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Abstract

Multimodal Named Entity Recognition
(MNER) aims to extract named entities
from text by leveraging both textual and
visual modalities. Although existing methods
focus on enhancing cross-modal interaction
or reducing the interference of irrelevant
images, two major challenges remain: (1) the
textual content is often short and informal,
lacking sufficient context to accurately identify
ambiguous or low-frequency entities; (2)
fine-grained entity information in images
that is relevant to the text is rarely utilized.
To address these challenges, we propose
TVOMNER, a novel framework that focuses
on Textual and Visual feature Optimization for
MNER. For textual optimization, the model
retrieves external knowledge of candidate
entities from Wikipedia and incorporates
it into the original text to provide richer
semantic context. For visual optimization,
it integrates (a) heterogeneous text-guided
features via a variational autoencoder (VAE),
(b) global visual features generated by a
visual encoder, and (c) fine-grained entity
object-level visual features extracted by
large language models (LLMs) and visual
grounding (VG) models. These features are
adaptively fused and integrated with the textual
representation for a subsequent cross-modal
attention mechanism and a dynamic gating
module. Extensive experiments on the two
widely used datasets show that TVOMNER
outperforms all baselines and exhibits robust
and competitive performance.

1 Introduction

In recent years, Multimodal Named Entity Recog-
nition (MNER) (Lu et al., 2018) has gained signif-
icant attention, especially in the context of social
media platforms, where textual content is often
accompanied by rich visual data. Unlike tradi-
tional Named Entity Recognition (NER), which
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Figure 1: Two examples for the MNER task.

relies solely on text to identify entities such as peo-
ple, organizations, and locations (Li et al., 2020),
MNER incorporates both text and images to en-
hance entity recognition. It has been widely applied
to various downstream natural language processing
(NLP) tasks such as relation extraction (Zelenko
et al., 2003) and entity linking (Ganea and Hof-
mann, 2017).

Previous work has primarily focused on two as-
pects. First, considerable effort has been dedicated
to leveraging various attention mechanisms to bet-
ter align and fuse features from text and image
modalities (Yu et al., 2020; Bao et al., 2023). Sec-
ond, some researchers concentrate on mitigating
noise introduced by irrelevant images, which could
interfere with the model’s ability to extract infor-
mative visual features (Sun et al., 2021; Xu et al.,
2022; Bai et al., 2025).

Despite the advancements, current methods still



exhibit some limitations. One major issue arises
from the fact that text on social media posts is often
short and informal, making it difficult for models to
correctly classify entities without sufficient context
(Ok et al., 2024). In many cases, the model lacks
the necessary knowledge to accurately determine
the correct entity type, particularly when entities
are ambiguous or underrepresented in the training
data. As illustrated in Figure 1(a), without access to
external knowledge, the model misclassifies "West-
fields" as a Location. However, "Westfields" is
actually a global company that should be recog-
nized as an Organization. This highlights the need
for MNER models that incorporate external knowl-
edge sources to enhance contextual understanding
and improve entity recognition in short and noisy
social media text.

On the other hand, most existing approaches rely
primarily on global visual features extracted by the
image encoder (Yu et al., 2020; Wang et al., 2023;
Wei et al., 2024), often overlooking fine-grained en-
tity objects present within the image. While some
methods attempt to address this by applying sim-
ple object detection techniques to extract localized
object representations (Wang et al., 2022a; Zheng
et al., 2024), they still face challenges. In particu-
lar, the presence of irrelevant objects—common in
real scenarios—could introduce noise and mislead
the model’s judgment. As shown in Figure 1(b),
with the relevant objects person and the logo of
"Harlem Globetrotters", the model could achieve
accurate recognition. However, without effective
mechanisms to filter or prioritize relevant objects,
the model may focus on distracting visual elements,
ultimately degrading the accuracy of MNER. Fur-
thermore, when image and text are unrelated, the
model should place greater emphasis on the tex-
tual information, since the text remains the primary
source for entity identification in MNER tasks.

