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Abstract

Multimodal Named Entity Recognition001
(MNER) aims to extract named entities002
from text by leveraging both textual and003
visual modalities. Although existing methods004
focus on enhancing cross-modal interaction005
or reducing the interference of irrelevant006
images, two major challenges remain: (1) the007
textual content is often short and informal,008
lacking sufficient context to accurately identify009
ambiguous or low-frequency entities; (2)010
fine-grained entity information in images011
that is relevant to the text is rarely utilized.012
To address these challenges, we propose013
TVOMNER, a novel framework that focuses014
on Textual and Visual feature Optimization for015
MNER. For textual optimization, the model016
retrieves external knowledge of candidate017
entities from Wikipedia and incorporates018
it into the original text to provide richer019
semantic context. For visual optimization,020
it integrates (a) heterogeneous text-guided021
features via a variational autoencoder (VAE),022
(b) global visual features generated by a023
visual encoder, and (c) fine-grained entity024
object-level visual features extracted by025
large language models (LLMs) and visual026
grounding (VG) models. These features are027
adaptively fused and integrated with the textual028
representation for a subsequent cross-modal029
attention mechanism and a dynamic gating030
module. Extensive experiments on the two031
widely used datasets show that TVOMNER032
outperforms all baselines and exhibits robust033
and competitive performance.034

1 Introduction035

In recent years, Multimodal Named Entity Recog-036

nition (MNER) (Lu et al., 2018) has gained signif-037

icant attention, especially in the context of social038

media platforms, where textual content is often039

accompanied by rich visual data. Unlike tradi-040

tional Named Entity Recognition (NER), which041
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Figure 1: Two examples for the MNER task.

relies solely on text to identify entities such as peo- 042

ple, organizations, and locations (Li et al., 2020), 043

MNER incorporates both text and images to en- 044

hance entity recognition. It has been widely applied 045

to various downstream natural language processing 046

(NLP) tasks such as relation extraction (Zelenko 047

et al., 2003) and entity linking (Ganea and Hof- 048

mann, 2017). 049

Previous work has primarily focused on two as- 050

pects. First, considerable effort has been dedicated 051

to leveraging various attention mechanisms to bet- 052

ter align and fuse features from text and image 053

modalities (Yu et al., 2020; Bao et al., 2023). Sec- 054

ond, some researchers concentrate on mitigating 055

noise introduced by irrelevant images, which could 056

interfere with the model’s ability to extract infor- 057

mative visual features (Sun et al., 2021; Xu et al., 058

2022; Bai et al., 2025). 059

Despite the advancements, current methods still 060
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exhibit some limitations. One major issue arises061

