained on this new set of selected vulnerable agents Kk = Kk−1 ∪ nk?

To calculate this value efficiently, we resort to the regularized mean-field Bellman operator BRϵi,ξ in
Eqn.12, which defines the amount of reward we expected to receive, given the ℓp bounded perturba-
tion magnitude ϵik and ξk at step k. Define the value function learned under BRϵi,ξ at time t = 0 as
V i(si0, µ0, ϵ

i
k, ξk), the reward can then be defined as:

rk = R̃(sk, ϵk, nk) =
1

N

∑
i∈N

(
V i(si0, µ0, ϵ

i
k, ξk)− V i(si0, µ0, ϵ

i
k−1, ξk−1)

)
. (14)

Here ϵik can take any values between [0, 21/p] and ξk depends on ϵik. We thus define the TD loss as:

minEτ∼πβ
(V i(si, µ, ϵi, ξ)− r − γV i(s′i, µ′, ϵi, ξ) + (ϵiξ + ϵi + ξ)||Qi(si, aiβ , µ, νβ)||q)2, (15)

with ϵ ∼ Uniform[0, 21/p], ξ ∼ Bernouli(ξ). The value function can be optimized by collected
trajectory rollouts in cooperative case using victim policy (i.e., τ ∼ πβ), which can be easy to obtain.

Solving the MDP. Given the RL formulation, we can optimize our VAI problem using any RL
algorithm, such as DQN (Mnih et al., 2015a), and updates the Q function via standard TD loss. We
call this approach as VAI-RL. Alternatively, the reward defined in Eqn. 14 suggests a fast greedy
algorithm, which selects the agent to maximize reward at each step. We call this approach VAI-
Greedy. We include both algorithms for comparison, with pseudo code in Appendix. B.
Proposition 4.5 (Decomposition is Optimality-Preserving). Given a HAD-MFC G :=
⟨N ,S,A,P, R, µ0, ν0, γ⟩. For the upper-level MDP M := ⟨S, ϵ,N , P̃, R̃, γ⟩ with reward de-
fined in Eqn. 14, and the value V i,∗(si, µ, ϵi, ξ) of lower-level problem is learned by regularized
mean-field Bellman operator BRϵi,ξ, define the optimal vulnerable agents ofM as K∗ ⊆ N . The se-
lected vulnerable agents K∗ ⊆ N and the worst-case adversarial policy learned π∗

α under K∗ ⊆ N
is the optimal solution of HAD-MFC.

Proof sketch. We prove this by showing the optimal solution of lower- and upper-level is the same
as original HAD-MFC. The lower-level transformation is lossless because the Fenchel–Rockafellar
transformation (Proposition 4.2) exactly recovers the optimal value of the inner minimization un-
der our convex ℓp-norm uncertainty set. The upper-level MDP enumerates the same combinatorial
choices as the original HAD-MFC and therefore selects the same optimal vulnerable set by Bell-
man’s optimality theorem. Hence, the decomposition preserves the optimal solution of the original
HAD-MFC. See full proof in Appendix. A.7.
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Environment: Battle (↓)
Agent Num Adv. Num Random DC Bi-Level RL PIANO RTCA VAI-Greedy VAI-RL

64
8 298.47±76.56 305.16±45.39 295.09±12.96 296.79±47.67 301.08±22.72 287.53±9.39 281.50±17.33

16 97.33±34.52 93.54±34.56 87.37±6.28 81.06±11.34 85.71±24.62 72.01±20.28 77.73±1.81
32 −152.89±26.75 −160.51±75.32 −198.03±55.83 −175.24±39.11 −192.78±43.81 −214.40±43.12 −929.88±62.73

144
18 730.65±117.42 693.15±98.87 685.77±124.51 670.55±66.75 650.33±50.47 610.62±31.36 505.34±30.79
36 250.43±120.19 140.67±76.67 189.95±15.54 130.63±34.69 155.02±170.74 85.52±35.11 86.26±38.72
72 −1809.01±130.98 −2014.57±670.92 −2353.78±870.53 −2313.46±230.66 −2221.12±360.49 −2579.80±256.19 −2837.83±482.56

Environment: Taxi (↓)
Agent Num Adv. Num Random DC Bi-Level RL PIANO RTCA VAI-Greedy VAI-RL

50
4 33.9±14.39 19.07±5.77 27.52±16.12 23.55±7.44 16.26±3.32 10.47±4.85 12.47±8.73

16 109.94±7.32 79.01±11.33 162.23±2.31 140.60±49.01 138.73±1.72 54.63±8.81 64.72±3.76
36 617.09±51.80 595.80±60.28 571.26±59.96 516.91±44.86 618.21±54.08 463.70±55.99 365.96±63.75

100
4 34.49±22.61 21.17±3.47 14.17±3.07 36.51±6.11 16.87±8.27 8.27±8.67 4.95±2.86

16 172.00±75.41 141.19±5.80 201.14±68.66 202.51±47.18 140.76±32.44 153.97±8.52 186.62±40.79
36 884.49±68.87 867.62±23.46 892.51±66.15 793.71±12.86 860.58±106.61 770.14±29.74 652.10±23.23

Environment: Vicsek (↑)
Agent Num Adv. Num Random DC Bi-Level RL PIANO RTCA VAI-Greedy VAI-RL

100
20 −226.96±11.54 −232.45±3.77 −221.26±14.06 −250.83±19.59 −225.12±28.05 −167.60±3.91 −183.68±19.56
35 −159.83±40.85 −143.14±42.37 −141.51±43.28 −162.74±28.45 −129.24±13.30 −113.64±15.78 −93.65±28.65
50 −96.83±7.26 −95.22±6.19 −96.80±0.76 −86.21±3.55 −82.63±5.70 −70.52±5.21 −75.82±2.57

400
80 −884.34±53.96 −840.87±33.67 −780.31±90.02 −950.13±110.36 −872.21±130.11 −710.56±56.32 −659.65±86.73
140 −480.17±50.16 −440.63±80.67 −460.43±74.71 −510.24±62.11 −410.14±87.33 −390.74±42.16 −302.76±76.37
200 −295.13±36.94 −313.55±49.43 −310.78±56.89 −290.53±27.89 −287.53±46.76 −256.44±21.34 −275.62±37.76

Table 1: Our VAI methods consistently achieve superior attack performance across three diverse
environments, with varying map sizes and attacker numbers. Our method includes VAI-Greedy and
VAI-RL, which are bolded if they outperform all baselines.

5 EXPERIMENTS

Environments. We evaluate our algorithms in three environments: Battle (Zheng et al., 2018), Taxi
Matching (Nguyen et al., 2018), and Vicsek (Vicsek et al., 1995). The Vicsek environment is used
to test our algorithm in rule-based systems. Among these environments, Battle and Taxi Matching
use discrete control, whereas the Vicsek environment requires continuous control. Detailed descrip-
tions of the environments are provided in Appendix C.1. We train all victim agents in Battle using
MF-Q, and Taxi Matching using MF-AC (Yang et al., 2018), which empirically yields better task
performance.