To address the above problems, we propose a
novel framework TVOMNER, which focuses on
Textual and Visual features Optimization for the
MNER task. Specifically, for textual features, we
first retrieve candidate entities in the text from
Wikipedia to acquire relevant entity knowledge.
This knowledge is then concatenated with the orig-
inal text and fed into a text encoder to obtain the
optimized textual features. For visual features,
we process in three complementary ways: (1) we
utilize a variational autoencoder (VAE) to mine
shared semantic information from heterogeneous

text-guided features; (2) we extract global visual
features by a standard visual encoder; and (3) we
leverage the strong reasoning capabilities of large
language models (LLMs) to infer entity-related ob-
jects in the image, and extract them via a visual
grounding (VG) model. Then we encode these
objects to obtain fine-grained, entity object-level
visual features. These three types of visual fea-
tures are adaptively fused to generate optimized
visual features. Finally, the optimized textual and
visual features are jointly utilized to perform the
MNER task. This design enables the model to in-
corporate external knowledge, pay more attention
to fine-grained image entities that are semantically
aligned with the text, and maintain robust textual
understanding when visual content is irrelevant.

In summary, the main contributions of this paper
are as follows:

* We propose TVOMNER, a novel MNER
model that focuses on optimizing both textual
and visual features. External knowledge of
candidate entities is used to optimize textual
features while visual features are optimized
by fusing heterogeneous text-guided, global,
and fine-grained entity object-level visual fea-
tures.

* Unlike traditional object detection approaches,
we leverage the reasoning strength of LLMs
combined with a VG model to more accu-
rately extract semantically relevant entities
from images, thereby mitigating the impact of
unrelated visual noise.

* Extensive experiments on the Twitter-2015
and Twitter-2017 datasets demonstrate the ef-
fectiveness of TVOMNER. Ablation and case
studies further confirm that each component
of the model contributes meaningfully to over-
all performance.

2 Related Work

MNER extends traditional NER by incorporating
both textual and visual information for more ac-
curate entity recognition. Previous methods can
be broadly categorized into two types: enhancing
cross-modal interaction to better align and fuse
multimodal features, and mitigating the impact of
irrelevant visual content.

Cross-modal Interaction. Early approaches typ-
ically use simple attention mechanisms to fuse



features between two modalities (Lu et al., 2018;
Zhang et al., 2018). With the advancement of the
Transformer architecture (Vaswani et al., 2017) ,
several studies have employed multi-head cross-
attention modules to improve cross-modal fusion
(Yu et al., 2020; Zhang et al., 2021a; Wang et al.,
2022b; Chen et al., 2022; Zhang et al., 2023; Wei
et al., 2024). Furthermore, Zeng et al. (2024) uti-
lize the inter-modality connections as a bridge to
construct an instruction that fuses multimodal fea-
tures. Li et al. (2025) implement entity-level lan-
guage reinforcement in an adaptive multi-scale way.
Zhao et al. (2025) design heterogeneous graphs and
introduce graph Transformer to enable effective in-
formation interaction.

Disambiguation of Irrelevant Images. Another
major line of research focuses on addressing the is-
sue of irrelevant or noisy visual information. Chen
et al. (2020); Zhang et al. (2021b); Xu et al. (2022)
apply contrastive learning to address this issue by
constructing positive and negative samples in dif-
ferent ways. Xu et al. (2025) propose an adaptive
mix-up image augmentation strategy to harness the
complementary benefits of both original and syn-
thesized images. Bai et al. (2025) use CLIP (Rad-
ford et al., 2021) prompts to accurately capture
visual cues associated with entities. More recently,
approaches have begun to incorporate the strong
reasoning capabilities of LLMs to further improve
MNER performance (Li et al., 2023, 2024). More-
over, some researchers have extended the MNER
task from the perspective of visual grounding (Yu
et al., 2023; Jia et al., 2023).

However, existing models still struggle with am-
biguous entities due to the lack of knowledge and
often underutilize fine-grained, object-level visual
information. In this work, we tackle these limita-
tions by incorporating external knowledge retrieval
for textual optimization and utilizing LLM-based
reasoning to extract fine-grained visual entities.

3 Task Definition

Given a sentence S = {s1, s2, ..., S, } and its cor-
responding image I, the MNER task aims to recog-
nize the named entities in S and classify them into
specific pre-defined types like Person (PER), Or-
ganization (ORG), Location (LOC) and Miscella-
neous (MISC). Following the BIO tagging schema
(Sang and Veenstra, 1999), the output would be
Y = {y1,y2; .-, yn} Where y; €{B-type, I-type, O}
indicates the label corresponding to s;, and type

refers to the above four pre-defined entity types.