from the fact that text on social media posts is often062

short and informal, making it difficult for models to063

correctly classify entities without sufficient context064

(Ok et al., 2024). In many cases, the model lacks065

the necessary knowledge to accurately determine066

the correct entity type, particularly when entities067

are ambiguous or underrepresented in the training068

data. As illustrated in Figure 1(a), without access to069

external knowledge, the model misclassifies "West-070

fields" as a Location. However, "Westfields" is071

actually a global company that should be recog-072

nized as an Organization. This highlights the need073

for MNER models that incorporate external knowl-074

edge sources to enhance contextual understanding075

and improve entity recognition in short and noisy076

social media text.077

On the other hand, most existing approaches rely078

primarily on global visual features extracted by the079

image encoder (Yu et al., 2020; Wang et al., 2023;080

Wei et al., 2024), often overlooking fine-grained en-081

tity objects present within the image. While some082

methods attempt to address this by applying sim-083

ple object detection techniques to extract localized084

object representations (Wang et al., 2022a; Zheng085

et al., 2024), they still face challenges. In particu-086

lar, the presence of irrelevant objects—common in087

real scenarios—could introduce noise and mislead088

the model’s judgment. As shown in Figure 1(b),089

with the relevant objects person and the logo of090

"Harlem Globetrotters", the model could achieve091

accurate recognition. However, without effective092

mechanisms to filter or prioritize relevant objects,093

the model may focus on distracting visual elements,094

ultimately degrading the accuracy of MNER. Fur-095

thermore, when image and text are unrelated, the096

model should place greater emphasis on the tex-097

tual information, since the text remains the primary098

source for entity identification in MNER tasks.099

To address the above problems, we propose a100

novel framework TVOMNER, which focuses on101

Textual and Visual features Optimization for the102

MNER task. Specifically, for textual features, we103

first retrieve candidate entities in the text from104

Wikipedia to acquire relevant entity knowledge.105

This knowledge is then concatenated with the orig-106

inal text and fed into a text encoder to obtain the107

optimized textual features. For visual features,108

we process in three complementary ways: (1) we109

utilize a variational autoencoder (VAE) to mine110

shared semantic information from heterogeneous111

text-guided features; (2) we extract global visual 112

features by a standard visual encoder; and (3) we 113

leverage the strong reasoning capabilities of large 114

language models (LLMs) to infer entity-related ob- 115

jects in the image, and extract them via a visual 116

grounding (VG) model. Then we encode these 117

objects to obtain fine-grained, entity object-level 118

visual features. These three types of visual fea- 119

tures are adaptively fused to generate optimized 120

visual features. Finally, the optimized textual and 121

visual features are jointly utilized to perform the 122

MNER task. This design enables the model to in- 123

corporate external knowledge, pay more attention 124

to fine-grained image entities that are semantically 125

aligned with the text, and maintain robust textual 126

understanding when visual content is irrelevant. 127

In summary, the main contributions of this paper 128

are as follows: 129

• We propose TVOMNER, a novel MNER 130

model that focuses on optimizing both textual 131

and visual features. External knowledge of 132

candidate entities is used to optimize textual 133

features while visual features are optimized 134

by fusing heterogeneous text-guided, global, 135

and fine-grained entity object-level visual fea- 136

tures. 137

• Unlike traditional object detection approaches, 138

we leverage the reasoning strength of LLMs 139

combined with a VG model to more accu- 140

rately extract semantically relevant entities 141

from images, thereby mitigating the impact of 142

unrelated visual noise. 143

• Extensive experiments on the Twitter-2015 144

and Twitter-2017 datasets demonstrate the ef- 145

fectiveness of TVOMNER. Ablation and case 146

studies further confirm that each component 147

of the model contributes meaningfully to over- 148

all performance. 149

2 Related Work 150

MNER extends traditional NER by incorporating 151

both textual and visual information for more ac- 152

curate entity recognition. Previous methods can 153

be broadly categorized into two types: enhancing 154

cross-modal interaction to better align and fuse 155

multimodal features, and mitigating the impact of 156

irrelevant visual content. 157

Cross-modal Interaction. Early approaches typ- 158

ically use simple attention mechanisms to fuse 159
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features between two modalities (Lu et al., 2018;160