Baselines. To our knowledge, the problem of vulnerable agent identification in MARL is rarely
studied in literature. Therefore, we select five relevant studies as baselines: (1) Random selec-
tion, serving as a simple baseline. (2) Degree centrality (DC) (Salathé & Jones, 2010), a heuristic
method that select agents with the most connections with others. (3) Bi-level RL (Vezhnevets et al.,
2017), which trains our upper-level and lower-level problems hierarchically. (4) PIANO (Li et al.,
2022), which selects critical agents iteratively via graph embeddings and RL. (5) RTCA (Zhou &
Liu, 2023), which selects vulnerable agents in small-scale MARL using differential evolution. For
methods requiring a graph structure, we construct an undirected graph with an edge of weight 1 be-
tween two agents if they can observe each other, and 0 otherwise. We call our method as Vulnerable
Agent Identification (VAI). All baselines are trained using the same codebase, network structure,
and hyperparameters to ensure fair comparison. Detailed implementations and hyperparameters are
provided in Appendices C.2 and C.3.

Evaluation protocol. We consider {ϵi}i∈K = 1 bounded by ℓ∞ norm. The setting allows ad-
versaries to manipulate the policy of πβ arbitrarily. The scenario occurs when agents crash in the
environment, or are compromised by the adversary (Khalastchi & Kalech, 2019; Huang et al., 2019;
Gleave et al., 2019). Results of different ϵ in Appendix. D.2. The number of attackers, K, is empir-
ically determined based on the total number of agents in the environment. We report the results on
victims and attackers with five random seeds.

5.1 SIMULATION RESULTS

First, we evaluate the effectiveness of our method on finding the most vulnerable agents to attack.
This is done by (1) solve the upper-level problem of finding the most vulnerable agents and (2) solve
the lower-level problem of learning a worst-case policy for these vulnerable agents. For comprehen-
siveness, for each task, we evaluate them on six subtasks, including two map sizes with different
agent numbers in the game, and each map sizes with three different number of adversaries.

As shown in Table 1, our VAI based method outperforms all baselines in 17 out of 18 tasks, while
heuristic-based method and learning based method are only slightly better than random selection.
To explain this, heuristic-based method such as degree centrality (DC) are designed for rule-based
systems. However, in large-scale MARL, the interaction between agents are nonlinear and are not
clearly defined by rules. For example, in Battle environment, agents in the center of the crowd are
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less susceptible to attack than the agents in frontline, combating enemies, making DC ineffective.
As for learning-based method, PIANO do not account for the worst-case policy made by agents, thus
are unable to select the set of most harmful agents under adversarial policies. Solving our problem
via bi-level RL and RTCA do not work well due to the hierarchical nature of our problem, which
may be too hard for RL to solve without any guidance. In contrast, our VAI method works well due
to the the more accurate value function we learned via Bellman operator BRϵi,ξ.

Additionally, we observed that VAI-RL outperforms VAI-Greedy in 10 of 18 tasks, especially when
more attackers are available. To explain, greedy algorithm focuses on immediate reward and works
well with less attackers and weak agent-wise interactions. RL, in contrast, models long-term re-
turns and inter-agent impact, which performs better with more attackers. Additionally, RL provides
theoretical guarantees for optimality in MDPs, which greedy methods lack.

Finally, our VAI algorithm yields superior results on both MARL and rule-based systems. In
rule-based environments, we approximate a value function from collected trajectories, then use our
Bellman operator to estimate each agent’s vulnerability. Our work could have a future impact on
rule-based complex system with real-world impact, such as social networks(Banerjee et al., 2020).

Computational Efficiency: While VAI requires an additional one-hour training cost for the value
function in Proposition 4.2, this cost is amortized across both VAI-Greedy and VAI-RL, and is reused
for different number of adversaries. Once this initialization is complete, VAI’s selection procedures
are highly efficient, achieving runtime comparable to, or even lower than several baselines, particu-
larly RTCA which maintains 10 species for evolutionary algorithm. This makes VAI a practical and
scalable solution for large-scale multi-agent systems. In addition, we find that the computation cost
of all baselines is generally manageable (≤ 2 hours), except in scenarios with a very large number of
adversaries (144 agents with 72 adversaries), where mean-field MARL training itself becomes the
primary computational bottleneck. See numerical results in Appendix. D.1.

Results with Different ϵ: Next, we evaluate VAI under smaller perturbation budgets ϵ. Although
the attack strength of all methods decreases as ϵ becomes smaller, both VAI-RL and VAI-Greedy
consistently outperform all baselines, with statistically significant improvements (p < 0.05) under
the Friedman test. Moreover, VAI-RL surpasses VAI-Greedy when ϵ is small and the proportion of
adversaries is relatively large, demonstrating the advantage of reinforcement learning in capturing
synergistic interactions among coordinated adversaries. See numerical results in Appendix. D.2.

5.2 DISCUSSIONS AND INSIGHTS

In this section, we thoroughly evaluate the effectiveness of our method, showing our theory is effec-
tive in practice and our method offers meaningful insights to the robustness of large-scale MARL.
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Figure 1: Pearson correlation between the lower-level at-
tack value estimated by our Bellman operator BRϵi,ξ (y
axis) and lower-level reward by running an attack us-
ing RL (x axis). Each scattered point represent individ-
ual evaluation samples, while the solid line and shaded
area indicate the linear regression fit and the 95% confi-
dence interval, respectively. The strong correlation (R =
0.97, 0.91) validates the accuracy of our estimator.

Our Method is Effective by Pro-
posed Value Estimation in Proposi-
tion. 4.2. Our regularized mean-field
Bellman operator BR

ϵi,ξ is the key to
our success. To verify this, we com-
pare the results predicted by our value
function of the lower-level attack, and
the reward gained by actually running
the lower-level attack via RL. As shown
in Fig. 1, we find the value function
learned by BR

ϵi,ξ is effective at predict-
ing the attack result of the worst-case
adversarial policy for vulnerable agent
selections, showing strong Pearson cor-
relation (r = 0.97 for Battle, r = 0.91
for Taxi, p < .001). Thus, BRϵi,ξ effec-
tively decompose HAD-MFC by acting
as a predictor of lower-level attack.