4 Methodology

In this section, we introduce the architecture of
TVOMNER, which focuses on the optimization of
textual and visual features. As shown in Figure 2,
TVOMNER consists of three main parts: 1) the
Textual Feature Optimization (TFO) module; 2) the
Visual Feature Optimization (VFO) module; 3) the
Cross-modal Feature Fusion (CFF) module. In the
TFO module, we extract the candidate entities in
the text and search them in Wikipedia to provide
supplementary knowledge to the original text. In
the VFO module, we optimize visual features from
three perspectives: heterogeneous text-guided fea-
tures, global visual features, and entity object-level
visual features. Finally, in the CFF module, we
fuse the optimized features of the two modalities
and combine a gating mechanism with the CRF
layer for the final sequence labeling.

4.1 Textual Feature Optimization Module

Due to the limited content of text, the model strug-
gles to obtain sufficient contextual information.
Therefore, we optimize the textual features in terms
of supplementing external knowledge to the frame-
work. This module retrieves the candidate enti-
ties in the text from Wikipedia, filters the retrieved
knowledge to remove irrelevant noise, and then
splits it with the original text into a transformer-
based language model.

In the first stage, an entity candidate detection
module extracts potential entities from the input
text. Inspired by (Ok et al., 2024), we use the
RoBERTa (Liu et al., 2019) encoder with BIO tag-
ging to classify each token in the text, determining
whether it belongs to an entity span. And this pro-
cess is guided by cross-entropy loss. After that,
we regard the entity candidates as queries to re-
trieve structured knowledge from Wikipedia. The
retrieved entity knowledge introduces global con-
text from Wikipedia, which helps the model un-
derstand entities beyond their immediate textual
surroundings. At the same time, we perform the
calculation of semantic relevance between the re-
trieved results and the original text to filter low-
quality fragments. From Figure 2(a), for entity
candidates Steph Curry and NBA, it would provide
the model that Steph Curry is a basketball player
while NBA is a basketball league.

The retrieved entity knowledge is then concate-
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Figure 2: The framework of TVOMNER. It consists of three main modules: (a) Textual Feature Optimization; (b)
Visual Feature Optimization; (c) Cross-modal Feature Fusion.

nated with the original text, forming an augmented
input representation. We build a template and add
[CLS] and [SEP] tokens that conform to the input
format of the text encoder. The template is repre-
sented as follows:

“[CLS] {Original Sentence} [SEP] {Entity_I:
Knowledge_1} [SEP] {Entity_2: Knowledge_2}
[SEP] ... {Entity_n: Knowledge_n} [SEP]
where Entity_ i and Knowledge_i denote the en-
tity candidates and their corresponding retrieved
knowledge, respectively.

Subsequently, we also utilize RoBERTa
to encode the retrieval-augmented text Syqq
to get the token-level representation T..,, =
{tioLs)s t1s s tns YSEP) tnt1-os tntms tSEP]
where n and m represent the length of the
original text and retrieved knowledge, respectively.
Then we feed T),, into a Transformer-based
self-attention module to obtain 7

QKT
NGA

T = LN(MP(softmax( W)

where Q = K =V = T as query, key, and value.
LN is layer normalization (Ba et al., 2016) and MP
is mean pooling. It leverages the multi-head self-
attention architecture to dynamically capture long-
range dependencies and contextual relationships
within the text. Finally, we obtain optimized textual
features 71" by taking the first n tokens from T as an
equal-length sequence with the original sentence S
for subsequent processing.

4.2 Visual Feature Optimization Module

In the MNER task, the text, as the subject, contains
adequate shared semantic information of textual
and visual modalities. Especially in irrelevant text-
image pairs, text plays a more important role in the
inference of models. Similarly, the global context
of relevant images, in conjunction with the entities
present in them, furnishes the model with a sub-
stantial amount of entity-related information. The
integration of such information is of paramount
importance. Consequently, we optimize visual fea-



tures by incorporating heterogeneous text-guided
features, global visual features, and entity object-
level visual features.

Heterogeneous Text-guided Features. Follow-
ing (Sui et al., 2024), we choose to utilize the cross-
reconstruction of VAE (Yi et al., 2023) to extract
the semantic information shared with the visual
modality from heterogeneous textual features.

