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ABSTRACT

Real-world relations are dynamic and often modeled as temporal graphs, making
Temporal Graph Neural Networks (TGNNs) crucial for applications like fraud
detection, cybersecurity, and social network analysis. However, our study reveals
critical vulnerabilities in these models through three types of adversarial attacks:
structural, contextual, and temporal perturbations. We introduce Temporally-aware
Randomized Block Coordinate Descent (TR-BCD), a novel gradient-based evasion
attack framework for continuous-time dynamic graphs. Unlike previous approaches
that rely on heuristics or require training data access, TR-BCD optimizes adversarial
edge selection through continuous relaxation while maintaining realistic temporal
patterns. Through extensive experiments on six temporal networks, we demonstrate
that TGNNs are highly vulnerable to TR-BCD attacks, reducing Mean Reciprocal
Rank (MRR) by up to 53% while perturbing only 5% of edges. Our attacks
are highly effective against state-of-the-art models, including TGN and TNCN,
highlighting the importance of studying adversarial robustness for temporal graph
learning methods.

1 INTRODUCTION

Graphs are ubiquitous in representing complex relations between entities, such as social networks (Ku-
mar et al., 2019), traffic networks (Ding et al., 2021), biological networks (Barabasi & Oltvai, 2004),
transaction networks (Ni et al., 2019; Shamsi et al., 2022) and political networks (Fowler, 2006;
Huang et al., 2020). Recently, Graph Neural Networks (GNNs) have demonstrated state-of-the-art
performance across a variety of graph learning tasks (Hu et al., 2020; 2021). However, there has
been compelling evidence showing that GNNs are not robust to adversarial perturbations (Zügner
et al., 2018; Günnemann, 2022; Ma et al., 2020), which raises concerns about their deployment in
real-world large-scale applications (Hamilton et al., 2017; Ying et al., 2018).

Many real-world graphs are inherently dynamic, with frequent node or edge additions. These evolving
networks are often modeled as temporal graphs, requiring ML models to learn both structural and
temporal dependencies. To tackle this challenge, Temporal Graph Neural Networks (TGNNs) have
been proposed to perform tasks such as link prediction (Huang et al., 2024) and node classifica-
tion (Rossi et al., 2020). One popular approach is the Temporal Graph Network (TGN) (Rossi et al.,
2020), which processes a continuous stream of edges (in the continuous-time dynamic graph setting)
and makes predictions for future events based on past interactions stored in memory.

While the robustness of static graphs has been extensively studied (Xu et al., 2019; Zügner et al.,
2018; 2020; Wang & Gong, 2019; Wu et al., 2019; Dai et al., 2018), the vulnerabilities of TGNNs
to adversarial perturbations remain under-explored. The increasing deployment of temporal graph
learning methods in high-stakes applications makes understanding their robustness critical. For
example, in financial transaction networks, fraudsters can strategically insert fake transactions to
evade detection systems - a single compromised account could be used to create seemingly legitimate
transaction patterns that mask fraudulent activity (Kim et al., 2024). Similarly, in cybersecurity,
attackers can carefully time network connections and craft traffic patterns to avoid intrusion detection
systems that rely on temporal graph analysis (Idé & Kashima, 2004; Yoon et al., 2019). Even in
social networks, malicious actors can orchestrate coordinated influence campaigns by tactically
building connections over time to maximize their reach while appearing organic to automated
detection methods (Del Vicario et al., 2016). These scenarios highlight how adversaries can exploit
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Figure 1: Evasion attacks for CTDGs. Both structural and contextual attacks are applied at inference
time on a trained model. The adversarial attacks corrupts the model memory.

temporal patterns to circumvent safeguards. A key advantage of TGNNs is their ability to rapidly
update internal node representations during inference without requiring backpropagation (Rossi et al.,
2020). In contrast to prior work focusing on poisoning attacks during training (Lee et al., 2024),
we investigate adversarial evasion attacks—attacks occurring after model deployment that do not
require modifications to the training data (see Figure 1). While the only existing evasion attack on
TGNNs (Dai et al., 2023) is limited in scope, we formalize a general attack setting and propose a
gradient-based method that inserts new edges among existing nodes.

Temporal graphs present unique challenges due to the interplay between temporal, structural, and
contextual dimensions. In static graphs, adversarial modifications are confined to the topology;
however, temporal graphs involve an additional attack surface through the timing and sequencing of
interactions. These graphs encapsulate multiple layers of information: namely, structure, attributes,
and temporal evolution, which necessitates adversarial attacks that can modify graph topology, corrupt
edge features, and alter chronological order. Consequently, perturbations must be precisely timed
and coordinated with the graph’s natural evolution while navigating a vast combinatorial search
space. This temporal attack setting presents three interconnected technical challenges. First, memory
complexity challenge: naı̈vely optimizing edge perturbations requires Θ(|E| × |V |2) memory to
store all possible edge perturbations, prohibitive for large graphs (e.g., Reddit: 243GB). Second,
temporal propagation challenge: unlike static graphs where perturbations are isolated, TGNNs’
memory modules cause corrupted states to persist and compound across future predictions. Third,
candidate selection challenge: with budget constraints, randomly sampling from |V |2 possible edges
is suboptimal; we need to exploit TGNN training objectives to identify high-impact candidates.
To address these challenges, we introduce three types of perturbations for Continuous-Time Dy-
namic Graphs (CTDGs): (1) structural perturbations through the insertion of adversarial edges,
(2) contextual perturbations that corrupt edge features in attributed graphs, and (3) temporal per-
turbations that adjust timestamps for adversarial edge insertions to maintain temporal consistency.
These perturbations can be applied individually or in combination. To incorporate these pertur-
bations, we introduce Temporally-aware Randomized Block Coordinate Descent (TR-BCD), the
first gradient-based evasion attack strategy for TGNNs to explore these attacks. Unlike existing
methods that rely on heuristic constraints and require training data access (Lee et al., 2024), or use
heuristic attack strategies with simplistic evaluation metrics (Dai et al., 2023), TR-BCD operates as
an evasion attack optimizing adversarial edge selection through continuous relaxation, taking the
model architecture and parameters into account. We evaluated TR-BCD against Temporal Graph
Benchmark (TGB) (Huang et al., 2024), which frames link prediction as a ranking problem using
Mean Reciprocal Rank (MRR) over historical and random negatives, ensuring a robust evaluation of
attack effectiveness. Our contributions are summarized as follows:

• General framework for adversarial attack on CTDGs. In this work, we present a general
framework of adversarial attacks on CTDGs, including three complementary perturbation types:
structural (edge insertions), contextual (feature modifications), and temporal (timestamp manipula-
tion). Our framework defines permissible perturbations through principled constraints on budget,
temporal patterns, and feature deviations to ensure realistic attacks.

• Novel Temporally-aware evasion attack. We propose TR-BCD, a gradient-based method that
strategically distributes adversarial edges across temporal batches. TR-BCD optimizes edge
selection through continuous relaxation and leverages both random and challenging historical

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

negative samples as attack candidates. Unlike previous work that relies on heuristics or requires
training data access, our method directly optimizes an adversarial objective during inference.

• Extensive empirical evaluation revealing vulnerabilities. Through comprehensive experiments
across six datasets, we demonstrate that TR-BCD consistently degrades model performance,
achieving up to 53% reduction in Mean Reciprocal Rank (MRR) while perturbing only 5% of
edges. Our attacks are highly effective against state-of-the-art models including TGN and TNCN,
revealing critical vulnerabilities in current temporal graph learning approaches.