Our Method Reveals Certain agents are more vulnerable than others. In large-scale MARL
systems, some agents play disproportionately critical roles, making them inherently more vulnera-
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Figure 2: (a,b) Some agents contributes more to overall system when compromised, reflecting the
change from ϵi = 0 to ϵi = 1. (c,d) Agents receive more impact when facing attackers, reflecting
the change from ξ = 0 to ξ = 1/N . Darker cell indicates agents are more vulnerable under attacks.

ble. To illustrate this, we visualize agent values in the Battle-64 and Taxi-100 environments using
heatmaps in Fig. 2, where each cell represents the importance of a single agent at the start of the
game. In Battle-64, 64 agents are arranged in an 8×8 grid to engage with another team of 64 agents;
we display only the 64 agents controlled by the mean-field MARL policy. In Taxi-100, 100 agents
are uniformly positioned across a 10×10 map. The heatmaps reveal two key factors on vulnerability:

First, some agents contribute more significantly to overall system functionality. Figs. 2a and 2b
visualize the value difference V i(si, µ, ϵi = 0, ξ = 0) − V i(si, µ, ϵi = 1, ξ = 0), reflecting the
drop in value if agent i is selected as an adversary, as captured by the ϵi term in Proposition 4.2.
In Battle, agents at the right hand side engage enemies more frequently and thus accumulate more
rewards, making them both more valuable and more vulnerable when compromised. In Taxi, ride
requests occur more frequently near the center, so agents located there earn higher rewards and are
similarly more critical. These patterns indicate that agents with advantageous positions or key roles
contribute more to cooperation and are therefore prime targets for adversarial exploitation.

Second, the failure of one agent can negatively affect others. Figs. 2c and 2d show the impact
of a single adversary (highlighted in a red square) on its teammates’ value functions, computed as
V i(si, µ, ϵi = 0, ξ = 0) − V i(si, µ, ϵi = 0, ξ = 1/N), corresponding to the ξ term in Proposi-
tion 4.2. In Battle, disruption primarily affects agents in the same row. An adversarial agent can
mislead allies moving towards different directions, and disrupting the collective attacks that are es-
sential for success. In Taxi, agents to the left suffer most. These agents must move toward the
central region with the highest reward, but are actively blocked by the adversary, preventing them
from reaching these high-reward areas. In contrast, central agents remain largely unaffected. These
results demonstrate that the learned V i function captures inter-agent dependencies and accurately
reflects vulnerability propagation within the team.

6 CONCLUSIONS

In this paper, we evaluate the extent to which the failure of a group of agents adopting worst-case
policies impacts the robustness of large-scale MARL. We define this problem as Vulnerable Agent
Identification (VAI) and formulate it as a HAD-MFC. In this hierarchical framework, the upper level
addresses the NP-hard problem of selecting the most vulnerable agents, while the lower level learns
worst-case adversarial policies. We disentangle this hierarchical problem using Fenchel-Rockafellar
transform and solve the NP-hard upper-level problem with greedy algorithm and RL. Experiments
show that our method identifies groups of vulnerable agents in both large-scale MARL and rule-
based systems, causing these systems to experience worst-case failures when attacking these agents.
Our method also learns a value function that accurately predicts the vulnerability of each agent. Our
future work will focus on extending VAI to complex real-world systems, such as social networks
with graph structure and agent-based model with applications in economics and autonomous driving.

7 ETHICS STATEMENT

Our research focuses on the critical security problem of identifying vulnerable agents in large-scale
MARL. The primary positive impact of this work is to provide system developers and administrators
with a diagnostic tool identify the weakest points of a system. While attackers could potentially
use our method to attack the weakest spot of the system, our method requires assess to system
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trajectories, which can be hard for attackers to obtain, but easier for defenders. Our theoretical
framework also suggests future work on robust large-scale MARL. We thus believe the benefit of
our work outweighs potential security threats.

8 REPRODUCIBILITY STATEMENT

Our code is available at https://anonymous.4open.science/r/VAI-5F61/. Addition-
ally, we have provided the detailed pseudocode for our VAI-RL and VAI-Greedy in Appendix. B,
implementation details for our methods and all baselines in Appendix. C.2, and hyperparameters in
Appendix. C.3.
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APPENDIX FOR ”VULNERABLE AGENT IDENTIFICA-
TION IN LARGE-SCALE MULTI-AGENT REINFORCE-
MENT LEARNING”
Declaration of LLM usage. We use LLM to polish text only and authors have carefully checked
all contents in the paper.

A PROOFS AND DERIVATIONS

A.1 PROOF OF PROPOSITION 3.3

To prove the NP-hardness of our upper-level attack, we show the problem can be reduced from the
maximum coverage problem, which is known to be NP-hard.

Maximum Coverage Problem. A maximum coverage problem is defined by a universe of elements
U = {e1, . . . , en}, a collection of subsets S = {S1, . . . , Sm} where Si ⊆ U , and an integer k. The
objective is to select a sub-collection S ′ ⊆ S with |S ′| ≤ k that maximize the number of covered
elements, i.e., maxS′⊆S,|S′|=k |

⋃
Si∈S′ Si|.

Reduction from Maximum Coverage Problem. We construct a mapping from the maximum
coverage problem to our upper-level attack as follows. Let the set of agents N correspond one-to-
one with the collection of subsets S, such that selecting agent i as a vulnerable agent corresponds
to selecting the subset Si. Selecting k vulnerable agents corresponds to selecting k subsets in the
maximum coverage problem. We construct a MARL environment where the system reward without
attack is defined as the total weight of all elements, Rtotal = |U|. If an agent i is attacked (i.e.,
i ∈ K), it disables all elements in Si, the attacker’s reward is then r = Rtotal − |

⋃
i∈K Si|. Our

attacker’s objective is to minimize the reward r over choices of attacked agentsK ⊆ N with |K| ≤ k.
Since Rtotal is a constant, minimizing r = Rtotal − |

⋃
i∈K Si| is equal to maximizing |

⋃
i∈K Si|.

Thus, choosing an optimal attack K∗ in our upper-level attack is exactly equivalent to choosing an
optimal subset S ′ in the maximum coverage problem. Since the maximum coverage problem is
NP-hard, our upper-level attack is NP-hard.

A.2 PROOF OF PROPOSITION 3.5

To prove the existence of an optimal adversary for our hierarchical problem, we demonstrate that
optimal solutions exist for both the upper-level and lower-level attackers. The optimal adversary
strategy can be determined by enumerating all possible configurations for the upper-level attacker
and find the optimal policy for the lower-level attacker.

Step 1: Lower-Level Attacker

For the lower-level attacker, the identities of the victim and the adversary agents are fixed. The policy
of the victim agents, denoted by

∏
i∈N πβ(a

i|si, µ), is also fixed. This allows us to incorporate the
victim’s policy into the environment’s transition dynamics, resulting in a modified transition function
given by:

p′(s′i|si, ai, µ, ν) = p(s′i|si, ai, µ, ν) ·
∏
i∈N

πβ(a
i|si, µ).

The lower-level attacker thus faces a new MFC problem with these modified environment dynamics
p′. According to the results established in Carmona et al. (2018), an optimal policy exists for MFC
problems, ensuring that the lower-level attacker can achieve an optimal strategy.

Step 2: Upper-Level Attacker

The upper-level attacker faces a finite combinatorial problem, as it involves selecting k agents from
a total of N agents, leading to

(
N
k

)
possible combinations. The optimal solution can be determined

by exhaustively enumerating all possible combinations of agents and evaluating the corresponding
outcomes.
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For each combination of agents selected by the upper-level attacker, we train an MFC policy for the
lower-level attacker. Given that an optimal policy is guaranteed for the lower-level problem, each
combination of upper-level selections results in a cumulative reward.

