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Abstract

The rapid proliferation of fake news across mul-001
tiple domains poses significant threats to soci-002
ety. Existing multi-domain detection models003
typically capture domain-shared semantic fea-004
tures to achieve generalized detection. How-005
ever, they often fail to generalize well due006
to poor adaptability, which limits their abil-007
ity to provide complementary features for de-008
tection, especially in data-constrained condi-009
tions. To address these challenges, we inves-010
tigate the propagation-adaptive multi-domain011
fake news detection paradigm. We propose a012
novel framework, Structure-adaptive Adversar-013
ial Contrastive Learning (StruACL), to adap-014
tively enable structure knowledge transfer be-015
tween multiple domains. Specifically, we first016
contrast representations between content-only017
and propagation-rich data to preserve structural018
patterns in the shared representation space. Ad-019
ditionally, we design a propagation-guided ad-020
versarial training strategy to enhance the di-021
versity of representations. Under the StruACL022
objective, we leverage a unified Transformer-023
based and graph-based model to jointly learn024
transferable semantic and structural features025
for detection across multiple domains. Exper-026
iments on seven fake news datasets demon-027
strate that StruACL-TGN achieves better multi-028
domain detection performance on general and029
data-constrained scenarios, showing the effec-030
tiveness and better generalization of StruACL.031

1 Introduction032

Nowadays, mainstream social platforms have facili-033

tated the news dissemination in a faster and cheaper034

way. Nevertheless, the ease has also caused the035

wide spread of fake news, which has had detri-036

mental effects on individuals and society (Loomba037

et al., 2021). Triggered by the negative impact of038

fake news, fake news detection has become a press-039

ing challenge due to its widespread impact across040

diverse platforms and domains.041

News content and its corresponding user engage- 042

ments (i.e., tree-structured propagation) are two 043

key data types in detecting fake news. Content- 044

based detection methods (Ma et al., 2016; Ruchan- 045

sky et al., 2017; Karimi and Tang, 2019) capture 046

intrinsic semantic or linguistic features of claim 047

tweets to detect fake news. Propagation-based de- 048

tection methods (Ma et al., 2018; Kumar and Car- 049

ley, 2019; Ma and Gao, 2020; Hu et al., 2021; Bian 050

et al., 2020; Wei et al., 2021; Lin et al., 2021; Wei 051

et al., 2022a) are designed to integrate structural 052

features to complement textual content for detec- 053

tion. Nevertheless, in real-world scenarios, labeled 054

data for fake news is often scarce, particularly in 055

specific low-resource domains or emerging topics, 056

which hinders detection performance. Recently, 057

multi-domain fake news detection has been widely 058

studied to leverage and integrate knowledge from 059

multi-domain data to improve target-domain detec- 060

tion (Zhu et al., 2023; Liang et al., 2022; Wang 061

et al., 2018; Zhang et al., 2021; Nan et al., 2021; 062

Li et al., 2024), alleviating the data limitation chal- 063

lenge to some extent. 064

However, the representations learned by most 065

existing multi-domain detection paradigms fail to 066

generalize well due to poor adaptability to the prop- 067

agation structure. Firstly, as shown in Figure 1, 068

some multi-domain approaches primarily focus on 069

learning domain-invariant or domain-shared seman- 070

tic features (Wang et al., 2018; Nan et al., 2021) 071

on content-only training data. However, seman- 072

tic features inherently differ from structural pat- 073

terns, rendering these content-based methods inade- 074

quate for generalizing to samples that involve prop- 075

agation. Furthermore, directly extending domain- 076

specific propagation-based methods struggles to ef- 077

fectively adapt to detection scenarios lacking prop- 078

agation structures, resulting in suboptimal detec- 079

tion performance for content-only samples (Wei 080

et al., 2024). Therefore, a critical challenge lies in 081

learning more robust representations by enhancing 082
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Figure 1: Difference between propagation-adaptive multi-domain fake news detection in this study and existing
multi-domain fake news detection paradigms.

