

# ADVERSARIAL ROBUSTNESS OF CONTINUOUS TIME DYNAMIC GRAPHS

000  
001  
002  
003  
004  
005 **Anonymous authors**  
006 Paper under double-blind review  
007  
008  
009  
010

## ABSTRACT

011 Real-world relations are dynamic and often modeled as temporal graphs, making  
012 Temporal Graph Neural Networks (TGNs) crucial for applications like fraud  
013 detection, cybersecurity, and social network analysis. However, our study reveals  
014 critical vulnerabilities in these models through three types of adversarial attacks:  
015 structural, contextual, and temporal perturbations. We introduce Temporally-aware  
016 Randomized Block Coordinate Descent (TR-BCD), a novel gradient-based evasion  
017 attack framework for continuous-time dynamic graphs. Unlike previous approaches  
018 that rely on heuristics or require training data access, TR-BCD optimizes adversarial  
019 edge selection through continuous relaxation while maintaining realistic temporal  
020 patterns. Through extensive experiments on six temporal networks, we demonstrate  
021 that TGNs are highly vulnerable to TR-BCD attacks, reducing Mean Reciprocal  
022 Rank (MRR) by up to 53% while perturbing only 5% of edges. Our attacks  
023 are highly effective against state-of-the-art models, including TGN and TNCN,  
024 highlighting the importance of studying adversarial robustness for temporal graph  
025 learning methods.

## 1 INTRODUCTION

026  
027  
028  
029 Graphs are ubiquitous in representing complex relations between entities, such as social networks (Ku-  
030 mar et al., 2019), traffic networks (Ding et al., 2021), biological networks (Barabasi & Oltvai, 2004),  
031 transaction networks (Ni et al., 2019; Shamsi et al., 2022) and political networks (Fowler, 2006;  
032 Huang et al., 2020). Recently, Graph Neural Networks (GNNs) have demonstrated state-of-the-art  
033 performance across a variety of graph learning tasks (Hu et al., 2020; 2021). However, there has  
034 been compelling evidence showing that GNNs are not robust to adversarial perturbations (Zügner  
035 et al., 2018; Günnemann, 2022; Ma et al., 2020), which raises concerns about their deployment in  
036 real-world large-scale applications (Hamilton et al., 2017; Ying et al., 2018).

037 Many real-world graphs are inherently dynamic, with frequent node or edge additions. These evolving  
038 networks are often modeled as *temporal graphs*, requiring ML models to learn both structural and  
039 temporal dependencies. To tackle this challenge, Temporal Graph Neural Networks (TGNs) have  
040 been proposed to perform tasks such as link prediction (Huang et al., 2024) and node classifica-  
041 tion (Rossi et al., 2020). One popular approach is the Temporal Graph Network (TGN) (Rossi et al.,  
042 2020), which processes a continuous stream of edges (in the continuous-time dynamic graph setting)  
043 and makes predictions for future events based on past interactions stored in *memory*.

044 While the robustness of static graphs has been extensively studied (Xu et al., 2019; Zügner et al.,  
045 2018; 2020; Wang & Gong, 2019; Wu et al., 2019; Dai et al., 2018), the vulnerabilities of TGNs  
046 to adversarial perturbations remain under-explored. The increasing deployment of temporal graph  
047 learning methods in high-stakes applications makes understanding their robustness critical. For  
048 example, in financial transaction networks, fraudsters can strategically insert fake transactions to  
049 evade detection systems - a single compromised account could be used to create seemingly legitimate  
050 transaction patterns that mask fraudulent activity (Kim et al., 2024). Similarly, in cybersecurity,  
051 attackers can carefully time network connections and craft traffic patterns to avoid intrusion detection  
052 systems that rely on temporal graph analysis (Idé & Kashima, 2004; Yoon et al., 2019). Even in  
053 social networks, malicious actors can orchestrate coordinated influence campaigns by tactically  
building connections over time to maximize their reach while appearing organic to automated  
detection methods (Del Vicario et al., 2016). These scenarios highlight how adversaries can exploit

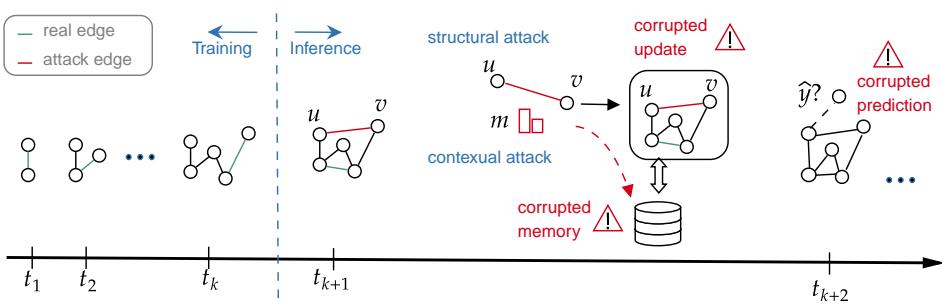


Figure 1: Evasion attacks for CTDGs. Both *structural* and *contextual* attacks are applied at inference time on a trained model. The adversarial attacks corrupts the model memory.

temporal patterns to circumvent safeguards. A key advantage of TGNNs is their ability to rapidly update internal node representations during inference without requiring backpropagation (Rossi et al., 2020). In contrast to prior work focusing on poisoning attacks during training (Lee et al., 2024), we investigate adversarial evasion attacks—attacks occurring after model deployment that do not require modifications to the training data (see Figure 1). While the only existing evasion attack on TGNNs (Dai et al., 2023) is limited in scope, we formalize a general attack setting and propose a gradient-based method that inserts new edges among existing nodes.

Temporal graphs present unique challenges due to the interplay between temporal, structural, and contextual dimensions. In static graphs, adversarial modifications are confined to the topology; however, temporal graphs involve an additional attack surface through the timing and sequencing of interactions. These graphs encapsulate multiple layers of information: namely, structure, attributes, and temporal evolution, which necessitates adversarial attacks that can modify graph topology, corrupt edge features, and alter chronological order. Consequently, perturbations must be precisely timed and coordinated with the graph’s natural evolution while navigating a vast combinatorial search space. **This temporal attack setting presents three interconnected technical challenges.** *First, memory complexity challenge:* naively optimizing edge perturbations requires  $\Theta(|E| \times |V|^2)$  memory to store all possible edge perturbations, prohibitive for large graphs (e.g., Reddit: 243GB). *Second, temporal propagation challenge:* unlike static graphs where perturbations are isolated, TGNNs’ memory modules cause corrupted states to persist and compound across future predictions. *Third, candidate selection challenge:* with budget constraints, randomly sampling from  $|V|^2$  possible edges is suboptimal; we need to exploit TGNN training objectives to identify high-impact candidates. To address these challenges, we introduce three types of perturbations for Continuous-Time Dynamic Graphs (CTDGs): (1) *structural perturbations* through the insertion of adversarial edges, (2) *contextual perturbations* that corrupt edge features in attributed graphs, and (3) *temporal perturbations* that adjust timestamps for adversarial edge insertions to maintain temporal consistency. These perturbations can be applied individually or in combination. To incorporate these perturbations, we introduce Temporally-aware Randomized Block Coordinate Descent (TR-BCD), the first gradient-based evasion attack strategy for TGNNs to explore these attacks. Unlike existing methods that rely on heuristic constraints and require training data access (Lee et al., 2024), or use heuristic attack strategies with simplistic evaluation metrics (Dai et al., 2023), TR-BCD operates as an evasion attack optimizing adversarial edge selection through continuous relaxation, taking the model architecture and parameters into account. We evaluated TR-BCD against Temporal Graph Benchmark (TGB) (Huang et al., 2024), which frames link prediction as a ranking problem using Mean Reciprocal Rank (MRR) over historical and random negatives, ensuring a robust evaluation of attack effectiveness. Our contributions are summarized as follows:

- **General framework for adversarial attack on CTDGs.** In this work, we present a general framework of adversarial attacks on CTDGs, including three complementary perturbation types: structural (edge insertions), contextual (feature modifications), and temporal (timestamp manipulation). Our framework defines permissible perturbations through principled constraints on budget, temporal patterns, and feature deviations to ensure realistic attacks.
- **Novel Temporally-aware evasion attack.** We propose TR-BCD, a gradient-based method that strategically distributes adversarial edges across temporal batches. TR-BCD optimizes edge selection through continuous relaxation and leverages both random and challenging historical

108 negative samples as attack candidates. Unlike previous work that relies on heuristics or requires  
 109 training data access, our method directly optimizes an adversarial objective during inference.  
 110 • **Extensive empirical evaluation revealing vulnerabilities.** Through comprehensive experiments  
 111 across six datasets, we demonstrate that TR-BCD consistently degrades model performance,  
 112 achieving up to 53% reduction in Mean Reciprocal Rank (MRR) while perturbing only 5% of  
 113 edges. Our attacks are highly effective against state-of-the-art models including TGN and TNCN,  
 114 revealing critical vulnerabilities in current temporal graph learning approaches.

## 116 2 RELATED WORK

118 **Temporal Graph Learning.** Kazemi et al. (2020) categorized temporal graphs into Discrete Time  
 119 Dynamic Graphs (DTDGs) and Continuous Time Dynamic Graphs (CTDGs). In this work, we  
 120 focus on CTDGs, however our adversarial attack formulation in Section 3 can be easily extended  
 121 to DTDGs. CTDG methods receive a continuous stream of edges as input and make predictions  
 122 over any possible timestamps. For efficiency, the stream is typically divided into fixed-size batches  
 123 processed sequentially. CTDG methods incorporate newly observed information by updating internal  
 124 representations, often tracking node states over time and sampling temporal neighborhoods for  
 125 prediction. Temporal Graph Network (TGN) (Rossi et al., 2020) introduced a memory-based encoder  
 126 architecture that produces node embeddings for downstream tasks like link prediction and node  
 127 classification. Its memory module stores node histories to model long-term dependencies, aggregating  
 128 embeddings of participating nodes and their temporal neighbors for predictions. Building on this,  
 129 Temporal Neural Common Neighbor (TNCN) (Zhang et al., 2024) enhanced link prediction by  
 130 incorporating common neighbors into more discriminative edge representations through a temporal  
 131 dictionary of multi-hop neighbors, achieving state-of-the-art performance.