Since the upper-level problem is a finite combinatorial optimization problem, there exists an optimal
solution that maximizes the cumulative reward. Thus, the optimal adversary strategy consists of the
optimal set of agents selected by the upper-level attacker, combined with the optimal lower-level
policy determined by the MFC problem. Therefore, an optimal adversary exists for this hierarchical
problem.

A.3 PROOF OF PROPOSITION. 4.1

(1) Bound for π̂.

As π̂i = ϵiπi
α + (1− ϵi)πi

β , we can expand ||π̂i − πi
β ||p by:

||π̂i − πi
β ||p = ||ϵiπi

α + (1− ϵi)πi
β − πi

β ||p = ||ϵi(πi
α − πi

β)||p = ϵi||(πi
α − πi

β)||p ≤ 21/pϵi.

(16)

Note that ||(πi
α − πi

β)||p ≤ 21/p.

(2) Bound for ν.

We first consider the case when N →∞. In this case,

lim
N→∞

||ν(a)− νβ(a)||p = || 1
N

∑
i∈N

(
π̂i − π̂i

β

)
||p =

1

N
||
∑
i∈N

(
π̂i − π̂i

β

)
||p. (17)

Applying Jensen’s inequality, we have:

1

N
||
∑
i∈N

(
π̂i − π̂i

β

)
||p ≤

1

N

∑
i∈N
||
(
π̂i − π̂i

β

)
||p ≤

1

N

∑
i∈N

21/pϵi = 21/pξ. (18)

Next, for finite N ,

p
(∣∣∣||ν(a)− νβ(a)||p − E [||ν(a)− νβ(a)||p]

∣∣∣ ≥ δ
)

(19)

=p

(∣∣∣ 1
N
||
∑
i∈N

δ(ai = a|π̂i)− δ(ai = a|πi
β)||p − 21/pξ

∣∣∣ ≥ δ

)
(By Eqn. 18 ) (20)

≤p

(∣∣∣ 1
N

∑
i∈N
||δ(ai = a|π̂i)− δ(ai = a|πi

β)||p − 21/pξ
∣∣∣ ≥ δ

)
(By Jensen’s equality). (21)

Since δ(ai = a|π̂) and δ(ai = a|πβ)) ∈ {0, 1}, we have each independent variable 1
N ||δ(a

i =

a|π̂)||p ≤ 1
N . Thus, by Hoeffding’s inequality, ∀δ > 0,

p

(∣∣∣ 1
N

∑
i∈N
||δ(ai = a|π̂i)− δ(ai = a|πi

β)||p − 21/pξ
∣∣∣ ≥ δ

)
(22)

≤2 exp
(
− 2δ2∑

i∈N (1/N)2

)
= 2 exp

(
−2Nδ2

)
(23)

To sum up, we have

p
(∣∣∣||ν(a)− νβ(a)||p − 21/pξ

∣∣∣ ≥ δ
)
≤ 2 exp

(
−2Nδ2

)
, ∀δ > 0. (24)

This completes the proof.
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A.4 PROOF OF PROPOSITION. 4.2

We begin our proof from Eqn. 10, using π̂i
α = π̂i − πi

β as a shorthand, such that the perturbation
budget is bounded by π̂i

α directly:

max
πα∈A

V i(si, µ)− (Bπ̂V i)(si, µ),

= max
πα∈A

V i(si, µ)−
∑

ai,a∈A

(
π̂i
α + πi

β

)
(ν̂α(a) + νβ(a))

[
rt + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]

= max
||π̂i

α||p≤ϵi,||ν̂α||p≤ξ
V i(si, µ)−

∑
ai,a∈A

(
π̂i
α + πi

β

)
(ν̂α(a) + νβ(a))

[
rt

+ γ
∑
s′∈S

p(s′i|siai, µ, ν)V i(s′i, µ′)

]
= max

||π̂i
α||p≤ϵi,||ν̂α||p≤ξ

V i(si, µ)−
∑

ai,a∈A

(
π̂i
αν̂α(a) + π̂i

ανβ(a) + πi
β ν̂α(a) + πi

βνβ(a)
) [

rt

+ γ
∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]
=V i(si, µ)− max

||π̂i
α||p≤ϵi,||ν̂α||p≤ξ

∑
ai,a∈A

π̂i
αν̂α(a)

[
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]

− max
||π̂i

α||p≤ϵi

∑
ai,a∈A

π̂i
ανβ(a)

[
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]

− max
||ν̂α||p≤ξ

∑
ai,a∈A

π̂i
βνα(a)

[
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]

−
∑

ai,a∈A

π̂i
βνβ(a)

[
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]
.

Since the equation is too long, we analyze each separately. For the first line, we have:

max
||π̂i

α||p≤ϵi,||ν̂α||p≤ξ

∑
ai,a∈A

π̂i
αν̂α(a)

[
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]

= max
π̂i
α∈A,ν̂α∈A

∑
ai,a∈A

π̂i
αν̂α(a)

[
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]

= max
π̂i
α∈A,ν̂α∈A

∑
ai,a∈A

(
π̂i
αν̂α(a) + δ||π̂i

α||p≤ϵi,||ν̂α||p≤ξ

) [
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]
.

=− min
π̂i
α∈A,ν̂α∈A

∑
ai,a∈A

(
π̂i
αν̂α(a) + δ||π̂i

α||p≤ϵi,||ν̂α||p≤ξ

) [
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]
.

We can write it in the form needed by Fenchel-Rockafellar transform:

− min
π̂i
α∈A,ν̂α∈A

∑
ai,a∈A

(
π̂i
αν̂α(a) + δ||π̂i

α||p≤ϵi,||ν̂α||p≤ξ

) [
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]
= − min

π̂i
α∈A,ν̂α∈A

⟨π̂i
αν̂α, r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)⟩

+ ⟨δ||π̂i
α||p≤ϵi,||ν̂α||p≤ξ, r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)⟩
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We can then apply Fenchel-Rockafellar transform:

f∗(−y) = max
π̂i
α∈A,ν̂α∈A

−⟨π̂i
αν̂α, y⟩ − ⟨π̂i

αν̂α, r + γ
∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)⟩.

To maximize the following objective, we have:

y = −(ri + γ
∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)) = −Qi(si, ai, µ, ν).

Plugging in y, we get:

− min
π̂i
α∈A,ν̂α∈A

⟨π̂i
αν̂α, r + γ

∑
s′∈S

p(s′i|si, ai, µ, νβ)V i(s′i, µ′)⟩

+ ⟨δ||π̂i
α||p≤ϵi,||ν̂α||p≤ξ, r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)⟩

= ⟨δ||π̂i
α||p≤ϵi,||ν̂α||p≤ξ, Q

i(si, ai, µ, ν)⟩
= ϵiξ||Qi(si, ai, µ, ν)||q.

