Structure-adaptive Adversarial Contrastive Learning for Multi-Domain
Fake News Detection

Anonymous ACL submission

Abstract

The rapid proliferation of fake news across mul-
tiple domains poses significant threats to soci-
ety. Existing multi-domain detection models
typically capture domain-shared semantic fea-
tures to achieve generalized detection. How-
ever, they often fail to generalize well due
to poor adaptability, which limits their abil-
ity to provide complementary features for de-
tection, especially in data-constrained condi-
tions. To address these challenges, we inves-
tigate the propagation-adaptive multi-domain
fake news detection paradigm. We propose a
novel framework, Structure-adaptive Adversar-
ial Contrastive Learning (StruACL), to adap-
tively enable structure knowledge transfer be-
tween multiple domains. Specifically, we first
contrast representations between content-only
and propagation-rich data to preserve structural
patterns in the shared representation space. Ad-
ditionally, we design a propagation-guided ad-
versarial training strategy to enhance the di-
versity of representations. Under the StruACL
objective, we leverage a unified Transformer-
based and graph-based model to jointly learn
transferable semantic and structural features
for detection across multiple domains. Exper-
iments on seven fake news datasets demon-
strate that StruACL-TGN achieves better multi-
domain detection performance on general and
data-constrained scenarios, showing the effec-
tiveness and better generalization of StruACL.

1 Introduction

Nowadays, mainstream social platforms have facili-
tated the news dissemination in a faster and cheaper
way. Nevertheless, the ease has also caused the
wide spread of fake news, which has had detri-
mental effects on individuals and society (Loomba
et al., 2021). Triggered by the negative impact of
fake news, fake news detection has become a press-
ing challenge due to its widespread impact across
diverse platforms and domains.

News content and its corresponding user engage-
ments (i.e., tree-structured propagation) are two
key data types in detecting fake news. Content-
based detection methods (Ma et al., 2016; Ruchan-
sky et al., 2017; Karimi and Tang, 2019) capture
intrinsic semantic or linguistic features of claim
tweets to detect fake news. Propagation-based de-
tection methods (Ma et al., 2018; Kumar and Car-
ley, 2019; Ma and Gao, 2020; Hu et al., 2021; Bian
et al., 2020; Wei et al., 2021; Lin et al., 2021; Wei
et al., 2022a) are designed to integrate structural
features to complement textual content for detec-
tion. Nevertheless, in real-world scenarios, labeled
data for fake news is often scarce, particularly in
specific low-resource domains or emerging topics,
which hinders detection performance. Recently,
multi-domain fake news detection has been widely
studied to leverage and integrate knowledge from
multi-domain data to improve target-domain detec-
tion (Zhu et al., 2023; Liang et al., 2022; Wang
et al., 2018; Zhang et al., 2021; Nan et al., 2021;
Li et al., 2024), alleviating the data limitation chal-
lenge to some extent.

However, the representations learned by most
existing multi-domain detection paradigms fail to
generalize well due to poor adaptability to the prop-
agation structure. Firstly, as shown in Figure 1,
some multi-domain approaches primarily focus on
learning domain-invariant or domain-shared seman-
tic features (Wang et al., 2018; Nan et al., 2021)
on content-only training data. However, seman-
tic features inherently differ from structural pat-
terns, rendering these content-based methods inade-
quate for generalizing to samples that involve prop-
agation. Furthermore, directly extending domain-
specific propagation-based methods struggles to ef-
fectively adapt to detection scenarios lacking prop-
agation structures, resulting in suboptimal detec-
tion performance for content-only samples (Wei
et al., 2024). Therefore, a critical challenge lies in
learning more robust representations by enhancing
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Figure 1: Difference between propagation-adaptive multi-domain fake news detection in this study and existing

multi-domain fake news detection paradigms.

structure adaptability for multi-domain fake news
detection.

In this paper, we study a novel propagation-
adaptive multi-domain fake news detection
paradigm, where the detection model is trained
on both propagation-based data and content-only
data. Our goal is to enhance generalization for both
types of input.