132 **Robustness of GNNs and TGNNs.** RL-S2V (Dai et al., 2018) and Nettack (Zügner et al., 2018)  
 133 pioneered adversarial attacks on node classification by manipulating both graph structure and node  
 134 features. Similar to Nettack, Projected Gradient Descent (PGD) (Xu et al., 2019) introduced general  
 135 gradient-based topology attacks through iterative optimization of edge perturbation matrices.  
 136 However, PGD’s memory requirements scale quadratically with the number of nodes. Projected  
 137 Randomized Block Coordinate Descent (PR-BCD) (Geisler et al., 2021) improves scalability with  
 138 sparsity-aware optimization that iteratively generates sparse adjacency matrices while satisfying  
 139 budget constraints. Its greedy variant, GR-BCD (Geisler et al., 2021), which we adapt for our work,  
 140 efficiently selects optimal source-node pairs for adversarial edge insertion. MemStranding (Dai et al.,  
 141 2023) attacks temporal graph networks by corrupting node memories through strategically injected  
 142 fake events. It identifies high-degree victim nodes and their neighbors, iteratively updates their states  
 143 until convergence using GNN smoothing properties (Li et al., 2018), and ensures persistent influence  
 144 by adding augmented future neighbors. T-Spear (Lee et al., 2024) introduced a model-agnostic  
 145 poisoning attack for continuous-time dynamic graphs that corrupts training data while maintaining  
 146 realistic temporal patterns. It uses a surrogate model to identify candidate edges for perturbation,  
 147 enforces constraints on temporal distribution and node connectivity, and samples adversarial edge  
 148 features using Kernel Density Estimation. While T-Spear relies on heuristic constraints, our approach  
 149 optimizes an objective function for adversarial node pair selection, though we adopt similar temporal  
 150 perturbation strategies using Gaussian priors for modeling time differences between edges.

## 151 3 PROBLEM STATEMENT

152 In this section, we formulate the problem of adversarial attacks on temporal graphs. We start for  
 153 introducing TG notations.

155 **Definition 3.1** (Continuous-Time Dynamic Graph). A Continuous-Time Dynamic Graph (CTDG)  $\mathcal{G}$   
 156 is defined as a tuple  $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathcal{T}, \mathcal{F})$ , where:

- 157 •  $\mathcal{V}$  is the set of vertices
- 158 •  $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V} \times \mathbb{R}_{\geq 0}$  is the set of timestamped edges:  $(u, v, t) \in \mathcal{E}$  means edge  $(u, v)$  is  
 159 observed at time  $t$ .
- 160 •  $\mathcal{T} = \{t_1, \dots, t_{|\mathcal{E}|}\} = \{t \mid (u, v, t) \in \mathcal{E}\}$  is the set of timestamps with  $0 \leq t_1 \leq \dots \leq t_{|\mathcal{E}|}$

162     •  $\mathcal{F} = \{\mathbf{f}_1, \dots, \mathbf{f}_{|\mathcal{E}|}\} \subset \mathbb{R}^D$  is the set of edge features (optional)  
 163

164     **Definition 3.2** (Temporal Link Prediction). Given a CTDG  $\mathcal{G}$ , temporal link prediction involves  
 165     learning a function  $h_\theta : \mathcal{V} \times \mathcal{V} \times \mathbb{R} \rightarrow [0, 1]$  that estimates the probability of an edge existing between  
 166     nodes  $u, v \in \mathcal{V}$  at time  $t \in \mathbb{R}$ . The function  $h_\theta$  can utilize all information in  $\mathcal{G}$  up to time  $t$  to make  
 167     its prediction.

168     Dynamic graphs can be perturbed in multiple ways: by modifying the graph structure (structural  
 169     perturbation), edge features (contextual perturbation), or edge timestamps (temporal perturbation).  
 170     Moreover, the perturbations may be additive or modify elements in the clean graph. Formally, we  
 171     define an adversarial attack as:

172     **Definition 3.3** (CTDG Adversarial Attacks). Let  $\mathcal{G}' \in \Phi(\mathcal{G})$  be the perturbed graph chosen from the  
 173     set of permissible perturbations  $\Phi(\mathcal{G})$  in the vicinity of the clean graph  $\mathcal{G}$ . Then, an adversarial attack  
 174     is concerned with the following optimization problem:

$$175 \quad \max_{\mathcal{G}' \in \Phi(\mathcal{G})} \mathcal{L}_{\text{attack}}(h_\theta(\mathcal{G}'), \mathcal{G}) \quad (1)$$

177     where  $\mathcal{L}_{\text{attack}}$  is a loss function that quantifies the model’s prediction error on the perturbed graph  
 178      $\mathcal{G}'$  vs. the clean graph  $\mathcal{G}$ . The attacker aims to minimize the model’s link prediction performance by  
 179     optimizing Equation 1 where  $\mathcal{L}_{\text{attack}}$  is the loss function on the perturbed graph  $\mathcal{G}'$  in relation to model  
 180      $h_\theta$ . For link prediction, this is typically the negative Mean Reciprocal Rank (MRR) or margin-based  
 181     loss designed to degrade ranking performance.

182     **TGNN Memory Modules:** For TGNNs with memory modules (e.g., TGN, TNCN), each node  $v$   
 183     maintains a memory state  $\mathbf{m}_v^{(t)}$  that evolves as edges arrive sequentially. At each inference step when  
 184     processing edges  $E_t = \{(u_i, v_i, t_i, f_i)\}_{i=1}^{|E_t|}$ , the model updates memory as:

$$186 \quad \mathbf{m}_v^{(t+1)} = \text{UpdateMemory}_\theta(\mathbf{m}_v^{(t)}, E_t) \quad (2)$$

188     where the memory state is then used to generate predictions:  $\hat{\mathbf{y}} = h_\theta(\mathbf{m}^{(t+1)}, E_t)$ . The key insight  
 189     is that adversarial edges corrupt memory:  $\mathbf{m}_v^{(t+1)} = \text{UpdateMemory}_\theta(\mathbf{m}_v^{(t)}, E_t \cup E_{\text{adv}})$ , and this  
 190     corrupted state persists across all future time steps, compounding the attack’s impact. This memory  
 191     coupling distinguishes temporal attacks from static graph attacks where perturbations are localized.  
 192     Figure Figure 1 visualizes this memory pollution propagation across batches.

193     **Threat Model and Attack Setting.** To establish clear baselines for comparing adversarial attacks  
 194     on TGNNs, we formally specify our threat model and attacker capabilities. Understanding these  
 195     assumptions is critical for practitioners deploying TGNNs and for researchers developing defense  
 196     mechanisms. We consider a white-box evasion attack in the test-time setting, where attacks occur  
 197     after model deployment without access to training data. This setting is appropriate for scenarios  
 198     where adversaries target deployed systems, such as fraud detection or intrusion detection systems  
 199     that have already been trained and fixed. We assume the attacker has *full white-box access* to the  
 200     victim TGNN, including: (1) model architecture and hyperparameters, (2) all trainable parameters  
 201     (e.g., embedding matrices, attention weights), (3) node and edge embeddings at test time, and (4)  
 202     model gradients with respect to the loss function. This white-box formulation establishes an *upper  
 203     bound* on attack effectiveness. This threat model aligns with established practices in adversarial  
 204     robustness literature Xu et al. (2019); Geisler et al. (2021); Günnemann (2022) for two key reasons.  
 205     First, white-box attacks establish necessary conditions for vulnerability, if a model resists white-box  
 206     attacks, it is inherently more robust to restricted black-box or transfer attacks. Second, white-box  
 207     attacks model realistic scenarios where adversaries have significant reconnaissance capabilities (e.g.,  
 208     insider threats, model extraction attacks, or organizations with shared infrastructure).

209     **Attack Constraints and (Un-) Noticeability.** In the seminal work on adversarial attacks on deep  
 210     learning methods, Szegedy et al. (2014) proposed the concept of unnoticeability (“imperceptibly  
 211     tiny perturbations”) since it usually does not alter the true semantics (“underlying class” in their  
 212     classification setting). Hence, a key requirement for adversarial attacks is that its perturbations should  
 213     be unnoticeable. This is especially true if we cannot rely on application-specific insights about the true  
 214     semantics (e.g., see Geisler et al. (2022)). Following the best practices of adversarial robustness in  
 215     the graph domain and beyond (Günnemann, 2022), the attacker can perform the following operations  
 216     within a fixed perturbation budget: (1) *structural perturbations*: insert new edges  $(u, v, t)$  among  
 217     existing nodes by modifying the edge set  $E$ ; (2) *temporal perturbations*: choose timestamps  $t$

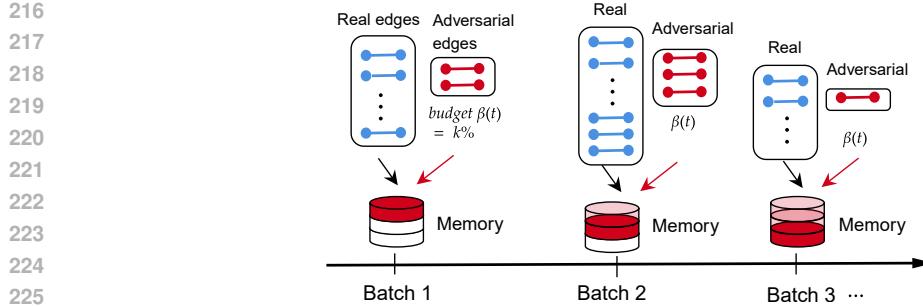


Figure 2: The adversarial edges are inserted at each batch as a small portion of the real edges (constrained by budget  $\beta(t)$ ). The attacks gradually corrupt the victim model’s memory step by step.