Zhang et al., 2018). With the advancement of the161

Transformer architecture (Vaswani et al., 2017) ,162

several studies have employed multi-head cross-163

attention modules to improve cross-modal fusion164

(Yu et al., 2020; Zhang et al., 2021a; Wang et al.,165

2022b; Chen et al., 2022; Zhang et al., 2023; Wei166

et al., 2024). Furthermore, Zeng et al. (2024) uti-167

lize the inter-modality connections as a bridge to168

construct an instruction that fuses multimodal fea-169

tures. Li et al. (2025) implement entity-level lan-170

guage reinforcement in an adaptive multi-scale way.171

Zhao et al. (2025) design heterogeneous graphs and172

introduce graph Transformer to enable effective in-173

formation interaction.174

Disambiguation of Irrelevant Images. Another175

major line of research focuses on addressing the is-176

sue of irrelevant or noisy visual information. Chen177

et al. (2020); Zhang et al. (2021b); Xu et al. (2022)178

apply contrastive learning to address this issue by179

constructing positive and negative samples in dif-180

ferent ways. Xu et al. (2025) propose an adaptive181

mix-up image augmentation strategy to harness the182

complementary benefits of both original and syn-183

thesized images. Bai et al. (2025) use CLIP (Rad-184

ford et al., 2021) prompts to accurately capture185

visual cues associated with entities. More recently,186

approaches have begun to incorporate the strong187

reasoning capabilities of LLMs to further improve188

MNER performance (Li et al., 2023, 2024). More-189

over, some researchers have extended the MNER190

task from the perspective of visual grounding (Yu191

et al., 2023; Jia et al., 2023).192

However, existing models still struggle with am-193

biguous entities due to the lack of knowledge and194

often underutilize fine-grained, object-level visual195

information. In this work, we tackle these limita-196

tions by incorporating external knowledge retrieval197

for textual optimization and utilizing LLM-based198

reasoning to extract fine-grained visual entities.199

3 Task Definition200

Given a sentence S = {s1, s2, ..., sn} and its cor-201

responding image I , the MNER task aims to recog-202

nize the named entities in S and classify them into203

specific pre-defined types like Person (PER), Or-204

ganization (ORG), Location (LOC) and Miscella-205

neous (MISC). Following the BIO tagging schema206

(Sang and Veenstra, 1999), the output would be207

Y = {y1, y2, ..., yn} where yi ∈{B-type, I-type, O}208

indicates the label corresponding to si, and type209

refers to the above four pre-defined entity types. 210

4 Methodology 211

In this section, we introduce the architecture of 212

TVOMNER, which focuses on the optimization of 213

textual and visual features. As shown in Figure 2, 214

TVOMNER consists of three main parts: 1) the 215

Textual Feature Optimization (TFO) module; 2) the 216

Visual Feature Optimization (VFO) module; 3) the 217

Cross-modal Feature Fusion (CFF) module. In the 218

TFO module, we extract the candidate entities in 219

the text and search them in Wikipedia to provide 220

supplementary knowledge to the original text. In 221

the VFO module, we optimize visual features from 222

three perspectives: heterogeneous text-guided fea- 223

tures, global visual features, and entity object-level 224

visual features. Finally, in the CFF module, we 225

fuse the optimized features of the two modalities 226

and combine a gating mechanism with the CRF 227

layer for the final sequence labeling. 228

4.1 Textual Feature Optimization Module 229

Due to the limited content of text, the model strug- 230

gles to obtain sufficient contextual information. 231

Therefore, we optimize the textual features in terms 232

of supplementing external knowledge to the frame- 233

work. This module retrieves the candidate enti- 234

ties in the text from Wikipedia, filters the retrieved 235

knowledge to remove irrelevant noise, and then 236

splits it with the original text into a transformer- 237

based language model. 238

In the first stage, an entity candidate detection 239

module extracts potential entities from the input 240

text. Inspired by (Ok et al., 2024), we use the 241

RoBERTa (Liu et al., 2019) encoder with BIO tag- 242

ging to classify each token in the text, determining 243

whether it belongs to an entity span. And this pro- 244

cess is guided by cross-entropy loss. After that, 245

we regard the entity candidates as queries to re- 246

trieve structured knowledge from Wikipedia. The 247

retrieved entity knowledge introduces global con- 248

text from Wikipedia, which helps the model un- 249

derstand entities beyond their immediate textual 250

surroundings. At the same time, we perform the 251

calculation of semantic relevance between the re- 252

trieved results and the original text to filter low- 253

quality fragments. From Figure 2(a), for entity 254

candidates Steph Curry and NBA, it would provide 255

the model that Steph Curry is a basketball player 256

while NBA is a basketball league. 257

The retrieved entity knowledge is then concate- 258
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Text: Some used to say Steph Curry was "too small" and 

"too frail" to play in the NBA. They were wrong.

 Entity Candidate Detection module

Search Wikipedia

Steph Curry: An American professional basketball player and point guard for 

the Golden State Warriors of NBA.

NBA: A professional basketball league in North America composed of 30 teams.
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Figure 2: The framework of TVOMNER. It consists of three main modules: (a) Textual Feature Optimization; (b)
Visual Feature Optimization; (c) Cross-modal Feature Fusion.

nated with the original text, forming an augmented259

input representation. We build a template and add260

[CLS] and [SEP] tokens that conform to the input261

format of the text encoder. The template is repre-262

sented as follows:263

“[CLS] {Original Sentence} [SEP] {Entity_1:264

Knowledge_1} [SEP] {Entity_2: Knowledge_2}265

[SEP] ... {Entity_n: Knowledge_n} [SEP] ”266

where Entity_i and Knowledge_i denote the en-267

tity candidates and their corresponding retrieved268

knowledge, respectively.269

Subsequently, we also utilize RoBERTa270

to encode the retrieval-augmented text Srag271

to get the token-level representation Trag =272

{t[CLS], t1, ..., tn, t[SEP ], tn+1..., tn+m, t[SEP ]},273

where n and m represent the length of the274

original text and retrieved knowledge, respectively.275

Then we feed Trag into a Transformer-based276

self-attention module to obtain T̂ :277

T̂ = LN(MP(softmax(
QKT

√
dt

)V )) (1)278

where Q = K = V = T̂ as query, key, and value. 279

LN is layer normalization (Ba et al., 2016) and MP 280

is mean pooling. It leverages the multi-head self- 281

attention architecture to dynamically capture long- 282

range dependencies and contextual relationships 283

within the text. Finally, we obtain optimized textual 284

features T by taking the first n tokens from T̂ as an 285

equal-length sequence with the original sentence S 286

for subsequent processing. 287

4.2 Visual Feature Optimization Module 288

In the MNER task, the text, as the subject, contains 289

adequate shared semantic information of textual 290

and visual modalities. Especially in irrelevant text- 291

image pairs, text plays a more important role in the 292

inference of models. Similarly, the global context 293

of relevant images, in conjunction with the entities 294

present in them, furnishes the model with a sub- 295

stantial amount of entity-related information. The 296

integration of such information is of paramount 297

importance. Consequently, we optimize visual fea- 298
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tures by incorporating heterogeneous text-guided299