Similar to this derivation, other equations in our expanded form can be written as:

max
||π̂i

α||p≤ϵi

∑
ai,a∈A

π̂i
ανβ(a)

[
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]
=ϵi||Qi(si, ai, µ, ν)||q.

and

max
||να||p≤ξ

∑
ai,a∈A

π̂i
βνα(a)

[
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]
=ξ||Qi(si, ai, µ, ν)||q

Note that the derivation processes are mostly the same, so we do not waste space on writing these
very similar derivations.

Summing all these together, we get:

max
πα∈A

V i(si, µ)− (Bπ̂V i)(si, µ)

=V i(si, µ)−
∑

ai,a∈A

π̂i
βνβ(a)

[
r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i(s′i, µ′)

]
+ (ϵi + ξ + ϵiξ)||Qi(si, ai, µ, ν)||q

=V i(si, µ)− (BπβV i)(si, µ) + (ϵi + ξ + ϵiξ)||Qi(si, ai, µ, ν)||q.

This completes the proof.

A.5 PROOF OF PROPOSITION. 4.3

Given the Bellman equation BR
ϵi,ξV

i(si, µ, ϵi, ξ) = (BπβV i)(si, µ) + (ϵi + ξ +

ϵiξ)||Qi(si, ai, µ, ν)||q , let V i
1 , V

i
2 ∈ R|S×S×[0,1]×[0,1]|. Consider any s ∈ S, µ ∈ S, ϵi ∈

[0, 1], ξ ∈ [0, 1], we have:

|BRϵi,ξV
i
1 (s

i, µ, ϵi, ξ)− BRϵi,ξV
i
2 (s

i, µ, ϵi, ξ)|
=|(BπβV i

1 )(s
i, µ) + (ϵi + ξ + ϵiξ)||Qi(si, ai, µ, ν)||q − (BπβV i

2 )(s
i, µ)− (ϵi + ξ + ϵiξ)||Qi(si, ai, µ, ν)||q|

=|(BπβV i
1 )(s

i, µ)− (BπβV i
2 )(s

i, µ)|.

Here, ||Qi(si, ai, µ, ν)||q term cancels out each other since it is defined as the Q function under the
benign transition, which can be learned in the benign mean-field game and is not involved in the
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learning process of BRϵi,ξV
i(si, µ, ϵi, ξ). Thus, BπβV i(si, µ) is the transition under benign policy

πβ . The Bellman operator BπβV i can be written as:

BπβV i(si, µ) =
∑
a∈A

πβ(a
i|si, µ)ν(a)[r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V (s′i, µ′)]

Thus, the proof proceeds by:

|BRϵi,ξV
i
1 (s

i, µ, ϵi, ξ)− BRϵi,ξV
i
2 (s

i, µ, ϵi, ξ)|
=|(BπβV i

1 )(s
i, µ)− (BπβV i

2 )(s
i, µ)|.

=|
∑
a∈A

πβ(a
i|si, µ)ν(a)[r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i
2 (s

′i, µ′)]−∑
a∈A

πβ(a
i|si, µ)ν(a)[r + γ

∑
s′∈S

p(s′i|si, ai, µ, ν)V i
2 (s

′i, µ′)]|

=|
∑
a∈A

πβ(a
i|si, µ)ν(a)γ

∑
s′∈S

p(s′i|si, ai, µ, ν)(V i
1 (s

′i, µ′)− V i
2 (s

′i, µ′))|

≤γ
∑
a∈A

πβ(a
i|si, µ)ν(a)

∑
s′∈S

p(s′i|si, ai, µ, ν)|V i
1 (s

′i, µ′)− V i
2 (s

′i, µ′)|

=γ|V i
1 (s

′i, µ′)− V i
2 (s

′i, µ′)|

This completes the proof.

A.6 PROOF FOR PROPOSITION. 4.4

First, we apply first-order linear approximation to Q function under π̂, Qi
π̂(s

i, ai, µ, ν). Similar to
proof of A.4, we use π̂i

α = π̂i − πi
β as a shorthand, resulting in:

Qi
π̂(s

i, ai, µ, ν) = Qi
πβ
(si, ai, µ, ν) + min

||π̂i
α||p≤ϵi,||ν̂α||p≤ξ

∑
ai,a∈A

π̂αναQ
i
πβ
(si, ai, µ, ν).

Using Hölder’s Inequality, we have:∣∣∣∣∣∣
∣∣∣∣∣∣ min
||π̂i

α||p≤ϵi,||να||p≤ξ

∑
ai,a∈A

π̂αναQ
i
πβ
(si, ai, µ, ν)

∣∣∣∣∣∣
∣∣∣∣∣∣
1

≤ ||π̂i
α||p||να||p||Qi

πβ
(si, ai, µ, ν)||q,

with minimum achieved when π̂i
α and να aligns negatively with Qi

πβ
(si, ai, µ, ν), i.e.,

π̂i
ανα = −ϵiξ

Qi
πβ
(si, ai, µ, ν)q−1

||Qi
πβ
(si, ai, µ, ν)||q−1

q

.

Using this worst-case π̂i
ανα, we get:∣∣∣∣∣∣

∣∣∣∣∣∣ min
||π̂i

α||p≤ϵi,||να||p≤ξ

∑
ai,a∈A

π̂αναQ
i
πβ
(si, ai, µ, ν)

∣∣∣∣∣∣
∣∣∣∣∣∣
1

= ||π̂i
α||p||να||p||Qi

πβ
(si, ai, µ, ν)||q

= ϵiξ||Qi
πβ
(si, ai, µ, ν)||q

We omit πβ in Qi
πβ

in our main text for conciseness. This completes the proof.
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A.7 PROOF OF PROPOSITION. 4.5

We aim to prove that the optimal solution set K∗ and the corresponding worst-case policy π∗
α of

the original HAD-MFC G := ⟨N ,S,A,P, R, µ0, ν0, γ⟩ can be recovered by finding the optimal
solution K∗

M of the upper-level MDPM := ⟨S, ϵ,N , P̃, R̃, γ⟩ and the exact solution to the lower-
level regularized Bellman operator BRϵi,ξ.

First, the lower-level problem requires calculating minπα
J(πα, πβ). In Proposition. 4.2, by

Rockafellar-Fenchel transform, we have shown that:

max
πα

V i(si, µ)− (B̂π̂V i)(si, µ) = V i(si, µ)− BRϵi,ξV
i(si, µ, ϵi, ξ)

= V i(si, µ)− (BπβV i)(si, µ) + (ϵi + ξ + ϵiξ)||Qi(si, ai, µ, ν)||q,
(25)

where (B̂π̂V i)(si, µ) refers to the Bellman operator with the worst-case adversary. Rockafellar-
Fenchel transform holds when the uncertainty set is convex, proper, and lower semi-continuous. This
is satisfied by our rectangular p-norm bounded uncertainty set, as shown by the proof in Proposition.
4.1. Hence, the transform yields the exact optimal value of the original lower-level problem. Here,
Fenchel-Rockafellar transform requires the convexity of the uncertainty set only, and do not require
the value function or the policy to be convex.