---

**Algorithm 1: TR-BCD Evasion Attack on TGNN**


---

```

231 Input: Test graph  $\mathcal{G}_{\text{test}}$ , TGNN  $h_{\theta}$  with memory  $M$ 
232 Params.: Attack budget  $\beta(t)$ 
233 1 for  $\mathcal{E}, \mathcal{T}, \mathcal{F}$  in batch( $\mathcal{G}_{\text{test}}$ ) do
234      $\tilde{\mathcal{E}}, \tilde{\mathcal{T}}, \tilde{\mathcal{F}} \leftarrow \text{TR-BCD}_{\text{step}}(\mathcal{E}, \mathcal{T}, \mathcal{F}, h_{\theta}, M, \beta(t))$ ;           // See Algorithm 2
235      $M \leftarrow \text{UpdateMemory}_{h_{\theta}}(M, \tilde{\mathcal{E}}, \tilde{\mathcal{T}}, \tilde{\mathcal{F}})$ ;
236      $M, \hat{y} \leftarrow h_{\theta}(M, \mathcal{E}, \mathcal{T}, \mathcal{F})$ ;
237 2 end
238 6 return all predictions  $\hat{y}$  ;

```

---

for adversarial edges such that perturbations reflect realistic temporal patterns; and (3) *contextual perturbations*: modify edge feature vectors  $\mathbf{f}$  within a bounded Euclidean distance (for attributed graphs). All perturbations are additive: the attacker adds adversarial edges to the clean graph without removing or modifying existing edges. The total number of inserted edges is constrained by budget  $\delta_t$ , defined as a percentage of edges in each test batch.

To ensure attacks remain realistic and unnoticeable, we enforce three key constraints. *Temporal Causality*: All adversarial edge timestamps must respect the temporal history of affected nodes. Specifically, for any adversarial edge  $(u, v, t_{\text{adv}})$ , we require  $t_{\text{adv}} \geq t_{\min}(u, v)$ , where  $t_{\min}(u, v)$  is the earliest observed interaction time for nodes  $u$  and  $v$  in the clean graph. This prevents causally inconsistent attacks. *Budget Constraint*: The number of edges inserted in each batch cannot exceed  $\lfloor \delta_t \cdot |E_{\text{batch}}| \rfloor$ , where  $|E_{\text{batch}}|$  is the number of benign edges in the current batch. *Feature Deviation Bound*: For contextual perturbations, edge feature modifications are bounded by  $\|\mathbf{f}_{\text{adv}} - \mathbf{f}\|_2 \leq \epsilon_f$  for a specified threshold  $\epsilon_f$ .

## 4 TR-BCD ATTACK

We propose Temporally-aware Randomized Block Coordinate Descent (*TR-BCD*), a greedy gradient-based discrete optimization method for adversarial evasion attacks in CTDGs. To alleviate the prohibitive memory requirements of the optimization problem in Equation (1) with the challenging additive perturbations, we follow two strategies: (1) we greedily apply the attack before each benign batch at inference time; (2) we leverage Randomized Block Coordinate Descent.

**Greedyly over time.** As we detail in Algorithm 1, we greedily optimize for the adversarial perturbations. That is, in each time step, we choose adversarial perturbations given the information up to this point in time. Thereafter, we use the perturbed edges to update the model’s memory. This greedy procedure reduces the memory complexity from  $\Theta(|\mathcal{E}||\mathcal{V}|^2)$  to  $\Theta(|\mathcal{V}|^2)$ . However, due to the perturbed memory, we then indirectly affect the model’s predictions. We refer to Figure 2 for a graphical illustration of the memory pollution process.

**Modeling of Edge Insertions.** In each call of TR-BCD, we choose up to  $\beta(t)$  edges to insert. We further simplify the procedure by allowing solely a distinct set of edges in each adversarial memory update (line 3 in Algorithm 1). Thus, we can model the possible insertions using a matrix



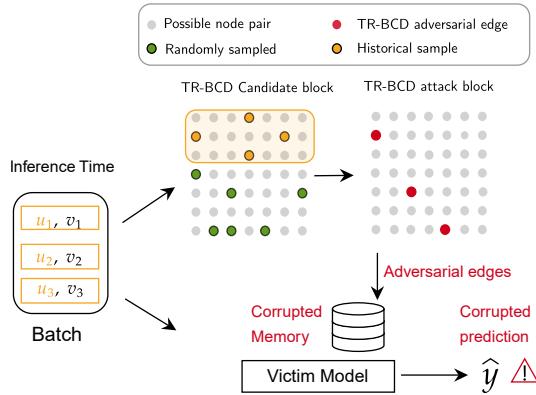


Figure 3: Candidate selection in TR-BCD. For each batch, TR-BCD first constructs a candidate pool based on *random* (green) and *historical* (orange) candidate edges for the adversarial attack.

query time. By over-representing these edges (50% of the sampled block), we bias the gradient-based optimization toward the regions of the loss landscape where TGNNs are most sensitive. Empirically, this recency-biased approach achieves 7.6% improvement over random sampling (50.78% vs. 43.16% MRR drop on Wikipedia, see Table 1), validating this architectural insight. We illustrate the candidate sampling scheme in Figure 3.

**Computational Complexity.** The computational space and time complexity of a single pass of Algorithm 2 is  $\mathcal{O}(b)$ , assuming that the TGNN’s forward pass, backward pass, and memory update are also linear in  $b$ . Hence, the complexity is  $\mathcal{O}(|\mathcal{E}_{\text{test}}|b) = \mathcal{O}(|\mathcal{E}_{\text{test}}|)$  for the entire test set (Algorithm 1), assuming a constant batch size and  $b \ll |\mathcal{E}_{\text{test}}|$ .

## 5 EXPERIMENTS

In this section, we evaluate the robustness of TGNNs under evasion attacks and demonstrate the effectiveness of our TR-BCD method. For empirical experiments, we use six widely used datasets for link prediction in CTDGs (Poursafaei et al., 2022). We choose a mix of bipartite and non-bipartite, attributed and non-attributed datasets to study the effect of adversarial attacks across different types of graphs. Dataset details and statistics are reported in Appendix B. We report detailed sensitivity analysis of TR-BCD on the effect of contextual perturbation budget and block size in Appendix E. We use the widely-used evaluation procedure from (Huang et al., 2024) where the MRR ranking metric is used to evaluate link prediction to predict the true destination from multiple negative edges (including random and historical negatives). In our evaluation, we use all possible negative edges for the Wikipedia dataset, and 100 negative edges per positive edge for the remaining datasets. we compare the TGNN performance with no perturbation and with perturbation on the test set. To evaluate the effect of adversarial attacks, we select strong TGNN models including TGN and TNCN as the base model to inject attack with, referred to as the *victim models*. Both models have a memory module that records past node interactions and performs test-time memory updates. The adversarial attacks are injected into the model memory (see line 3 Algo 2). Victim model training details are in Appendix C. We repeat each experiment 5 times and report the metrics mean and standard deviation.

**Baselines.** we include two heuristic baselines for structural perturbation: *random* and *historical* baseline. The *random baseline* generates each of the adversarial edges independently and randomly from the space of all possible negative node pairs. The *historical baseline* considers historical negative edges as defined in (Poursafaei et al., 2022), meaning edges that were observed before but were not present at the current time. These negative edges are challenging for TGNN models as they were encountered previously but currently non-existing. Lastly, we compare with MemStranding (Dai et al., 2023), a sophisticated evasion attack designed for TGNNs with memory modules. Unlike our TR-BCD approach that distributes adversarial edges across temporal batches, MemStranding operates as a single-shot evasion attack that inserts a burst of fake edges at a single timestamp to corrupt node memory states.

378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431

Table 1: Structural perturbation attack results for dynamic link property prediction on CTDG datasets under a 5% perturbation budget (i.e., 5% of the test edges are perturbed). We compare two variants of TR-BCD: one with fully random initial sampling (*TR-BCD-random*) and another with a mixed strategy using 50% initialization based on historical negative edges (*TR-BCD-mixed*). We include two generally-applicable baselines: random and Historical attack (insertion of historical negatives). Additionally, we evaluate *MemStranding attack* Dai et al. (2023), which targets 5% of nodes as victims by strategically inserting fake neighbors to disrupt temporal graph dynamics. N/A means not applicable due to the lack of edge attributes and we mark noticeable/non-evasive attacks in grey. Performance is reported in Mean Reciprocal Rank (MRR) and averaged over 5 trials.

| Model          | Attack               | Wikipedia                  | Reddit                     | Lastfm                     | Enron                      | UCI                        | MOOC                       |
|----------------|----------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| TGN            | No Attack            | 0.3929 $\pm$ 0.0366        | 0.4550 $\pm$ 0.0485        | 0.1370 $\pm$ 0.0172        | 0.2662 $\pm$ 0.0167        | 0.3058 $\pm$ 0.0104        | 0.1574 $\pm$ 0.0590        |
|                | Random Attack        | 0.3752 $\pm$ 0.0254        | 0.4299 $\pm$ 0.0404        | 0.1310 $\pm$ 0.0537        | 0.2625 $\pm$ 0.0128        | 0.2939 $\pm$ 0.0119        | 0.1476 $\pm$ 0.0479        |
|                | Historical Attack    | 0.3541 $\pm$ 0.0351        | 0.4436 $\pm$ 0.0466        | 0.1207 $\pm$ 0.0468        | 0.2417 $\pm$ 0.0245        | 0.3194 $\pm$ 0.0119        | 0.1330 $\pm$ 0.0381        |
|                | Memstranding         | 0.3287 $\pm$ 0.0188        | 0.4220 $\pm$ 0.0502        | N/A                        | N/A                        | N/A                        | 0.0884 $\pm$ 0.0267        |
|                | TR-BCD-random (ours) | 0.2233 $\pm$ 0.0546        | <b>0.3350</b> $\pm$ 0.1191 | 0.1306 $\pm$ 0.0497        | 0.2558 $\pm$ 0.0088        | 0.2893 $\pm$ 0.0136        | 0.1245 $\pm$ 0.0491        |
|                | TR-BCD-mixed (ours)  | <b>0.1934</b> $\pm$ 0.0587 | 0.3689 $\pm$ 0.0980        | <b>0.1080</b> $\pm$ 0.0421 | <b>0.2321</b> $\pm$ 0.0229 | <b>0.2857</b> $\pm$ 0.0181 | 0.1351 $\pm$ 0.0367        |
| Max perf. drop |                      | -50.78%                    | -26.38%                    | -21.17%                    | -12.81%                    | -6.57%                     | -20.90%                    |
| TNCN           | No Attack            | 0.7207 $\pm$ 0.0009        | 0.7228 $\pm$ 0.0064        | 0.3632 $\pm$ 0.0029        | 0.4257 $\pm$ 0.0123        | 0.4839 $\pm$ 0.0030        | 0.2521 $\pm$ 0.0192        |
|                | Random Attack        | 0.7197 $\pm$ 0.0015        | 0.7224 $\pm$ 0.0066        | 0.3591 $\pm$ 0.0031        | 0.4308 $\pm$ 0.0155        | 0.4795 $\pm$ 0.0035        | 0.2187 $\pm$ 0.0224        |
|                | Historical Attack    | 0.7167 $\pm$ 0.0015        | 0.7204 $\pm$ 0.0059        | 0.3564 $\pm$ 0.0031        | 0.3999 $\pm$ 0.0171        | 0.4806 $\pm$ 0.0055        | 0.2225 $\pm$ 0.0182        |
|                | Memstranding         | 0.7068 $\pm$ 0.0015        | 0.7196 $\pm$ 0.0096        | N/A                        | N/A                        | N/A                        | 0.1903 $\pm$ 0.0138        |
|                | TR-BCD-random (ours) | 0.7057 $\pm$ 0.0167        | <b>0.5869</b> $\pm$ 0.1688 | 0.3410 $\pm$ 0.0080        | 0.4258 $\pm$ 0.0172        | <b>0.4793</b> $\pm$ 0.0025 | <b>0.1164</b> $\pm$ 0.0236 |
|                | TR-BCD-mixed (ours)  | <b>0.7021</b> $\pm$ 0.0137 | 0.6681 $\pm$ 0.0397        | 0.3557 $\pm$ 0.0032        | <b>0.3980</b> $\pm$ 0.0232 | 0.4836 $\pm$ 0.0047        | 0.1258 $\pm$ 0.0200        |
| Max perf. drop |                      | -2.58%                     | -18.80%                    | -6.11%                     | -6.51%                     | -0.95%                     | -53.83%                    |

