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ABSTRACT

Recent studies have demonstrated the overwhelming advantage of cross-lingual
pre-trained models (PTMs), such as multilingual BERT and XLM, on cross-
lingual NLP tasks. However, existing approaches essentially capture the co-
occurrence among tokens through involving the masked language model (MLM)
objective with token-level cross entropy. In this work, we extend these approaches
to learn sentence-level representations and show the effectiveness on cross-
lingual understanding and generation. Specifically, we propose a Hierarchical
Contrastive Learning (HICTL) method to (1) learn universal representations for
parallel sentences distributed in one or multiple languages and (2) distinguish the
semantically-related words from a shared cross-lingual vocabulary for each sen-
tence. We conduct evaluations on two challenging cross-lingual tasks, XTREME
and machine translation. Experimental results show that the HICTL outperforms
the state-of-the-art XLLM-R by an absolute gain of 4.2% accuracy on the XTREME
benchmark as well as achieves substantial improvements on both of the high-
resource and low-resource English— X translation tasks over strong baselines.

1 INTRODUCTION

Pre-trained models (PTMs) like ELMo (Peters et al., 2018), GPT (Radford et al., 2018 and
BERT (Devlin et al., [2019) have shown remarkable success of effectively transferring knowledge
learned from large-scale unlabeled data to downstream NLP tasks, such as text classification (Socher,
et al.| 2013)) and natural language inference (Bowman et al., |2015; Williams et al., | 2018)), with lim-
ited or no training data. To extend such pretraining-finetuning paradigm to multiple languages, some
endeavors such as multilingual BERT (Devlin et al., 2019) and XLM (Conneau & Lamplel, [2019)
have been made for learning cross-lingual representation. More recently, |Conneau et al.| (2020)
present XLM-R to study the effects of training unsupervised cross-lingual representations at a huge
scale and demonstrate promising progress on cross-lingual tasks.

However, all of these studies only perform a masked language model (MLM) with token-level (i.e.,
subword) cross entropy, which limits PTMs to capture the co-occurrence among tokens and con-
sequently fail to understand the whole sentence. It leads to two major shortcomings for current
cross-lingual PTMs, i.e., the acquisition of sentence-level representations and semantic alignments
among parallel sentences in different languages. Considering the former, [Devlin et al.| (2019) in-
troduced the next sentence prediction (NSP) task to distinguish whether two input sentences are
continuous segments from the training corpus. However, this simple binary classification task is not
enough to model sentence-level representations (Joshi et al.,[2020;|Yang et al., 2019; |Liu et al., 2019;
Lan et al., |2020; |Conneau et al., 2020). For the latter, (Huang et al.,|2019) defined the cross-lingual
paraphrase classification task, which concatenates two sentences from different languages as input

*Work done at Alibaba Group. Yue Hu and Heng Yu are the co-corresponding authors. We also made an of-
ficial submission to XTREME (https://sites.research.google/xtreme)), with several improved
techniques used in (Fang et al.| 2020} |Luo et al., |2020).
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and classifies whether they are with the same meaning. This task learns patterns of sentence-pairs
well but fails to distinguish the exact meaning of each sentence.

In response to these problems, we propose to strengthen PTMs through learning universal represen-
tations among semantically-equivalent sentences distributed in different languages. We introduce a
novel Hierarchical Contrastive Learning (HICTL) framework to learn language invariant sentence
representations via self-supervised non-parametric instance discrimination. Specifically, we use a
BERT-style model to encode two sentences separately, and the representation of the first token (e.g.,
[CLS] in BERT) will be treated as the sentence representation. Then, we conduct instance-wise
comparison at both sentence-level and word-level, which are complementary to each other. At the
sentence level, we maximize the similarity between two parallel sentences while minimizing which
among non-parallel ones. At the word-level, we maintain a bag-of-words for each sentence-pair,
each word in which is considered as a positive sample while the rest words in vocabulary are negative
ones. To reduce the space of negative samples, we conduct negative sampling for word-level con-
trastive learning. With the HICTL framework, the PTMs are encouraged to learn language-agnostic
representation, thereby bridging the semantic discrepancy among cross-lingual sentences.

The HICTL is conducted on the basis of XLM-R (Conneau et al. |2020) and experiments are
performed on several challenging cross-lingual tasks: language understanding tasks (e.g., XNLI,
XQuAD, and MLQA) in the XTREME (Hu et al.l [2020) benchmark, and machine translation in
the IWSLT and WMT benchmarks. Extensive empirical evidence demonstrates that our approach
can achieve consistent improvements over baselines on various tasks of both cross-lingual language
understanding and generation. In more detail, our HICTL obtains absolute gains of 4.2% (up to
6.0% on zero-shot sentence retrieval tasks, e.g. BUCC and Tatoeba) accuracy on XTREME over
XLM-R. For machine translation, our HICTL achieves substantial improvements over baselines on
both low-resource (IWSLT English—X) and high-resource (WMT English—X) translation tasks.

2 RELATED WORK

Pre-trained Language Models. Recently, substantial work has shown that pre-trained models
(PTMs) (Peters et al., [2018; |Radford et al.l [2018; Devlin et al., 2019) on the large corpus are ben-
eficial for downstream NLP tasks. The application scheme is to fine-tune the pre-trained model
using the limited labeled data of specific target tasks. For cross-lingual pre-training, both [Devlin
et al.| (2019) and (Conneau & Lample| (2019)) trained a transformer-based model on multilingual
Wikipedia which covers various languages, while XLM-R (Conneau et al.,2020) studied the effects
of training unsupervised cross-lingual representations on a very large scale.