structure adaptability for multi-domain fake news083

detection.084

In this paper, we study a novel propagation-085

adaptive multi-domain fake news detection086

paradigm, where the detection model is trained087

on both propagation-based data and content-only088

data. Our goal is to enhance generalization for both089

types of input.090

To achieve this, we propose a new propagation091

structure-adaptive adversarial contrastive learning092

framework (StruACL) to adaptively learn gener-093

alized semantic and structural representations for094

multi-domain fake news detection. Specifically,095

we first design a new structure-aware contrastive096

learning (StruCL) objective to facilitate the adap-097

tive transfer of structure knowledge during multi-098

domain training. With the guidance of structure la-099

bel, StruCL leverages contrastive learning to differ-100

entiate representations between samples with and101

without propagation, effectively capturing and re-102

taining structural knowledge in the shared represen-103

tation space. By integrating this structural informa-104

tion, the learned representations become more in-105

formative, allowing the model to achieve enhanced106

performance in detecting fake news across both107

propagation-based and content-only domains. Ad-108

ditionally, we design a propagation-guided adver-109

sarial training (PAT) strategy to enhance the diver-110

sity of representations under the data-constrained111

condition. PAT adaptively performs adversarial per-112

turbations on original embeddings using the Fast113

Gradient Method (FGM) (Miyato et al., 2017) to114

generate worst-case samples for both content-only115

and propagation-based inputs. By jointly contrast-116

ing on both original and adversarial samples, the117

model can further effectively learn fine-grained se-118

mantic and structure knowledge via retaining the119

propagation-adaptive feature consistency. For the120

model architecture, we adopt a shared Transformer-121

based and graph-based network to jointly encode 122

semantic and structural features from news con- 123

tent and available propagation across multiple do- 124

mains, respectively. Under the proposed objective, 125

our StruACL-TGN generalizes well across both 126

content-only and propagation-structured domains. 127

We conduct experiments on seven fake news 128

datasets with and without propagation. The experi- 129

mental results demonstrate that our StruACL-TGN 130

achieves superior performance in multi-domain 131

fake news detection. Extensive experiments show 132

the effectiveness of StruACL objective, particularly 133

in data-limited application scenarios. 134

The main contributions are as follows: 1) We 135

study a novel propagation-adaptive multi-domain 136

fake news detection paradigm and develop a novel 137

StruACL-TGN to learn generalized representations 138

for detection on both domains with propagation 139

data and content-only domains. 2) We design a 140

new StruACL framework to learn more informa- 141

tive multi-domain representations. It contrasts se- 142

mantic and structural representations to preserve 143

and transfer structural knowledge, as well as intro- 144

duces propagation-guided adversarial training to 145

enhance the diversity of representations. 3) Experi- 146

ments on seven fake news datasets demonstrate that 147

StruACL-TGN achieves superior multi-domain de- 148

tection performance. Extensive experiments further 149

show that StruACL enhances the model’s general- 150

ization capabilities in data-constraint applications. 151

2 Methodology 152

In this section, we first describe the problem defi- 153

nition of propagation-adaptive multi-domain fake 154

news detection. Then, we propose a new StruACL- 155

TGN to learn generalized representations on both 156

domains with propagation data and content-only 157

domains. The overall architecture is shown in 158

Figure 2. It adopts a shared Transformer-based 159

2



Figure 2: Overview of the proposed StruACL-TGN.

and graph-based network to encode semantic and160

structural knowledge across multiple domains. For161

model training, we first propose a new StruCL to ef-162

fectively utilize structure knowledge. Additionally,163

we design propagation-guide adversarial training164

(PAT) that generates worst-case samples to enhance165

the diversity of representations. Through applying166

PAT on original and adversarial samples, our Stru-167

ACL can learn more informative multi-domain rep-168

resentations from domains with propagation data169

and domains with content-only data.170

2.1 Problem Definition171

Unlike existing multi-domain fake news detec-172

tion tasks, propagation-adaptive multi-domain fake173

news detection aims to detect fake news across do-174

mains with heterogeneous data availability, where175

some domains have both propagation structures176

and content, while others only have content.177

Formally, let K represent the set of all domins.178

Define D(k) as the dataset of each domain k ∈ K.179

For each domain k that includes propagation data,180

D(k) is defined as D(k) = {(x(k)i , G
(k)
i , y

(k)
i )}Nk

i=1,181

where x(k)i is the content of the i-th news sample in182

domain k. G(k)
i is the propagation structure (e.g., a183

tree-like graph) associated with x
(k)
i . y(k)i ∈ {0, 1}184

is the label indicating whether the news is fake185

or real. Nk is the number of samples in domain186

k. For each domain k′ that excludes propagation187

data, D(k) is defined as D(k′) = {(x(k
′)

i , y
(k′)
i )}Nk′

i=1.188

where x
(k′)
i is the content of the i-th news sample189

in domain k′. y(k
′)

i ∈ {0, 1} is the label. Nk′ is the190

number of samples in domain k′. 191

Propagation-adaptive multi-domain fake news 192

detection aims to utilize both rich propagation struc- 193

tures and content-only samples to enhance detec- 194

tion performance across various domains. Fake 195

news detection can be regarded as a binary clas- 196

sification task. Specifically, the objective is to 197

learn a unified detection model f(·) that predicts 198

the label ŷ (e.g., fake or real) for a news item x 199

(with or without propagation G across all domains: 200

ŷ = f(x,G), where G = ∅ for domains without 201

propagation data. 202

2.2 Model Architecture 203

The network structure consists of a shared 204

Transformer-based semantic encoder, a graph- 205

based structure encoder, and a hybrid fake news 206

classifier. 207

Transformer-based Semantic Encoder Consid- 208

ering multilingual settings, a pretrained multilin- 209

gual BERT model (Conneau et al., 2020) on a 210

monolingual corpus is utilized to facilitate lan- 211

guage adaptation. Formally, given an input token 212

sequence xi1, ..., xiT where xij refers to j-th token 213

in the i-th input sample, and T is the maximum 214

sequence length, the model learns to generate the 215

context representation of the input token sequences: 216

hs
i = BERT([CLS], xi1, ..., xiN , [SEP]), (1) 217

where [CLS] and [SEP] are special tokens, typi- 218

cally placed at the beginning and end of each se- 219

quence, respectively. hs
i indicates the hidden rep- 220

resentation of the i-th input sample, computed by 221
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the representation of [CLS] token in the last layer222