2 RELATED WORK

Temporal Graph Learning. Kazemi et al. (2020) categorized temporal graphs into Discrete Time
Dynamic Graphs (DTDGs) and Continuous Time Dynamic Graphs (CTDGs). In this work, we
focus on CTDGs, however our adversarial attack formulation in Section 3 can be easily extended
to DTDGs. CTDG methods receive a continuous stream of edges as input and make predictions
over any possible timestamps. For efficiency, the stream is typically divided into fixed-size batches
processed sequentially. CTDG methods incorporate newly observed information by updating internal
representations, often tracking node states over time and sampling temporal neighborhoods for
prediction. Temporal Graph Network (TGN) (Rossi et al., 2020) introduced a memory-based encoder
architecture that produces node embeddings for downstream tasks like link prediction and node
classification. Its memory module stores node histories to model long-term dependencies, aggregating
embeddings of participating nodes and their temporal neighbors for predictions. Building on this,
Temporal Neural Common Neighbor (TNCN) (Zhang et al., 2024) enhanced link prediction by
incorporating common neighbors into more discriminative edge representations through a temporal
dictionary of multi-hop neighbors, achieving state-of-the-art performance.

Robustness of GNNs and TGNNs. RL-S2V (Dai et al., 2018) and Nettack (Zügner et al., 2018)
pioneered adversarial attacks on node classification by manipulating both graph structure and node
features. Similar to Nettack, Projected Gradient Descent (PGD) (Xu et al., 2019) introduced gen-
eral gradient-based topology attacks through iterative optimization of edge perturbation matrices.
However, PGD’s memory requirements scale quadratically with the number of nodes. Projected
Randomized Block Coordinate Descent (PR-BCD) (Geisler et al., 2021) improves scalability with
sparsity-aware optimization that iteratively generates sparse adjacency matrices while satisfying
budget constraints. Its greedy variant, GR-BCD (Geisler et al., 2021), which we adapt for our work,
efficiently selects optimal source-node pairs for adversarial edge insertion. MemStranding (Dai et al.,
2023) attacks temporal graph networks by corrupting node memories through strategically injected
fake events. It identifies high-degree victim nodes and their neighbors, iteratively updates their states
until convergence using GNN smoothing properties (Li et al., 2018), and ensures persistent influence
by adding augmented future neighbors. T-Spear (Lee et al., 2024) introduced a model-agnostic
poisoning attack for continuous-time dynamic graphs that corrupts training data while maintaining
realistic temporal patterns. It uses a surrogate model to identify candidate edges for perturbation,
enforces constraints on temporal distribution and node connectivity, and samples adversarial edge
features using Kernel Density Estimation. While T-Spear relies on heuristic constraints, our approach
optimizes an objective function for adversarial node pair selection, though we adopt similar temporal
perturbation strategies using Gaussian priors for modeling time differences between edges.

3 PROBLEM STATEMENT

In this section, we formulate the problem of adversarial attacks on temporal graphs. We start for
introducing TG notations.

Definition 3.1 (Continuous-Time Dynamic Graph). A Continuous-Time Dynamic Graph (CTDG) G
is defined as a tuple G = (V, E , T ,F), where:

• V is the set of vertices

• E ⊆ V × V × R≥0 is the set of timestamped edges: (u, v, t) ∈ E means edge (u, v) is
observed at time t.

• T = {t1, . . . , t|E|} = {t | (u, v, t) ∈ E} is the set of timestamps with 0 ≤ t1 ≤ . . . ≤ t|E|
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• F = {f1, . . . , f|E|} ⊂ RD is the set of edge features (optional)
Definition 3.2 (Temporal Link Prediction). Given a CTDG G, temporal link prediction involves
learning a function hθ : V×V×R → [0, 1] that estimates the probability of an edge existing between
nodes u, v ∈ V at time t ∈ R. The function hθ can utilize all information in G up to time t to make
its prediction.

Dynamic graphs can be perturbed in multiple ways: by modifying the graph structure (structural
perturbation), edge features (contextual perturbation), or edge timestamps (temporal perturbation).
Moreover, the perturbations may be additive or modify elements in the clean graph. Formally, we
define an adversarial attack as:
Definition 3.3 (CTDG Adversarial Attacks). Let G′ ∈ Φ(G) be the perturbed graph chosen from the
set of permissible perturbations Φ(G) in the vicinity of the clean graph G. Then, an adversarial attack
is concerned with the following optimization problem:

max
G′∈Φ(G)

Lattack(hθ(G′),G) (1)

where Lattack is a loss function that quantifies the model’s prediction error on the perturbed graph
G′ vs. the clean graph G. The attacker aims to minimize the model’s link prediction performance by
optimizing Equation 1 where Lattack is the loss function on the perturbed graph G′ in relation to model
hθ. For link prediction, this is typically the negative Mean Reciprocal Rank (MRR) or margin-based
loss designed to degrade ranking performance.

TGNN Memory Modules: For TGNNs with memory modules (e.g., TGN, TNCN), each node v

maintains a memory state m(t)
v that evolves as edges arrive sequentially. At each inference step when

processing edges Et = {(ui, vi, ti, fi)}|Et|
i=1 , the model updates memory as:

m(t+1)
v = UpdateMemoryθ(m

(t)
v , Et) (2)

where the memory state is then used to generate predictions: ŷ = hθ(m
(t+1), Et). The key insight

is that adversarial edges corrupt memory: m(t+1)
v = UpdateMemoryθ(m

(t)
v , Et ∪ Eadv), and this

corrupted state persists across all future time steps, compounding the attack’s impact. This memory
coupling distinguishes temporal attacks from static graph attacks where perturbations are localized.
Figure Figure 1 visualizes this memory pollution propagation across batches.

Threat Model and Attack Setting. To establish clear baselines for comparing adversarial attacks
on TGNNs, we formally specify our threat model and attacker capabilities. Understanding these
assumptions is critical for practitioners deploying TGNNs and for researchers developing defense
mechanisms. We consider a white-box evasion attack in the test-time setting, where attacks occur
after model deployment without access to training data. This setting is appropriate for scenarios
where adversaries target deployed systems, such as fraud detection or intrusion detection systems
that have already been trained and fixed. We assume the attacker has full white-box access to the
victim TGNN, including: (1) model architecture and hyperparameters, (2) all trainable parameters
(e.g., embedding matrices, attention weights), (3) node and edge embeddings at test time, and (4)
model gradients with respect to the loss function. This white-box formulation establishes an upper
bound on attack effectiveness. This threat model aligns with established practices in adversarial
robustness literature Xu et al. (2019); Geisler et al. (2021); Günnemann (2022) for two key reasons.
First, white-box attacks establish necessary conditions for vulnerability, if a model resists white-box
attacks, it is inherently more robust to restricted black-box or transfer attacks. Second, white-box
attacks model realistic scenarios where adversaries have significant reconnaissance capabilities (e.g.,
insider threats, model extraction attacks, or organizations with shared infrastructure).

Attack Constraints and (Un-) Noticeability. In the seminal work on adversarial attacks on deep
learning methods, Szegedy et al. (2014) proposed the concept of unnoticeability (“imperceptibly
tiny perturbations”) since it usually does not alter the true semantics (“underlying class” in their
classification setting). Hence, a key requirement for adversarial attacks is that its perturbations should
be unnoticeable. This is especially true if we cannot rely on application-specific insights about the true
semantics (e.g., see Geisler et al. (2022)). Following the best practices of adversarial robustness in
the graph domain and beyond (Günnemann, 2022), the attacker can perform the following operations
within a fixed perturbation budget: (1) structural perturbations: insert new edges (u, v, t) among
existing nodes by modifying the edge set E; (2) temporal perturbations: choose timestamps t
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Figure 2: The adversarial edges are inserted at each batch as a small portion of the real edges
(constrained by budge β(t). The attacks gradually corrupt the victim model’s memory step by step.