features, global visual features, and entity object-300

level visual features.301

Heterogeneous Text-guided Features. Follow-302

ing (Sui et al., 2024), we choose to utilize the cross-303

reconstruction of VAE (Yi et al., 2023) to extract304

the semantic information shared with the visual305

modality from heterogeneous textual features.306

As in Figure 2 (b) depicted, the VAE encoder307

takes the optimized T as input and obtains the mean308

vector µ and the standard deviation vector σ of a309

latent distribution: µ = TWµ, σ = TWσ, where310

Wµ and Wσ ∈ RdT×dz are trainable matrices. Us-311

ing the reparameterization strategy (Kingma et al.,312

2013), we sample a latent variable z = µ+ σ ⊙ ϵ313

from this distribution, where ϵ ∈ (0, I) and I is314

an identity matrix. Then z is decoded to gener-315

ate text-guided visual features vt = zWz , where316

Wz ∈ Rdz×dv and dv is the dimension of the visual317

features.318

Finally, the training loss of VAE is calculated as319

follows:320

LVAE = ∥vglob − vt∥2 + KL(q(z|T )∥p(z)) (2)321

where vglob is the global feature of images, which322

will be introduced in the next section. KL(·) repre-323

sents the Kullback-Leibler divergence between two324

distributions. q(z|T ) = N(µ, σ2) is the distribu-325

tion of z and p(z) = N(0, I) is a standard normal326

distribution.327

Global Visual Features. As one of the two328

modalities, the information of images is undeni-329

ably crucial. To capture the global features of im-330

ages, we use Vision Transformer (ViT) (Dosovit-331

skiy et al., 2020) as the basic image encoder.332

Given the input image I , it is divided into N333

patches, each represented as a vector yi ∈ Rdv . A334

learnable position embedding P ∈ RN×dv is added335

to the patch embeddings to incorporate spatial in-336

formation. The Transformer encoder processes the337

sequence of embeddings through multiple layers,338

producing the final output H ∈ RN×dv . The [CLS]339

token is appended to the sequence, and its final340

hidden state is used as the global visual feature341

representation vglob ∈ Rdv .342

Entity Object-Level Visual Features. Entities343

within images serve as primary carriers of seman-344

tic information. Extracting features of entities in345

images that are relevant to the text can significantly346

enhance the model’s comprehension of named en- 347

tities. To eliminate the interference of irrelevant 348

information in images, we leverage the advanced 349

reasoning capabilities of LLMs to accurately iden- 350

tify visual entities relevant to the text. 351

Inspired by Jian et al. (2024), we utilize a large 352

visual-language model (LVLM) to convert images 353

into corresponding detailed textual captions. Then 354

we feed the original text and image captions into 355

LLMs to extract entities in images along with 356

their attributes potentially relevant to the text. The 357

prompt templates are presented in Appendix A. For 358

example, in Figure 2(b), given the text and image 359

captions, the outputs of LLM would be ["basket- 360

ball player celebrating a basket", "Golden State 361

Warriors’ logo on the jersey", "NBA logo on the 362

jersey"], which are considered relevant to the text. 363

After obtaining the relevant entities and their 364

attributes, we employ an existing referring expres- 365

sion comprehension VG model (Liu et al., 2024b) 366

to localize the regions of interest (RoIs) in images 367

associated with these entities. Specifically, we use 368

the outputs of LLM as referring expressions, which 369

are fed into the model for subsequent visual ground- 370

ing. Similar to the process of global visual features, 371

we also utilize ViT as visual encoder to capture 372

entity object-level visual features. For the i-th RoI 373

of visual entities, the embedding of it would be 374

vi ∈ Rdv . Then we concatenate all of the vectors 375

to get vsum ∈ RN×dv , where N is the number of 376

RoIs. Finally, we apply the average pooling to 377

vsum to obtain the final vector vobj ∈ Rdv that 378

encapsulates rich visual entity information. 379

Visual Features Adaptive Fusion. Now we have 380

obtained text-guided visual features vt, global vi- 381

sual features vglob and entity object-level visual 382

features vo, we employ an attention mechanism 383

to adaptively fuse them so as to generate the opti- 384

mized visual features for subsequent processing of 385

TVOMNER. Inspired by (Sui et al., 2024), we feed 386

them into different feedforward neural networks 387

(FFNNs) and utilize the sigmoid function to get 388

the fusion weights ωt, ωg and ωo. Then we use the 389

following equation to calculate the final optimized 390

visual features V : 391

V = ωt · vt + ωg · vglob + ωo · vobj (3) 392

where we set ωt + ωg + ωo = 1. 393
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4.3 Cross-modal Feature Fusion module394