To achieve this, we propose a new propagation
structure-adaptive adversarial contrastive learning
framework (StruACL) to adaptively learn gener-
alized semantic and structural representations for
multi-domain fake news detection. Specifically,
we first design a new structure-aware contrastive
learning (StruCL) objective to facilitate the adap-
tive transfer of structure knowledge during multi-
domain training. With the guidance of structure la-
bel, StruCL leverages contrastive learning to differ-
entiate representations between samples with and
without propagation, effectively capturing and re-
taining structural knowledge in the shared represen-
tation space. By integrating this structural informa-
tion, the learned representations become more in-
formative, allowing the model to achieve enhanced
performance in detecting fake news across both
propagation-based and content-only domains. Ad-
ditionally, we design a propagation-guided adver-
sarial training (PAT) strategy to enhance the diver-
sity of representations under the data-constrained
condition. PAT adaptively performs adversarial per-
turbations on original embeddings using the Fast
Gradient Method (FGM) (Miyato et al., 2017) to
generate worst-case samples for both content-only
and propagation-based inputs. By jointly contrast-
ing on both original and adversarial samples, the
model can further effectively learn fine-grained se-
mantic and structure knowledge via retaining the
propagation-adaptive feature consistency. For the
model architecture, we adopt a shared Transformer-

based and graph-based network to jointly encode
semantic and structural features from news con-
tent and available propagation across multiple do-
mains, respectively. Under the proposed objective,
our StruACL-TGN generalizes well across both
content-only and propagation-structured domains.

We conduct experiments on seven fake news
datasets with and without propagation. The experi-
mental results demonstrate that our StruACL-TGN
achieves superior performance in multi-domain
fake news detection. Extensive experiments show
the effectiveness of StruACL objective, particularly
in data-limited application scenarios.

The main contributions are as follows: 1) We
study a novel propagation-adaptive multi-domain
fake news detection paradigm and develop a novel
StruACL-TGN to learn generalized representations
for detection on both domains with propagation
data and content-only domains. 2) We design a
new StruACL framework to learn more informa-
tive multi-domain representations. It contrasts se-
mantic and structural representations to preserve
and transfer structural knowledge, as well as intro-
duces propagation-guided adversarial training to
enhance the diversity of representations. 3) Experi-
ments on seven fake news datasets demonstrate that
StruACL-TGN achieves superior multi-domain de-
tection performance. Extensive experiments further
show that StruACL enhances the model’s general-
ization capabilities in data-constraint applications.

2 Methodology

In this section, we first describe the problem defi-
nition of propagation-adaptive multi-domain fake
news detection. Then, we propose a new StruACL-
TGN to learn generalized representations on both
domains with propagation data and content-only
domains. The overall architecture is shown in
Figure 2. It adopts a shared Transformer-based
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Figure 2: Overview of the proposed StruACL-TGN.

and graph-based network to encode semantic and
structural knowledge across multiple domains. For
model training, we first propose a new StruCL to ef-
fectively utilize structure knowledge. Additionally,
we design propagation-guide adversarial training
(PAT) that generates worst-case samples to enhance
the diversity of representations. Through applying
PAT on original and adversarial samples, our Stru-
ACL can learn more informative multi-domain rep-
resentations from domains with propagation data
and domains with content-only data.

2.1 Problem Definition

Unlike existing multi-domain fake news detec-
tion tasks, propagation-adaptive multi-domain fake
news detection aims to detect fake news across do-
mains with heterogeneous data availability, where
some domains have both propagation structures
and content, while others only have content.
Formally, let KC represent the set of all domins.
Define D(*) as the dataset of each domain k € K.
For each domain £ that includes propagation data,
D) is defined as D) = {(:UZ(-k), at®) y§k))}fvz’€1’

7 9y
where xz(k) is the content of the i-th news sample in

domain k. ng) is the propagation structure (e.g., a
tree-like graph) associated with xgk). ygk) €{0,1}
is the label indicating whether the news is fake
or real. N is the number of samples in domain
k. For each domain £’ that excludes propagation
data, D*) is defined as D(¥) = {(w<kl) Z(kl))}fvz’“{

is the content of the ¢-th news sample

i ’
where CL'(k )
in domain &’. y*) € {0, 1} is the label. Ny is the

i

number of samples in domain %’.