Second, for the optimality of the upper-level MDPM := ⟨S, ϵ,N , P̃, R̃, γ⟩, the reward in Eqn. 14
is defined on the optimal value of the lower-level problem. By Bellman’s theorem (Bellman, 1966),
there exists an optimal policy for the MDP that maximizes the expected cumulative reward. Thus,
solving this MDP yields the optimal solutionK∗

M ⊆ N for the upper-level, which is also the optimal
solution K∗ ⊆ N of HAD-MFC.

Finally, for the lower-level problem, since the high-level vulnerable agent selection yields the same
result, the lower-level problem face the mean-field MARL problem with same transition dynamics
and same group of victims. Thus, the lower-level problem yields the same lower-level optimal policy
πα.

Since both the lower-level transformation and the upper-level MDP mapping are exact (lossless),
finding the optimal solution to the decomposed problem is mathematically equivalent to finding the
optimal solution to the original HAD-MFC.

B ALGORITHM DETAILS

Our VAI algorithm involves a multi-step approach. In step 1, we evaluate the value function using
regularized mean-field Bellman operator BR

ϵi,ξ. In step 2, we solve the upper-level problem by
training an RL algorithm to sequentially identify the most vulnerable agents, resulting in a set of
vulnerable agents. Finally, in step 3, we train an adversarial policy on these identified vulnerable
agents using MFC.

Step 1. In this step, we evaluate the value function V i(si, µ, ϵi, ξ) via regularized mean-field Bell-
man operator BR

ϵi,ξ. The input is a set of trajectories sampled from a cooperative MFC policy. These
trajectories are collected by performing 100 rollouts using the fixed, pre-trained cooperative policy
πβ . Our pilot study shows adding additional rollouts do not yield better performance. Note that we
assume shared V i and Qi for all agents.

Step 2. In this step, we train an RL agent to sequentially identify the most vulnerable agent. In
our paper, we train this agent via Q-learning (Mnih et al., 2015b). Otherwise, we use a greedy
algorithm to identify the most vulnerable agents. We hereby propose both our VAI-RL and VAI-
greedy algorithm.

The third and final step is to solve the lower-level problem, i.e., train a zero-sum, worst-case ad-
versarial policy on the selected set K. This can be done by any standard MFC algorithm. In our
algorithm, we use MF-AC (Yang et al., 2018) with shared reward as an example.
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Algorithm 1 Step 1: computing value function V i(si, µ, ϵi, ξ).

Input: Trajectories τβ sampled from cooperative policy πβ .
Output: Trained value function V i(si, µ, ϵi, ξ) via regularized mean-field Bellman operator BRϵi,ξ.

1: // Estimate Qi without perturbation
2: for Iterations Iter = 0, 1, 2, ... K do
3: for Minibatch τ in trajectories τβ do
4: Extract [s, a, µ, ν, r, s′, a′, µ′, ν′] from τ .
5: Compute Qi(si, ai, µ, ν) and Qi(s′i, a′i, µ′, ν′)
6: Update Qi by minimizing (γQi(s′i, a′i, µ′, ν′) + r −Qi(si, ai, µ, ν))2.
7: end for
8: end for
9: // Estimate V i with perturbation

10: for Iterations Iter = 0, 1, 2, ... K do
11: for Minibatch τ in trajectories τβ do
12: for Sample i = 0, 1, 2, ... B do
13: Extract [si, ai, µ, ν, r, s′i, a′i, µ′, ν′] from τi.
14: Sample ξi ∼ Uniform[0, 1], ϵi ∼ Bernouli(ξ).
15: Compute V i(si, µ, ϵi, ξi) and V i(s′i, µ′, ϵi, ξi).
16: Compute Qi(s′i, a′i, µ′, ν′) using estimated Qi from τβ .
17: Compute min||a′i

α ||p≤ϵi,||ν′
α||p≤ξi ||Qi(s′i, (a′iβ + a′iα), µ

′, (ν′β + ν′α))||q ,
18: Update V i using Eqn. 15.
19: end for
20: end for
21: end for

Algorithm 2 Step 2: Vulnerable Agent Identification, using Q learning (VAI-RL).

Input: Q function for vulnerable agent identification Q(s, ϵ, n), trained value function
V i(s, µ, ϵi, ξ).

Output: Trained Q function for vulnerable agent identification Q(s, ϵ, n), set of vulnerable agents
K.

1: Initialize vulnerable agent identification policy Q(s, ϵ, n), K = ∅, ϵ0 = {0}N .
2: for Episode = 0, 1, 2, ... E do
3: for k = 1, 2, ... K do
4: Perform rollout under nk = argmaxn∈N Qn(snk , ϵ

n
k , ξk), update ϵk, ξk.

5: K ← K ∪ nk.
6: Compute V i(s, µ, ϵi, ξ) for all agents.
7: Compute reward rk = 1

N

∑
i∈N

(
V i(si0, µ0, ϵ

i
k, ξk)− V i(si0, µ0, ϵ

i
k−1, ξk−1)

)
following

Eqn. 14.
8: end for
9: Save tuple < sk, ϵk, nk, rk > in replay buffer.

10: Update Q(s, ϵ, n) via DQN.
11: end for

C EXPERIMENT DETAILS

C.1 ENVIRONMENT DETAILS

We evaluate our algorithm on three environments: Magent, Vicsek, and Taxi. Visualizations of these
environments are provided in Fig. 3.

Magent. The Magent platform (Zheng et al., 2018) supports large-scale multi-agent reinforcement
learning. We test our algorithm on Battle task. In battle, agents engage in large-scale combat, earning
rewards based on performance. We focus on the left-side agents for vulnerability identification.
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Algorithm 3 Step 2: Vulnerable Agent Identification, using greedy algorithm (VAI-Greedy).

Input: Trained value function V i(s, µ, ϵi, ξ).
Output: Set of vulnerable agents K.

1: Initialize K = ∅, ϵ0 = {0}N .
2: for k = 1, 2, ... K do
3: for i = 1, 2, ... N do
4: rmax

k = −∞, nmax
k = 1.

5: if ni
k ∈ K then

6: pass
7: else
8: Perform rollout under ni

k, compute ϵik, ξk.
9: Compute V i(s, µ, ϵi, ξ) for all agents.

10: Compute reward rk = 1
N

∑
i∈N

(
V i(si0, µ0, ϵ

i
k, ξk)− V i(si0, µ0, ϵ

i
k−1, ξk−1)

)
follow-

ing Eqn. 14.
11: end if
12: if rk ≥ rmax

k then
13: rmax

k ← rk, nmax
k ← ni

k.
14: K ← K ∪ ni

k.
15: end if
16: end for
17: end for

Algorithm 4 Step 3: Learning the Adversarial Policy for Lower-Level Problem.

Input: Adversarial policy πα, victim policy πβ , set of vulnerable agents K, perturbation budget ϵi.
Output: Trained adversarial policy πα.