In order to integrate the optimized visual and tex-395

tual features, this module employs a multi-head396

cross-attention mechanism to obtain cross-modal397

fusion features C. The textual features T serve as398

query, while the visual features V serve as key and399

value. Layer normalization and FFNN are subse-400

quently employed to obtain the final output feature.401

After the L-th layer, we acquire the cross-modal402

fusion features C = {ccls, c1, . . . , cn, csep}, which403

have abundant multimodal information, thereby404

laying a solid foundation for TVOMNER to ex-405

plore the relationship between the two modalities.406

After that, we feed C and T into a gating mech-407

anism to dynamically determine the fusion weights408

of them. The gate g is calculated as follows:409

g = sigmoid( (LN(c[cls] + t[cls])W
1
g )W

2
g ) (4)410

where W 1
g ∈ Rdt×dt and W 2

g ∈ Rdt×1. Then we411

get the final token-level features R:412

R = g ⊙ T + (1− g)⊙ C (5)413

R is subsequently input into the Bi-directional414

Long Short-Term Memory (BiLSTM) network and415

Conditional Random Field (CRF, Huang et al.416

(2015)) decoder for final entity recognition:417

ehidden = {e1, e2, · · · , en} = BiLSTM(R) (6)418

419

p(y|ehidden) =
exp(

∑
iE

yiei + Tr(yi−1, yi, e))∑
y′ exp(

∑
iE

y′iei + Tr(y′i−1, y
′
i, e))

(7)420

where yi is the predicted label possibility of the421

i-th token. And the training loss function of this is:422

LNER = − 1

N

N∑
i=1

log p(y|ehidden) (8)423

The CRF layer can leverage global information424

to ensure that these words are correctly labeled as425

the same entity, rather than labeling each word in426

isolation.427

Finally, the loss function of our entire framework428

is calculated as:429

L = LNER + λLVAE (9)430

where λ is a hyperparameter.431

5 Experiments 432

5.1 Settings 433

Datasets We conducted our experiments on two 434

publicly available and widely used English MNER 435

datasets: Twitter-2015 (Zhang et al., 2018) and 436

Twitter-2017 (Lu et al., 2018). There are four 437

predefined entity types: Person (PER), Organiza- 438

tion (ORG), Location (LOC) and Miscellaneous 439

(MISC). The detailed data distribution is presented 440

in Appendix B Table 3. 441

Implementations All experiments are conducted 442

on a NVIDIA 4090 GPU with Pytorch 2.1.0. We 443

use RoBERTa-large and ViT as basic encoders, and 444

employ Minigpt-v2 (Chen et al., 2023) to generate 445

image captions and gpt-4o-2024-11-20 (OpenAI) 446

to output referring expressions. All images are re- 447

shaped into 224×224 resolution, and the patch size 448

N is 32. We set the learning rate and dropout rate to 449

3e-5 and 0.3. And we utilize AdamW (Loshchilov 450

and Hutter, 2017) as the optimizer with a batch size 451

of 64. The hyperparameter λ is set to 1e-3. 452

Evaluation Consistent with the majority of 453

MNER tasks, we employ precision (Pre.), recall 454

(Rec.), and the F1 score (F1) to evaluate the perfor- 455

mance of the proposed model and use the F1 score 456

for each entity type. 457

Baselines We compare our method with the fol- 458

lowing representative baselines, which contain text- 459

only NER and MNER models: 460

• Text-only: BiLSTM-CRF (Huang et al., 461

2015); CNN-BiLSTM-CRF (Ma and Hovy, 462

2016); BERT-BiLSTM-CRF (Souza et al., 463

2020). 464

• Multimodal: UMT (Yu et al., 2020); MAF 465

(Xu et al., 2022); M3S (Wang et al., 2023); 466

GPT-NER (Li et al., 2023); MGCMT (Liu 467

et al., 2024a); ICKA (Zeng et al., 2024); VEC- 468

MNER (Wei et al., 2024); AMLR (Li et al., 469

2025), VCRMNER (Bai et al., 2025). 470

5.2 Main Results 471

Table 1 illustrates the experimental results between 472

our proposed method and other baseline models on 473

the two Twitter datasets. We have the following 474

observations: 475

Firstly, our model significantly outperforms all 476

baseline methods, which verifies the effectiveness 477
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Modality Model
Twitter-2015 Twitter-2017

PER LOC ORG MISC Pre. Rec. F1 PER LOC ORG MISC Pre. Rec. F1

Text
BiLSTM-CRF 76.77 72.56 41.33 26.80 68.14 61.09 64.42 85.12 72.68 72.50 52.56 79.42 73.43 76.31
CNN-BiLSTM-CRF 80.86 75.39 47.77 32.61 66.24 68.09 67.15 87.99 77.44 74.02 60.82 80.00 78.76 79.37
BERT-BiLSTM-CRF 84.74 80.51 60.27 37.29 69.22 74.59 71.81 90.25 83.05 81.13 62.21 83.32 83.57 83.44