Table 2: Comparison of vanilla TR-BCD (using random initialization with structural perturbation) and TR-BCD augmented with contextual perturbation via FGSM ( $\epsilon = 0.3$ ). Performance is measured in Mean Reciprocal Rank (MRR) and averaged over 5 trials.

| Model | Attack        | Wikipedia                  | Reddit                     | MOOC                       |
|-------|---------------|----------------------------|----------------------------|----------------------------|
| TGN   | No Attack     | 0.3929 $\pm$ 0.0366        | 0.4550 $\pm$ 0.0485        | 0.1574 $\pm$ 0.0590        |
|       | TR-BCD        | 0.2233 $\pm$ 0.0546        | <b>0.3350</b> $\pm$ 0.1191 | <b>0.1245</b> $\pm$ 0.0491 |
|       | TR-BCD (FGSM) | <b>0.2073</b> $\pm$ 0.0597 | 0.3403 $\pm$ 0.1063        | 0.1273 $\pm$ 0.0423        |
| TNCN  | No Attack     | 0.7207 $\pm$ 0.0009        | 0.7228 $\pm$ 0.0064        | 0.2521 $\pm$ 0.0192        |
|       | TR-BCD        | 0.7057 $\pm$ 0.0167        | <b>0.5869</b> $\pm$ 0.1688 | <b>0.1164</b> $\pm$ 0.0236 |
|       | TR-BCD (FGSM) | <b>0.7043</b> $\pm$ 0.0097 | <b>0.5807</b> $\pm$ 0.1802 | <b>0.1149</b> $\pm$ 0.0297 |

**Structural Perturbation Results.** First, we examine how robust are TGNNs to structural adversarial attacks. In Table 1, we report MRR performance on link prediction for the two victim models: TGN (Rossi et al., 2020) and TNCN (Zhang et al., 2024) across the considered datasets with and without perturbations. The attack budget  $\beta(t)$  is set to be 5% as it is an unnoticeable amount (see Section 3 for the discussion on unnoticeability). As shown in Table 1, the victim models are highly vulnerable to TR-BCD’s attack across all datasets, with up to 53.83% drop in MRR for the MOOC dataset. Note that because Memstranding Dai et al. (2023) requires edge features to perturb on, it is *not applicable* (N/A) for Enron and UCI datasets. In comparison, TR-BCD applies to all datasets and not restricted by attributes. While both random and historical attack baselines can cause a small performance drop from the victim model, choosing the adversarial edge based only on heuristics is suboptimal. This is most evident in the Wikipedia and Lastfm datasets where the adversarial edges picked by TR-BCD are significantly more effective than both baselines (with up to 0.16 difference in MRR drop in Wikipedia). Therefore, TGNN models are highly susceptible to gradient-based attacks. Random and historical baselines achieve mostly similar performance across all datasets. However, using both random and historical negative edges as candidates to sample has proven to be an effective variant of TR-BCD (namely, TR-BCD-mixed). The intuition is that TR-BCD can learn to select strong adversarial samples from both categories based on the victim model’s gradient. Interestingly, the dataset with most performance drop is distinct between the two victim models. Particularly, TGN has a 50.78% drop in MRR on the Wikipedia dataset, while TNCN has a 53.83% drop in MRR for the MOOC dataset. This shows that TGNNs might be vulnerable to attacks at different network domains thus highlighting the importance of benchmarking their robustness in a wide range of networks.

**The Effect of Attack Budget.** Here, we investigate the effect of varying the attack budget  $\beta(t)$  on the performance of the victim model. Figure 4 shows the performance of the victim models under

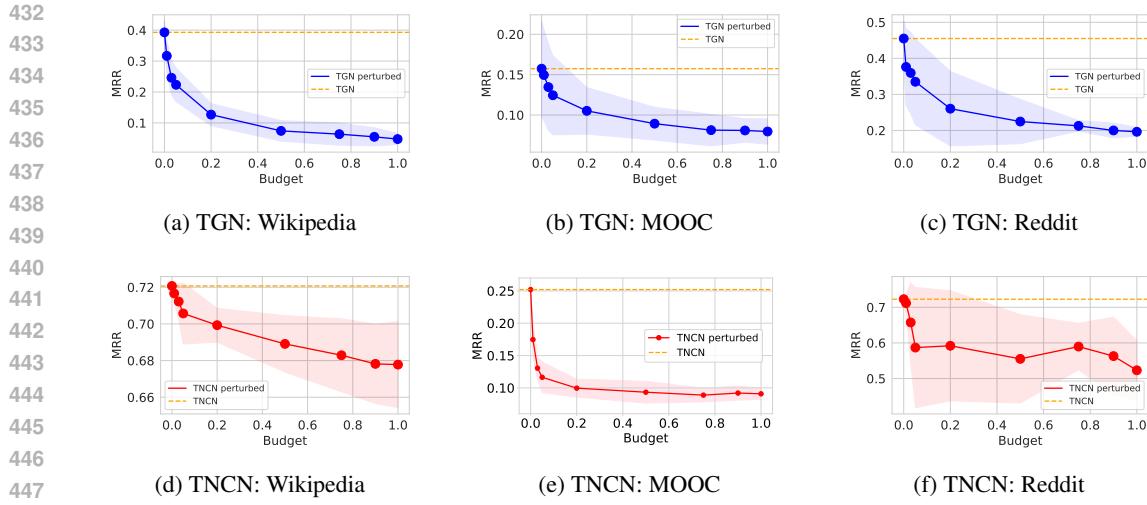
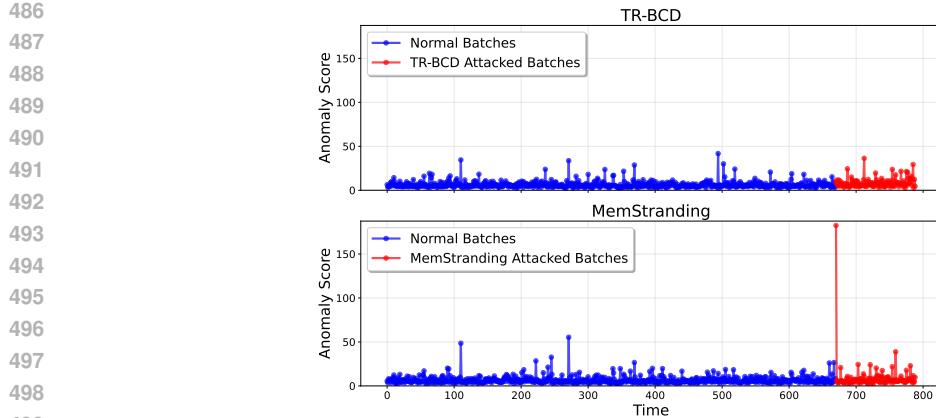


Figure 4: TGN (top) and TNCN (bottom) link prediction performance under TR-BCD structural perturbation with varying budget for Wikipedia (left), Reddit (center), and MOOC (right) datasets.

different budgets for TR-BCD attacks on three datasets. The orange line in each plot represents the performance of the unperturbed base model, while the other line plots depict the corresponding drop in MRR as the attack budget increases. These plots show how sensitive each model is to the intensity of adversarial perturbations. For both TGN and TNCN, model performance degrades rapidly with attack budgets just under 20%, demonstrating that even a relatively small number of adversarial edges can have a severe impact. This finding indicates an ideal trade-off region where a modest attack budget is sufficient to induce significant performance drops without requiring many perturbations. Notably, on the Wikipedia and MOOC datasets, both TGN and TNCN are exhibiting an exponential decay in MRR as the attack budget increases. Furthermore, beyond a certain budget threshold, we observe a plateau in performance degradation where additional adversarial edges produce diminishing impacts. This plateau might be due to the fact that model weights are frozen during attacks, thus retaining their learned knowledge despite the memory being corrupted. These observations underscore the importance of studying adversarial robustness of TGNNs.