As in Figure 2 (b) depicted, the VAE encoder
takes the optimized 7" as input and obtains the mean
vector 1 and the standard deviation vector o of a
latent distribution: p = TW,, 0 = T'W,, where
W, and W, € R47%d= gre trainable matrices. Us-
ing the reparameterization strategy (Kingma et al.,
2013), we sample a latent variable z = p+ o0 © €
from this distribution, where ¢ € (0,I) and I is
an identity matrix. Then z is decoded to gener-
ate text-guided visual features vy = 2zW,, where
W, € R%*dv and d, is the dimension of the visual
features.

Finally, the training loss of VAE is calculated as
follows:

Lyvae = |[vgiob — ve|* + KL(g(2|T)|Ip(2)) (2)

where vy is the global feature of images, which
will be introduced in the next section. KL(-) repre-
sents the Kullback-Leibler divergence between two
distributions. ¢(z|T) = N(u,o?) is the distribu-
tion of z and p(z) = N(0,1) is a standard normal
distribution.

Global Visual Features. As one of the two
modalities, the information of images is undeni-
ably crucial. To capture the global features of im-
ages, we use Vision Transformer (ViT) (Dosovit-
skiy et al., 2020) as the basic image encoder.

Given the input image I, it is divided into N
patches, each represented as a vector y; € R%. A
learnable position embedding P € R™V*4 is added
to the patch embeddings to incorporate spatial in-
formation. The Transformer encoder processes the
sequence of embeddings through multiple layers,
producing the final output H € RV >4 The [CLS]
token is appended to the sequence, and its final
hidden state is used as the global visual feature
representation vy € R,

Entity Object-Level Visual Features. Entities
within images serve as primary carriers of seman-
tic information. Extracting features of entities in
images that are relevant to the text can significantly

enhance the model’s comprehension of named en-
tities. To eliminate the interference of irrelevant
information in images, we leverage the advanced
reasoning capabilities of LLMs to accurately iden-
tify visual entities relevant to the text.

Inspired by Jian et al. (2024), we utilize a large
visual-language model (LVLM) to convert images
into corresponding detailed textual captions. Then
we feed the original text and image captions into
LLMs to extract entities in images along with
their attributes potentially relevant to the text. The
prompt templates are presented in Appendix A. For
example, in Figure 2(b), given the text and image
captions, the outputs of LLM would be ["basket-
ball player celebrating a basket", "Golden State
Warriors’ logo on the jersey", "NBA logo on the
Jjersey"], which are considered relevant to the text.

After obtaining the relevant entities and their
attributes, we employ an existing referring expres-
sion comprehension VG model (Liu et al., 2024b)
to localize the regions of interest (Rols) in images
associated with these entities. Specifically, we use
the outputs of LLM as referring expressions, which
are fed into the model for subsequent visual ground-
ing. Similar to the process of global visual features,
we also utilize ViT as visual encoder to capture
entity object-level visual features. For the i-th Rol
of visual entities, the embedding of it would be
v; € R?% . Then we concatenate all of the vectors
to get vsym € RN*dv where N is the number of
Rols. Finally, we apply the average pooling to
Vsum to obtain the final vector vy; € R% that
encapsulates rich visual entity information.

Visual Features Adaptive Fusion. Now we have
obtained text-guided visual features v, global vi-
sual features vy, and entity object-level visual
features v,, we employ an attention mechanism
to adaptively fuse them so as to generate the opti-
mized visual features for subsequent processing of
TVOMNER. Inspired by (Sui et al., 2024), we feed
them into different feedforward neural networks
(FFNNs) and utilize the sigmoid function to get
the fusion weights w, wy and w,. Then we use the
following equation to calculate the final optimized
visual features V:

V=w v+ Wq * Vglob + Wo * Vobj 3)

where we set wy + wy +w, = 1.



4.3 Cross-modal Feature Fusion module

In order to integrate the optimized visual and tex-
tual features, this module employs a multi-head
cross-attention mechanism to obtain cross-modal
fusion features C'. The textual features 1" serve as
query, while the visual features V' serve as key and
value. Layer normalization and FFNN are subse-
quently employed to obtain the final output feature.
After the L-th layer, we acquire the cross-modal
fusion features C' = {cs, ¢1, . . ., Cp, Csep }» Which
have abundant multimodal information, thereby
laying a solid foundation for TVOMNER to ex-
plore the relationship between the two modalities.