of the encoder.223

Graph-based Structure Encoder Based on the224

semantic representations, propagation-based mod-225

els integrate structural features to enhance detec-226

tion. Graph neural networks are widely applied to227

extract structural features through message-passing228

across nodes in the propagation graph. Given the229

input sample, which includes the textual content230

of the source news x and propagation trees G, ex-231

isting models utilize various neural networks to232

extract high-level textual and structural features for233

detection. The formulation is defined as,234

hg
i = GNN(xi, Gi; Θ), (2)235

where GNN(·) refers to graph-based encoders in236

propagation-based models (Bian et al., 2020; Wei237

et al., 2022b), and Θ refers to the corresponding238

trainable parameters. The input embedding of xi239

and context ci in G are initialized with the semantic240

embedding hs
i .241

Hybrid Fake News Classifier To address the fea-242

ture gap between different domains in distinguish-243

ing fake news, we design a hybrid fake news clas-244

sifier to learn domain-specific and domain-shared245

discriminative features for detection. Specifically,246

based on the final representation, domain-specific247

fake news classifiers are employed to predict the248

veracity label of each news content. For domain k,249

the initial prediction distribution is computed as,250

ŷ′(k) = W(k)
c z+ b(k)

c , (3)251

where W
(k)
c and b

(k)
c are trainable parameters252

of domain k’s classifier. Similarly, we apply a253

parameter-shared classifier to predict the veracity254

label for all domains, i.e.,255

ŷs = Wcz+ bc. (4)256

Based on the above prediction, the final prediction257

for domain k is defined as,258

ŷ(k) = Softmax(
ŷs

2
+

ŷ′(k)

2
). (5)259

2.3 Optimization Process260

2.3.1 Classification Objective261

To achieve fake news detection, the model is trained262

by minimizing a joint loss function across all do-263

mains, considering both content and propagation264

data, i.e., 265

LCLS =
∑
k∈KP

1

Nk

Nk∑
i=1

ℓ(f(x
(k)
i , G

(k)
i ), y

(k)
i )

+
∑

k′∈KC

1

Nk′

Nk′∑
i=1

ℓ(f(x
(k′)
i , ∅), y(k

′)
i )

266

where KP ⊆ K is the set of domains with propaga- 267

tion data, and KC ⊆ K is the set of domains with- 268

out propagation data. ℓ(·, ·) is the cross-entropy 269

classification loss. 270

2.3.2 Structure-aware Contrastive Learning 271

We design a new structure-aware contrastive learn- 272

ing (StruCL) objective to facilitate the adap- 273

tive transfer of structure knowledge during multi- 274

domain training. It contrasts between representa- 275

tions with and without propagation structures. The 276

objective of StruCL is defined as, 277

LStruCL =
∑
k∈KP

L(k)
StruCL

=
∑
k∈KP

− 1

Nk

Nk∑
i=1

log
esim(z

(k)
i ,z

(k)
pos)/τ

esim(z
(k)
i ,z

(k)
pos)/τ +

∑Nk
j=1⊮g

(k)
i ̸=g

(k)
j

esim(z
(k)
i ,z

(k)
j )/τ

 ,

(6) 278

where gi = 1 refers to the hidden representation 279

with structure information. The indicator function 280

⊮gi ̸=gj equals 1 when the propagation structure la- 281

bel gi and gj are different, indicating a negative 282

sample. sim(·, ·) is a pairwise similarity function, 283

i.e., dot product. τ > 0 is a scalar temperature 284

parameter that controls the separation between the 285

class with and without propagation structure. By 286

minimizing the objective loss, the model is encour- 287

aged to separate semantic and structural represen- 288

tations while bringing closer the representations 289

of the same type of input. This approach pre- 290

serves structural features in the shared represen- 291

tation space, enhancing the model’s ability to gen- 292

eralize and detect samples of different input types 293

during testing. 294

2.3.3 Propagation-guided Adversarial 295

Training 296

At each step of training, under structure-aware con- 297

trastive learning and multi-domain classification 298

objectives, we apply an adversarial training strategy 299

(e.g., FGM (Miyato et al., 2017)) on original sam- 300

ples to produce adversarial perturbations. Specifi- 301

cally, the perturbations are put on the embedding 302

layers of semantic encoder, and then obtain adver- 303

sarial samples. After that, we leverage the joint 304

4



objective on these worst-case samples to maximize305

the consistency of transferable representations with306

or without propagation across multiple domains.307

Under the joint objective on both original and ad-308

versarial samples, our model can learn propagation-309

robust transferable features for multi-domain fake310

news detection. The optimization objective for cor-311

responding adversarial samples can be derived by312

following the calculation process for the original313

samples, denoted as, Lr-adv
CLS + Lr-adv

StruCL. Take the314

domain with propagation data as an example, the315

adversarial perturbation for content-only samples316

is defined as,317

min
θ

E(x(k),y(k))∼D(k) max
∥radv∥q≤ϵ

(LCLS + LStruCL)