For sequence-to-sequence pre-training, UniLM (Dong et al.,[2019)) fine-tuned BERT with an ensem-
ble of masks, which employs a shared Transformer network and utilizing specific self-attention mask
to control what context the prediction conditions on. [Song et al.|(2019) extended BERT-style models
by jointly training the encoder-decoder framework. XLNet (Yang et al.}2019) trained by predicting
masked tokens auto-regressively in a permuted order, which allows predictions to condition on both
left and right context. Raffel et al.|(2019) unified every NLP problem as a text-to-text problem and
pre-trained a denoising sequence-to-sequence model at scale. Concurrently, BART (Lewis et al.,
2020) pre-trained a denoising sequence-to-sequence model, in which spans are masked from the
input but the complete output is auto-regressively predicted.

Previous works have explored using pre-trained models to improve text generation, such as pre-
training both the encoder and decoder on several languages (Song et al., 2019} |Conneau & Lample,
2019; [Raffel et al., 2019) or using pre-trained models to initialize encoders (Edunov et al., 2019
Zhang et al.l 2019a; |Guo et al.| [2020). Zhu et al.| (2020) and [Weng et al.| (2020) proposed a BERT-
fused NMT model, in which the representations from BERT are treated as context and fed into all
layers of both the encoder and decoder. [Zhong et al.|(2020) formulated the extractive summarization
task as a semantic text matching problem and proposed a Siamese-BERT architecture to compute the
similarity between the source document and the candidate summary, which leverages the pre-trained
BERT in a Siamese network structure. Our approach also belongs to the contextual pre-training so
it could be applied to various downstream NLU and NLG tasks.

Contrastive Learning. Contrastive learning (CTL) (Saunshi et al.| 2019) aims at maximizing the
similarity between the encoded query ¢ and its matched key £ while keeping randomly sampled
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Figure 1: Illustration of Hierarchical Contrastive Learning (HICTL). n is the batch size, m denotes
the number of negative samples for word-level contrastive learning. 3 and V indicates the bag-of-
words of the instance (z;, ;) and the overall vocabulary of all languages, respectively.

keys {kq , ky , k5 , ...} faraway from it. With similarity measured by a score function s(g, k), a form
of a contrastive loss function, called InfoNCE (Oord et al., 2018), is considered in this paper:

exp(s(q, k7))
exp(s(q, k1)) + 32; exp(s(q, k7))’

where the score function s(g, k) is essentially implemented as the cosine similarity %. g and k
are often encoded by a learnable neural encoder, such as BERT (Devlin et al.,[2019) or ResNet (He
et al.,2016). k™ and k™ are typically called positive and negative samples. In addition to the form
illustrated in Eq. @), contrastive losses can also be based on other forms, such as margin-based
loses (Hadsell et al., [2006) and variants of NCE losses (Mnih & Kavukcuoglu} 2013).

Loy = —log (D

Contrastive learning is at the core of several recent work on unsupervised or self-supervised learning
from computer vision (Wu et al.,2018;|Oord et al.,2018;Ye et al.,[2019; He et al., 2019;|Chen et al.
2020; Tian et al., 2020) to natural language processing (Mikolov et al.,|2013;|Mnih & Kavukcuoglu}
2013 Devlin et al., 2019; [Clark et al., 2020b; [Feng et al., 2020} (Chi et al., 2020). |[Kong et al.
(2020) improved language representation learning by maximizing the mutual information between
a masked sentence representation and local n-gram spans. |Clark et al.| (2020b) utilized a discrimi-
nator to predict whether a token is replaced by a generator given its surrounding context. [ter et al.
(2020) proposed to pre-train language models with contrastive sentence objectives that predict the
surrounding sentences given an anchor sentence. In this paper, we propose HICTL to encourage par-
allel cross-lingual sentences to have the identical semantic representation and distinguish whether
a word is contained in them as well, which can naturally improve the capability of cross-lingual
understanding and generation for PTMs.

3 METHODOLOGY

3.1 HIERARCHICAL CONTRASTIVE LEARNING

We propose hierarchical contrastive learning (HICTL), a novel comparison learning framework that
unifies cross-lingual sentences as well as related words. HICTL can learn from both non-parallel and
parallel multilingual data, and the overall architecture of HICTL is illustrated in Figure [l We rep-
resent a training batch of the original sentences as x = {x1, x2, ..., T, } and its aligned counterpart
is denoted as y = {y1,¥2, ..., Yn }» where n is the batch size. For each pair (x;,y;), y; is either the
translation in the other language of x; when using parallel data or the perturbation through reorder-
ing tokens in z; when only monolingual data is available.x\? is denoted as a modified version of x
where the ¢-th instance is removed.

Sentence-Level CTL. As illustrated in Figure[Tal we apply the XLM-R as the encoder to represent
sentences into hidden representations. The first token of every sequence is always a special token
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Figure 2: Illustration of constructing hard negative samples (HNS). A circle (the radius is d* =||
kT — q ||2) in the embedding space represents a manifold near in which sentences are semantically
equivalent. We can generate a coherent sample (i.e., k™) that interpolate between known pair ¢ and

k~. The synthetic negative £~ can be controlled adaptively with proper difficulty during training.
The curly brace in green indicates the walking range of hard negative samples, the closer to the
circle the harder the sample is.