Algorithm 1: TR-BCD Evasion Attack on TGNN
Input: Test graph Gtest, TGNN hθ with memory M
Params.: Attack budget β(t)

1 for E , T ,F in batch(Gtest) do
2 Ẽ , T̃ , F̃ ← TR-BCDstep(E , T ,F , hθ,M, β(t)) ; // See Algorithm 2

3 M ← UpdateMemoryhθ
(M, Ẽ , T̃ , F̃);

4 M, ŷ ← hθ(M, E , T ,F);
5 end
6 return all predictions ŷ ;

for adversarial edges such that perturbations reflect realistic temporal patterns; and (3) contextual
perturbations: modify edge feature vectors f within a bounded Euclidean distance (for attributed
graphs). All perturbations are additive: the attacker adds adversarial edges to the clean graph without
removing or modifying existing edges. The total number of inserted edges is constrained by budget
δt, defined as a percentage of edges in each test batch.

To ensure attacks remain realistic and unnoticeable, we enforce three key constraints. Temporal
Causality: All adversarial edge timestamps must respect the temporal history of affected nodes.
Specifically, for any adversarial edge (u, v, tadv), we require tadv ≥ tmin(u, v), where tmin(u, v) is
the earliest observed interaction time for nodes u and v in the clean graph. This prevents causally
inconsistent attacks. Budget Constraint: The number of edges inserted in each batch cannot exceed
⌊δt · |Ebatch|⌋, where |Ebatch| is the number of benign edges in the current batch. Feature Deviation
Bound: For contextual perturbations, edge feature modifications are bounded by ∥fadv − f∥2 ≤ ϵf for
a specified threshold ϵf .

4 TR-BCD ATTACK

We propose Temporally-aware Randomized Block Coordinate Descent (TR-BCD), a greedy gradient-
based discrete optimization method for adversarial evasion attacks in CTDGs. To alleviate the
prohibitive memory requirements of the optimization problem in Equation (1) with the challenging
additive perturbations, we follow two strategies: (1) we greedily apply the attack before each benign
batch at inference time; (2) we leverage Randomized Block Coordinate Descent.

Greedily over time. As we detail in Algorithm 1, we greedily optimize for the adversarial pertur-
bations. That is, in each time step, we choose adversarial perturbations given the information up
to this point in time. Thereafter, we use the perturbed edges to update the model’s memory. This
greedy procedure reduces the memory complexity from Θ(|E||V|2) to Θ(|V|2). However, due to
the perturbed memory, we then indirectly affect the model’s predictions. We refer to Figure 2 for a
graphical illustration of the memory pollution process.

Modeling of Edge Insertions. In each call of TR-BCD, we choose up to β(t) edges to insert.
We further simplify the procedure by allowing solely a distinct set of edges in each adversarial
memory update (line 3 in Algorithm 1). Thus, we can model the possible insertions using a matrix
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Algorithm 2: Step of Temporally-Aware Randomized Block Coordinate Descent (TR-BCD)
Input: E , T ,F , TGNN hθ , Memory M , Budget β(t)
Params.: Block size b, Lattack, time std. σ∆t, feat. budget ϵ
Initialize: B ∈ [0, 1]|V|×|V| and sample block of size b.
// Temporal Perturbation:

1 T̃ ← min(T ) + ∆t, where ∆t ∈ Rb
≥0 s.t. ∆t ∼ N (0, σ2

∆t);
// Structural Perturbation:

2 F̃ ← Sample from edges where t < min(T );
3 M̃ ← UpdateMemoryhθ

(M, Ẽ(B), T̃ , F̃);
4 ŷ← hθ(M̃, Ẽ(B), T̃ , F̃);
5 Ẽ , T̃ , F̃ ← get top β of Ẽ , T̃ , F̃ according to∇BLattack(ŷ);
// Optional Contextual Perturbation:

6 F̃ ← F̃ + ϵ · sign(∇F̃Lattack(ŷ));
7 return Ẽ , T̃ , F̃ ;

B ∈ {0, 1}|V|×|V|, where a one denotes an edge insertion–much alike an adjacency matrix of a static
(non-multi) graph. The optimization problem for each time step sets up to β(t) entries/edges in B to
one with the goal of maximizing the loss Lattack.

Gradient-Based Procedure to Choose Discrete Edges. To use a gradient based attack on discrete
edges, we follow Xu et al. (2019) and relax the edges from {0, 1}|V|×|V| to [0, 1]|V|×|V| during
the attack. In other words, we introduce edge weights. We can then use the gradient ∇BLattack

to optimize over these weights. While we study the greedy perturbations based on the gradient
∇BLattack, similar to GR-BCD of Geisler et al. (2021), it would also be possible to use other
optimization procedures (Geisler et al., 2021; Gosch et al., 2023).

Randomized Block Coordinate Descent. Naı̈vely optimizing over B, e.g., using gradient descent,
would require keeping Θ(|V|2) parameters in memory and incur a cost of Θ(|V|2) for gradient
evaluation. For this reason, we use Randomized Block Coordinate Descent instead. Coordinate
Descent refers to optimizing over a single parameter dimension in each step, Block Coordinate
Descent extends this to multiple dimensions, and Randomized Block Coordinate Descent chooses
the dimensions to be optimized in each step randomly. Due to its efficiency, RBCD is an established
method for large-scale gradient-based optimization (Wright, 2015).

Gradient-Based Edge Selection: The gradient-based edge selection procedure can be formally
expressed as:

Step 1 (Relaxation) : B ∈ [0, 1]|V |×|V | (3)
Step 2 (Gradient) : ∇BLattack(ŷ) (4)
Step 3 (Selection) : B∗ = top-β(t){B[i, j] : ∇BLattack[i, j] is largest} (5)

where B[i, j] = 1 indicates insertion of adversarial edge (i, j), and we greedily select the β(t) entries
with highest gradient magnitude. This relaxation from discrete {0, 1} to continuous [0, 1] enables
gradient flow during optimization, following standard practice in adversarial attacks on graphs (Xu et
al., 2019). In our context and due to the greedy flipping of entries in B, we sample b dimensions and
only need to evaluate the gradient towards the current batch. This reduces the memory complexity
from Θ(|V|2) to Θ(b). We can greedily flip β(t) entries in B in a single iteration if β(t) ≤ b.

Candidate Sampling. We find that naı̈vely sampling from all possible V × V edges can yield
suboptimal results since we usually choose b ≪ |V|2 for its lower computational cost. To keep the
computational footprint low, we remedy this limitation via a specialized candidate sampling strategy
for TGNNs. Specifically, we optionally over-represent the so-called negative historical edges of the
current batch. We call our method with fully random initial sampling TR-BCD-random and with
over-represented negative historical edges TR-BCD-mixed. For TR-BCD-mixed, we randomly sample
50% of the block from all possible V × V edges and the other 50% from the historical negative edges
of the current nodes. This mixed sampling strategy exploits the fact that TGNNs are trained with
historical negatives as challenging hard negatives edges that appeared historically but are absent at the
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Figure 3: Candidate selection in TR-BCD. For each batch, TR-BCD first constructs a candidate pool
based on random (green) and historical (orange) candidate edges for the adversarial attack.

query time. By over-representing these edges (50% of the sampled block), we bias the gradient-based
optimization toward the regions of the loss landscape where TGNNs are most sensitive. Empirically,
this recency-biased approach achieves 7.6% improvement over random sampling (50.78% vs. 43.16%
MRR drop on Wikipedia, see Table 1), validating this architectural insight. We illustrate the candidate
sampling scheme in Figure 3.