(7)318

where radv = −ϵ g
∥g∥q , g = ∇ log p(y(k)|x(k); θ̂).319

The overall loss of StruACL is defined as a sum320

of joint objective on both original and adversarial321

samples, i.e.,322

Ltotal = LCLS + LStruCL + Lr-adv
CLS + Lr-adv

StruCL. (8)323

3 Experimental Setups324

3.1 Datasets325

We conduct experiments on seven widely-used326

public datasets for fake news detection, where327

two content-based fake news datasets including328

Weibo21 (Nan et al., 2021), and Covid19 (Patwa329

et al., 2021), and five propagation-based fake news330

datasets including Twitter, TwitterCovid19 (Kar331

et al., 2021; Lin et al., 2022), WeiboCovid19 (Lin332

et al., 2022), Arabic (Alam et al., 2021; Lin et al.,333

2023), and Cantonese (Ke et al., 2020; Lin et al.,334

2023). Based on the above seven datasets, we335

build two major benchmarks to achieve different336

multi-domain fake news detection settings, each in-337

volving at least one content-based and propagation-338

based datasets to evaluate potential transferabil-339

ity of detection methods between semantic and340

propagation structure. Specifically, CovidEval in-341

cludes five datasets related to the same event (i.e.,342

COVID-19): Covid19, WeiboCovid19, Twitter-343

Covid19, Arabic, and Cantonese. CrossEval in-344

cludes three datasets from different social platforms345

and social events: Weibo21, Twitter, and Weibo-346

Covid19. Please see appendix for detailed descrip-347

tion and statistics.348

3.2 Evaluation Metrics349

Since fake news detection can be regarded as a350

binary classification, we adopt widely-used evalua-351

tion metrics for classification task, including accu- 352

racy (ACC), macro-averaged F1 score (F1). 353

3.3 Comparison Methods 354

We compare with single-domain fake news de- 355

tection methods, and four multi-domain detec- 356

tion methods. Single-domain methods. XLM- 357

RoBERTa (Conneau et al., 2020) uses a PLM- 358

based semantic encoder with a linear classifier for 359

fake news detection. TextCNN (Kim, 2014) uti- 360

lizes convolutional layers to extract local semantics 361

from news content. 362

Multi-domain methods. XLM-RoBERTa-M is 363

an extended version of XLM-RoBERTa designed 364

for multi-domain detection via parameter sharing 365

across multiple domains. EANN (Wang et al., 366

2018) learns domain-invariant representations for 367

detection. We re-implement by only considering 368

the textual modality of news content across mul- 369

tiple domains. MDFEND Nan et al. (2021) uses 370

a domain gate to aggregate multi-domain seman- 371

tic representations. SAT (Wei et al., 2024) learns 372

structure-invariant features from samples with and 373

without propagation for detection. We extend this 374

framework for multi-domain detection with the 375

same model architecture of our method, denoted as 376

SAT-TGN. More details of the related works are 377

listed in the Appendix. 378

3.4 Implementation Details 379

All experiments are conducted on a single NVIDIA 380

Tesla A100 80GB card. We use multilingual pre- 381

trained models to extract textual features consid- 382

ering different languages across datasets, and fine- 383

tune the semantic encoder during training. The 384

dimension of hidden vectors is set to 64. The graph 385

layers are set to 2. The learning rate is set to 0.0001. 386

The Adamax optimizer is adopted for all meth- 387

ods with the learning rate initialized to 0.0001 and 388

weight decay as 0. The temperature parameter is 389

searched from {0.1, 1}. The perturbation radius is 390

searched from {1, 5} and the rate is set to 1. We 391

run each model with 3 random seeds and report the 392

average results of the test set for each method. 393

4 Results and Discussion 394

4.1 Overall Results 395

The overall multi-domain fake news detection re- 396

sults on CrossEval and CovidEval are listed in Ta- 397

ble 1 and Table 2, respectively. 398
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Methods # Para.
CrossEval

Avg.Weibo21♢ Twitter♦ WeiboCovid19♦

Acc F1 Acc F1 Acc F1 Acc F1
Single-domain Fake News Detection
XLM-RoBERTa 265.2B × 3 87.42 87.39 86.39 86.38 85.42 84.61 86.41 86.13
TextCNN 266.1B × 3 89.29 89.21 86.47 86.41 83.33 82.35 86.36 85.99
Multi-domain Fake News Detection
XLM-RoBERTa-M 265.2B 88.46 88.33 87.40 87.42 86.11 85.71 87.33 87.15
EANN 265.2B 87.05 86.94 86.29 86.27 86.11 85.78 86.48 86.33
MDFEND 272.8B 90.80 90.75 85.77 85.78 88.89 88.15 88.49 88.22
SAT-TGN 265.3B 90.48 90.48 85.52 85.51 86.81 85.98 87.60 87.32
StruACL-TGN (ours) 265.3B 91.14 91.09 87.35 87.34 89.81 89.31 89.44 89.25
StruACL-TGN* (ours) < 265.3B × 3 91.78 91.78 88.45 88.45 90.97 90.33 90.40 90.19