1: Initialize vulnerable agent identification policy πV AI , K = ∅.
2: for Episode = 0, 1, 2, ... E do
3: for t = 1, 2, ... T do
4: Get sit, µ from environment.
5: Compute π̂i(ait|sit, µ) = ϵiπi

α(·)(ait|sit, µ) + (1− ϵi)πi
β(a

i
t|sit, µ) for all i ∈ N .

6: Sample ait ∼ π̂i(·|sit, µ). Compute ν.
7: Calculate rt from environment.
8: Store [sit, a

i
t, µt, νt, rt] in trajectory τ .

9: end for
10: for k = 0, 1, ... K do
11: Sample a batch τk from trajectory τ .
12: Update the critic Qi(si, ai, µ, ν) by minimizing TD loss (γQi(s′i, a′i, µ′, ν′) + r −

Qi(si, ai, µ, ν))2.
13: Update the policy of adversary πα by sampled policy gradient

−∇πα log παQ
i(si, ai, µ, ν).

14: end for
15: end for

Taxi. The Taxi supply-demand matching environment (Nguyen et al., 2018) allows agents to control
taxis, receiving partial observations of their location and neighboring zones. A global reward is given
for maintaining an optimal ratio of available taxis to demand in each zone.

Vicsek. The Vicsek model (Vicsek et al., 1995) simulates collective motion in flocks, where agents
adjust their direction based on neighbors to maximize directional agreement. This environment
operates in a continuous action space, where each agent selects a continuous angle to navigate.

C.2 IMPLEMENTATION DETAILS

Our implementation builds upon the mean-field MARL framework introduced by Yang et al. (2018).
For the baseline implementations, as our environment lacks an inherent graph structure, we construct
the adjacency matrix using the following heuristic: if one agent can observe another, we assign an
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(a) Magent-Battle (b) Vicsek (c) Taxi

Figure 3: Environments used in our experiments. The task Battle in Magent are proposed in Zheng
et al. (2018). The Taxi environment follows Nguyen et al. (2018). Vicsek model follows the dynam-
ics defined by Vicsek et al. (1995).

undirected edge between them with a weight of 1, forming an undirected graph. In the bi-level RL
baseline, both input and output follow the same structure as our VAI-RL method, but rewards for the
upper level are provided only after all agents are selected, and the lower-level adversarial policies are
executed. The upper-level and lower-level attackers share the same reward. For PIANO, we use a
graph embedding network to process the adjacency matrix and jointly train it alongside PPO for the
upper-level attack. Since the setting of PIANO does not require learning an adversarial policy, the
upper-level attacker’s reward is defined by the reward received by lower-level attackers executing a
random policy. As for RTCA, we follow the original methodology, tuning the implementation for
optimal performance.

Detailed descriptions of our VAI method and baseline implementations are provided in Appendix B,
with hyperparameter settings in Appendix C.3.

C.3 HYPERPARAMETERS

In this section, we list all hyperparameters used Battle, Taxi and Vicsek environment. All hyper-
parameters are shared by VAI and other baselines. The hyperparameters used by Battle is at Table.
2.

Table 2: Hyperparameters for Battle environment.

Hyperparameter Value Hyperparameter Value
agent 64/144 mapsize 40/60

adv. num 12.5/25/50% save every 5
n round 2000/5000 maxsteps 400
gamma 0.95 lr 1e-4

tau 0.005 batch size 64
memory size 80000

The hyperparameters used by Taxi is at Table. 3.

The hyperparameters used by Vicsek is at Table. 4.
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Table 3: Hyperparameters for Taxi environment.

Hyperparameter Value Hyperparameter Value
optimizer Adam number of agents N 50/100
PPO clip 0.2 hidden dim 0.99

number of adv agents M 4/16/36 critic loss coefficient c1 0.5
map size 10× 10 maximum number of policy training episodes 2 · 106

entropy loss coefficient c2 0.01 data chunk length 10
entropy coef 0.01 eorder num 100

actor learning rate 3 · 10−5 discount factor γ 0.99
gae lambda 0.95 gain 0.01

gamma 0.99 hidden sizes [128, 128]
order price 1/2 update every E episodes 5
batch size 64 length of an episode T 20

Table 4: Hyperparameters for Vicsek environment.

Hyperparameter Value Hyperparameter Value
action aggregation prod activation func relu

actor num mini batch 1 clip param 0.05
critic epoch 5 critic lr 0.0005

critic num mini batch 1 cuda true
cuda deterministic true data chunk length 10

entropy coef 0.01 episode length 200
eval episodes 20 eval interval 25
gae lambda 0.95 gain 0.01

gamma 0.99 hidden sizes [128, 128]
huber delta 10.0 initialization method orthogonal
world size 100 log interval 5

lr 0.0005 max grad norm 10.0
torus true n eval rollout threads 10

n rollout threads 5 num env steps 5000000
opti eps 1e-05 ppo epoch 5

recurrent n 1 render episodes 10
seed 1 seed specify true

share param true std x coef 1
std y coef 0.5 torch threads 4

use clipped value loss true use eval true
use feature normalization true use gae true

use huber loss true use linear lr decay false
use max grad norm true use policy active masks true

use popart true use proper time limits true
use recurrent policy false use render false

value loss coef 1 weight decay 0
use agent states init true bearing bins 8

comm radius 20 distance bins 8
dynamics unicycle nr agents 100
obs mode fix acc

D ADDITIONAL RESULT

D.1 COMPLEXITY AND RUNTIME EFFICIENCY

In this section, we analyze the computation cost of VAI and baselines in Battle environment. The
overall results are shown in Table. 5. The runtimes are averaged across 5 runs and we do not find
large variations between different runs. Our VAI consists of two stages. First, we train a value
function using the regularized mean-field Bellman operator (Proposition 4.2). This process, which
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Table 5: Runtime comparison of all methods in Battle environment (in hours). VAI requires a one-
time training of a regularized value function (Proposition 4.2), which takes approximately 1 hour and
is reused across all VAI variants and adversarial-agent settings. This one-time cost is not included
in the table, as it is amortized across all experiments.

Agent Num Adv Num Random DC Bi-Level RL PIANO RTCA VAI-Greedy VAI-RL

64
8 1.40 ± 0.13 1.38 ± 0.07 1.50 ± 0.23 1.49 ± 0.20 1.71 ± 0.16 1.36 ± 0.15 1.42 ± 0.17

16 1.41 ± 0.13 1.34 ± 0.10 1.49 ± 0.16 1.69 ± 0.24 2.17 ± 0.07 1.44 ± 0.88 1.43 ± 0.20
32 1.65 ± 0.16 1.60 ± 0.12 1.92 ± 0.18 1.85 ± 0.23 2.88 ± 0.18 1.66 ± 0.57 1.78 ± 0.35

144
18 1.24 ± 0.10 1.22 ± 0.08 1.29 ± 0.14 1.56 ± 0.05 1.54 ± 0.20 1.24 ± 0.84 1.38 ± 0.18
36 1.50 ± 0.11 1.48 ± 0.04 1.53 ± 0.15 1.77 ± 0.21 2.40 ± 0.36 1.56 ± 0.91 1.58 ± 0.26
72 3.76 ± 0.12 3.62 ± 0.09 4.02 ± 0.21 3.98 ± 0.26 5.54 ± 0.44 3.93 ± 0.68 4.15 ± 0.85

involves computing a regularization Q function, is comparable in complexity to a typical value
update in mean-field MARL and takes about 1 hour. Once trained, the value function is fixed and
reused across both VAI-Greedy and VAI-RL, so it is trained only once.