Computational Complexity. The computational space and time complexity of a single pass of
Algorithm 2 is O(b), assuming that the TGNN’s forward pass, backward pass, and memory update are
also linear in b. Hence, the complexity is O(|Etest|b) = O(|Etest|) for the entire test set (Algorithm 1),
assuming a constant batch size and b ≪ |Etest|.

5 EXPERIMENTS

In this section, we evaluate the robustness of TGNNs under evasion attacks and demonstrate the
effectiveness of our TR-BCD method. For empirical experiments, we use six widely used datasets for
link prediction in CTDGs (Poursafaei et al., 2022). We choose a mix of bipartite and non-bipartite,
attributed and non-attributed datasets to study the effect of adversarial attacks across different types
of graphs. Dataset details and statistics are reported in Appendix B. We report detailed sensitivity
analysis of TR-BCD on the effect of contextual perturbation budget and block size in Appendix E.
We use the widely-used evaluation procedure from (Huang et al., 2024) where the MRR ranking
metric is used to evaluate link prediction to predict the true destination from multiple negative edges
(including random and historical negatives). In our evaluation, we use all possible negative edges
for the Wikipedia dataset, and 100 negative edges per positive edge for the remaining datasets. we
compare the TGNN performance with no perturbation and with perturbation on the test set. To
evaluate the effect of adversarial attacks, we select strong TGNN models including TGN and TNCN
as the base model to inject attack with, referred to as the victim models. Both models have a memory
module that records past node interactions and performs test-time memory updates. The adversarial
attacks are injected into the model memory (see line 3 Algo 2). Victim model training details are in
Appendix C. We repeat each experiment 5 times and report the metrics mean and standard deviation.

Baselines. we include two heuristic baselines for structural perturbation: random and historical
baseline. The random baseline generates each of the adversarial edges independently and randomly
from the space of all possible negative node pairs. The historical baseline considers historical
negative edges as defined in (Poursafaei et al., 2022), meaning edges that were observed before but
were not present at the current time. These negative edges are challenging for TGNN models as they
were encountered previously but currently non-existing. Lastly, we compare with MemStranding (Dai
et al., 2023), a sophisticated evasion attack designed for TGNNs with memory modules. Unlike
our TR-BCD approach that distributes adversarial edges across temporal batches, MemStranding
operates as a single-shot evasion attack that inserts a burst of fake edges at a single timestamp to
corrupt node memory states.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Structural perturbation attack results for dynamic link property prediction on CTDG datasets
under a 5% perturbation budget (i.e., 5% of the test edges are perturbed). We compare two variants
of TR-BCD: one with fully random initial sampling (TR-BCD-random) and another with a mixed
strategy using 50% initialization based on historical negative edges (TR-BCD-mixed). We include
two generally-applicable baselines: random and Historical attack (insertion of historical negatives).
Additionally, we evaluate MemStranding attack Dai et al. (2023), which targets 5% of nodes as
victims by strategically inserting fake neighbors to disrupt temporal graph dynamics. N/A means
not applicable due to the lack of edge attributes and we mark noticeable/non-evasive attacks in grey.
Performance is reported in Mean Reciprocal Rank (MRR) and averaged over 5 trials.

Model Attack Wikipedia Reddit Lastfm Enron UCI MOOC

T
G

N

No Attack 0.3929 ±0.0366 0.4550 ±0.0485 0.1370 ±0.0172 0.2662 ±0.0167 0.3058 ±0.0104 0.1574 ±0.0590

Random Attack 0.3752 ±0.0254 0.4299 ±0.0404 0.1310 ±0.0537 0.2625 ±0.0128 0.2939 ±0.0119 0.1476 ±0.0479

Historical Attack 0.3541 ±0.0351 0.4436 ±0.0466 0.1207 ±0.0468 0.2417 ±0.0245 0.3194 ±0.0119 0.1330 ±0.0381

Memstranding 0.3287 ±0.0188 0.4220 ±0.0502 N/A N/A N/A 0.0884 ±0.0267

TR-BCD-random (ours) 0.2233 ±0.0546 0.3350 ±0.1191 0.1306 ±0.0497 0.2558 ±0.0088 0.2893 ±0.0136 0.1245 ±0.0491

TR-BCD-mixed (ours) 0.1934 ±0.0587 0.3689 ±0.0980 0.1080 ±0.0421 0.2321 ±0.0229 0.2857 ±0.0181 0.1351 ±0.0367

Max perf. drop -50.78% -26.38% -21.17% -12.81% -6.57% -20.90%

T
N

C
N

No Attack 0.7207 ±0.0009 0.7228 ±0.0064 0.3632 ±0.0029 0.4257 ±0.0123 0.4839 ±0.0030 0.2521 ±0.0192

Random Attack 0.7197 ±0.0015 0.7224 ±0.0066 0.3591 ±0.0031 0.4308 ±0.0155 0.4795 ±0.0035 0.2187 ±0.0224

Historical Attack 0.7167 ±0.0015 0.7204 ±0.0059 0.3564 ±0.0031 0.3999 ±0.0171 0.4806 ±0.0055 0.2225 ±0.0182

Memstranding 0.7068 ±0.0015 0.7196 ±0.0096 N/A N/A N/A 0.1903 ±0.0138

TR-BCD-random (ours) 0.7057 ±0.0167 0.5869 ±0.1688 0.3410 ±0.0080 0.4258 ±0.0172 0.4793 ±0.0025 0.1164 ±0.0236

TR-BCD-mixed (ours) 0.7021 ±0.0137 0.6681 ±0.0397 0.3557 ±0.0032 0.3980 ±0.0232 0.4836 ±0.0047 0.1258 ±0.0200

Max perf. drop -2.58% -18.80% -6.11% -6.51% -0.95% -53.83%

Table 2: Comparison of vanilla TR-BCD (using random initialization with structural perturbation)
and TR-BCD augmented with contextual perturbation via FGSM (ϵ = 0.3). Performance is measured
in Mean Reciprocal Rank (MRR) and averaged over 5 trials.