Table 1: Experimental results of fake news detection on CrossEval benchmark, which involves fake news detection
datasets across different social platforms. ♢ refers to content-only datasets without propagation thread. ♦ indicates
datasets with both textual content and propagation data. StruACL-TGN and StruACL-TGN* indicate the TGN
model trained on the full benchmark and pair-wise benchmark under the proposed StruACL objective, respectively.
Detailed results of pair-wise benchmark are listed in Table 3.

Methods
CovidEval

Avg.Covid19♢ WeiboCovid19♦ TwitterCovid19♦ Arabic♦ Cantonese♦
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Single-domain Fake News Detection
XLM-RoBERTa 96.73 96.72 64.58 48.19 62.87 38.60 64.13 39.07 70.30 68.59 71.72 58.23
TextCNN 97.10 97.09 83.33 82.35 67.33 52.06 80.43 75.28 76.66 74.45 80.97 76.25
Multi-domain Fake News Detection
XLM-RoBERTa-M 96.92 96.90 85.42 84.80 63.37 60.07 77.17 71.52 66.99 61.23 77.97 74.91
EANN 96.40 96.39 86.80 86.40 73.27 66.65 76.09 73.65 63.95 63.73 79.30 77.36
MDFEND 96.40 96.39 84.72 84.03 67.82 59.17 75.54 70.67 72.51 69.58 79.40 75.97
SAT-TGN 96.96 96.95 86.11 85.29 68.32 59.56 82.07 79.85 69.06 67.51 80.50 77.83
StruACL-TGN (ours) 95.69 95.65 86.81 86.21 75.41 72.21 85.33 83.27 71.50 69.55 82.95 81.38

Table 2: Experimental results of fake news detection on CovidEval benchmark, which involves fake news detection
datasets related to the breaking event COVID-19. ♢ refers to content-only datasets without propagation thread. ♦

indicates datasets with both textual content and propagation data.

Methods Weibo21♢ WeiboCovid19♦ Avg.
Acc F1 Acc F1 Acc F1

XLM-RoBERTa-M 86.17 86.12 87.50 86.85 86.83 86.48
EANN 80.56 80.09 90.43 90.43 85.49 85.24
MDFEND 88.92 88.84 89.58 89.00 89.25 88.92
SAT-TGN 87.50 87.08 85.28 85.18 86.39 86.13
StruACL-TGN 89.18 89.15 90.97 90.33 90.08 89.74
w/o StruACL 84.56 84.52 87.73 87.20 86.14 85.86

(a) Detection on Weibo21 and WeiboCovid19.

Methods Weibo21♢ Twitter♦ Avg.
Acc F1 Acc F1 Acc F1

XLM-RoBERTa-M 90.74 90.71 86.27 86.26 88.50 88.49
EANN 89.08 89.05 86.29 86.29 87.69 87.67
MDFEND 88.66 88.62 83.69 83.69 86.18 86.16
SAT-TGN 88.82 88.82 82.79 82.70 85.81 85.76
StruACL-TGN 91.78 91.78 88.45 88.45 90.12 90.12
w/o StruACL 90.74 90.69 87.27 87.27 89.01 88.98

(b) Detection on Weibo21 and Twitter.

Methods WeiboCovid19♦ TwitterCovid19♦ Avg.
Acc F1 Acc F1 Acc F1

XLM-RoBERTa-M 86.81 86.16 76.24 73.94 81.52 80.05
EANN 87.50 86.56 74.26 73.51 80.88 80.04
MDFEND 82.64 80.57 71.78 64.60 77.21 72.58
SAT-TGN 88.19 87.54 76.24 73.40 82.22 80.47
StruACL-TGN 88.89 88.38 78.22 76.40 83.55 82.39

w/o StruACL 86.81 85.98 75.74 74.09 81.27 80.03

(c) Detection on TwitterCovid19 and WeiboCovid19.

Methods Weibo21♦ Covid19♦ Avg.
Acc F1 Acc F1 Acc F1

XLM-RoBERTa-M 90.74 90.73 97.52 97.52 94.13 94.12
EANN 89.24 89.23 97.34 97.33 93.29 93.28
MDFEND 88.46 88.46 97.29 97.28 92.87 92.87
SAT-TGN 90.95 90.95 97.57 97.56 94.26 94.26
StruACL-TGN 92.04 92.01 98.18 98.17 95.11 95.09
w/o StruACL 90.64 90.63 97.48 97.47 94.06 94.05

(d) Detection on Weibo21 and Covid19.