(e.g., [CLS]), and the final hidden state corresponding to this token is used as the aggregate sen-
tence representation for pre-training, that is, 7, = f o g(M(x)) where g(-) is the aggregate function
and f(-) is a linear projection, o denotes the composition of operations. To obtain universal repre-
sentation among semantically-equivalent sentences, we encourage 1, (the query, denoted as g) to be
as similar as possible to r, (the positive sample, denoted as k&™) but dissimilar to all other instances

(i.e., ¥\ U x\?, considered as a series of negative samples, denoted as {k; , k5 , ..., k5, »}) in a
training batch. Formally, the sentence-level contrastive loss for z; is defined as

expos(q, k™)

NiUx\i N
expos(q, k) + Y X, % expos(q, ;)
Symmetrically, we also expect 7, (the query, denoted as ¢) to be as similar as possible to r,, (the
positive sample, denoted as k™) but dissimilar to all other instances in the same training batch, thus,

£sctl(mi) = _]-Og (2)

exp os(q, l?:*)

Lsen(yi) = —log - HyY: —- 3)
‘ expos(q, k) + Eljyz\lLJX\ exp os(d, k)
The sentence-level contrastive loss over the training batch can be formulated as
1 n
£S = % Zl {‘Csctl(xi) + Esctl(yi)}- (4)

For sentence-level contrastive learning, we treat other instances contained in the training batch as
negative samples for the current instance. However, such randomly selected negative samples are
often uninformative, which poses a challenge of distinguishing very similar but nonequivalent sam-
ples. To address this issue, we employ smoothed linear interpolation (Bowman et al.,|2016; [Zheng
et all 2019) between sentences in the embedding space to alleviate the lack of informative sam-
ples for pre-training, as shown in Figure 2| Given a training batch {(z;,y;)}?,, where n is the
batch size. In this context, having obtained the embeddings of a triplet, an anchor ¢ and a positive
k™ as well as a negative k£~ (supposing ¢, k™ and k™ are representations of sentences z;, y; and

Yy, € x\' U y\?, respectively), we construct a harder negative sample k™ to replace k; :

. -_ d* ; - S d+:
o= Jat AT —g) A (G0 af dm > d 5)
k if d-<d'.
where dt =|| k* — ¢ || and d~ =| k= — q ||2. For the first condition, the hardness of k™~ increases
when A becomes smaller. To this end, we intuitively set A as
pn ¢phg
A=(F) . ceon ©

4
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ON - .
where p g = 1—30 de[—loo 1 e L5 is the average log-probability over the last 100 training
batches and Lg formulated in Eq. (@) is the sentence-level contrastive loss of one training batch.
During pre-training, when the model tends to distinguish positive samples easily, which means neg-

ative samples are not informative already. At this time, pjv 9 1 and Z—t 1, which leads A | and harder
negative samples are adaptively synthesized in the following training steps, vice versa. As hard neg-
ative samples usually result in significant changes of the model parameters, we introduce the slack
coefficient ( to prevent the model from being trained in the wrong direction, when it accidentally
switch from random negative samples to very hard ones. In practice, we empirically set ( = 0.9.

Word-Level CTL. Intuitively, predicting the related words in other languages for each sentence can
bridge the representations of words in different languages. As shown in Figure [Tb] we concatenate
the sentence pair (z;,y;) as x; o y;: [CLS] x; [SEP] y; [SEP] and the bag-of-words of which is
denoted as B. For word-level contrastive learning, the final state of the first token is treated as the
query (g), each word wy € B is considered as the positive sample and all the other words (V\53,
i.e., the words in )V that are not in 3 where V indicates the overall vocabulary of all languages)
are negative samples. As the vocabulary usually with large space, we propose to only use a subset
S C V\B sampled according to the normalized similarities between ¢ and the embeddings of the
words. As a result, the subset S naturally contains the hard negative samples which are beneficial
for learning high-quality representations (Ye et al., 2019). Specifically, the word-level contrastive
loss for {x;, y;) is defined as

|B]

1 exp os(q, e(wy))
Lwctl (:EH yl) |B| ; 08 exp 05(

(ja e(wt)) + ZUUES exp 05(67 e(wj)) )

)

where e(-) is the embedding lookup function and |5| is the number of unique words in the concate-
nated sequence x; o y;. The overall word-level contrastive loss can be formulated as:

1 n
Lw = - ; Loer (i, Yi)- ®)

Multi-Task Pre-training. Both MLM and translation language model (TLM) are combined with
HiCcTL by default, as the prior work (Conneau & Lample, |2019) has verified the effectiveness of
them in XLM. In summary, the model can be optimized by minimizing the entire training loss:

L=Lry+Ls+ Lw, )

where L1, is implemented as either the TLM when using parallel data or the MLM when only
monolingual data is available to recover the original words of masked positions given the contexts.

3.2 CROSS-LINGUAL FINE-TUNING

Language Understanding. The representations produced by HICTL can be used in several ways
for language understanding tasks whether they involve single text or text pairs. Concretely, (7)
the [CLS] representation of single-sentence in sentiment analysis or sentence pairs in paraphrasing
and entailment is fed into an extra output-layer for classification. (:¢) The pre-trained encoder can be
used to assign POS tags to each word or to locate and classify all the named entities in the sentence
for structured prediction, as well as (¢27) to extract answer spans for question answering.

Language Generation. We also explore using HICTL

to improve machine translation. In the previous work, Yo Y1 Y2 Y3 €os
Conneau & Lample (2019) has shown that the pre-trained 1
encoders can provide a better initialization of both super- cls —»¢

vised and unsupervised NMT systems. [Liu et al.| (2020b)

has shown that NMT models can be improved by incorpo- Pre-trained » Randomly Initialized }
rating pre-trained sequence-to-sequence models on vari- Encoder Decoder

ous language pairs but highest-resource settings. As illus- trrtt trtt
trated in Figure[3] we use the model pre-trained by HICTL cls X0 x1 X sep bos yo y1 2 ¥

as the encoder, and add a new set of decoder parame-
ters that are learned from scratch. To prevent pre-trained
weights from being washed out by supervised training,

Figure 3: Fine-tuning on NMT task.
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Table 1: Overall results on XTREME benchmark. Results of mBERT (Devlin et al., [2019),
XLM (Conneau & Lample, [2019) and XLM-R (Conneau et al.,2020) are from XTREME (Hu et al.,
2020). Results of I are from our in-house replication. HNS is short for “Hard Negative Samples”.