After that, we feed C and 7' into a gating mech-
anism to dynamically determine the fusion weights
of them. The gate g is calculated as follows:

g = sigmoid( (LN(c[oq + t[cls})ng) WgQ) 4)

where W € Rxdt apd W2 e R¥**1 Then we
get the final token-level features R:

R=goT+(1-g)0C ®)
R is subsequently input into the Bi-directional
Long Short-Term Memory (BiLSTM) network and
Conditional Random Field (CRF, Huang et al.
(2015)) decoder for final entity recognition:

€hidden = {€1,€2, -+ ,en} = BILSTM(R) (6)

exp(D>_; EYe; + Tr(yi—1, yi, €))

S Experiments

5.1 Settings

Datasets We conducted our experiments on two
publicly available and widely used English MNER
datasets: Twitter-2015 (Zhang et al., 2018) and
Twitter-2017 (Lu et al., 2018). There are four
predefined entity types: Person (PER), Organiza-
tion (ORG), Location (LOC) and Miscellaneous
(MISC). The detailed data distribution is presented
in Appendix B Table 3.

Implementations All experiments are conducted
on a NVIDIA 4090 GPU with Pytorch 2.1.0. We
use RoBERTa-large and ViT as basic encoders, and
employ Minigpt-v2 (Chen et al., 2023) to generate
image captions and gpt-40-2024-11-20 (OpenAl)
to output referring expressions. All images are re-
shaped into 224x224 resolution, and the patch size
N is 32. We set the learning rate and dropout rate to
3e-5 and 0.3. And we utilize AdamW (Loshchilov
and Hutter, 2017) as the optimizer with a batch size
of 64. The hyperparameter A is set to le-3.

Evaluation Consistent with the majority of
MNER tasks, we employ precision (Pre.), recall
(Rec.), and the F1 score (F1) to evaluate the perfor-
mance of the proposed model and use the F1 score
for each entity type.

Baselines We compare our method with the fol-
lowing representative baselines, which contain text-
only NER and MNER models:

P(Ylenidden) =

(7N
where y; is the predicted label possibility of the
t-th token. And the training loss function of this is:

N
1
Lner = -~ E 1 log p(y|ehidden) (8)
1=

The CRF layer can leverage global information
to ensure that these words are correctly labeled as
the same entity, rather than labeling each word in
isolation.

Finally, the loss function of our entire framework
is calculated as:

L = Lygr + ALyag )

where )\ is a hyperparameter.

Zy’ exp(D; E¥iei + Tr(y i1, Y/, e

) ° Text-only: BiLSTM-CRF (Huang et al.,
2015); CNN-BiLSTM-CRF (Ma and Hovy,
2016); BERT-BiLSTM-CRF (Souza et al.,
2020).

e Multimodal: UMT (Yu et al., 2020); MAF
(Xu et al., 2022); M3S (Wang et al., 2023);
GPT-NER (Li et al., 2023); MGCMT (Liu
et al., 2024a); ICKA (Zeng et al., 2024); VEC-
MNER (Wei et al., 2024); AMLR (Li et al.,
2025), VCRMNER (Bai et al., 2025).

5.2 Main Results

Table 1 illustrates the experimental results between
our proposed method and other baseline models on
the two Twitter datasets. We have the following
observations:

Firstly, our model significantly outperforms all
baseline methods, which verifies the effectiveness



Twitter-2015

Twitter-2017

Modality Model
PER LOC ORG MISC Pre. Rec. F1 |PER LOC ORG MISC Pre. Rec. F1

BiLSTM-CRF 76.77 72.56 41.33 26.80 68.14 61.09 64.42(85.12 72.68 72.50 52.56 79.42 73.43 76.31

Text CNN-BILSTM-CRF 80.86 75.39 47.77 32.61 66.24 68.09 67.15|87.99 77.44 74.02 60.82 80.00 78.76 79.37
BERT-BiLSTM-CRF 84.74 80.51 60.27 37.29 69.22 74.59 71.81(90.25 83.05 81.13 62.21 83.32 83.57 83.44