Text+Vision

UMT 85.24 81.58 63.03 39.45 71.67 75.23 73.41 91.56 84.73 82.24 70.10 85.28 85.34 85.31
MAF 85.67 81.69 61.82 40.42 72.02 75.25 73.60 90.91 84.51 84.30 70.51 86.15 85.64 85.89
M3S 86.05 81.32 62.97 41.36 74.92 75.14 75.03 92.73 84.81 82.49 69.53 86.93 85.21 86.06
GPT-NER – – – – 42.96 75.37 54.73 – – – – 52.19 75.03 61.56
MGCMT – – – – 73.57 75.59 74.57 – – – – 86.03 76.16 86.09
ICKA 87.01 83.85 65.87 48.28 72.36 78.75 75.42 93.99 87.24 86.24 75.76 85.13 89.19 87.12
VEC-MNER 86.11 81.03 62.86 40.60 74.56 75.23 74.89 93.88 81.27 85.49 73.40 87.42 87.61 87.51
AMLR 85.90 82.19 65.95 40.20 75.45 75.20 75.31 93.22 86.13 84.46 68.42 86.96 86.90 86.93
VCRMNER – – – – 75.48 78.23 76.83 – – – – 87.76 89.79 88.76
TVOMNER 87.53 84.14 67.44 50.11 77.54 77.01 77.27 95.47 88.50 87.08 76.33 89.76 88.92 89.34

Table 1: Performance comparison on Twitter-2015 and Twitter-2017 datasets.

of our dual-modality feature optimization strat-478

egy. TVOMNER surpasses the strongest base-479

line VCRMNER, with F1-score improvements of480

0.44 and 0.58 on the two datasets, respectively.481

Unlike the methods that decompose MNER into482

multiple stages same as us (VCRMNER, AMLR,483

MAF, M3S .etc), our method incorporates exter-484

nal knowledge from Wikipedia and leverages the485

strong reasoning capabilities of LLMs to identify486

relevant entity objects in images. While several487

utilize the knowledge of pre-trained models such488

as CLIP (ICKA) or purely employ ChatGPT to489

perform MNER (GPT-NER), our TVOMNER in-490

tegrates multimodal knowledge from an LVLM491

Minigpt-v2, substantially improving the reasoning492

accuracy of LLMs in cross-modal scenarios. Fur-493

thermore, when the image is irrelevant to the text,494

TVOMNER could pay more attention to textual495

information, ensuring superior performance.496

In addition, we observe that under unimodal set-497

tings, the BERT-based model demonstrates signif-498

icant advantages over other approaches. This in-499

dicates the critical importance of pre-trained lan-500

guage models for MNER tasks. Furthermore, mul-501

timodal approaches consistently outperform uni-502

modal methods, as visual information provides503

complementary context that enhances the model’s504

understanding of textual entities.505

5.3 Ablation Study506

To further validate the contribution of each com-507

ponents, we conduct a series of ablation studies,508

with experimental results summarized in Table 2.509

We systematically designed experiments for the510

TFO and VFO modules - the two most influential511

Method
Twitter-2015 Twitter-2017

Pre. Rec. F1 Pre. Rec. F1
TVOMNER 77.54 77.01 77.27 89.76 88.92 89.34
w/o O-T 76.79 76.42 76.60 88.57 88.03 88.30
w/o Wiki 77.12 76.73 76.92 88.93 88.56 88.74
w/o LLMs 77.34 76.37 76.85 89.03 88.21 88.62
w/o VAE 76.90 76.25 76.57 88.79 87.94 88.36
w/o O-V 73.64 76.02 74.81 87.12 86.45 86.78
w/o O-T-V 72.43 75.88 74.11 86.75 85.30 86.02

Table 2: Results of ablation experiments.

components of TVOMNER - as follows: 512

‘w/o O-T’ removes the entity candidates; ‘w/o 513

Wiki’ removes knowledge from Wikipedia; ‘w/o 514

LLMs’ removes the entities and their attributes 515

output from LLMs; ‘w/o VAE’ removes the hetero- 516

geneous text-guided features generated from VAE; 517

w/o O-V replaces the optimized visual features 518

with global features. ‘w/o O-T-V’ replaces both the 519

optimized textual and visual features. The detailed 520

explanation of them is listed in Appendix C. 521

Effects of TFO module. As shown in Table 2, 522

‘w/o O-T’ drops 0.67 and 1.04 F1 scores, and ‘w/o 523

VAE’ drops 0.35 and 0.60 F1 scores on the two 524

datasets, respectively. We can conclude that em- 525

phasizing candidate entities in the text can guide 526

the model’s attention more effectively toward them, 527

thereby improving recognition performance. When 528

relevant external knowledge about these entities 529

is further incorporated, the model gains a deeper 530

understanding of their semantic meaning, which 531

facilitates more accurate results. 532

Effects of VFO module. According to Table 2, 533

we can also see that ‘w/o LLMs’ drops 0.42 and 534
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Result