Table 3: Multi-domain detection results on pair-wise fake news datasets.

Comparison with Single-domain Fake News De-399

tection Compared with methods in the first block400

of two tables, our StruACL achieves better perfor-401

mance under lighter network architecture, show-402

ing the effectiveness and efficiency of our method.403

Specifically, StruACL outperforms single-domain404

detection models by +5.1% and 3.1% in F1 scores405

on CovidEval and CrossEval, respectively.406

Comparison under Multi-domain Detection 407

Among multi-domain detection methods in the 408

second block of two tables, our StruACL-TGN 409

and StruACL-TGN* achieve the best overall de- 410

tection performance based on average metrics 411

for accuracy and F1 scores on both benchmarks, 412

showing the superiority of StruACL for multi- 413

domain fake news detection. Specifically, for 414
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Methods Weibo21♢ Twitter♦ WeiboCovid19♦ Avg.
Acc F1 Acc F1 Acc F1 Acc F1

StruACL 91.14 91.09 87.35 87.34 89.81 89.31 89.44 89.25
w/o Adv 89.93 89.91 86.53 86.50 87.96 87.41 88.13 87.94
w/o StruCL 91.21 91.20 87.20 87.20 89.58 89.13 89.33 89.18
w/o StruACL 88.30 88.25 85.59 85.57 87.04 86.55 86.97 86.79
w/o AdvStruCL 91.23 91.19 87.02 87.00 89.35 88.77 89.29 88.98
w/o AdvCLS 88.96 88.91 84.29 84.28 88.19 87.66 87.15 86.95

(a) Ablation results on CrossEval benchmark.

Methods Covid19♢ WeiboCovid19♦ TwitterCovid19♦ Arabic♦ Cantonese♦ Avg.
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

StruACL 95.69 95.65 86.81 86.21 75.41 72.21 85.33 83.27 71.50 69.55 82.95 81.38
w/o Adv 96.21 96.21 88.89 88.31 76.24 72.32 82.61 78.80 65.76 65.00 81.94 80.13
w/o StruCL 95.61 95.58 86.11 85.84 73.27 70.68 84.24 81.29 70.44 68.67 81.93 80.41
w/o StruACL 95.79 95.78 86.81 86.46 73.27 68.76 83.33 81.06 68.23 67.16 81.49 79.84
w/o AdvStruCL 97.88 97.88 82.18 81.91 68.32 62.60 80.62 77.22 70.30 67.62 79.86 77.45
w/o AdvCLS 96.73 96.72 88.89 88.23 72.28 66.48 83.70 81.12 67.68 66.27 81.85 79.76

(b) Ablation results on CovidEval benchmark.

Table 4: Ablation results of the proposed StruACL on two benchmarks.