**Contextual Perturbations.** Here, we evaluate the effectiveness of adding contextual perturbations in TR-BCD. As noted in Algorithm 2 (Step 6), we can optionally apply contextual perturbations, e.g., using the Fast Gradient Sign Method (FGSM) (Goodfellow, 2014) on the edge features for graphs that include edge attributes. FGSM aims to maximize the loss of a neural network by modifying the input data in the direction that increases the model’s error, thereby probing the model’s sensitivity to changes in its feature space. In Table 2, we compare the results of TR-BCD with and without contextual perturbations on the edge features. We report results only for datasets containing edge features (see Appendix B). Overall, our experiments indicate that adding contextual perturbations yields little MRR drop compared to using solely structural perturbations. With the exception of the Wikipedia dataset, where the TGN suffers an additional 2% performance drop due to the added contextual perturbation, results suggest that TGNNs are primarily vulnerable to structural attacks.

**Evasiveness and Anomaly Detection.** An important measure of adversarial attacks is their *evasiveness*: the ability of perturbations to remain undetected by security systems while maintaining their adversarial effectiveness. Evasive attacks should be as close to normal behavior as possible to avoid triggering anomaly detection mechanisms. To evaluate the evasiveness of attacks, we employed SPOTLIGHT (Eswaran et al., 2018), a strong anomaly detection algorithm designed for streaming graphs. The algorithm’s effectiveness stems from its ability to detect sudden appearances or disappearances of dense subgraphs, checking against the evasiveness of an attack. Figure 5 shows that TR-BCD demonstrates superior evasiveness compared to single-shot attacks like Memstranding. TR-BCD maintains relatively stable anomaly scores throughout the attack period, with only modest increases that remain within the normal range of variation. This is because TR-BCD attacks are designed to be evasive, only inserting a small number of edges per batch. In contrast, the MemStranding attack, being a single-shot approach, introduces a sudden burst of adversarial edges at a specific time



500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539

Figure 5: Comparison of SPOTLIGHT anomaly scores over time for TGN on Wikipedia dataset under different attack scenarios. Normal batches are shown in blue, while *TR-BCD attack* (top) and *MemStranding attack* (bottom) batches are highlighted as red stars to demonstrate their distinct impact on anomaly detection scores.

Table 3: Transfer attack results: Link prediction MRR ( $\pm$  SD, % drop) for same-model and cross-model (transfer) attacks on TGN and TNCN.

| Model | Attack                    | Wiki                          | Reddit                        | Mooc                          |
|-------|---------------------------|-------------------------------|-------------------------------|-------------------------------|
| TGN   | No attack                 | $0.4105 \pm 0.0195$           | $0.4719 \pm 0.0471$           | $0.1428 \pm 0.0503$           |
|       | Attack with same model    | $0.2533 \pm 0.0674$ (-38.29%) | $0.3433 \pm 0.1499$ (-27.25%) | $0.1314 \pm 0.0241$ (-7.98%)  |
|       | Transfer attack with TNCN | $0.2890 \pm 0.0317$ (-29.60%) | $0.3688 \pm 0.1316$ (-21.85%) | $0.1327 \pm 0.0369$ (-7.07%)  |
| TNCN  | No attack                 | $0.7212 \pm 0.0009$           | $0.7264 \pm 0.0014$           | $0.2439 \pm 0.0154$           |
|       | Attack with same model    | $0.7122 \pm 0.0028$ (-1.25%)  | $0.6661 \pm 0.0764$ (-8.30%)  | $0.1149 \pm 0.0118$ (-52.89%) |
|       | Transfer attack with TGN  | $0.7126 \pm 0.0016$ (-1.19%)  | $0.6803 \pm 0.0330$ (-6.35%)  | $0.2109 \pm 0.0127$ (-13.53%) |

point. The sharp increase in anomaly scores clearly indicates the presence of anomalous activity, demonstrating its disadvantage of being easily detected by an anomaly detection algorithm.

**Cross-Model Transfer Attacks.** Transfer attacks investigate the adversarial vulnerability of a victim model by crafting perturbations using a different, pretrained attacker model. This approach tests whether the adversarial edge or feature perturbations optimized for one TGNN architecture are also effective against another. It helps in understanding shared weaknesses in model families. In our experiments, we evaluate transfer attacks by attacking TGN with a pretrained TNCN, and conversely, attacking TNCN with a pretrained TGN. Table 3 shows that attacks trained on TGN transfer to TNCN and vice-versa with 25-95 % of same-model performance, suggesting temporal vulnerabilities generalize across architectures. Notably, transfer attacks on TNCN with TGN are much weaker for the MOOC dataset (-13.5%) compared to direct attacks (-52.9%), showing that transferability is influenced by both model and dataset characteristics. Transfer attacks can thus induce substantial performance drop in both TGN and TNCN victims, but are slightly less effective than attacks tuned for the same model. This suggests that while adversarial perturbations generalize across model families to an extent, there remain architecture-specific vulnerabilities.

## 6 CONCLUSION

In this work, we conducted a comprehensive study of adversarial robustness in Temporal Graph Neural Networks (TGNNs) operating on Continuous-Time Dynamic Graphs (CTDGs). We identified that TGNNs can be highly vulnerable to adversarial attacks with up to 53% drop in performance. Our investigation spanned diverse real-world datasets, including both bipartite and non-bipartite graphs, with and without edge features. Notably, our experiments revealed that structural perturbations have a more substantial impact compared to contextual feature perturbations, suggesting TGNNs are highly vulnerable to attacks on the temporal graph topology. We hope this work serve as foundation for future studies aiming at studying adversarial robustness.

540 REPRODUCIBILITY STATEMENT  
541

542 We provide an anonymized code repository at [543](https://anonymous.4open.science/r/temporal-)  
 544 adversarial-02B3, which contains the implementation of our model and experimental setup to ensure  
 545 reproducibility. Dataset details and access links can be found in Appendix B. Experimental details  
 546 are recorded in Appendix C.

547 ETHICS STATEMENT  
548

549 In this work, we examine the robustness of Temporal GNNs to adversarial attacks and proposed a  
 550 novel adversarial attack TR-BCD for this purpose. It is possible that the studied adversarial attack  
 551 or similar attacks might be considered by ill-intentioned third party and the goal of this paper is to  
 552 warn ML practitioners of such risks. Overall, we are convinced that the benefits outweigh the risks.  
 553 Document and open-source the adversarial attack study will help enable researchers to design more  
 554 robust models against such attack. We firmly believe that open research into such vulnerabilities of  
 555 models allows researchers and practitioners to identify the problems and address them with strong  
 556 defences. Moreover, due to our setting being a white-box setting, our attack is less directly applicable  
 557 for real-world malicious actors.

558 REFERENCES  
559

560 Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understanding the cell’s functional  
 561 organization. *Nature reviews genetics*, 5(2):101–113, 2004.

563 Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Adversarial attack on  
 564 graph structured data. In *International conference on machine learning*, pp. 1115–1124. PMLR,  
 565 2018.

566 Yue Dai, Liang Liu, Xulong Tang, Youtao Zhang, and Jun Yang. Memstranding: Adversarial attacks  
 567 on temporal graph neural networks. 2023.

569 Michela Del Vicario, Alessandro Bessi, Fabiana Zollo, Fabio Petroni, Antonio Scala, Guido Cal-  
 570 darelli, H Eugene Stanley, and Walter Quattrociocchi. The spreading of misinformation online.  
 571 *Proceedings of the national academy of Sciences*, 113(3):554–559, 2016.

572 Xiaoye Ding, Shenyang Huang, Abby Leung, and Reihaneh Rabbany. Incorporating dynamic flight  
 573 network in seir to model mobility between populations. *Applied Network Science*, 6(1):42, 2021.

575 Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra. Spotlight: Detecting anomalies  
 576 in streaming graphs. 2018. URL [https://www.amazon.science/publications/](https://www.amazon.science/publications/spotlight-detecting-anomalies-in-streaming-graphs)  
 577 [spotlight-detecting-anomalies-in-streaming-graphs](https://www.amazon.science/publications/spotlight-detecting-anomalies-in-streaming-graphs).

578 James H Fowler. Legislative cosponsorship networks in the us house and senate. *Social networks*, 28  
 579 (4):454–465, 2006.

581 Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar Bojchevski, and Stephan  
 582 Günnemann. Robustness of graph neural networks at scale. *Advances in Neural Information  
 583 Processing Systems*, 34:7637–7649, 2021.

584 Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann.  
 585 Generalization of neural combinatorial solvers through the lens of adversarial robustness. In  
 586 *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,  
 587 April 25-29, 2022. OpenReview.net*, 2022. URL <https://openreview.net/forum?id=vJZ7dPIjip3>.

589 Ian J Goodfellow. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*,  
 590 2014.

592 Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, and Stephan  
 593 Günnemann. Adversarial training for graph neural networks: Pitfalls, solutions, and new directions.  
 In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine

594 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural*  
 595 *Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -*  
 596 *16, 2023, 2023*. URL [http://papers.nips.cc/paper\\_files/paper/2023/hash/b5a801e6bc4f4ffa3e6786518a324488-Abstract-Conference.html](http://papers.nips.cc/paper_files/paper/2023/hash/b5a801e6bc4f4ffa3e6786518a324488-Abstract-Conference.html).

598 Stephan Günnemann. Graph neural networks: Adversarial robustness. *Graph neural networks: 599 foundations, frontiers, and applications*, pp. 149–176, 2022.

600 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. 601 *Advances in neural information processing systems*, 30, 2017.

602 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, 603 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *Advances in 604 neural information processing systems*, 33:22118–22133, 2020.

605 Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A 606 large-scale challenge for machine learning on graphs. *arXiv preprint arXiv:2103.09430*, 2021.

607 Shenyang Huang, Yasmeen Hitti, Guillaume Rabusseau, and Reihaneh Rabbany. Laplacian change 608 point detection for dynamic graphs. In *Proceedings of the 26th ACM SIGKDD International 609 Conference on Knowledge Discovery & Data Mining*, pp. 349–358, 2020.

610 Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele Rossi, 611 Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Temporal graph 612 benchmark for machine learning on temporal graphs. *Advances in Neural Information Processing 613 Systems*, 36, 2024.

614 Tsuyoshi Idé and Hisashi Kashima. Eigenspace-based anomaly detection in computer systems. In 615 *Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and 616 data mining*, pp. 440–449, 2004.

617 Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and 618 Pascal Poupart. Representation learning for dynamic graphs: A survey. *Journal of Machine 619 Learning Research*, 21(70):1–73, 2020.