VCRMNER

MAF

TVOMNER

BERT-BiLSTM-CRF ×

×

√

[Minion None,

Dublin LOC]

Inputs

Text:  Giant [Minion MISC] blocks 

traffic on [Dublin LOC] road.

Content

MAF

VCRMNER

BERT-BiLSTM-CRF

[Kyrie MISC]

[Kyrie PER]

[Kyrie PER]

×
√

√Text:  @Moosedollas [Kyrie PER] 

plays with @KingJames.

Entity Candidates with Knowledge: Kyrie: Kyrie Irving is a professional basketball player and point guard 

for The Dallas Mavericks in the NBA.

Imag e Capt ions :  "The image depicts a cartoon character, specifically the mouse character. He is seen 

walking through a small, round door embedded in a wooden wall. The character is facing away, only his 

backside is visible. He is wearing his trademark yellow and green plaid overalls, and the scene is set on a 

wood-paneled floor. The door appears to be slightly ajar, suggesting he is either entering or exiting a 

secretive mouse hole."

Entities with Attributes: None.

[Kyrie MISC] ×

×

Entity Candidates with Knowledge: Minion: Minions are small, yellow, and mischievous cartoon characters 

in the "Despicable Me" movie series. Dublin: Dublin is the capital and largest city of Ireland.

Image Captions: "The image features a large inflatable Minion that has toppled onto a road, blocking the 

passage of vehicles. The Minion, a character from the popular ‘Despicable Me’ franchise, is lying on its side 

with its signature blue overalls and yellow body visible. Several cars are halted on the road, evidently unable 

to pass due to the obstruction. "

Entities with Attributes: "the Minion lying on its side"; "cars halted on the road"

Relevant Objects on the Image:

[Minion PER,

Dublin LOC]

[Minion None,

Dublin LOC]

[Minion MISC,

Dublin LOC]

TVOMNER

Figure 3: Case study. Each case is accompanied by the recognition results of four models. And the right part is
generated by our model TVOMNER.