Model Attack Wikipedia Reddit MOOC

T
G

N No Attack 0.3929 ±0.0366 0.4550 ±0.0485 0.1574 ±0.0590

TR-BCD 0.2233 ±0.0546 0.3350 ±0.1191 0.1245 ±0.0491

TR-BCD (FGSM) 0.2073 ±0.0597 0.3403 ±0.1063 0.1273 ±0.0423

T
N

C
N No Attack 0.7207 ±0.0009 0.7228 ±0.0064 0.2521 ±0.0192

TR-BCD 0.7057 ±0.0167 0.5869 ±0.1688 0.1164 ±0.0236

TR-BCD (FGSM) 0.7043 ±0.0097 0.5807 ±0.1802 0.1149 ±0.0297

Structural Perturbation Results. First, we examine how robust are TGNNs to structural adversarial
attacks. In Table 1, we report MRR performance on link prediction for the two victim models:
TGN (Rossi et al., 2020) and TNCN (Zhang et al., 2024) across the considered datasets with and
without perturbations. The attack budget β(t) is set to be 5% as it is an unnoticable amount (see
Section 3 for the discussion on unnoticability). As shown in Table 1, the victim models are highly
vulnerable to TR-BCD’s attack across all datasets, with up to 53.83% drop in MRR for the MOOC
dataset. Note that because Memstranding Dai et al. (2023) requires edge features to perturb on, it is
not applicable (N/A) for Enron and UCI datasets. In comparison, TR-BCD applies to all datasets
and not restricted by attributes. While both random and historical attack baselines can cause a small
performance drop from the victim model, choosing the adversarial edge based only on heuristics is
suboptimal. This is most evident in the Wikipedia and Lastfm datasets where the adversarial edges
picked by TR-BCD are significantly more effective than both baselines (with up to 0.16 difference in
MRR drop in Wikipedia). Therefore, TGNN models are highly susceptible to gradient-based attacks.
Random and historical baselines achieve mostly similar performance across all datasets. However,
using both random and historical negative edges as candidates to sample has proven to be an effective
variant of TR-BCD (namely, TR-BCD-mixed). The intuition is that TR-BCD can learn to select
strong adversarial samples from both categories based on the victim model’s gradient. Interestingly,
the dataset with most performance drop is distinct between the two victim models. Particularly, TGN
has a 50.78% drop in MRR on the Wikipedia dataset, while TNCN has a 53.83% drop in MRR for the
MOOC dataset. This shows that TGNNs might be vulnerable to attacks at different network domains
thus highlighting the importance of benchmarking their robustness in a wide range of networks.

The Effect of Attack Budget. Here, we investigate the effect of varying the attack budget β(t) on
the performance of the victim model. Figure 4 shows the performance of the victim models under
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Figure 4: TGN (top) and TNCN (bottom) link prediction performance under TR-BCD structural
perturbation with varying budget for Wikipedia (left), Reddit (center), and MOOC (right) datasets.

different budgets for TR-BCD attacks on three datasets. The orange line in each plot represents the
performance of the unperturbed base model, while the other line plots depict the corresponding drop
in MRR as the attack budget increases. These plots show how sensitive each model is to the intensity
of adversarial perturbations. For both TGN and TNCN, model performance degrades rapidly with
attack budgets just under 20%, demonstrating that even a relatively small number of adversarial edges
can have a severe impact. This finding indicates an ideal trade-off region where a modest attack budget
is sufficient to induce significant performance drops without requiring many perturbations. Notably,
on the Wikipedia and MOOC datasets, both TGN and TNCN are exhibiting an exponential decay in
MRR as the attack budget increases. Furthermore, beyond a certain budget threshold, we observe a
plateau in performance degradation where additional adversarial edges produce diminishing impacts.
This plateau might be due to the fact that model weights are frozen during attacks, thus retaining
their learned knowledge despite the memory being corrupted. These observations underscores the
important of studying adversarial robustness of TGNNs.

Contextual Perturbations. Here, we evaluate the effectiveness of adding contextual perturbations in
TR-BCD. As noted in Algorithm 2 (Step 6), we can optionally apply contextual perturbations, e.g.,
using the Fast Gradient Sign Method (FGSM) (Goodfellow, 2014) on the edge features for graphs
that include edge attributes. FGSM aims to maximize the loss of a neural network by modifying the
input data in the direction that increases the model’s error, thereby probing the model’s sensitivity
to changes in its feature space. In Table 2, we compare the results of TR-BCD with and without
contextual perturbations on the edge feartures. We report results only for datasets containing edge
features (see Appendix B). Overall, our experiments indicate that adding contextual perturbations
yields little MRR drop compared to using solely structural perturbations. With the exception of
the Wikipedia dataset, where the TGN suffers an additional 2% performance drop due to the added
contextual perturbation, results suggest that TGNNs are primarily vulnerable to structural attacks.

Evasiveness and Anomaly Detection. An important measure of adversarial attacks is their eva-
siveness: the ability of perturbations to remain undetected by security systems while maintaining
their adversarial effectiveness. Evasive attacks should be as close to normal behavior as possible
to avoid triggering anomaly detection mechanisms. To evaluate the evasiveness of attacks, we
employed SPOTLIGHT (Eswaran et al., 2018), a strong anomaly detection algorithm designed for
streaming graphs. The algorithm’s effectiveness stems from its ability to detect sudden appearances
or disappearances of dense subgraphs, checking against the evasiveness of an attack. Figure 5 shows
that TR-BCD demonstrates superior evasiveness compared to single-shot attacks like Memstranding.
TR-BCD maintains relatively stable anomaly scores throughout the attack period, with only modest
increases that remain within the normal range of variation. This is because TR-BCD attacks are
designed to evasive, only inserting a small number of edges per batch. In contrast, the MemStranding
attack, being a single-shot approach, introduces a sudden burst of adversarial edges at a specific time

9
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Figure 5: Comparison of SPOTLIGHT anomaly scores over time for TGN on Wikipedia dataset
under different attack scenarios. Normal batches are shown in blue, while TR-BCD attack (top)
and MemStranding attack (bottom) batches are highlighted as red stars to demonstrate their distinct
impact on anomaly detection scores.

Table 3: Transfer attack results: Link prediction MRR (± SD, % drop) for same-model and cross-
model (transfer) attacks on TGN and TNCN.

Model Attack Wiki Reddit Mooc

TGN
No attack 0.4105 ±0.0195 0.4719 ±0.0471 0.1428 ±0.0503

Attack with same model 0.2533 ±0.0674 (−38.29%) 0.3433 ±0.1499 (−27.25%) 0.1314 ±0.0241 (−7.98%)

Transfer attack with TNCN 0.2890 ±0.0317 (−29.60%) 0.3688 ±0.1316 (−21.85%) 0.1327 ±0.0369 (−7.07%)

TNCN
No attack 0.7212 ±0.0009 0.7264 ±0.0014 0.2439 ±0.0154

Attack with same model 0.7122 ±0.0028 (−1.25%) 0.6661 ±0.0764 (−8.30%) 0.1149 ±0.0118 (−52.89%)

Transfer attack with TGN 0.7126 ±0.0016 (−1.19%) 0.6803 ±0.0330 (−6.35%) 0.2109 ±0.0127 (−13.53%)

point. The sharp increase in anomaly scores clearly indicates the presence of anomalous activity,
demonstrating its disadvantage of being easily detected by an anomaly detection algorithm.

Cross-Model Transfer Attacks. Transfer attacks investigate the adversarial vulnerability of a victim
model by crafting perturbations using a different, pretrained attacker model. This approach tests
whether the adversarial edge or feature perturbations optimized for one TGNN architecture are also
effective against another. It helps in understanding shared weaknesses in model families. In our
experiments, we evaluate transfer attacks by attacking TGN with a pretrained TNCN, and conversely,
attacking TNCN with a pretrained TGN. Table 3 shows that attacks trained on TGN transfer to
TNCN and vice-versa with 25-95 % of same-model performance, suggesting temporal vulnerabilities
generalize across architectures. Notably, transfer attacks on TNCN with TGN are much weaker for
the MOOC dataset (-13.5%) compared to direct attacks (-52.9%), showing that transferability is
influenced by both model and dataset characteristics. Transfer attacks can thus induce substantial
performance drop in both TGN and TNCN victims, but are slightly less effective than attacks tuned
for the same model. This suggests that while adversarial perturbations generalize across model
families to an extent, there remain architecture-specific vulnerabilities.