UMT 85.24 81.58 63.03 39.45 71.67 75.23 73.41|91.56 84.73 82.24 70.10 85.28 85.34 85.31

MAF 85.67 81.69 61.82 40.42 72.02 75.25 73.60({90.91 84.51 84.30 70.51 86.15 85.64 85.89

M3S 86.05 81.32 62.97 41.36 74.92 75.14 75.03|92.73 84.81 82.49 69.53 86.93 85.21 86.06

GPT-NER - - - — 4296 75.37 54.73| - - - - 52.19 75.03 61.56
Text+Vision MGCMT - - - - 73.5775.59 74.57| - - - - 86.03 76.16 86.09
ICKA 87.01 83.85 65.87 48.28 72.36 78.75 75.42|93.99 87.24 86.24 75.76 85.13 89.19 87.12
VEC-MNER 86.11 81.03 62.86 40.60 74.56 75.23 74.89(93.88 81.27 85.49 73.40 87.42 87.61 87.51

AMLR 85.90 82.19 65.95 40.20 75.45 75.20 75.31(93.22 86.13 84.46 68.42 86.96 86.90 86.93
VCRMNER - - - - 7548 78.23 76.83| - - - - 87.76 89.79 88.76
TVOMNER 87.53 84.14 67.44 50.11 77.54 77.01 77.27(95.47 88.50 87.08 76.33 89.76 88.92 89.34

Table 1: Performance comparison on Twitter-2015 and Twitter-2017 datasets.

of our dual-modality feature optimization strat-
egy. TVOMNER surpasses the strongest base-
line VCRMNER, with F1-score improvements of
0.44 and 0.58 on the two datasets, respectively.
Unlike the methods that decompose MNER into
multiple stages same as us (VCRMNER, AMLR,
MAF, M3S .efc), our method incorporates exter-
nal knowledge from Wikipedia and leverages the
strong reasoning capabilities of LLMs to identify
relevant entity objects in images. While several
utilize the knowledge of pre-trained models such
as CLIP (ICKA) or purely employ ChatGPT to
perform MNER (GPT-NER), our TVOMNER in-
tegrates multimodal knowledge from an LVLM
Minigpt-v2, substantially improving the reasoning
accuracy of LLMs in cross-modal scenarios. Fur-
thermore, when the image is irrelevant to the text,
TVOMNER could pay more attention to textual
information, ensuring superior performance.

In addition, we observe that under unimodal set-
tings, the BERT-based model demonstrates signif-
icant advantages over other approaches. This in-
dicates the critical importance of pre-trained lan-
guage models for MNER tasks. Furthermore, mul-
timodal approaches consistently outperform uni-
modal methods, as visual information provides
complementary context that enhances the model’s
understanding of textual entities.

5.3 Ablation Study

To further validate the contribution of each com-
ponents, we conduct a series of ablation studies,
with experimental results summarized in Table 2.
We systematically designed experiments for the
TFO and VFO modules - the two most influential

Twitter-2015 Twitter-2017
Method
Pre. Rec. F1 Pre. Rec. F1

TVOMNER |77.54 77.01 77.27|89.76 88.92 89.34
‘wlo O-T | 76.79 76.42 76.60 | 88.57 88.03 88.30
wio Wiki  [77.12 76.73 76.92|88.93 88.56 88.74
‘w/oLLMs |77.34 7637 76.85|89.03 88.21 88.62
wio VAE  [76.90 76.25 76.57 [88.79 87.94 88.36
wio O-V 73.64 76.02 74.81|87.12 86.45 86.78
‘wlo O-T-V | 72.43 75.88 74.11|86.75 85.30 86.02

Table 2: Results of ablation experiments.

components of TVOMNER - as follows:

‘w/o O-T’ removes the entity candidates; ‘w/o
Wiki’ removes knowledge from Wikipedia; ‘w/o
LLMs’ removes the entities and their attributes
output from LLMs; ‘w/o VAE’ removes the hetero-
geneous text-guided features generated from VAE;
w/o O-V replaces the optimized visual features
with global features. ‘w/o O-T-V’ replaces both the
optimized textual and visual features. The detailed
explanation of them is listed in Appendix C.