620 Yejin Kim, Youngbin Lee, Minyoung Choe, Sungju Oh, and Yongjae Lee. Temporal graph networks 621 for graph anomaly detection in financial networks. *arXiv preprint arXiv:2404.00060*, 2024.

622 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 623 2014.

624 Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in 625 temporal interaction networks. In *Proceedings of the 25th ACM SIGKDD international conference 626 on knowledge discovery & data mining*, pp. 1269–1278, 2019.

627 Dongjin Lee, Juho Lee, and Kijung Shin. Spear and shield: Adversarial attacks and defense methods 628 for model-based link prediction on continuous-time dynamic graphs. In *Proceedings of the AAAI 629 Conference on Artificial Intelligence*, volume 38, pp. 13374–13382, 2024.

630 Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks 631 for semi-supervised learning. In *Proceedings of the AAAI conference on artificial intelligence*, 632 volume 32, 2018.

633 Jiaqi Ma, Shuangrui Ding, and Qiaozhu Mei. Towards more practical adversarial attacks on graph 634 neural networks. *Advances in neural information processing systems*, 33:4756–4766, 2020.

635 Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled 636 reviews and fine-grained aspects. In *Proceedings of the 2019 conference on empirical methods 637 in natural language processing and the 9th international joint conference on natural language 638 processing (EMNLP-IJCNLP)*, pp. 188–197, 2019.

639 Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. Patterns and dynamics of users’ behavior 640 and interaction: Network analysis of an online community. *Journal of the American Society for 641 Information Science and Technology*, 60(5):911–932, 2009.

648 Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better  
 649 evaluation for dynamic link prediction. *Advances in Neural Information Processing Systems*, 35:  
 650 32928–32941, 2022.

651 Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael  
 652 Bronstein. Temporal graph networks for deep learning on dynamic graphs. *arXiv preprint*  
 653 *arXiv:2006.10637*, 2020.

654 Kiarash Shamsi, Friedhelm Victor, Murat Kantarcioglu, Yulia Gel, and Cuneyt G Akcora. Chartalist:  
 655 Labeled graph datasets for utxo and account-based blockchains. *Advances in Neural Information*  
 656 *Processing Systems*, 35:34926–34939, 2022.

657 Jitesh Shetty and Jafar Adibi. The enron email dataset database schema and brief statistical report.  
 658 *Information sciences institute technical report, University of Southern California*, 4(1):120–128,  
 659 2004.

660 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,  
 661 and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and Yann LeCun  
 662 (eds.), *2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,*  
 663 *April 14-16, 2014, Conference Track Proceedings*, 2014. URL <http://arxiv.org/abs/1312.6199>.

664 Binghui Wang and Neil Zhenqiang Gong. Attacking graph-based classification via manipulating  
 665 the graph structure. In *Proceedings of the 2019 ACM SIGSAC Conference on Computer and*  
 666 *Communications Security*, pp. 2023–2040, 2019.

667 Stephen J. Wright. Coordinate descent algorithms. *Math. Program.*, 151(1):3–34, 2015. doi: 10.  
 668 1007/S10107-015-0892-3. URL <https://doi.org/10.1007/s10107-015-0892-3>.

669 Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial  
 670 examples on graph data: Deep insights into attack and defense. *arXiv preprint arXiv:1903.01610*,  
 671 2019.

672 Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, and Xue Lin.  
 673 Topology attack and defense for graph neural networks: An optimization perspective. *arXiv*  
 674 *preprint arXiv:1906.04214*, 2019.

675 Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.  
 676 Graph convolutional neural networks for web-scale recommender systems. In *Proceedings of the*  
 677 *24th ACM SIGKDD international conference on knowledge discovery & data mining*, pp. 974–983,  
 678 2018.

679 Minji Yoon, Bryan Hooi, Kijung Shin, and Christos Faloutsos. Fast and accurate anomaly detection  
 680 in dynamic graphs with a two-pronged approach. In *Proceedings of the 25th ACM SIGKDD*  
 681 *International Conference on Knowledge Discovery & Data Mining*, pp. 647–657, 2019.

682 Xiaohui Zhang, Yanbo Wang, Xiyuan Wang, and Muhan Zhang. Efficient neural common neighbor  
 683 for temporal graph link prediction. *arXiv preprint arXiv:2406.07926*, 2024.

684 Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks on neural networks  
 685 for graph data. In *Proceedings of the 24th ACM SIGKDD international conference on knowledge*  
 686 *discovery & data mining*, pp. 2847–2856, 2018.

687 Daniel Zügner, Oliver Borchert, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks  
 688 on graph neural networks: Perturbations and their patterns. *ACM Transactions on Knowledge*  
 689 *Discovery from Data (TKDD)*, 14(5):1–31, 2020.

690  
 691 **A LLM USAGE**

692  
 693 We acknowledge the use of LLMs to assist in improving the writing of this paper. All content, ideas,  
 694 and results are our own. The LLM helped improve clarity, grammar, style, and LaTeX formatting.

702  
703  
704 Table 4: Statistics of the datasets used in our experiments  
705  
706  
707  
708

| Dataset   | Domain      | # Nodes | # Edges   | # Unique Edges | # Edge features | Bipartite | Duration  |
|-----------|-------------|---------|-----------|----------------|-----------------|-----------|-----------|
| Wikipedia | Social      | 9,227   | 157,474   | 18,257         | 172             | ✓         | 1 month   |
| Reddit    | Social      | 10,984  | 672,447   | 78,516         | 172             | ✓         | 1 month   |
| MOOC      | Interaction | 7,144   | 411,749   | 178,443        | 4               | ✓         | 17 months |
| LastFM    | Interaction | 1,980   | 1,293,103 | 154,993        | -               | ✓         | 3 years   |
| Enron     | Social      | 184     | 125,235   | 3,125          | -               | ✗         | 8 months  |
| UCI       | Social      | 1,899   | 59,835    | 20,296         | -               | ✗         | 196 days  |

709  
710  
711 B DATASET DETAILS  
712713 The statistics of these datasets are listed in Table 4. The details of each dataset is as follows:  
714

- Wikipedia (Kumar et al., 2019) enlists edits on Wikipedia pages over one month. It is a bipartite graph with edges between users and wiki pages which are modeled as nodes. Each edge carries a 172-dimensional vector representing the page edits.
- Reddit (Kumar et al., 2019) stores user posts on subreddits over one month. It is a bipartite graph with 172-dimensional edges between users and subreddits.
- MOOC (Kumar et al., 2019) models the interaction of users with online course content spanning over 17 months. It is a bipartite graph with the edges representing interaction of a user with one of 97 course units. The edges have 4 features.
- LastFM (Kumar et al., 2019) is a bipartite graph featuring user-to-song relations where each edge representing whether one of the 1000 users listened to one of the 1000 most listened songs over a period of one month. The dataset has no edge features.
- UCI (Panzarasa et al., 2009) contains interactions on an online social network between students of University of California, Irvine. It is a non-attributed, non-bipartite graph.
- Enron (Shetty & Adibi, 2004) stores information about email exchanges between employees of ENRON energy over 3 years. The dataset is non-bipartite and has no edge features.

729  
730 These datasets can be accessed from (Poursafaei et al., 2022) via the link <https://zenodo.org/records/7213796#.Y8QicOzMJB2>.  
731732  
733 C EXPERIMENT DETAILS  
734

735 **Evaluation setting.** Recent work showed that link prediction on temporal graphs requires challenging  
736 negative samples (Poursafaei et al., 2022) and ranking metrics for robust evaluation. Therefore, we  
737 use the same evaluation procedure as in (Huang et al., 2024) where the link prediction task is treated  
738 as a ranking problem and multiple negative samples per positive edge are used to compute the Mean  
739 Reciprocal Rank (MRR). These negative edges are a mix of *random* and *historical* negative edges.  
740 Historical negative edges are edges that were observed in previous timestamps but not observed  
741 currently thus being challenging for models that rely on memorization (Poursafaei et al., 2022). In  
742 our evaluation, we use all possible (999) negative edges for the Wikipedia dataset, and 100 negative  
743 edges per positive for the remaining datasets. The MRR metric takes its values in  $(0, 1]$  and computes  
744 the reciprocal rank of the true edge among the negative edges. To understand the robustness of TGNN  
745 models, we examine their MRR performance under no perturbation and with perturbation on the  
746 entire test set.

747 **Victim Models.** We examine state-of-the-art TGNN models including TGN (Rossi et al., 2020) and  
748 TNCN (Zhang et al., 2024) for evaluating robustness to adversarial attacks, we refer to them as the  
749 *victim models*. Both models have a memory module that records past node interactions and performs  
750 test-time updates (i.e. the memory is updated by test-time data). The adversarial attacks are injected  
751 into the model memory (see lines 7 – 8 Algo 1).

752 We train both the models in batches of 200 edges using the Adam (Kingma, 2014) optimizer with  
753 learning rate= $1e-4$ . The dataset is chronologically split into a train-val-test split of edges in the  
754  $0.75 - 0.15 - 0.15$  proportion. The input edge features are normalized to have zero mean and unit  
755 variance. We train for a maximum of 50 epochs using early stopping with a patience of 5 epochs. We  
repeat each experiment 5 times and report the metrics mean and standard deviation over all the runs.

**Baselines.** For our experiments, we consider two heuristic baselines for structural perturbation: *random* and *historical* baseline. The *random baseline* generates each of the adversarial edges independently and randomly from the space of all possible negative node pairs. The source and destination nodes are picked randomly from the set of source and destination ids in the dataset. The timestamp is uniformly sampled between the minimum and maximum values of timestamps present in the dataset. For attributed graphs, the adversarial edge features are generated by sampling from a normal distribution. The edges are inserted prior to the processing of each positive batch and are limited to the allowed perturbation budget. The *historical baseline* considers historical negative edges as defined in (Poursafaei et al., 2022), meaning edges that were observed before but were not present at the current time. These negative edges are challenging for TGNN models as they were encountered previously and required temporal reasoning from the model to clearly distinguish them from the real edges. Therefore by inserting them as negatives, the model might be more prone to the attack.