Propagation-adaptive multi-domain fake news
detection aims to utilize both rich propagation struc-
tures and content-only samples to enhance detec-
tion performance across various domains. Fake
news detection can be regarded as a binary clas-
sification task. Specifically, the objective is to
learn a unified detection model f(-) that predicts
the label ¢ (e.g., fake or real) for a news item =
(with or without propagation GG across all domains:
y = f(z,G), where G = () for domains without
propagation data.

2.2 Model Architecture

The network structure consists of a shared
Transformer-based semantic encoder, a graph-
based structure encoder, and a hybrid fake news
classifier.

Transformer-based Semantic Encoder Consid-
ering multilingual settings, a pretrained multilin-
gual BERT model (Conneau et al., 2020) on a
monolingual corpus is utilized to facilitate lan-
guage adaptation. Formally, given an input token
sequence x;1, ..., ;7 Where x;; refers to j-th token
in the i-th input sample, and 7T is the maximum
sequence length, the model learns to generate the
context representation of the input token sequences:

h$ = BERT([CLS], 21, .., zin, [SEP1), (1)

where [CLS] and [SEP] are special tokens, typi-
cally placed at the beginning and end of each se-
quence, respectively. h; indicates the hidden rep-
resentation of the ¢-th input sample, computed by



the representation of [CLS] token in the last layer
of the encoder.

Graph-based Structure Encoder Based on the
semantic representations, propagation-based mod-
els integrate structural features to enhance detec-
tion. Graph neural networks are widely applied to
extract structural features through message-passing
across nodes in the propagation graph. Given the
input sample, which includes the textual content
of the source news x and propagation trees G, ex-
isting models utilize various neural networks to
extract high-level textual and structural features for
detection. The formulation is defined as,

hlg - GNN(I‘Z, Gi; @), (2)

where GNN(+) refers to graph-based encoders in
propagation-based models (Bian et al., 2020; Wei
et al., 2022b), and O refers to the corresponding
trainable parameters. The input embedding of z;
and context ¢; in (7 are initialized with the semantic
embedding hj.

Hybrid Fake News Classifier To address the fea-
ture gap between different domains in distinguish-
ing fake news, we design a hybrid fake news clas-
sifier to learn domain-specific and domain-shared
discriminative features for detection. Specifically,
based on the final representation, domain-specific
fake news classifiers are employed to predict the
veracity label of each news content. For domain £,
the initial prediction distribution is computed as,

v = W®z 4 b, 3)

where ng) and bgk) are trainable parameters
of domain £’s classifier. Similarly, we apply a
parameter-shared classifier to predict the veracity
label for all domains, i.e.,

y® =Wz + b.. 4

Based on the above prediction, the final prediction
for domain k is defined as,

o > (k)
y*) = Softmax(y? + y2 ).

2.3 Optimization Process

2.3.1 Classification Objective

To achieve fake news detection, the model is trained
by minimizing a joint loss function across all do-
mains, considering both content and propagation

data, i.e.,

Ny
1
Las= Y ﬁzﬁ(f(%(k)ac;gk))aygk))
=1

kekp K
1 Ny
k' k'
+ 3 N a0,y
KeKe i=1

where Kp C K is the set of domains with propaga-
tion data, and Ko C K is the set of domains with-
out propagation data. £(-,-) is the cross-entropy
classification loss.

2.3.2 Structure-aware Contrastive Learning

We design a new structure-aware contrastive learn-
ing (StruCL) objective to facilitate the adap-
tive transfer of structure knowledge during multi-
domain training. It contrasts between representa-
tions with and without propagation structures. The
objective of StruCL is defined as,

(k)
LsmucL = Z Lgncr
kekp

. esim(@ 2 /1
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where g; = 1 refers to the hidden representation
with structure information. The indicator function
¥ 4,49, equals 1 when the propagation structure la-
bel g; and g; are different, indicating a negative
sample. sim(-, -) is a pairwise similarity function,
i.e., dot product. 7 > 0 is a scalar temperature
parameter that controls the separation between the
class with and without propagation structure. By
minimizing the objective loss, the model is encour-
aged to separate semantic and structural represen-
tations while bringing closer the representations
of the same type of input. This approach pre-
serves structural features in the shared represen-
tation space, enhancing the model’s ability to gen-
eralize and detect samples of different input types
during testing.