We find the overall computation time to be tractable, with most tasks requiring roughly one hour
of training. A notable exception is the case of 144 agents with 72 adversaries, which requires 3–5
hours. This increased cost arises because the large number of adversaries introduces substantial CPU
and GPU bottlenecks. However, this slowdown is inherent to current mean-field MARL frameworks
rather than specific to our approach, and the additional training time affects both our method and all
baselines equally.

For the baselines, the computation cost varies according to how they select adversaries. Random and
DC rely on simple heuristics and therefore incur negligible overhead—their runtime is dominated
by training the underlying RL policy. However, their performance is often limited because they
ignore task dynamics. Bi-Level RL introduces moderate additional cost by training a separate high-
level selector, and PIANO incurs a similar overhead due to its GNN-based selector. RTCA is the
most computationally expensive baseline, as it maintains 10 evolutionary populations for adversary
selection, resulting in significantly higher runtime.

To compare, our VAI-Greedy performs adversary selection by ranking agent vulnerabilities using
the value function. It has O(NK) complexity (selecting K agents from N), but incurs negligible
cost in practice (<1 second for both 64 and 144 agents) since it does not need require additional
training. VAI-RL uses Q-learning to sequentially select vulnerable agents. It incurs modest compu-
tation overhead compared to baselines. Our VAI-RL is fast since it does not need interactions with
the environment. Its complexity scales as O(K) (number of adversaries), and can be efficiently ex-
tended using techniques to handle large numer of agents by using large-action space approximation
techniques in RL (Dulac-Arnold et al., 2015).

Overall, the computation cost of all baselines is manageable, except in settings with a very large
number of adversaries, where the underlying mean-field MARL training becomes the dominant bot-
tleneck. For our method, although VAI requires a one-time value-function training stage, this cost is
amortized across both VAI-Greedy and VAI-RL, as well as different number of adversaries. Beyond
this initialization, VAI’s selection procedures are highly efficient, achieving runtime comparable to,
or even lower than several baselines (particularly RTCA). This makes VAI a practical and scalable
solution for large-scale multi-agent systems.

D.2 PERFORMANCE WITH PARTIAL PERTURBATION BUDGETS ϵ

While our main experiments examined the extreme setting of ϵ = 1, where attackers fully control
compromised agents, we additionally evaluate partial perturbations with ϵ = {0.3, 0.5, 0.7}. For
Battle, we use configurations of 64 agents with 32 adversaries and 144 agents with 72 adversaries (a
50% adversary ratio). We match this ratio in the Taxi environment with settings of 50 agents with
25 adversaries and 100 agents with 50 adversaries, and we also include ϵ = 1 for Taxi since it was
not covered in the main paper. All experiments are averaged across 5 random seeds.

As shown in Tables 6 and 7, both VAI-RL and VAI-Greedy generally outperform all baselines. These
improvements are statistically significant under the nonparametric Friedman test (VAI-Greedy: p <
.005, VAI-RL: p < 0.05) and Taxi (VAI-Greedy: p < 0.05, VAI-RL: p < 0.05). Several discussions
are highlighted below.
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Table 6: Performance comparison on Battle environment under different perturbation budgets ϵ (↓).

Num Agent Adv Agent Method ϵ

0.3 0.5 0.7

64 32

Random 191.70±72.59 198.50±96.22 167.40±74.31

DC 184.90±52.89 155.30±66.64 137.70±55.81

Bi-Level RL 116.10±62.95 103.80±34.74 95.37±33.17

PIANO 107.25±14.09 94.93±24.25 77.85±14.74

RTCA 133.80±25.80 103.2±13.64 86.91±24.53

VAI-Greedy 92.30±5.53 83.00±29.51 74.37±26.34

VAI-RL 78.95±9.34 78.35±12.77 55.29±2.49

144 72

Random 276.90±54.72 92.00±66.94 −115.80±9.52

DC −77.05±32.69 −109.50±21.53 −229.90±2.02

Bi-Level RL −62.74±29.43 −93.40±32.32 −252.20±7.81

PIANO −88.48±14.72 −93.00±27.09 −207.30±5.03

RTCA 66.90±42.23 −138.03±6.94 −298.10±3.43

VAI-Greedy 40.30±8.54 −149.90±10.61 −338.60±5.87

VAI-RL −151.60±23.19 −243.80±27.42 −406.30±1.56

Table 7: Performance comparison on Taxi environment under different perturbation budgets ϵ (↓).

Num Agent Adv Agent Method ϵ

0.3 0.5 0.7 1.0

50 25

Random 483.87±15.94 461.43±15.73 449.31±63.91 503.39±30.51

DC 486.54±16.16 462.05±12.62 380.65±25.97 489.82±24.81

Bi-Level RL 477.31±13.65 467.28±10.74 490.81±19.34 508.67±16.80

PIANO 472.27±13.14 458.75±12.49 430.56±17.56 441.90±21.16

RTCA 482.20±14.69 428.63±13.65 392.85±19.80 434.28±19.51

VAI-Greedy 461.58±15.74 429.97±12.82 331.20±20.72 321.01±11.61

VAI-RL 453.29±14.48 406.75±13.39 352.21±17.12 299.82±21.05

100 50

Random 799.87±40.42 792.99±26.01 859.00±53.35 938.78±34.97

DC 807.40±26.96 854.25±19.72 835.10±27.92 859.64±63.08

Bi-Level RL 798.31±20.79 771.67±18.90 800.48±44.75 817.33±65.84

PIANO 797.20±24.27 787.63±23.95 798.18±32.18 723.80±152.61

RTCA 811.34±22.13 781.21±16.61 761.81±48.46 868.56±35.74

VAI-Greedy 778.59±26.41 750.75±23.71 722.62±24.60 605.63±38.83

VAI-RL 756.91±12.71 721.64±15.51 710.65±29.07 572.03±25.05

First, VAI-RL outperforms VAI-Greedy in 13 of 14 settings, consistent with our main results show-
ing that VAI-RL is more effective when many adversaries are present. These scenarios require
finer-grained exploration of system vulnerabilities, where VAI-Greedy’s simple selection process
becomes less optimal. In contrast, VAI-RL better captures synergistic interactions among adver-
saries and outperforms VAI-Greedy under smaller perturbation budgets.

Second, both VAI-RL and VAI-Greedy consistently outperform all baselines across different pertur-
bation budgets ϵ. Although smaller ϵ naturally weakens adversarial impact, the advantage of VAI
remains robust even under these more constrained conditions.
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