Effects of TFO module. As shown in Table 2,
‘w/o O-T’ drops 0.67 and 1.04 F1 scores, and ‘w/o
VAE’ drops 0.35 and 0.60 F1 scores on the two
datasets, respectively. We can conclude that em-
phasizing candidate entities in the text can guide
the model’s attention more effectively toward them,
thereby improving recognition performance. When
relevant external knowledge about these entities
is further incorporated, the model gains a deeper
understanding of their semantic meaning, which
facilitates more accurate results.

Effects of VFO module. According to Table 2,
we can also see that ‘w/o LLMs’ drops 0.42 and



[Minion None,

BERT-BILSTM-CRF x . . - T \
] Entity Candidates with Knowledge: Minion: Minions are small, yellow, and mischievous cartoon characters
in the "Despicable Me" movie series. Dublin: Dublin is the capital and largest city of Ireland.
[Minion PER Image Captions: "The image features a large inflatable Minion that has toppled onto a road, blocking the
MAF ! x passage of vehicles. The Minion, a character from the popular ‘Despicable Me’ franchise, is lying on its side
] with its signature blue overalls and yellow body visible. Several cars are halted on the road, evidently unable
to pass due to the obstruction. *
VCRMNER [Minion None, Entities with Attributes: "the Minion lying on its side"; "cars halted on the road"
] x Relevant Objects on the Image -
3
Text: Giant [Minion MISC] blocks [Minion ﬁ -
traffic on [Dublin LOC] road. TVOMNER ) !
BERT-BIiLSTM-CRF [Kyrie 1 Entity Candidates with Knowledge: Kyrie: Kyrie Irving is a professional basketball player and point guard |
for The Dallas Mavericks in the NBA.
MAF [Kyrie MISC] X Image Captions: "The image depicts a cartoon character, specifically the mouse character. He is seen
walking through a small, round door embedded in a wooden wall. The character is facing away, only his
VCRMNER  [Kyrie MISC] x backside is visible. He is wearing his trademark yellow and green plaid overalls, and the scene is set on a

wood-paneled floor. The door appears to be slightly ajar, suggesting he is either entering or exiting a

Text: @Moosedollas [Kyrie PER] TVOMNER  [Kyrie PER]

plays with @KingJames.

secretive mouse hole.”
Entities with Attributes: None.

Figure 3: Case study. Each case is accompanied by the recognition results of four models. And the right part is

generated by our model TVOMNER.

0.72 F1 scores and ‘w/o VAE’ drops 0.70 and 0.98
F1 scores, respectively. When the relevant en-
tity objects extracted by the LLMs are replaced
with random objects, the model performance de-
clined, indicating the critical role of semantically
relevant visual entities. Furthermore, without het-
erogeneous text-guided features, the model can be
distracted by irrelevant visual content, leading to
the omission of implicit visual semantics embed-
ded in the text. Finally, when optimized visual
features are replaced by global features, it drops
the F1 scores by 2.46 and 2.56, demonstrating the
critical impact of the VFO module.

Effects of Both. When we replace the optimized
textual and visual features, the F1 scores drop by
3.12 and 3.33, indicating that the TFO and VFO
modules work synergistically and play a vital role
in maintaining high model performance.

5.4 Case Study

To further illustrate the effectiveness of TVOM-
NER, we present two examples selected from the
datasets in Figure 3. We choose three classic base-
lines to compare with TVOMNER and the right
part Content is generated by our model.

In the first example, our model correctly identi-
fies “Minion” as a MISC entity, whereas the other
three models fail to do so. As shown on the right,
TVOMNER retrieves the candidate entity “Minion”
from Wikipedia and obtains knowledge that it is a
well-known cartoon character. Using this external
knowledge in conjunction with the visual content,

TVOMNER is able to accurately recognize it as a
MISC entity.

In the second example, both our model and
BERT-BiLSTM-CREF correctly identify “Kyrie” as
a person, while the other models fail. In this case,
the accompanying image is irrelevant to the text.
As a result, the text-only method BERT-BiLSTM-
CRF makes the correct prediction without being
affected by visual noise. In contrast, the two multi-
modal models, MAF and VCRMNER, are misled
by irrelevant visual content. Notably, the LLM
determines that there are no entities in the image re-
lated to the text and therefore outputs nothing. This
enables TVOMNER to focus more on the heteroge-
neous textual information, resulting in the correct
classification of “Kyrie” as a person.