**Memstranding settings.** MemStranding Dai et al. (2023) represents a sophisticated evasion attack specifically designed for temporal graph neural networks that leverages memory-based architectures. Unlike our TR-BCD approach that distributes adversarial edges across temporal batches, MemStranding operates as a single-shot evasion attack that inserts a burst of fake edges at a single timestamp to corrupt node memory states. The attack identifies high-degree victim nodes and their neighbors, then strategically injects fake messages at a selected timestamp to manipulate their memory states. MemStranding simulates fake neighbors by sampling from Gaussian distributions based on the standard deviation of current neighbor memory vectors, creating target noisy memory states that degrade model performance. The attack is persistent, affecting all future predictions after the injection timestamp. In our experimental evaluation, we integrate MemStranding as a strong baseline with a 5% attack budget, demonstrating that while it can achieve significant performance degradation in some cases (notably achieving the best performance on TGN-MOOC with 0.0949 MRR), our TR-BCD method consistently outperforms it across most model-dataset combinations, highlighting the advantages of our distributed gradient-based approach over single-shot burst attacks. Due to the lack of publicly available code and since the authors did not provide a copy upon request, we re-implemented their attack for our experiments.

**Memory Requirements for TR-BCD.** If we assume 4 bytes per parameter and the default batch size of 200, then storing the parameters alone for Reddit requires  $4 B \cdot 10,984^2 \cdot 15\% \cdot 672,447/200 \approx 243$  GB. Here, we assume that for each benign test batch, we may choose the perturbations from the  $10,984 \times 10,984$  edges of Reddit (no duplicates allowed within a single adversarial batch).

## D CONTEXTUAL PERTURBATION ON TEST EDGES

Table 5: Feature perturbation attack (using FGSM) results for temporal link prediction on attributed CTDG datasets with  $\epsilon = 0.3$ . Performance is reported in Mean Reciprocal Rank (MRR), averaged over five trials.

| Model | Attack | Wikipedia           | Reddit              | MOOC                |
|-------|--------|---------------------|---------------------|---------------------|
| TGN   | None   | $0.3929 \pm 0.0366$ | $0.4550 \pm 0.0485$ | $0.1574 \pm 0.0590$ |
|       | FGSM   | $0.2638 \pm 0.0388$ | $0.4518 \pm 0.0444$ | $0.1569 \pm 0.0581$ |
| TNCN  | None   | $0.7207 \pm 0.0009$ | $0.7228 \pm 0.0064$ | $0.2521 \pm 0.0192$ |
|       | FGSM   | $0.6944 \pm 0.0230$ | $0.6559 \pm 0.0492$ | $0.2475 \pm 0.0235$ |

Our method attacks the victim models primarily through structural perturbations as outlined in Section 4. In addition, we explore the effect of applying contextual perturbations to the features of the adversarial edges. As detailed in Section 5, incorporating contextual perturbations on these edges results in little to no additional degradation in test performance, suggesting that the models are mainly vulnerable to structural changes. To further validate our findings, we also experiment with applying contextual attacks directly on the test edges. In this setup, we inject a small amount of noise, crafted via FGSM (Goodfellow, 2014), into the feature space of the test data. Our experiments reveal that applying FGSM-based contextual perturbations to the edge features produces varied effects across models and datasets. For instance, while TGN on Wikipedia experiences a noticeable drop in MRR when subjected to FGSM, the impact on TNCN and on other datasets such as Reddit and MOOC

810 remains minimal. These results suggest that, although direct feature perturbations can influence  
 811 performance in certain cases, the dominant vulnerability stems from structural perturbations.  
 812

## 813 E ABLATION STUDY ON PERTURBATION CONTRIBUTIONS

816 While our main experiments demonstrate the effectiveness of TR-BCD across different datasets and  
 817 models, understanding the individual contribution of each perturbation type is crucial for developing  
 818 targeted defense strategies. To this end, we conduct an extended ablation study focusing on the  
 819 contribution of individual perturbations to the overall attack performance.

820 **Experimental Setup.** We evaluate the impact of different perturbation combinations on both TGN  
 821 and TNCN models across three representative datasets: Wikipedia, Subreddit, and MOOC. These  
 822 datasets were selected to provide diversity in terms of graph structure (bipartite vs. non-bipartite),  
 823 temporal dynamics, and feature availability. The perturbation variations are defined as follows:

- 825 • **Structural Only:** TR-BCD for edge selection, timestamps chosen randomly within the  
 826 dataset’s time range, random valid features sampled from the dataset.
- 827 • **Structural + Temporal:** Current TR-BCD setting with TR-BCD for node pair selection,  
 828 Gaussian sampling for timestamps, valid features from dataset.
- 829 • **Structural + Contextual:** TR-BCD for node pair selection, random timestamp selection,  
 830 FGSM applied to valid edge features.
- 831 • **All Perturbations:** Complete TR-BCD implementation.

833 **Results and Analysis.** Table 6 presents the comprehensive ablation results across all perturbation  
 834 combinations. The results reveal several important insights about the relative effectiveness of different  
 835 perturbation types.

837 Table 6: Extended ablation study results showing the contribution of individual perturbation types  
 838 to attack performance. Performance is measured in Mean Reciprocal Rank (MRR) averaged over 5  
 839 trials. Bold values indicate the best performing attack for each model-dataset combination.

| 840 Model       | 841 Perturbations     | 842 Wikipedia                         | 843 Subreddit                         | 844 MOOC                              |
|-----------------|-----------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| 843 <b>TGN</b>  | No Attack             | $0.3929 \pm 0.0366$                   | $0.4550 \pm 0.0485$                   | $0.1574 \pm 0.0590$                   |
|                 | Structural Only       | $0.2504 \pm 0.0618$                   | <b><math>0.3037 \pm 0.1091</math></b> | $0.1320 \pm 0.0554$                   |
|                 | Structural+Temporal   | $0.2233 \pm 0.0546$                   | $0.3350 \pm 0.1191$                   | <b><math>0.1245 \pm 0.0491</math></b> |
|                 | Structural+Contextual | $0.2538 \pm 0.0552$                   | $0.3233 \pm 0.1124$                   | $0.1266 \pm 0.0480$                   |
|                 | All Perturbations     | <b><math>0.2073 \pm 0.0597</math></b> | $0.3403 \pm 0.1063$                   | $0.1273 \pm 0.0423$                   |
| 848 <b>TNCN</b> | No Attack             | $0.7207 \pm 0.0009$                   | $0.7228 \pm 0.0064$                   | $0.2521 \pm 0.0192$                   |
|                 | Structural Only       | $0.7050 \pm 0.0099$                   | $0.6404 \pm 0.1009$                   | <b><math>0.1118 \pm 0.0285</math></b> |
|                 | Structural+Temporal   | $0.7057 \pm 0.0167$                   | $0.5869 \pm 0.1688$                   | $0.1164 \pm 0.0236$                   |
|                 | Structural+Contextual | $0.7082 \pm 0.0113$                   | $0.6123 \pm 0.1368$                   | $0.1138 \pm 0.0275$                   |
|                 | All Perturbations     | <b><math>0.7043 \pm 0.0097</math></b> | <b><math>0.5807 \pm 0.1802</math></b> | $0.1149 \pm 0.0297$                   |

852 The ablation results reveal several important patterns that provide deeper insights into the vulnerability  
 853 landscape of temporal graph neural networks:

855 **Dominance of Structural Perturbations.** Structural perturbations alone demonstrate remarkable  
 856 effectiveness, sometimes achieving superior performance compared to combinations with other  
 857 perturbation types. This finding is particularly evident for TGN on the Subreddit dataset, where  
 858 structural-only attacks achieve the best performance ( $0.3037 \pm 0.1091$ ), outperforming even the com-  
 859 plete attack combination. This suggests that the topological structure of temporal graphs represents  
 860 the primary attack surface for adversarial perturbations.

861 **Complementary Effects of Perturbation Types.** While structural perturbations form the foundation  
 862 of effective attacks, the combination of all perturbation types yields the strongest attack in approxi-  
 863 mately half of the cases. For TGN on Wikipedia and TNCN on both Wikipedia and Subreddit, the  
 864 complete attack achieves optimal performance. This indicates that while structural perturbations are

864 necessary, temporal and contextual perturbations can provide complementary benefits that enhance  
 865 overall attack effectiveness.  
 866

867 **Dataset-Model Interplay** The results reveal a complex interplay between dataset characteristics and  
 868 model vulnerabilities. Each dataset-model combination exhibits distinct susceptibility patterns:  
 869

- 870 • **TGN on Wikipedia:** Benefits most from the complete attack combination, suggesting this  
 871 model-dataset pair is vulnerable to coordinated multi-dimensional perturbations  
 872
- 873 • **TGN on Subreddit:** Most vulnerable to structural-only attacks, indicating that temporal  
 874 and contextual perturbations may introduce noise that reduces attack effectiveness  
 875
- 876 • **TNCN on MOOC:** Shows optimal vulnerability to structural-only attacks, highlighting the  
 877 importance of graph topology for this particular combination  
 878

879 **Temporal vs. Contextual Perturbations** The comparison between structural+temporal and struc-  
 880 tural+contextual perturbations reveals interesting patterns. Temporal perturbations appear to be more  
 881 effective for TGN on Wikipedia and MOOC datasets, while contextual perturbations show mixed  
 882 results. This suggests that temporal dynamics play a more critical role in determining model vulne-  
 883 rability than feature perturbations, particularly for models that rely heavily on temporal reasoning.  
 884

885 **Implications for Defense Strategies** These findings have important implications for developing  
 886 robust temporal graph neural networks:  
 887

- 888 • **Prioritize Structural Defense:** Given the dominance of structural perturbations, defense  
 889 mechanisms should prioritize protecting graph topology integrity  
 890
- 891 • **Model-Specific Vulnerabilities:** Different models exhibit varying susceptibility patterns,  
 892 suggesting the need for model-specific defense strategies  
 893
- 894 • **Dataset-Dependent Robustness:** The varying effectiveness across datasets indicates that  
 895 robustness evaluation should consider multiple graph types and domains  
 896
- 897 • **Multi-Dimensional Defense:** While structural defense is primary, comprehensive defense  
 898 strategies should address temporal and contextual perturbations as well  
 899