6 CONCLUSION

In this work, we conducted a comprehensive study of adversarial robustness in Temporal Graph
Neural Networks (TGNNs) operating on Continuous-Time Dynamic Graphs (CTDGs). We identified
that TGNNs can be highly vulnerable to adversarial attacks with up to 53% drop in performance. Our
investigation spanned diverse real-world datasets, including both bipartite and non-bipartite graphs,
with and without edge features. Notably, our experiments revealed that structural perturbations have a
more substantial impact compared to contextual feature perturbations, suggesting TGNNs are highly
vulnerable to attacks on the temporal graph topology. We hope this work serve as foundation for
future studies aiming at studying adversarial robustness.

10
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REPRODUCIBILITY STATEMENT

We provide an anonymized code repository at https://anonymous.4open.science/r/temporal-
adversarial-02B3, which contains the implementation of our model and experimental setup to ensure
reproducibility. Dataset details and access links can be found in Appendix B. Experimental details
are recorded in Appendix C.

ETHICS STATEMENT

In this work, we examine the robustness of Temporal GNNs to adversarial attacks and proposed a
novel adversarial attack TR-BCD for this purpose. It is possible that the studied adversarial attack
or similar attacks might be considered by ill-intentioned third party and the goal of this paper is to
warn ML practitioners of such risks. Overall, we are convinced that the benefits outweigh the risks.
Document and open-source the adversarial attack study will help enable researchers to design more
robust models against such attack. We firmly believe that open research into such vulnerabilities of
models allows researchers and practitioners to identify the problems and address them with strong
defences. Moreover, due to our setting being a white-box setting, our attack is less directly applicable
for real-world malicious actors.
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Generalization of neural combinatorial solvers through the lens of adversarial robustness. In
The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=
vJZ7dPIjip3.

Ian J Goodfellow. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

Lukas Gosch, Simon Geisler, Daniel Sturm, Bertrand Charpentier, Daniel Zügner, and Stephan
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Table 4: Statistics of the datasets used in our experiments

Dataset Domain # Nodes # Edges # Unique Edges # Edge features Bipartite Duration

Wikipedia Social 9,227 157,474 18,257 172 ✓ 1 month
Reddit Social 10,984 672,447 78,516 172 ✓ 1 month
MOOC Interaction 7,144 411,749 178,443 4 ✓ 17 months
LastFM Interaction 1,980 1,293,103 154,993 - ✓ 3 years
Enron Social 184 125,235 3,125 - ✗ 8 months
UCI Social 1,899 59,835 20,296 - ✗ 196 days

B DATASET DETAILS

The statistics of these datasets are listed in Table 4. The details of each dataset is as follows:

• Wikipedia (Kumar et al., 2019) enlists edits on Wikipedia pages over one month. It is a bipartite
graph with edges between users and wiki pages which are modeled as nodes. Each edge carries a
172-dimensional vector representing the page edits.

• Reddit (Kumar et al., 2019) stores user posts on subreddits over one month. It is a bipartite graph
with 172-dimensional edges between users and subreddits.

• MOOC (Kumar et al., 2019) models the interaction of users with online course content spanning
over 17 months. It is a bipartite graph with the edges representing interaction of a user with one of
97 course units. The edges have 4 features.

• LastFM (Kumar et al., 2019) is a bipartite graph featuring user-to-song relations where each edge
representing whether one of the 1000 users listened to one of the 1000 most listened songs over a
period of one month. The dataset has no edge features.

• UCI (Panzarasa et al., 2009) contains interactions on an online social network between students of
University of California, Irvine. It is a non-attributed, non-bipartite graph.

• Enron (Shetty & Adibi, 2004) stores information about email exchanges between employees of
ENRON energy over 3 years. The dataset is non-bipartite and has no edge features.

These datasets can be accessed from (Poursafaei et al., 2022) via the link https://zenodo.org/
records/7213796#.Y8QicOzMJB2.

C EXPERIMENT DETAILS

Evaluation setting. Recent work showed that link prediction on temporal graphs requires challenging
negative samples (Poursafaei et al., 2022) and ranking metrics for robust evaluation. Therefore, we
use the same evaluation procedure as in (Huang et al., 2024) where the link prediction task is treated
as a ranking problem and multiple negative samples per positive edge are used to compute the Mean
Reciprocal Rank (MRR). These negative edges are a mix of random and historical negative edges.
Historical negative edges are edges that were observed in previous timestamps but not observed
currently thus being challenging for models that rely on memorization (Poursafaei et al., 2022). In
our evaluation, we use all possible (999) negative edges for the Wikipedia dataset, and 100 negative
edges per positive for the remaining datasets. The MRR metric takes its values in (0, 1] and computes
the reciprocal rank of the true edge among the negative edges. To understand the robustness of TGNN
models, we examine their MRR performance under no perturbation and with perturbation on the
entire test set.

Victim Models. We examine state-of-the-art TGNN models including TGN (Rossi et al., 2020) and
TNCN (Zhang et al., 2024) for evaluating robustness to adversarial attacks, we refer to them as the
victim models. Both models have a memory module that records past node interactions and performs
test-time updates (i.e. the memory is updated by test-time data). The adversarial attacks are injected
into the model memory (see lines 7− 8 Algo 1).

We train both the models in batches of 200 edges using the Adam (Kingma, 2014) optimizer with
learning rate=1e − 4. The dataset is chronologically split into a train-val-test split of edges in the
0.75− 0.15− 0.15 proportion. The input edge features are normalized to have zero mean and unit
variance. We train for a maximum of 50 epochs using early stopping with a patience of 5 epochs. We
repeat each experiment 5 times and report the metrics mean and standard deviation over all the runs.
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Baselines. For our experiments, we consider two heuristic baselines for structural perturbation:
random and historical baseline. The random baseline generates each of the adversarial edges
independently and randomly from the space of all possible negative node pairs. The source and
destination nodes are picked randomly from the set of source and destination ids in the dataset. The
timestamp is uniformly sampled between the minimum and maximum values of timestamps present
in the dataset. For attributed graphs, the adversarial edge features are generated by sampling from
a normal distribution. The edges are inserted prior to the processing of each positive batch and are
limited to the allowed perturbation budget. The historical baseline considers historical negative edges
as defined in (Poursafaei et al., 2022), meaning edges that were observed before but were not present
at the current time. These negative edges are challenging for TGNN models as they were encountered
previously and required temporal reasoning from the model to clearly distinguish them from the real
edges. Therefore by inserting them as negatives, the model might be more prune to the attack.

Memstranding settings. MemStranding Dai et al. (2023) represents a sophisticated evasion attack
specifically designed for temporal graph neural networks that leverages memory-based architectures.
Unlike our TR-BCD approach that distributes adversarial edges across temporal batches, MemStrand-
ing operates as a single-shot evasion attack that inserts a burst of fake edges at a single timestamp
to corrupt node memory states. The attack identifies high-degree victim nodes and their neighbors,
then strategically injects fake messages at a selected timestamp to manipulate their memory states.
MemStranding simulates fake neighbors by sampling from Gaussian distributions based on the
standard deviation of current neighbor memory vectors, creating target noisy memory states that
degrade model performance. The attack is persistent, affecting all future predictions after the injection
timestamp. In our experimental evaluation, we integrate MemStranding as a strong baseline with
a 5% attack budget, demonstrating that while it can achieve significant performance degradation
in some cases (notably achieving the best performance on TGN-MOOC with 0.0949 MRR), our
TR-BCD method consistently outperforms it across most model-dataset combinations, highlighting
the advantages of our distributed gradient-based approach over single-shot burst attacks. Due to
the lack of publicly available code and since the authors did not provide a copy upon request, we
re-implemented their attack for our experiments.