6 Conclusion

In this paper, we propose TVOMNER, a novel
framework for the MNER task that focuses on tex-
tual and visual feature optimization. By retriev-
ing candidate entities from Wikipedia, TVOMNER
enhances its understanding of ambiguous or rare
entities that may not be well represented during
training. Through the adaptive fusion of hetero-
geneous text-guided features, global visual fea-
tures, and fine-grained object-level visual cues, the
model effectively attends to relevant visual entities.
Moreover, when the image and text are irrelevant,
TVOMNER is able to rely more heavily on textual
information. Experimental results demonstrate the
superior performance of our proposed TVOMNER
framework.



7 Limitations

Although our TVOMNER has demonstrated its
effectiveness on the MNER task, there are still
some limitations to be addressed in the future: 1)
About the heterogeneous text-guided features, we
employ VAE to generate the features. However,
there would be more advanced generation models
that can be utilized. 2) The application potential of
LLMs has yet to be fully exploited. In the future,
we will explore more methods to utilize the pow-
erful capabilities of LLMs, thereby improving the
performance of the MNER models.

8 Ethics Statement

All models and datasets utilized in this study are
publicly available and distributed under permis-
sible licenses. The training data has been fully
desensitized.
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Appendix
A Prompts

Prompts for Image Captioning:

You are an Al assistant that excels at image
captioning. <Img> #I </Img> describe this
picture in detail.

Prompts for generating relevant entity objects with
their attributes:

Given a sentence and the description of
its corresponding image. Text content and
image content may be relevant or irrelevant.
Output the entities along with their attribute
on the picture that may be relevant to entities
appearing in the text. Do not output entities in
the image description that are not relevant to
the text.

Note: Output common objects and group them
into general categories that are not duplicated,
merging essentially similar entities. Avoid ex-
tracting abstract or non-specific entities.

Examples:

Text: Some used to say Steph Curry was "too
small" and "too frail" to play in the NBA. They
were wrong.

Caption: "The image shows a basketball
player wearing a white Golden State Warriors
jersey with blue and yellow accents. The jer-
sey prominently displays the number 30 and
the team logo, a bridge enclosed in a circle.
The player is clenching their fists in front of
their chest, showcasing muscular arms. The
background is a blurred arena filled with fans
and ambient lights, hinting at a game or event
in progress. The jersey also features an NBA
logo near the left shoulder. The player’s confi-
dent stance suggests they may have just made
a significant play".

Outputs: ["basketball player celebrating a
basket", "‘Golden State Warriors’ logo on the
jersey", "NBA logo on the jersey"]

Text: #T
Caption: #C
Outputs: #O
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In our prompts template, #I is the visual embed-
dings of the given image; #T is the original text;
#C is the caption of the image; #O is the outputs of
LLMs.

B Distribution of Two Twitter Datasets

The detailed data distribution of two twitter datasets
is as follows:

. Twitter-2015 Twitter-2017
Entity Types
Train Dev Test Train Dev Test
PER 2217 552 1816 2943 626 621
LOC 2091 522 1697 731 173 178
ORG 928 247 839 1674 375 395
MISC 940 225 726 701 150 157

Total entities 6176 1546 5078 6049 1324 1351
Total tweets 4000 1000 3257 3373 723 723

Table 3: Distribution of Twitter-2015 and Twitter-2017
datasets.

C Ablation Study Details

Our ablation study systematically evaluates key
components through the following experimental
configurations:

* ‘w/o O-T” removes the entity candidates, feed-
ing only the original text into the text encoder
to get Tyrigin for subsequent processing.

* ‘w/o Wiki’ removes retrieved knowledge from
Wikipedia, feeding the original text with the
pure entity candidates (without knowledge)
into the encoder.

* ‘w/o LLMs’ removes the entities and their at-
tributes output from LLMs. As an alterna-
tive, we employ an object detection module to
randomly sample five objects on images for
encoding as entity object-level visual features.

* ‘w/o VAE’ removes the heterogeneous text-
guided features generated from VAE. As a
result, just vg0p and vy, are fed into the atten-
tion mechanism to fuse.

* w/o O-V replaces optimized visual features
V' with the global visual features v, which
will be fed into the CFF module.

* ‘w/o O-T-V’ removes both the optimized tex-
tual and visual features, feeding only T5;gin
and vy0p into the CFF module.