2.3.3 Propagation-guided Adversarial
Training

At each step of training, under structure-aware con-
trastive learning and multi-domain classification
objectives, we apply an adversarial training strategy
(e.g., FGM (Miyato et al., 2017)) on original sam-
ples to produce adversarial perturbations. Specifi-
cally, the perturbations are put on the embedding
layers of semantic encoder, and then obtain adver-
sarial samples. After that, we leverage the joint



objective on these worst-case samples to maximize
the consistency of transferable representations with
or without propagation across multiple domains.
Under the joint objective on both original and ad-
versarial samples, our model can learn propagation-
robust transferable features for multi-domain fake
news detection. The optimization objective for cor-
responding adversarial samples can be derived by
following the calculation process for the original
samples, denoted as, L&4 + L520Y, . Take the
domain with propagation data as an example, the
adversarial perturbation for content-only samples
is defined as,

max (Lcrs + LsirucL)
l|7adv]lqg <€
(7)

where 7,4y = —e79—, g = Vlog p(y® |2*); §).
The overall loss 0% StruACL is defined as a sum

of joint objective on both original and adversarial
samples, i.e.,

Liotal = LoLs + LsmucL, + LEY + L5 (8)

min E ) 40y~ p)

3 Experimental Setups

3.1 Datasets

We conduct experiments on seven widely-used
public datasets for fake news detection, where
two content-based fake news datasets including
Weibo21 (Nan et al., 2021), and Covid19 (Patwa
et al., 2021), and five propagation-based fake news
datasets including Twitter, TwitterCovid19 (Kar
et al., 2021; Lin et al., 2022), WeiboCovid19 (Lin
et al., 2022), Arabic (Alam et al., 2021; Lin et al.,
2023), and Cantonese (Ke et al., 2020; Lin et al.,
2023). Based on the above seven datasets, we
build two major benchmarks to achieve different
multi-domain fake news detection settings, each in-
volving at least one content-based and propagation-
based datasets to evaluate potential transferabil-
ity of detection methods between semantic and
propagation structure. Specifically, CovidEval in-
cludes five datasets related to the same event (i.e.,
COVID-19): Covid19, WeiboCovid19, Twitter-
Covid19, Arabic, and Cantonese. CrossEval in-
cludes three datasets from different social platforms
and social events: Weibo21, Twitter, and Weibo-
Covid19. Please see appendix for detailed descrip-
tion and statistics.

3.2 Evaluation Metrics

Since fake news detection can be regarded as a
binary classification, we adopt widely-used evalua-

tion metrics for classification task, including accu-
racy (ACC), macro-averaged F1 score (F1).

3.3 Comparison Methods

We compare with single-domain fake news de-
tection methods, and four multi-domain detec-
tion methods. Single-domain methods. XLM-
RoBERTa (Conneau et al., 2020) uses a PLM-
based semantic encoder with a linear classifier for
fake news detection. TextCNN (Kim, 2014) uti-
lizes convolutional layers to extract local semantics
from news content.

Multi-domain methods. XLM-RoBERTa-M is
an extended version of XLM-RoBERTa designed
for multi-domain detection via parameter sharing
across multiple domains. EANN (Wang et al.,
2018) learns domain-invariant representations for
detection. We re-implement by only considering
the textual modality of news content across mul-
tiple domains. MDFEND Nan et al. (2021) uses
a domain gate to aggregate multi-domain seman-
tic representations. SAT (Wei et al., 2024) learns
structure-invariant features from samples with and
without propagation for detection. We extend this
framework for multi-domain detection with the
same model architecture of our method, denoted as
SAT-TGN. More details of the related works are
listed in the Appendix.

3.4 Implementation Details

All experiments are conducted on a single NVIDIA
Tesla A100 80GB card. We use multilingual pre-
trained models to extract textual features consid-
ering different languages across datasets, and fine-
tune the semantic encoder during training. The
dimension of hidden vectors is set to 64. The graph
layers are set to 2. The learning rate is set to 0.0001.
The Adamax optimizer is adopted for all meth-
ods with the learning rate initialized to 0.0001 and
weight decay as 0. The temperature parameter is
searched from {0.1, 1}. The perturbation radius is
searched from {1,5} and the rate is set to 1. We
run each model with 3 random seeds and report the
average results of the test set for each method.