Memory Requirements for TR-BCD. If we assume 4 bytes per parameter and the default batch size
of 200, then storing the parameters alone for Reddit requires 4B · 10, 9842 · 15% · 672, 447/200 ≈
243GB. Here, we assume that for each benign test batch, we may choose the perturbations from the
10, 984× 10, 984 edges of Reddit (no duplicates allowed within a single adversarial batch).

D CONTEXTUAL PERTURBATION ON TEST EDGES

Table 5: Feature perturbation attack (using FGSM) results for temporal link prediction on attributed
CTDG datasets with ϵ = 0.3. Performance is reported in Mean Reciprocal Rank (MRR), averaged
over five trials.

Model Attack Wikipedia Reddit MOOC

TGN None 0.3929 ±0.0366 0.4550 ±0.0485 0.1574 ±0.0590

FGSM 0.2638 ±0.0388 0.4518 ±0.0444 0.1569 ±0.0581

TNCN None 0.7207 ±0.0009 0.7228 ±0.0064 0.2521 ±0.0192

FGSM 0.6944 ±0.0230 0.6559 ±0.0492 0.2475 ±0.0235

Our method attacks the victim models primarily through structural perturbations as outlined in
Section 4. In addition, we explore the effect of applying contextual perturbations to the features of
the adversarial edges. As detailed in Section 5, incorporating contextual perturbations on these edges
results in little to no additional degradation in test performance, suggesting that the models are mainly
vulnerable to structural changes. To further validate our findings, we also experiment with applying
contextual attacks directly on the test edges. In this setup, we inject a small amount of noise, crafted
via FGSM (Goodfellow, 2014), into the feature space of the test data. Our experiments reveal that
applying FGSM-based contextual perturbations to the edge features produces varied effects across
models and datasets. For instance, while TGN on Wikipedia experiences a noticeable drop in MRR
when subjected to FGSM, the impact on TNCN and on other datasets such as Reddit and MOOC
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remains minimal. These results suggest that, although direct feature perturbations can influence
performance in certain cases, the dominant vulnerability stems from structural perturbations.

E ABLATION STUDY ON PERTURBATION CONTRIBUTIONS

While our main experiments demonstrate the effectiveness of TR-BCD across different datasets and
models, understanding the individual contribution of each perturbation type is crucial for developing
targeted defense strategies. To this end, we conduct an extended ablation study focusing on the
contribution of individual perturbations to the overall attack performance.

Experimental Setup. We evaluate the impact of different perturbation combinations on both TGN
and TNCN models across three representative datasets: Wikipedia, Subreddit, and MOOC. These
datasets were selected to provide diversity in terms of graph structure (bipartite vs. non-bipartite),
temporal dynamics, and feature availability. The perturbation variations are defined as follows:

• Structural Only: TR-BCD for edge selection, timestamps chosen randomly within the
dataset’s time range, random valid features sampled from the dataset.

• Structural + Temporal: Current TR-BCD setting with TR-BCD for node pair selection,
Gaussian sampling for timestamps, valid features from dataset.

• Structural + Contextual: TR-BCD for node pair selection, random timestamp selection,
FGSM applied to valid edge features.

• All Perturbations: Complete TR-BCD implementation.

Results and Analysis. Table 6 presents the comprehensive ablation results across all perturbation
combinations. The results reveal several important insights about the relative effectiveness of different
perturbation types.

Table 6: Extended ablation study results showing the contribution of individual perturbation types
to attack performance. Performance is measured in Mean Reciprocal Rank (MRR) averaged over 5
trials. Bold values indicate the best performing attack for each model-dataset combination.

Model Perturbations Wikipedia Subreddit MOOC

T
G

N

No Attack 0.3929 ±0.0366 0.4550 ±0.0485 0.1574 ±0.0590

Structural Only 0.2504 ±0.0618 0.3037 ±0.1091 0.1320 ±0.0554

Structural+Temporal 0.2233 ±0.0546 0.3350 ±0.1191 0.1245 ±0.0491

Structural+Contextual 0.2538 ±0.0552 0.3233 ±0.1124 0.1266 ±0.0480

All Perturbations 0.2073 ±0.0597 0.3403 ±0.1063 0.1273 ±0.0423

T
N

C
N

No Attack 0.7207 ±0.0009 0.7228 ±0.0064 0.2521 ±0.0192

Structural Only 0.7050 ±0.0099 0.6404 ±0.1009 0.1118 ±0.0285

Structural+Temporal 0.7057 ±0.0167 0.5869 ±0.1688 0.1164 ±0.0236

Structural+Contextual 0.7082 ±0.0113 0.6123 ±0.1368 0.1138 ±0.0275

All Perturbations 0.7043 ±0.0097 0.5807 ±0.1802 0.1149 ±0.0297

The ablation results reveal several important patterns that provide deeper insights into the vulnerability
landscape of temporal graph neural networks:

Dominance of Structural Perturbations. Structural perturbations alone demonstrate remarkable
effectiveness, sometimes achieving superior performance compared to combinations with other
perturbation types. This finding is particularly evident for TGN on the Subreddit dataset, where
structural-only attacks achieve the best performance (0.3037± 0.1091), outperforming even the com-
plete attack combination. This suggests that the topological structure of temporal graphs represents
the primary attack surface for adversarial perturbations.

Complementary Effects of Perturbation Types. While structural perturbations form the foundation
of effective attacks, the combination of all perturbation types yields the strongest attack in approxi-
mately half of the cases. For TGN on Wikipedia and TNCN on both Wikipedia and Subreddit, the
complete attack achieves optimal performance. This indicates that while structural perturbations are
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necessary, temporal and contextual perturbations can provide complementary benefits that enhance
overall attack effectiveness.

Dataset-Model Interplay The results reveal a complex interplay between dataset characteristics and
model vulnerabilities. Each dataset-model combination exhibits distinct susceptibility patterns:

• TGN on Wikipedia: Benefits most from the complete attack combination, suggesting this
model-dataset pair is vulnerable to coordinated multi-dimensional perturbations

• TGN on Subreddit: Most vulnerable to structural-only attacks, indicating that temporal
and contextual perturbations may introduce noise that reduces attack effectiveness

• TNCN on MOOC: Shows optimal vulnerability to structural-only attacks, highlighting the
importance of graph topology for this particular combination

Temporal vs. Contextual Perturbations The comparison between structural+temporal and struc-
tural+contextual perturbations reveals interesting patterns. Temporal perturbations appear to be more
effective for TGN on Wikipedia and MOOC datasets, while contextual perturbations show mixed
results. This suggests that temporal dynamics play a more critical role in determining model vulnera-
bility than feature perturbations, particularly for models that rely heavily on temporal reasoning.

Implications for Defense Strategies These findings have important implications for developing
robust temporal graph neural networks:

• Prioritize Structural Defense: Given the dominance of structural perturbations, defense
mechanisms should prioritize protecting graph topology integrity

• Model-Specific Vulnerabilities: Different models exhibit varying susceptibility patterns,
suggesting the need for model-specific defense strategies

• Dataset-Dependent Robustness: The varying effectiveness across datasets indicates that
robustness evaluation should consider multiple graph types and domains

• Multi-Dimensional Defense: While structural defense is primary, comprehensive defense
strategies should address temporal and contextual perturbations as well

This extended ablation study provides crucial insights into the relative contributions of different
perturbation types in adversarial attacks on temporal graph neural networks. The results demonstrate
that while structural perturbations form the foundation of effective attacks, the optimal attack strategy
varies significantly across different model-dataset combinations. These findings underscore the
importance of developing comprehensive defense strategies that address multiple attack vectors while
recognizing the dataset-model specific nature of vulnerabilities in temporal graph learning systems.