0.72 F1 scores and ‘w/o VAE’ drops 0.70 and 0.98535

F1 scores, respectively. When the relevant en-536

tity objects extracted by the LLMs are replaced537

with random objects, the model performance de-538

clined, indicating the critical role of semantically539

relevant visual entities. Furthermore, without het-540

erogeneous text-guided features, the model can be541

distracted by irrelevant visual content, leading to542

the omission of implicit visual semantics embed-543

ded in the text. Finally, when optimized visual544

features are replaced by global features, it drops545

the F1 scores by 2.46 and 2.56, demonstrating the546

critical impact of the VFO module.547

Effects of Both. When we replace the optimized548

textual and visual features, the F1 scores drop by549

3.12 and 3.33, indicating that the TFO and VFO550

modules work synergistically and play a vital role551

in maintaining high model performance.552

5.4 Case Study553

To further illustrate the effectiveness of TVOM-554

NER, we present two examples selected from the555

datasets in Figure 3. We choose three classic base-556

lines to compare with TVOMNER and the right557

part Content is generated by our model.558

In the first example, our model correctly identi-559

fies “Minion” as a MISC entity, whereas the other560

three models fail to do so. As shown on the right,561

TVOMNER retrieves the candidate entity “Minion”562

from Wikipedia and obtains knowledge that it is a563

well-known cartoon character. Using this external564

knowledge in conjunction with the visual content,565

TVOMNER is able to accurately recognize it as a 566

MISC entity. 567

In the second example, both our model and 568

BERT-BiLSTM-CRF correctly identify “Kyrie” as 569

a person, while the other models fail. In this case, 570

the accompanying image is irrelevant to the text. 571

As a result, the text-only method BERT-BiLSTM- 572

CRF makes the correct prediction without being 573

affected by visual noise. In contrast, the two multi- 574

modal models, MAF and VCRMNER, are misled 575

by irrelevant visual content. Notably, the LLM 576

determines that there are no entities in the image re- 577

lated to the text and therefore outputs nothing. This 578

enables TVOMNER to focus more on the heteroge- 579

neous textual information, resulting in the correct 580

classification of “Kyrie” as a person. 581

6 Conclusion 582

In this paper, we propose TVOMNER, a novel 583

framework for the MNER task that focuses on tex- 584

tual and visual feature optimization. By retriev- 585

ing candidate entities from Wikipedia, TVOMNER 586

enhances its understanding of ambiguous or rare 587

entities that may not be well represented during 588

training. Through the adaptive fusion of hetero- 589

geneous text-guided features, global visual fea- 590

tures, and fine-grained object-level visual cues, the 591

model effectively attends to relevant visual entities. 592

Moreover, when the image and text are irrelevant, 593

TVOMNER is able to rely more heavily on textual 594

information. Experimental results demonstrate the 595

superior performance of our proposed TVOMNER 596

framework. 597
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7 Limitations598

Although our TVOMNER has demonstrated its599

effectiveness on the MNER task, there are still600

some limitations to be addressed in the future: 1)601

About the heterogeneous text-guided features, we602

employ VAE to generate the features. However,603

there would be more advanced generation models604

that can be utilized. 2) The application potential of605

LLMs has yet to be fully exploited. In the future,606

we will explore more methods to utilize the pow-607

erful capabilities of LLMs, thereby improving the608

performance of the MNER models.609

8 Ethics Statement610

All models and datasets utilized in this study are611

publicly available and distributed under permis-612

sible licenses. The training data has been fully613

desensitized.614
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Appendix861

A Prompts862

Prompts for Image Captioning:863

You are an AI assistant that excels at image
captioning. <Img> #I </Img> describe this
picture in detail.

Prompts for generating relevant entity objects with864

their attributes:865

Given a sentence and the description of
its corresponding image. Text content and
image content may be relevant or irrelevant.
Output the entities along with their attribute
on the picture that may be relevant to entities
appearing in the text. Do not output entities in
the image description that are not relevant to
the text.

Note: Output common objects and group them
into general categories that are not duplicated,
merging essentially similar entities. Avoid ex-
tracting abstract or non-specific entities.

Examples:
Text: Some used to say Steph Curry was "too
small" and "too frail" to play in the NBA. They
were wrong.
Caption: "The image shows a basketball
player wearing a white Golden State Warriors
jersey with blue and yellow accents. The jer-
sey prominently displays the number 30 and
the team logo, a bridge enclosed in a circle.
The player is clenching their fists in front of
their chest, showcasing muscular arms. The
background is a blurred arena filled with fans
and ambient lights, hinting at a game or event
in progress. The jersey also features an NBA
logo near the left shoulder. The player’s confi-
dent stance suggests they may have just made
a significant play".
Outputs: ["basketball player celebrating a
basket", "‘Golden State Warriors’ logo on the
jersey", "NBA logo on the jersey"]

Text: #T
Caption: #C
Outputs: #O

In our prompts template, #I is the visual embed- 866

dings of the given image; #T is the original text; 867

#C is the caption of the image; #O is the outputs of 868

LLMs. 869

B Distribution of Two Twitter Datasets 870

The detailed data distribution of two twitter datasets 871

is as follows: 872

Entity Types Twitter-2015 Twitter-2017

Train Dev Test Train Dev Test

PER 2217 552 1816 2943 626 621
LOC 2091 522 1697 731 173 178
ORG 928 247 839 1674 375 395
MISC 940 225 726 701 150 157

Total entities 6176 1546 5078 6049 1324 1351
Total tweets 4000 1000 3257 3373 723 723

Table 3: Distribution of Twitter-2015 and Twitter-2017
datasets.

C Ablation Study Details 873

Our ablation study systematically evaluates key 874

components through the following experimental 875

configurations: 876

• ‘w/o O-T’ removes the entity candidates, feed- 877

ing only the original text into the text encoder 878

to get Torigin for subsequent processing. 879

• ‘w/o Wiki’ removes retrieved knowledge from 880

Wikipedia, feeding the original text with the 881

pure entity candidates (without knowledge) 882

into the encoder. 883

• ‘w/o LLMs’ removes the entities and their at- 884

tributes output from LLMs. As an alterna- 885

tive, we employ an object detection module to 886

randomly sample five objects on images for 887

encoding as entity object-level visual features. 888

• ‘w/o VAE’ removes the heterogeneous text- 889

guided features generated from VAE. As a 890

result, just vglob and vobj are fed into the atten- 891

tion mechanism to fuse. 892

• w/o O-V replaces optimized visual features 893

V with the global visual features vglob, which 894

will be fed into the CFF module. 895

• ‘w/o O-T-V’ removes both the optimized tex- 896

tual and visual features, feeding only Torigin 897

and vglob into the CFF module. 898
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