Model Pair sentence Structured prediction Question answering Sentence retrieval

XNLI PAWS-X POS NER XQuAD MLQA TyDiQA-GoldP BUCC Tatoeba Avg.
Metrics Acc. Acc. F1 F1 F1/EM F1/EM F1/EM F1 Acc.
Cross-lingual zero-shot transfer (models are trained on English data)
mBERT 65.4 81.9 70.3 62.2 64.5/49.4 61.4/442 59.7/43.9 56.7 38.7 59.6
XLM 69.1 80.9 70.1 61.2 59.8/443 48.5/32.6 43.6/29.1 56.8 32.6 55.5
XLM-RBase  76.2 - - - - 63.7/46.3 - - - -
HICTLBase 77.3 84.5 71.4 64.1 73.5/587 65.8/47.6 61.9/42.8 - - -
XLM-R 79.2 86.4 73.8 65.4 76.6/60.8 71.6/53.2 65.1/45.0 66.0 57.3 68.2
HicTL 81.0 87.5 74.8 66.2 779/61.7 72.8/54.5 66.0 /45.7 68.4 59.7 69.6

Translate-train-all (models are trained on English training data and its translated data on the target language)

mBERT 75.1 88.9 - - 72.4/583 67.6/49.8 64.2/49.3 - - -

XLM-R* 82.9 90.1 74.6 66.8 80.4/65.6 72.4/54.7 66.2/48.2 67.9 59.1 70.6
HicTL 84.5 92.2 76.8 68.4 82.8/673 74.4/57.1 69.7/52.5 71.8 63.1 732
+ HNs 84.7 92.8 77.2 69.0 82.9/67.4 748/573 71.1/53.2 77.6 69.1 74.8

we train the encoder-decoder model in two steps. In the first step, we freeze the pre-trained encoder
and only update the decoder. In the second step, we train all parameters for a relatively small number
of iterations. In both cases, we compute the similarities between the [CLS] representation of the
encoder and all target words in advance. Then we aggregate them with the logits before the softmax
of each decoder step through an element-wise additive operation. The encoder-decoder model is
optimized by maximizing the log-likelihood of bitext at both steps.

4 EXPERIMENTS

We consider two evaluation benchmarks: nine cross-lingual language understanding tasks in the
XTREME benchmark and machine translation tasks (IWSLT 14 English<+German, IWSLT’ 14
English—Spanish, WMT’16 Romanian—English, IWSLT 17 English—{French, Chinese} and
WMT’ 14 English—{German, French}). In this section, we describe the data and training details,
and provide detailed evaluation results.

4.1 DATA AND MODEL

During pre-training, we follow (Conneau et al.| (2020) to build a Common-Crawl Corpus using the
CCNet (Wenzek et al., [2019) too for monolingual texts. Table [7| (see appendix A) reports the
language codes and data size in our work. For parallel data, we use the same (English-to-X) MT
dataset as (Conneau & Lample, 2019), which are collected from MultiUN (Eisele & Yul [2010)
for French, Spanish, Arabic and Chinese, the IIT Bombay corpus (Kunchukuttan et al.l [2018al)
for Hindi, the OpenSubtitles 2018 for Turkish, Vietnamese and Thai, the EUbookshop corpus for
German, Greek and Bulgarian, Tanzil for both Urdu and Swabhili, and GlobalVoices for Swabhili.
Table[§] (see appendix A) shows the statistics of the parallel data.

We adopt the Transformer-Encoder (Vaswani et al.,|2017) as the backbone with 12 layers and 768
hidden units for HICTLp,s, and 24 layers and 1024 hidden units for HICTL. We initialize the
parameters of HICTL with XLLM-R (Conneau et al.| |2020). Hyperparameters for pre-training and
fine-tuning are shown in Table 0] (see appendix B). We run the pre-training experiments on 8 V100
GPUs, batch size 1024. The number of negative samples m=512 for word-level contrastive learning.

4.2 EXPERIMENTAL EVALUATION

Cross-lingual Language Understanding (XTREME) There are nine tasks in XTREME that can
be grouped into four categories: () sentence classification consists of Cross-lingual Natural Lan-
guage Inference (XNLI) (Conneau et al) [2018) and Cross-lingual Paraphrase Adversaries from

'https://github.com/facebookresearch/cc_net
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Table 2: Comparison with existing methods on XTREME tasks.

Model Pair sentence Structured prediction Question answering
XNLI  PAWS-X  POS NER XQuAD MLQA TyDiQA-GoldP
Metrics Acc. Acc. F1 F1 F1/EM F1/EM F1/EM

Translate-train-all

FILTER 83.9 91.4 76.2 67.7 82.4/68.0 76.2/57.7 68.3/50.9
VECO 83.0 91.1 75.1 65.7 799/66.3  73.1/549 75.0/ 58.9
HicTL 84.7 92.8 77.2 69.0 82.9/674  748/573 71.1/53.2

Table 3: Ablation study on XTREME tasks.

Model XNLI PAWS-X POS NER  XQuAD MLQA  TyDiQA-GoldP BUCC Tatoeba Avg.
ode Acc. Acc. FI  Fl FI/EM  F1/EM Fl/EM Fl Acc.