4 Results and Discussion

4.1 Overall Results

The overall multi-domain fake news detection re-
sults on CrossEval and CovidEval are listed in Ta-
ble 1 and Table 2, respectively.



CrossEval
Methods # Para. Weibo21¢ Twitter® WeiboCovid19* Avg.
Acc F1 Acc F1 Acc F1 Acc F1

Single-domain Fake News Detection

XLM-RoBERTa 265.2B x 3 8742 8739 86.39 86.38 8542 84.61 86.41 86.13
TextCNN 266.1B x 3 89.29 89.21 86.47 86.41 83.33 82.35 86.36 85.99
Multi-domain Fake News Detection

XLM-RoBERTa-M 265.2B 88.46 8833 8740 8742 86.11 85.71 87.33 87.15
EANN 265.2B 87.05 8694 86.29 86.27 86.11 85.78 86.48 86.33
MDFEND 272.8B 90.80 90.75 85.77 85.78 88.89 88.15 88.49 88.22
SAT-TGN 265.3B 9048 90.48 8552 8551 86.81 85.98 87.60 87.32
StruACL-TGN (ours) 265.3B 91.14 91.09 8735 87.34 89.81 89.31 89.44 89.25
StruACL-TGN* (ours) | <265.3B x 3 | 91.78 91.78 88.45 8845 9097 90.33 | 90.40 90.19

Table 1: Experimental results of fake news detection on CrossEval benchmark, which involves fake news detection
datasets across different social platforms. ¢ refers to content-only datasets without propagation thread. ¢ indicates
datasets with both textual content and propagation data. StruACL-TGN and StruACL-TGN* indicate the TGN
model trained on the full benchmark and pair-wise benchmark under the proposed StruACL objective, respectively.
Detailed results of pair-wise benchmark are listed in Table 3.

CovidEval
Methods Covid19°  WeiboCovid19* TwitterCovid19* Arabic* Cantonese? Avg.
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Single-domain Fake News Detection

XLM-RoBERTa 96.73 96.72 64.58  48.19  62.87 38.60 64.13 39.07 70.30 68.59 | 71.72 58.23
TextCNN 97.10 97.09 83.33 8235 67.33 52.06 80.43 75.28 76.66 74.45 | 80.97 76.25
Multi-domain Fake News Detection

XLM-RoBERTa-M 96.92 9690 8542 84.80 63.37 60.07 77.17 71.52 66.99 61.23 | 77.97 7491
EANN 9640 96.39 86.80 86.40  73.27 66.65 76.09 73.65 6395 63.73 | 79.30 77.36
MDFEND 9640 96.39 84.72 84.03 6782 59.17 75.54 70.67 7251 69.58 | 79.40 7597
SAT-TGN 96.96 96.95 86.11 8529  68.32 59.56 82.07 79.85 69.06 67.51 | 80.50 77.83
StruACL-TGN (ours) | 95.69 95.65 86.81 86.21 75.41 72.21 85.33 83.27 71.50 69.55 | 82.95 81.38

Table 2: Experimental results of fake news detection on CovidEval benchmark, which involves fake news detection
datasets related to the breaking event COVID-19. ¢ refers to content-only datasets without propagation thread. ¢
indicates datasets with both textual content and propagation data.