CovidEval, compared with the baseline, our Stru-415

ACL achieves 1.46%/1.54% accuracy/F1 scores.416

For CrossEval, StruACL outperforms the base-417

line about 2.46%/2.47% accuracy and F1 scores.418

EANN and SAT use adversarial training to learn419

domain-invariant or structure-invariant features420

across multi-domain data. MDFEND models421

domain-specific and domain-shared semantics with422

complex neural networks. All methods ignore po-423

tential connections between semantics and struc-424

ture. StruACL effectively performs knowledge425

transfer not only across multiple domains but also426

between semantics and structures, achieving the427

superior multi-domain detection performance.428

Pair-wise Domain Fake News Detection Ta-429

ble 3 shows multi-domain detection results on pair-430

wise datasets where (a) and (b) indicate results431

trained on two heterogeneous datasets, one with432

propagation and another without; (c) and (d) in-433

dicates results trained on two propagation-based434

datasets and two content-based datasets with a ho-435

mogeneous setting. From results, our proposed436

StruACL-TGN obtains superior average perfor-437

mance consistently, showing the effectiveness of438

StruACL on both heterogeneous and homogeneous439

settings. Additionally, by comparing Table 3 (a)440

and (b), which display results under two settings441

trained with Weibo21, we observe that our method442

shows a more significant improvement on Weibo-443

Covid19, which has less training data compared444

to Twitter. This suggests our method is capable445

of better generalization and adaptation to data-446

constrained domains.447

4.2 Ablation Study 448

We further ablate the key components to evaluate 449

the effectiveness of StruACL objective. w/o Adv 450

refers to removing all adversarial perturbations dur- 451

ing training. We also remove the perturbation based 452

on structure-aware contrastive learning and cross- 453

entropy classification objectives, respectively, de- 454

noted as w/o AdvStruCL, and w/o AdvCLS. w/o 455

StruCL indicates removing the structure-aware 456

contrastive learning, ignoring the transfer learning 457

between structure and semantic. w/o StruACL is 458

removing the full StruACL objective. As shown in 459

Table 4, the full model gains the best performance 460

on both benchmarks, compared with the ablated 461

models w/o Adv, w/o StruCL, w/o StruACL. The 462

results demonstrate the effectiveness of each key 463

component for detection. Additionally, for generat- 464

ing adversarial samples, eliminating the guidance 465

of either structure-aware contrastive learning or 466

task prediction gains (i.e., w/o AdvStruCL, and w/o 467

AdvCLS) decreases performance to some extent, 468

demonstrating the effectiveness of both objectives. 469

4.3 Generalization Evaluation with 470

Data-constrained Conditions 471

We evaluate the generalization under multi-domain 472

data-constrained conditions. We vary the training 473

set ratios to evaluate detection performance under 474

limited data conditions. Specifically, for a prede- 475

fined ratio (e.g., 20%), we randomly sampled sub- 476

sets from the original training sets of all domains. 477

All methods are tested using on the same sampled 478

training subsets to ensure a fair comparison. Fig- 479

7



(a) Results on CrossEval. (b) Results on CovidEval.

Figure 3: Results against removing domain-specific propagation in the training sets on CrossEval and CovidEval.

Figure 4: Results against different training set sizes. We
report the average F1s of datasets on each benchmark.

ure 4 shows results of representative methods and480

our StruACL on CrossEval and CovidEval across481

various training set sizes. Our proposed StruACL482

consistently achieves superior performance across483

all data-constrained settings, regardless of the train-484

ing set ratio. This demonstrates the strong gen-485

eralization capabilities of StruACL in scenarios486

with limited data. The performance improvement487

of StruACL is not only attributed to its ability to488

effectively learn semantic and structural features489

from multi-domain data but also to its capacity490

for transferring these learned semantic and struc-491

tural representations across tasks. These advan-492

tages enable StruACL to efficiently utilize limited493

data and achieve generalized performance in data-494

constrained scenarios.495

4.4 Effect of Training Propagation Structure496

We analyze the effect of propagation structures in497

the training data during transferring between se-498

mantic and structure. We remove the propagation 499

structure of the training set on the specific domain. 500

As shown in Figure 3, after removing propagation 501

structures on Twitter and WeiboCovid19, the de- 502

tection performance on all three datasets declined 503

consistently. This indicates that propagation struc- 504

tures play a critical role in identifying fake news, as 505

they provide complementary signals that enhance 506

semantic analysis. Our StruACL can fully model in- 507

teractions between semantic and structural features, 508

thereby boosting multi-domain fake news detection. 509

Interestingly, when removing the propagation data 510

of WeiboCovid19, the detection performance on 511

the Twitter declined more significantly compared to 512

the performance drop observed for WeiboCovid19 513

itself. This may be because that StruACL lever- 514

ages latent semantic associations related to Weibo, 515

which facilitates the detection on WeiboCovid19 516

even in the absence of propagation features. In 517

contrast, the performance gains on TwitterCovid19 518

are primarily driven by the transfer of propagation 519

features from WeiboCovid19. This underscores the 520

critical role of transferable propagation structure 521

features in multi-domain detection. 522

5 Conclusion 523

This paper studies a propagation-adaptive multi- 524

domain fake news detection paradigm. To 525

achieve this, we develop a novel StruACL-TGN to 526

learn generalized representations from propagation- 527

based and content-only domains. StruACL con- 528

trasts semantic and structural representations to 529

preserve and transfer structural knowledge, while 530

introduces propagation-guided adversarial training 531

to enhance the diversity of representations. Ex- 532

periments on seven datasets show that StruACL- 533

TGN achieves superior multi-domain detection on 534

general and data-constraint settings, proving the 535

effectiveness and generalizability of StruACL. 536
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Limitations537

The current framework focuses on text-based se-538

mantic and propagation data. The study of multi-539

modal inputs, such as images and videos will be540

left as future work to further enhance the robust-541

ness and versatility of fake news detection systems542

in increasingly complex and dynamic information543

ecosystems.544
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Overall of Appendix731