FuLL MODEL 84.7 928 772 690 829/674 748/573  711/53.2 77.6 691 748

w/o Sentence-CTL ~ 82.9 90.5 759 67.8 823/667 743/565 69.7/52.3 714 62.6 724

w/o Word-CTL 84.3 92.1 763 684 825/669 74.1/56.7 70.2/52.5 76.8 684 742

w/o MT data 84.2 924 766 682 82.6/67.0 74.5/56.8 70.1/52.3 747 668 738

Word Scrambling (PAWS-X) (Zhang et al.l 2019b). (i¢) Structured prediction includes POS tag-
ging and NER. We use POS tagging data from the Universal Dependencies v2.5 (Nivre et al.,[2018)
treebanks. Each word is assigned one of 17 universal POS tags. For NER, we use the Wikiann
dataset (Pan et al., 2017). (i¢2) Question answering includes three tasks: Cross-lingual Question
Answering (XQuAD) (Artetxe et al., [2019), Multilingual Question Answering (MLQA) (Lewis
et al.|[2019), and the gold passage version of the Typologically Diverse Question Answering dataset
(TyDiQA-GoldP) (Clark et al., [ 2020a). (¢v) Sentence retrieval includes two tasks: BUCC (Zweigen-
baum et al.,2017) and Tatoeba (Artetxe & Schwenk||2019)), which aims to extract parallel sentences
between the English corpus and target languages. As XTREME provides no training data, thus we
directly evaluate pre-trained models on test sets.

Table [1| provides detailed results on four categories in XTREME. First, compared to the state of
the art XLM-R baseline, HICTL further achieves significant gains of 1.43% and 2.80% on aver-
age on nine tasks with cross-lingual zero-shot transfer and translate-train-all settings, respectively.
Second, mining hard negative samples via smoothed linear interpolation play an important role in
contrastive learning, which significantly improves accuracy by 1.6 points on average. Third, HICTL
with hardness aware augmentation delivers large improvements on zero-shot sentence retrieval tasks
(scores 5.8 and 6.0 points higher on BUCC and Tatoeba, respectively). Following (Hu et al., [2020),
we directly evaluate pre-trained models on test sets without any extra labeled data or fine-tuning
techniques used in (Fang et al.| 2020; [Luo et al.| [2020). These results demonstrate the capacity of
HICTL on learning cross-lingual representations. We also compare our best model with two exist-
ing models: FILTER (Fang et al., 2020) and VECO (Luo et al.l 2020). The results demonstrate that
HICTL achieves the best performance on most tasks with less monolingual data.

Ablation experiments are present at Table [3] Comparing the full model, we can draw several con-
clusions: (1) removing the sentence-level CTL objective hurts performance consistently and sig-
nificantly, (2) the word-level CTL objective has least drop compared to others, and (3) the parallel
(MT) data has a large impact on zero-shot multilingual sentence retrieval tasks. Moreover, Table
provides the comparisons between HICTL and existing methods.

Machine Translation The main idea of HICTL is to summarize cross-lingual parallel sentences
into a shared representation that we term as semantic embedding, using which semantically re-
lated words can be distinguished from others. Thus it is natural to apply this global embedding
to text generation. We fine-tune the pre-trained HICTL with the base setting on machine trans-
lation tasks with both low-resource and high-resource settings. For the low-resource scenario, we
choose IWSLT’ 14 English<+German (En<—>De IWSLT’ 14 English— Spanish (En—Es), WMT’ 16

2We split 7k sentence pairs from the training dataset for validation and concatenate dev2010, dev2012,
tst2010, tst2011, tst2012 as the test set.
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Table 4: BLEU scores [%] on high-resource tasks. Results with 1 and { are from VECO (Luo
et al.| 2020) and our in-house implementation, respectively. In our implementation, we use XLM-R
and the best version of HiCTL (pre-traind with CCNet-100 and hard negative samples) to initialize
the encoder, respectively.

Layers WwMT’14

Model Encoder Decoder En—De En—Fr

Randomly Initialize

Transformer-Big (Vaswani et al.,2017) 6 6 28.4 41.0
Deep-Transformer (Liu et al.,2020a)) 60 12 30.1 43.8
Deep MSC Model (Wei et al., [2020) 18 6 30.56 -
Pre-trained Models Initialize

CTNMT (Yang et al., [2020) 18 6 30.1 423
BERT-fused NMT (Zhu et al., [2020) 18 6 30.75 43.78
mBART' (Liu et al.|[2020b) 12 12 30.0 432
VECO (Luo et al.,[2020) 24 6 31.5 44.4
XLM-R* 24 6 30.91 43.27
HicTL 24 6 31.74 43.95

Table 5: BLEU scores [%] on low-resource tasks. Results with { are from our in-house imple-
mentation. We provide additional experimental results (to follow experiments in |[Zhu et al.| (2020))
on IWSLT’ 14 English—Spanish (En—Es) task. HICTLp,g. represents the BASE sized model that is
pre-trained on CCNet-100 with hard negative samples.

Model IwsLT’14 WMT’16 IWsLT’17
ode En—De De—En En—sEs Ro—En En—Fr En—Zh
Transformer (Vaswani et al} [2017)* 28.64 34.51 39.3 33.51 35.8 26.5
BERT-fused NMT (Zhu et al., [2020) 30.45 36.11 414 39.10 38.7 28.2
HICTLBase 31.88 37.96 42.1 39.88 40.2 29.9

Romanian—English (Ro—En), IWSLT’17 English—French (En—Fr) and English—Chinese
(En—Zh) translatiorﬂ There are 160k, 183k, 236k, 235k, 0.6M bilingual sentence pairs for En«>De,
En—Es, En—Fr, En—Z7h and Ro—En tasks. For the rich-resource scenario, we work on WMT’ 14
En—{De, Fr}, the corpus sizes are 4.5M and 36M respectively. We concatenate newstest 2012 and
newstest 2013 as the validation set and use newstest 2014 as the test set.