F SENSITIVITY ANALYSIS

F.1 THE EFFECT OF BLOCK SIZE

We study the impact of varying the block size parameter b in our TR-BCD attack algorithm on attack
effectiveness across different datasets and temporal graph neural network (TGNN) models. The
block size in TR-BCD denotes the size of the sample space of edge candidates that are randomly
selected and optimized at each iteration of the attack algorithm. By limiting gradient-based updates
and memory usage to a block of size b, this parameter enables the attack to scale efficiently in large
temporal graphs, while maintaining the ability to select adversarial edges from a sufficiently diverse
pool. Larger block sizes allow for higher attack effectiveness due to greater candidate diversity,
but incur higher computational cost per iteration, whereas small blocks increase efficiency but may
reduce attack strength by limiting the solution space explored. We evaluate four block sizes ranging
from 100 to 100000, measuring the mean reciprocal rank (MRR) drop averaged over 3 evaluation
runs. The results in Table 7 are reported for two model groups: Temporal Graph Network (TGN)
and Temporal Neural Common Neighbor (TNCN), across the three datasets: Wikipedia, Reddit, and
MOOC. The results show that the strength of the attack generally increases with block size before
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Table 7: MRR drop (↓) under TR-BCD attack for varying block sizes. Results are reported for TGN
and TNCN models across Wiki, Reddit, and MOOC datasets.

Model Block Size Wikipedia Reddit MOOC

T
G

N

100 0.3748 ± 0.0262 0.4375 ± 0.0442 0.1359 ± 0.0367

1000 0.3072 ± 0.0290 0.4261 ± 0.0499 0.1288 ± 0.0287

10000 0.2533 ± 0.0674 0.3433 ± 0.1499 0.1169 ± 0.0237

100000 0.2892 ± 0.0735 0.2474 ± 0.1631 0.0908 ± 0.0053

T
N

C
N

100 0.7200 ± 0.0003 0.7219 ± 0.0070 0.2193 ± 0.0082

1000 0.7187 ± 0.0007 0.7246 ± 0.0018 0.1898 ± 0.0100

10000 0.7122 ± 0.0028 0.6661 ± 0.0764 0.1149 ± 0.0118

100000 0.6998 ± 0.0029 0.4929 ± 0.1246 0.1161 ± 0.0146

plateauing. In most cases, the largest block size corresponds to the strongest attack. Exceptions are
limited to two cases, where the attack MRR at the largest block size remains within one standard
deviation of the best-observed attack outcome.

F.2 THE EFFECT OF ϵ IN CONTEXTUAL PERTURBATION

In this section, we investigate how the intensity of contextual perturbation, parameterized by ϵ
in the FGSM attack, affects the robustness of Temporal Graph Neural Networks (TGNNs) under
adversarial edge feature modification. The FGSM-based contextual attack perturbs edge features
of positive edges, with ϵ controlling the maximum L∞ norm of the perturbation for each feature
dimension. Larger values of ϵ allow for greater changes in features, typically resulting in more
effective attacks (Goodfellow, 2014). Table 8 shows that increasing the ϵ generally strengthens the
contextual attack, resulting in lower MRR scores on Wikipedia and Reddit datasets for both TGN
and TNCN models. The highest value ϵ = 1.0 consistently produces the lowest MRR, except for the
MOOC data set, where there is little change, possibly due to the limited variance in its edge features.
This emphasizes that attack strength via feature perturbation is highly dependent on both the chosen ϵ
and underlying dataset properties.

Table 8: MRR drop (↓) for varying ϵ in FGSM contextual perturbation on positive edges, across TGN
and TNCN models and three datasets. The lowest mean MRR in each column is marked in bold.

Model ϵ Wiki Reddit Mooc

T
G

N

0 0.4105 ±0.0195 0.4719 ±0.0471 0.1428 ±0.0503

0.1 0.3872 ±0.0212 0.4756 ±0.0445 0.1424 ±0.0500

0.3 0.2999 ±0.0269 0.4798 ±0.0367 0.1417 ±0.0486

0.7 0.1657 ±0.0335 0.4553 ±0.0376 0.1423 ±0.0461

1.0 0.1103 ±0.0232 0.4174 ±0.0456 0.1423 ±0.0432

T
N

C
N

0 0.7212 ±0.0009 0.7264 ±0.0014 0.2439 ±0.0154

0.1 0.7187 ±0.0013 0.7238 ±0.0022 0.2425 ±0.0174

0.3 0.7007 ±0.0175 0.6929 ±0.0113 0.2396 ±0.0200

0.7 0.4690 ±0.1670 0.1132 ±0.0219 0.2334 ±0.0241

1.0 0.3486 ±0.1709 0.0424 ±0.0059 0.2266 ±0.0264

G EDGE INSERTION VS. DELETION

While our main approach focuses on adversarial edge insertion attacks, an alternative strategy
involves edge deletion, where existing edges are removed from the temporal graph. To explore
this complementary attack surface, we adapted TR-BCD to perform edge deletion by treating the
real edges in each batch as candidates and “flipping” selected edge weights from 1 to 0, effectively
removing them before the memory-update step. This approach targets the models by limiting the
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information flow within the temporal graph, potentially degrading the established temporal patterns
and node relationships in the model memory.

Table 9 presents results comparing edge deletion attacks with our best insertion-based method across
three datasets and the two TGNN architectures. The results reveal interesting patterns in model
vulnerability to different perturbation strategies.

Table 9: Comparison of edge deletion and insertion attacks on temporal link prediction. Performance
is reported in Mean Reciprocal Rank (MRR) averaged over 5 trials. Bold values indicate the best
attack performance for each model-dataset combination.

Model Attack Strategy Wikipedia Enron UCI

T
G

N No Attack 0.3929 ±0.0366 0.4257 ±0.0123 0.3058 ±0.0104

Edge Deletion (TR-BCD) 0.3708 ±0.0428 0.2294 ±0.0190 0.2000 ±0.0525

Best Insertion 0.1934 ±0.0587 0.2321 ±0.0229 0.2857 ±0.0181

T
N

C
N No Attack 0.7207 ±0.0009 0.4257 ±0.0123 0.4839 ±0.0030

Edge Deletion (TR-BCD) 0.7060 ±0.0036 0.4248 ±0.0144 0.4456 ±0.0023

Best Insertion 0.7021 ±0.0137 0.3980 ±0.0232 0.4793 ±0.0025

The comparative analysis reveals that both attack strategies demonstrate effectiveness, but with
notable variations across datasets and architectures.

The comparative analysis reveals that both attack strategies demonstrate effectiveness, but with
notable variations across datasets and architectures. For TGN models, edge deletion attacks prove
particularly effective on the Enron and UCI datasets, achieving substantial performance degradation.
However, on Wikipedia, the insertion-based approach maintains superiority, reducing MRR by over
50%. TNCN models show greater resilience to edge deletion attacks overall, with insertion-based
methods consistently achieving better or comparable attack performance across all datasets. While
not the main focus of this work, future work should consider applying our TR-BCD in a setting of
simultaneous edge insertion and deletion, as each exploits different vulnerabilities in temporal graph
neural networks and due to TR-BCD’s straightforward adaptation to this joint setting.
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