In the appendix, we will provide related work on732

fake news detection, and detailed experimental se-733

tups.734

A Related Work735

A.1 Fake News Detection736

Fake news detection aims to automatically identify737

a news piece as real or fake.738

Early works on content-based fake news detec-739

tion rely on feature engineering to capture textual740

characteristics, e.g., topic features (Castillo et al.,741

2011), writing styles and consistency (Popat, 2017;742

Potthast et al., 2018). After the emergence of deep743

learning, some works (Ma et al., 2016; Ruchan-744

sky et al., 2017; Karimi and Tang, 2019) applied745

various neural networks to learn high-level linguis-746

tic features from the source news or combing its747

retweets.748

Generally, users on social media share opinions,749

conjectures and evidence for checking fake news.750

Through their various interactive behaviors, a prop-751

agation tree describing the law of information trans-752

mission is formed and plays a significant role in753

fake news detection. Vosoughi et al. (2018); Jang754

et al. (2018) have empirically shown that com-755

pared with the truth, false news has deeper propa-756

gation structures, and reaches a wider audience. To757

leverage structure properties, propagation-based758

fake news detection models (Ma et al., 2016; Shu759

et al., 2019; Khoo et al., 2020) learn the sequen-760

tial structure features in the propagation trees by761

RNN-based or attention-based modules. (Shu et al.,762

2019) jointly learned the sequential effect of com-763

ments and correlation between source news and764

the corresponding comments. To capture structural765

propagation patterns, (Ma et al., 2016) constructed766

a tree-structured neural network to model the prop-767

agation structure. (Khoo et al., 2020) adopted768

Transformer (Vaswani et al., 2017) to learn long-769

distance interactions. Recently, many researchers770

(Bian et al., 2020; Hu et al., 2021; Lin et al., 2021;771

Wei et al., 2021, 2022b; Mehta et al., 2022; Yang772

et al., 2022) regard the propagation tree as a graph,773

and employ various graph-based models (Kipf and774

Welling, 2017; Schlichtkrull et al., 2018; Chen775

et al., 2020; Velickovic et al., 2018) to capture topo-776

logical structure features for detection. applied two777

graph convolutional networks (GCNs) (Kipf and778

Welling, 2017) to learn structural patterns from779

two distinct directed graphs. (Hu et al., 2021; Lin780

et al., 2021) further lored multi-relational interac- 781

tions in the propagation graph. Wei et al. (2024) 782

study cold-start propagation and lore transferable 783

features from samples with propagation for improv- 784

ing detection of content-only samples. 785

A.2 Fake News Detection across Multiple 786

Domains 787

In real-world scenarios, fake news typically orig- 788

inates and propagate across various domains or 789

platforms, due to real-time events, social trends, 790

and other factors. Thus, multi-domain fake news 791

detection has draw significant attention. 792

Most works aims to study domain-shared (Zhu 793

et al., 2023; Liang et al., 2022) and domain- 794

invariant semantic features (Wang et al., 2018; 795

Zhang et al., 2021; Li et al., 2024) for detecting 796

fake news across multiple domains. For exam- 797

ple, Wang et al. (2018) learn event-invariant rep- 798

resentations for multi-domain detection via con- 799

sidering the effect of event diversity. Nan et al. 800

(2021) utilize domain gate to alleviate the domain 801

shift issue for aggregation of multi-domain repre- 802

sentations. Li et al. (2024) study the unbalanced 803

multi-domain data issue and leverage two teacher 804

models to mitigate the domain bias via knowledge 805

distillation. (Zhu et al., 2023) introduce a domain 806

adapter to extract domain-shared features from sim- 807

ilar domains for fake news detection. Liang et al. 808

(2022) design a fuzzy domain label to lore multi- 809

domain knowledge. Tong et al. (2024) design a pro- 810

gressive hierarchical extraction network to achieve 811

domain-adaptive domain-related knowledge extrac- 812

tion. Most of the above multi-domain methods 813

focus on the news content across different domains, 814

ignoring potential shared propagation structures for 815

detection. 816

B Datasets 817

All experiments are conducted on seven fake news 818

detection datasets. Specifically, Weibo21 (Nan 819

et al., 2021) collects Chinese tweets without propa- 820

gation data on Sina Weibo platform ranging from 821

2010-12-15 to 2021-03-31. Regarding to the break- 822

ing event COVID-19 pandemic, Covid19 (Patwa 823

et al., 2021) collects English textual tweets related 824

to the topic of COVID-19 from from public fact ver- 825

ification websites and social media (e.g., Facebook 826

and Twitter1). TwitterCovid19 Kar et al. (2021); 827

Lin et al. (2022) collects English textual tweets 828

1Renamed X in 2023.
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Dataset Prop. Resource Lang. Event # Train # Valid # Test # Total
Weibo21 × Weibo CN Hybrid 5,751 1,918 1,923 9,592
Covid19 × Hybrid EN COVID19 6,420 2,140 2,140 10,700
Twitter ✓ Twitter EN Hybrid 3,109 777 3,888 7,774
WeiboCovid19 ✓ Weibo CN COVID19 163 40 208 411
TwitterCovid19 ✓ Twitter EN COVID19 159 39 202 400
Arabic ✓ Twitter AR COVID19 136 36 184 356
Cantonese ✓ Twitter YUE COVID19 577 143 724 1,444

Table 5: Statistics of 7 datasets for fake news detection. Prop. refers to whether the dataset contains propagation
data. Lang. indicates language used in the dataset where CN, EN, AR, and YUE represent Chinese, English, Arabic,
and Cantonese, respectively. Event summarizes the types of social events collected in the dataset. # Total refers to
the total number of samples in each dataset.

and the corresponding propagation from Twitter.829

WeiboCovid19 (Lin et al., 2022) contains relevant830

Chinese textual claims and the propagation thread831

on Sina Weibo and X platform. Arabic and Can-832

tonese, originally collected by Alam et al. (2021)833

and Ke et al. (2020), contain textual claims in Ara-834

bic and Cantonese, respectively. Lin et al. (2023)835

further collect the propagation thread of each claim836

tweets on both datasets. The statistics of the above837

datasets are shown in Table 5.838
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