During fine-tuning, we use the pre-trained model to initialize the encoder and introduce a randomly
initialized decoder. We develop a shallower decoder with 4 identical layers to reduce the computa-
tion overhead. At the first fine-tune step, we concatenate the datasets of all language pairs in either
low-resource or high-resource settings to optimize the decoder only until convergenceﬂ Then we
tune the whole encoder-decoder model using a per-language corpus at the second step. The ini-
tial learning rate is 2e-5 and inverse_sqrt learning rate (Vaswani et al., 2017) scheduler is also
adopted. For WMT’ 14 En—De, we use beam search with width 4 and length penalty 0.6 for infer-
ence. For other tasks, we use width 5 and a length penalty of 1.0. We use multi-bleu.perl
to evaluate IWSLT’ 14 En<»De and WMT tasks, but sacreBLEU for the remaining tasks, for fair
comparison with previous work.

Results on both high-resource and low-resource tasks are reported in Table 4 and Table [5] respec-
tively. We implemented standard Transformer (apply the base and big setting for IWSLT and
WMT tasks respectively) as baseline. The proposed HICTL can improve the BLEU scores of the
eight tasks by 3.34, 2.95, 3.24, 3.45, 2.8, 6.37, 4.4, and 3.4. In addition, our approach also out-
performs the BERT-fused model (Yang et al., |2020), a method treats BERT as an extra context

*https://wit3.fbk.eu/mt.php?release=2017-01-ted-test
#Zhao et al|(2020) conducted a theoretical investigation on learning universal representations for the task
of multilingual MT, while we directly use a shared encoder and decoder across languages for simplicity.
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Table 6: BLEU scores [%] on Zero-shot MT via Language Transfer. We bold the highest trans-
ferring score for each language family.

Fine-tuning Languages

Test Languages Cs—En Hi—En
mBART HIiCTL mBART HiCTL

Cs—En 21.6 22.4 -

Ro—En 19.5 19.0 -

It—En 16.7 18.6 -

Nl—En 17.0 18.1 -

Hi—En - 23.5 252

Ne—En - 14.5 16.0

Si—En - 13.0 14.7

Gu—En - 0.0 0.1

and fuses the representations extracted from BERT with each encoder and decoder layer. Note we
achieve new state-of-the-art results on IWSLT 14 En—De, IWSLT’ 17 En—{Fr, Zh} translations.
These improvements show that mapping different languages into a universal representation space is
beneficial for both low-resource and high-resource translations.

We also evaluate our model on tasks where no bi-text is available for the target language pair. Fol-
lowing mBART (Liu et al., 2020b), we adopt the setting of language transfer. That is, no bi-text
for the target pair is available, but there is bi-text for translating from some other language into the
target language. For explanation, supposing there is no parallel data for the target language pair
Italian—English (It—En), but we can transfer knowledge learned from Czech—English (Cs—En, a
high-resource language pair) to [t—En. We consider X—En translation, covering Indic languages
(Ne, Hi, Si, Gu) and European languages (Ro, It, Cs, NI). For European languages, we fine-tune
on Cs—En translation, the parallel data is from WMT’ 19 that contains 11M sentence pairs. We test
on {Cs, Ro, It, NI} —En, in which test sets are from previous WMT (Cs, Ro) or IWSLT (It, N1)
competitions. For Indic languages, we fine-tune on Hi—En translation (1.56M sentence pairs are
from IITB (Kunchukuttan et al., 2018b))), and test on {Ro, It, Cs, NI} —En translations.

Results are shown in Table[§] We can always obtain reasonable transferring scores at low-resource
pairs over different fine-tuned models. However, our experience shows that the randomly initialized
models without pre-training always achieve near 0 BLEU. The underlying scenario is that multilin-
gual pre-training produces universal representations across languages so that once the model learns
to translate one language, it learns to translate all languages with similar representations. Moreover,
a failure happened in Gu—En translation, we conjecture that we only use 0.3GB monolingual data
for pre-training, which is difficult to learn informative representations for Gujarati.

5 CONCLUSION

We have demonstrated that pre-trained language models (PTMs) trained to learn commonsense
knowledge from large-scale unlabeled data highly benefit from hierarchical contrastive learning
(HICTL), both in terms of cross-lingual understanding and generation. Learning universal repre-
sentations at both word-level and sentence-level bridges the semantic discrepancy across languages.
As a result, our HICTL sets a new level of performance among cross-lingual PTMs, improving on
the state of the art by a large margin.
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Table 7: The statistics of CCNet corpus used for pretraining.

Code Size (GB) Code Size (GB) Code Size (GB) Code Size (GB) Code Size (GB)

af 1.3 et 6.1 ja 242  mt 0.2 sq 3.0
am 0.7 eu 20  jv 0.2 my 0.9 st 5.1
ar 20.4 fa 21.6 ka 34 ne 2.6 su 0.1
as 0.1 fi 19.2  kk 2.6 nl 15.8 Y 10.8
az 3.6 fr 46.5 km 1.0 no 37  sw 1.6
be 3.5 fy 0.2  kn 1.2 om 0.1 ta 8.2
bg 22.6 ga 0.5 ko 17.2 or 0.6 te 2.6
bn 79 gd 0.1 ku 04 pa 0.8 th 14.7
br 0.1 ¢l 29 ky 1.2 pl 16.8 tl 0.8
bs 0.1 gu 0.3 la 2.5 ps 0.7 tr 17.3
ca 10.1 ha 0.3 lo 0.6 pt 159 ug 0.4
cs 16.3 he 6.7 It 7.2 ro 8.6 uk 9.1
cy 0.8 hi 20.2 Iv 6.4 ru 48.1 ur 5.0
da 15.2 hr 54 mg 0.2 sa 0.3 uz 0.7
de 463 hu 95 mk 1.9 sd 0.4 vi 44.6
el 29.3  hy 55 ml 43 si 2.1 xh 0.1
en 49.7 id 106 mn 1.7 sk 4.9 yi 0.3
eo 0.9 is 1.3 mr 1.3 sl 2.8 zh 36.8
es 44.6 it 198  ms 32 SO 0.4 - -

Table 8: Parallel data used for pre-training.