900 This extended ablation study provides crucial insights into the relative contributions of different  
 901 perturbation types in adversarial attacks on temporal graph neural networks. The results demonstrate  
 902 that while structural perturbations form the foundation of effective attacks, the optimal attack strategy  
 903 varies significantly across different model-dataset combinations. These findings underscore the  
 904 importance of developing comprehensive defense strategies that address multiple attack vectors while  
 905 recognizing the dataset-model specific nature of vulnerabilities in temporal graph learning systems.  
 906

## 907 F SENSITIVITY ANALYSIS

### 908 F.1 THE EFFECT OF BLOCK SIZE

909 We study the impact of varying the block size parameter  $b$  in our TR-BCD attack algorithm on attack  
 910 effectiveness across different datasets and temporal graph neural network (TGNN) models. The  
 911 block size in TR-BCD denotes the size of the sample space of edge candidates that are randomly  
 912 selected and optimized at each iteration of the attack algorithm. By limiting gradient-based updates  
 913 and memory usage to a block of size  $b$ , this parameter enables the attack to scale efficiently in large  
 914 temporal graphs, while maintaining the ability to select adversarial edges from a sufficiently diverse  
 915 pool. Larger block sizes allow for higher attack effectiveness due to greater candidate diversity,  
 916 but incur higher computational cost per iteration, whereas small blocks increase efficiency but may  
 917 reduce attack strength by limiting the solution space explored. We evaluate four block sizes ranging  
 918 from 100 to 100000, measuring the mean reciprocal rank (MRR) drop averaged over 3 evaluation  
 919 runs. The results in Table 7 are reported for two model groups: Temporal Graph Network (TGN)  
 920 and Temporal Neural Common Neighbor (TNCN), across the three datasets: Wikipedia, Reddit, and  
 921 MOOC. The results show that the strength of the attack generally increases with block size before  
 922

918  
919  
920  
921 Table 7: MRR drop ( $\downarrow$ ) under TR-BCD attack for varying block sizes. Results are reported for TGN  
922 and TNCN models across Wiki, Reddit, and MOOC datasets.

| Model | Block Size | Wikipedia           | Reddit              | MOOC                |
|-------|------------|---------------------|---------------------|---------------------|
| TGN   | 100        | $0.3748 \pm 0.0262$ | $0.4375 \pm 0.0442$ | $0.1359 \pm 0.0367$ |
|       | 1000       | $0.3072 \pm 0.0290$ | $0.4261 \pm 0.0499$ | $0.1288 \pm 0.0287$ |
|       | 10000      | $0.2533 \pm 0.0674$ | $0.3433 \pm 0.1499$ | $0.1169 \pm 0.0237$ |
|       | 100000     | $0.2892 \pm 0.0735$ | $0.2474 \pm 0.1631$ | $0.0908 \pm 0.0053$ |
| TNCN  | 100        | $0.7200 \pm 0.0003$ | $0.7219 \pm 0.0070$ | $0.2193 \pm 0.0082$ |
|       | 1000       | $0.7187 \pm 0.0007$ | $0.7246 \pm 0.0018$ | $0.1898 \pm 0.0100$ |
|       | 10000      | $0.7122 \pm 0.0028$ | $0.6661 \pm 0.0764$ | $0.1149 \pm 0.0118$ |
|       | 100000     | $0.6998 \pm 0.0029$ | $0.4929 \pm 0.1246$ | $0.1161 \pm 0.0146$ |

930  
931 plateauing. In most cases, the largest block size corresponds to the strongest attack. Exceptions are  
932 limited to two cases, where the attack MRR at the largest block size remains within one standard  
933 deviation of the best-observed attack outcome.

## 934 F.2 THE EFFECT OF $\epsilon$ IN CONTEXTUAL PERTURBATION

935  
936  
937  
938 In this section, we investigate how the intensity of contextual perturbation, parameterized by  $\epsilon$   
939 in the FGSM attack, affects the robustness of Temporal Graph Neural Networks (TGNs) under  
940 adversarial edge feature modification. The FGSM-based contextual attack perturbs edge features  
941 of positive edges, with  $\epsilon$  controlling the maximum  $L_\infty$  norm of the perturbation for each feature  
942 dimension. Larger values of  $\epsilon$  allow for greater changes in features, typically resulting in more  
943 effective attacks (Goodfellow, 2014). Table 8 shows that increasing the  $\epsilon$  generally strengthens the  
944 contextual attack, resulting in lower MRR scores on Wikipedia and Reddit datasets for both TGN  
945 and TNCN models. The highest value  $\epsilon = 1.0$  consistently produces the lowest MRR, except for the  
946 MOOC data set, where there is little change, possibly due to the limited variance in its edge features.  
947 This emphasizes that attack strength via feature perturbation is highly dependent on both the chosen  $\epsilon$   
948 and underlying dataset properties.

949  
950 Table 8: MRR drop ( $\downarrow$ ) for varying  $\epsilon$  in FGSM contextual perturbation on positive edges, across TGN  
951 and TNCN models and three datasets. The lowest mean MRR in each column is marked in **bold**.

| Model | $\epsilon$ | Wiki                | Reddit              | Mooc                |
|-------|------------|---------------------|---------------------|---------------------|
| TGN   | 0          | $0.4105 \pm 0.0195$ | $0.4719 \pm 0.0471$ | $0.1428 \pm 0.0503$ |
|       | 0.1        | $0.3872 \pm 0.0212$ | $0.4756 \pm 0.0445$ | $0.1424 \pm 0.0500$ |
|       | 0.3        | $0.2999 \pm 0.0269$ | $0.4798 \pm 0.0367$ | $0.1417 \pm 0.0486$ |
|       | 0.7        | $0.1657 \pm 0.0335$ | $0.4553 \pm 0.0376$ | $0.1423 \pm 0.0461$ |
|       | 1.0        | $0.1103 \pm 0.0232$ | $0.4174 \pm 0.0456$ | $0.1423 \pm 0.0432$ |
| TNCN  | 0          | $0.7212 \pm 0.0009$ | $0.7264 \pm 0.0014$ | $0.2439 \pm 0.0154$ |
|       | 0.1        | $0.7187 \pm 0.0013$ | $0.7238 \pm 0.0022$ | $0.2425 \pm 0.0174$ |
|       | 0.3        | $0.7007 \pm 0.0175$ | $0.6929 \pm 0.0113$ | $0.2396 \pm 0.0200$ |
|       | 0.7        | $0.4690 \pm 0.1670$ | $0.1132 \pm 0.0219$ | $0.2334 \pm 0.0241$ |
|       | 1.0        | $0.3486 \pm 0.1709$ | $0.0424 \pm 0.0059$ | $0.2266 \pm 0.0264$ |

## 964 965 G EDGE INSERTION VS. DELETION

966  
967 While our main approach focuses on adversarial edge insertion attacks, an alternative strategy  
968 involves edge deletion, where existing edges are removed from the temporal graph. To explore  
969 this complementary attack surface, we adapted TR-BCD to perform edge deletion by treating the  
970 real edges in each batch as candidates and “flipping” selected edge weights from 1 to 0, effectively  
971 removing them before the memory-update step. This approach targets the models by limiting the

972 information flow within the temporal graph, potentially degrading the established temporal patterns  
 973 and node relationships in the model memory.  
 974

975 Table 9 presents results comparing edge deletion attacks with our best insertion-based method across  
 976 three datasets and the two TGNN architectures. The results reveal interesting patterns in model  
 977 vulnerability to different perturbation strategies.

978 Table 9: Comparison of edge deletion and insertion attacks on temporal link prediction. Performance  
 979 is reported in Mean Reciprocal Rank (MRR) averaged over 5 trials. Bold values indicate the best  
 980 attack performance for each model-dataset combination.  
 981

| Model | Attack Strategy        | Wikipedia                             | Enron                                 | UCI                                   |
|-------|------------------------|---------------------------------------|---------------------------------------|---------------------------------------|
| TGN   | No Attack              | $0.3929 \pm 0.0366$                   | $0.4257 \pm 0.0123$                   | $0.3058 \pm 0.0104$                   |
|       | Edge Deletion (TR-BCD) | $0.3708 \pm 0.0428$                   | <b><math>0.2294 \pm 0.0190</math></b> | <b><math>0.2000 \pm 0.0525</math></b> |
|       | Best Insertion         | <b><math>0.1934 \pm 0.0587</math></b> | $0.2321 \pm 0.0229$                   | $0.2857 \pm 0.0181$                   |
| TNCN  | No Attack              | $0.7207 \pm 0.0009$                   | $0.4257 \pm 0.0123$                   | $0.4839 \pm 0.0030$                   |
|       | Edge Deletion (TR-BCD) | $0.7060 \pm 0.0036$                   | $0.4248 \pm 0.0144$                   | <b><math>0.4456 \pm 0.0023</math></b> |
|       | Best Insertion         | <b><math>0.7021 \pm 0.0137</math></b> | <b><math>0.3980 \pm 0.0232</math></b> | $0.4793 \pm 0.0025$                   |

990 The comparative analysis reveals that both attack strategies demonstrate effectiveness, but with  
 991 notable variations across datasets and architectures.

992 The comparative analysis reveals that both attack strategies demonstrate effectiveness, but with  
 993 notable variations across datasets and architectures. For TGN models, edge deletion attacks prove  
 994 particularly effective on the Enron and UCI datasets, achieving substantial performance degradation.  
 995 However, on Wikipedia, the insertion-based approach maintains superiority, reducing MRR by over  
 996 50%. TNCN models show greater resilience to edge deletion attacks overall, with insertion-based  
 997 methods consistently achieving better or comparable attack performance across all datasets. While  
 998 not the main focus of this work, future work should consider applying our TR-BCD in a setting of  
 999 simultaneous edge insertion and deletion, as each exploits different vulnerabilities in temporal graph  
 1000 neural networks and due to TR-BCD’s straightforward adaptation to this joint setting.

1001  
 1002  
 1003  
 1004  
 1005  
 1006  
 1007  
 1008  
 1009  
 1010  
 1011  
 1012  
 1013  
 1014  
 1015  
 1016  
 1017  
 1018  
 1019  
 1020  
 1021  
 1022  
 1023  
 1024  
 1025