Code Sentence Pair (#millions) Code Sentence Pair (#millions)

en-ar 9.8 en-ru 11.7
en-bg 0.6 en-sw 0.2
en-de 9.3 en-th 33
en-el 4.0 en-tr 0.5
en-es 11.4  en-ur 0.7
en-fr 13.2  en-vi 3.5
en-hi 1.6 en-zh 9.6

A PRE-TRAINING DATA

During pre-training, we follow |Conneau et al.| (2020) to build a Common-Crawl Corpus using the
CCNet (Wenzek et al., 2019) too for monolingual texts. Table [7| reports the language codes and
data size in our work. For parallel data, we use the same (English-to-X) MT dataset as (Conneau &
Lamplel 2019), which are collected from MultiUN (Eisele & Yul 2010) for French, Spanish, Arabic
and Chinese, the IIT Bombay corpus (Kunchukuttan et al.|[2018a) for Hindi, the OpenSubtitles 2018
for Turkish, Vietnamese and Thai, the EUbookshop corpus for German, Greek and Bulgarian, Tanzil
for both Urdu and Swahili, and Global Voices for Swahili. TableB] shows the statistics of the parallel
data.

B HYPERPARAMETERS FOR PRE-TRAINING AND FINE-TUNING

As shown in Table [0] we present the hyperparameters for pre-training HICTL. We use the same
vocabulary as well as the sentence-piece model with XLM-R (Conneau et al.l [2020). During fine-
tuning on XTREME, we search the learning rate over {5e-6, le-3, 1.5e-5, 2e-5, 2.5¢-5, 3e-5} and
batch size over {16, 32} for BASE-size models. And we select the best LARGE-size model by
searching the learning rate over {3e-6, 5e-6, le-5} as well as batch size over {32, 64}.

*https://github.com/facebookresearch/cc_net
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Table 9: Hyperparameters used for pre-training.

Hyperparameters BASE LARGE
Number of layers 12 24
Hidden size 768 1024
FFN inner hidden size 3072 4096
Attention heads 12 16
Mask percent (monolingual/bilingual) 15%125% 15%/25%
Adam € le-6 le-6
Adam g3 (0.9,0.98) (0.9, 0.999)
Learning rate 2.5e-4 le-4
Learning rate schedule linear linear
Warmup steps 10,000 10,000
Attention dropout 0.1 0.1
Dropout 0.1 0.1
Max sequence length (monolingual/bilingual) 256 256
Batch size 1024 1024
Training steps 200k 200k

Table 10: Results on Cross-lingual Natural Language Inference (XNLI) for each language. We
report the accuracy on each of the 15 XNLI languages and the average accuracy of our HICTL as well
as five baselines: BiLSTM (Conneau et al., [2018), mBERT (Devlin et al.,[2019), XLM (Conneau &
Lamplel 2019)), Unicoder (Huang et al 2019) and XLM-R (Conneau et al.,|2020). Results of I are
from our in-house replication.

MODEL en fr es de el bg ru tr ar vi th zh hi SW ur  Avg

Evaluation of cross-lingual sentence encoders (Cross-lingual transfer)

BiLSTM 737 677 687 677 689 679 654 642 648 664 641 658 641 557 584 656
mBERT 81.4 - 743 70.5 - - - - 62.1 - - 63.8 - - 58.3 -

XLM 8.0 787 789 718 766 774 753 725 731 76.1 732 765 69.6 684 673 751
Unicoder 8.1 790 794 778 772 712 763 728 735 764 736 762 694 697 667 754
XLM-RBase 858 79.7 80.7 787 775 79.6 781 742 738 765 746 767 724 665 683 762
HICTLBase 86.3 80.5 813 795 789 806 790 754 748 774 757 776 731 699 69.7 713

Machine translate at training (Translate-train)

BiLSTM 737 683 688 665 664 674 665 645 658 660 628 670 621 582 56.6 654
mBERT 81.9 - 718 759 - - - - 70.7 - - 76.6 - - 61.6 -

XLM 850 802 80.8 803 781 793 781 747 765 766 755 786 723 709 632 767
Unicoder 85.1 800 81.1 799 777 802 779 753 767 764 752 794 718 71.8 645 769
HICTLBase 857 813 821 802 814 81.0 805 797 774 782 775 802 754 735 729 79.1

Fine-tune multilingual model on all training sets (Translate-train-all)

XLM 850 80.8 813 803 791 809 783 756 776 785 760 795 729 728 685 718
Unicoder 856 81.1 8.3 809 795 814 797 768 782 779 771 805 734 738 69.6 785
XLM-Rpase 854 814 822 803 804 813 797 786 773 797 719 802 761 73.1 73.0 79.1
HICTLBase 86.5 823 832 808 816 822 813 805 781 804 786 807 767 738 739 80.0

XLM-R 89.1 851 86.6 857 853 859 83.5 832 83.1 837 815 837 8L6 780 781 836
XLM-R? 889 847 862 848 850 853 824 827 824 828 809 830 802 773 712 829
HicTL 89.3 855 869 861 857 861 83.7 839 833 835 818 842 810 784 779 83.8

C RESULTS FOR EACH DATASET AND LANGUAGE

Below, we provide detailed results for each dataset and language on XTREME, as shown in Table[T0}
Results of XLM-R are from our implementation.

D VISUALIZATION OF SENTENCE EMBEDDINGS

We collect 10 sets of samples from WMT’14-19, each of them contains 100 parallel sentences
distributed in 5 languages. As the t-SNE visualization in Figure[d} a set of sentences under the same
meaning are clustered more densely for HICTL than XLM-R, which reveals the strong capability
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Table 11: PAWS-X accuracy scores for each language.

Model en de es fr ja ko zh avg
Translate-train-all

XLM-R 95.7 922 927 925 847 859 871 90.1
HicTL, Wiki-15 + MT 96.6 932 933 929 865 873 886 912
HictL, CCNet-100 + MT 969 938 944 943 88.0 882 894 922

+HARD NEGATIVE SAMPLES 974 942 950 942 89.1 895 90.2 928

Table 12: POS results (Accuracy) for each language.

Model af ar bg de el en es et eu fa fi fr he hi hu id it

Translate-train-all

XLM-R 90.6 674 89.1 899 868 963 89.6 87.1 740 70.8 86.0 877 68.6 774 828 726 9.1

HictL, Wiki-15 + MT 91.0 693 89.1 894 878 97.6 882 882 748 720 867 879 702 790 842 743 90.8

HicTL, CCNet-100 + MT 91.8 702 90.7 90.8 89.0 983 897 90.1 762 730 885 902 707 80.0 864 745 92.0

+HARD NEGATIVE SAMPLES  92.2 71.0 91.5 913 90.0 977 91.0 894 757 735 888 90.1 711 797 854 751 917
ja kk ko mr nl pt ru ta te th tl tr ur vi yo zh avg

Translate-train-all

XLM-R 173 783 555 821 89.8 889 898 657 870 48.6 929 719 717 568 247 272 746
HicTL, Wiki-15 + MT 284 792 542 807 909 884 905 673 89.1 487 922 776 720 588 272 27.1 755
HicTL, CCNet-100 + MT 302 804 551 821 912 902 907 681 90.1 503 952 787 733 592 278 279 768

+HARD NEGATIVE SAMPLES 319 80.9 57.0 835 91.7 910 912 69.5 908 503 948 794 734 595 286 28.7 772

of HICTL on learning universal representations across different languages. Note that the t-SNE
visualization of HICTL still demonstrates some noises, we attribute them to the lack of hard negative
examples for sentence-level contrastive learning and leave this to future work for consideration.
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Table 13: NER results (F1) for each language.

Model en af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv
Translate-train-all
XLM-R 86.8 814 552 829 81.1 79.1 815 8l.1 813 606 641 806 832 60.1 761 794 532 807 227 639
HicTL, Wiki-15 + MT 87.0 823 552 847 790 812 80.1 81.6 79.8 614 619 828 805 604 746 798 548 835 249 66.1
HicTL, CCNet-100 + MT 88.6 809 554 856 818 820 825 808 812 625 642 812 83.0 603 773 844 558 837 260 650
+HARD NEGATIVE SAMPLES 889 820 56.6 837 834 828 848 83.0 838 654 654 820 826 605 747 815 581 847 279 659
ka kk ko ml mr ms my nl pt ru SW ta te th tl tr ur vi yo zh
XLMR 742 580 633 683 698 595 575 862 823 685 707 598 585 24 726 759 597 794 370 354
HicTL, Wiki-15 + MT 750 567 622 694 688 579 556 879 842 719 744 616 592 22 742 795 581 830 352 330
HicTL, CCNet-100 + MT 728 576 646 704 715 611 590 877 851 703 743 606 579 56 715 790 59.8 837 377 369
+HARD NEGATIVE SAMPLES  76.8 60.9 650 714 725 59.0 563 859 845 714 756 629 588 39 777 804 59.1 836 377 372
Table 14: Tatoeba results (Accuracy) for each language
Model ar bg bn de el es et eu fa fi he hi hu id it ja
Translate-train-all
XLM-R 59.7 505 722 454 895 613 776 517 386 717 728 769 663 73.1 651 775 685 63.1
HicTL, Wiki-15 + MT 615 514 761 479 9211 634 805 559 378 746 767 780 684 745 688 804 702 639
HictL, CCNet-100 + MT 63.0 509 768 470 946 688 809 593 415 773 782 803 702 779 721 813 737 662
+HARD NEGATIVE SAMPLES  68.9 57.7 832 554 982 745 885 624 477 802 829 855 791 850 768 903 80.8 727
jv ka kk ko ml mr nl pt ru sW ta th tl tr ur vi zh
XLM-R 158 533 512 63.1 662 590 81.0 844 769 19.8 283 378 289 367 689 266 779 69.8
HictL, Wiki-15 + MT 187 558 510 655 673 612 829 844 783 222 28,6 414 335 416 712 267 802 736
HicTL, CCNet-100 + MT 19.6 573 546 680 71.8 620 881 889 777 26.1 329 395 329 432 712 278 799 747
+HARD NEGATIVE SAMPLES  27.2 63.0 615 72.6 753 67.8 928 928 854 32.0 367 478 415 498 77.0 343 843 813
60
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Figure 4: Visualizations (t-SNE projection) of sentence embeddings output by HICTL (left) and
XLM-R (right). We collect 10 sets of samples from WMT’14-19, each of them contains 100 parallel
sentences distributed in 5 languages (i.e., English, French, German, Russian, and Spanish). Each
set is identified by a color and different languages marked by different shapes. We can see that
a set of sentences under the same meaning are clustered more densely for HICTL than XLM-R,
which reveals the strong capability of HICTL on learning universal representations across different

languages.
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