Weibo21 WeiboCovid19* Avg. Weibo21 Twitter® Avg.
Methods Ace Pl Ace P | Ace o FI Methods Acc  Fl  Acc Fl | Acc  Fl
XLM-RoBERTa-M | 86.17 86.12 8750 86.85 | 86.83 8648 XLM-RoBERTa-M | 90.74 90.71 8627 86.26 | 88.50 88.49
EANN 80.56  80.09 9043 9043 | 8549 8524 EANN 89.08 89.05 8629 8629 | 87.69 87.67
MDFEND 88.92 88.84 89.58 89.00 | 89.25 88.92 MDFEND 88.66 88.62 83.69 83.69 | 86.18 86.16
SAT-TGN 8750 87.08 8528 85.18 | 8639 86.13 SAT-TGN 88.82 88.82 8279 8270 | 8581 85.76
StruACL-TGN 89.18 89.15 9097 90.33 | 90.08 89.74 StruACL-TGN 9178 9178 88.45 8845 | 90.12 90.12
wlo StruACL 8456 8452 8773 8720 | 86.14 85.86 w/o StruACL 90.74 90.69 87.27 87.27 | 89.01 88.98
(a) Detection on Weibo21 and WeiboCovid19. (b) Detection on Weibo21 and Twitter.
WeiboCovid19%  TwitterCovid19* Avg. Weibo21* Covid19* Avg.
Methods Acc Fl Acc Fl Acc & Fl Methods Acc  Fl Acc  Fl Acc  Fl
XLM-RoBERTa-M | 8681  86.16 7624  73.94 | 8152 80.05  XLM-RoBERTa-M | 90.74 90.73 97.52 97.52 | 9413 94.12
EANN 87.50 86.56 7426  73.51 | 80.88 80.04  EANN 89.24 89.23 97.34 97.33 | 9329 93.28
MDFEND 8264 8057 7178 6460 | 7721 7258  MDFEND 88.46 8846 9729 97.28 | 92.87 92.87
SAT-TGN 88.19 87.54 7624 7340 | 8222 8047  SAT-TGN 90.95 90.95 9757 97.56 | 9426 94.26
StruACL-TGN 88.89 8838 7822 7640 | 8355 8239  StruACL-TGN 92.04 9201 98.18 98.17 | 95.11 95.09
wlo StruACL 86.81 8598 7574 7409 | 8127 80.03 wlo StruACL 90.64 90.63 97.48 9747 | 9406 94.05

(c) Detection on TwitterCovid19 and WeiboCovid19.

(d) Detection on Weibo21 and Covid19.

Table 3: Multi-domain detection results on pair-wise fake news datasets.

Comparison with Single-domain Fake News De-
tection Compared with methods in the first block
of two tables, our StruACL achieves better perfor-
mance under lighter network architecture, show-
ing the effectiveness and efficiency of our method.
Specifically, StruACL outperforms single-domain
detection models by +5.1% and 3.1% in F1 scores
on CovidEval and CrossEval, respectively.

Comparison under Multi-domain Detection
Among multi-domain detection methods in the
second block of two tables, our StruACL-TGN
and StruACL-TGN* achieve the best overall de-
tection performance based on average metrics
for accuracy and F1 scores on both benchmarks,
showing the superiority of StruACL for multi-
domain fake news detection. Specifically, for



Methods Weibo21 Twitter® WeiboCovid19* Avg.
Acc F1 Acc F1 Acc F1 Acc F1
StruACL 91.14 91.09 | 87.35 87.34 | 89.81 89.31 | 89.44 89.25
w/o Adv 89.93 8991 | 86.53 86.50 | 87.96 87.41 88.13 87.94
w/o StruCL 91.21 91.20 | 87.20 87.20 | 89.58  89.13 | 89.33 89.18
w/o StruACL | 88.30 88.25 | 85.59 85.57 | 87.04 86.55 | 86.97 86.79
w/o Advsyucr, | 91.23  91.19 | 87.02 87.00 | 89.35 88.77 | 89.29 88.98
w/o Advcrs 88.96 8891 | 8429 84.28 | 88.19 87.66 | 87.15 86.95
(a) Ablation results on CrossEval benchmark.
Methods Covid19 WeiboCovid19* | TwitterCovid19* Arabic* Cantonese® Avg.
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
StruACL 95.69 95.65 | 86.81 86.21 75.41 72.21 85.33 83.27 | 71.50 69.55 | 82.95 81.38
w/o Adv 96.21 96.21 | 88.89 88.31 76.24 72.32 82.61 78.80 | 65.76 65.00 | 81.94 80.13
w/o StruCL 95.61 9558 | 86.11  85.84 | 73.27 70.68 84.24 81.29 | 70.44 68.67 | 81.93 80.41
w/o StruACL | 95.79 95.78 | 86.81 86.46 73.27 68.76 83.33 81.06 | 68.23 67.16 | 81.49 79.84
w/o Advgyycr | 97.88  97.88 | 82.18 81.91 68.32 62.60 80.62 77.22 | 70.30 67.62 | 79.86 77.45
w/o Advcrs 96.73 96.72 | 88.89 88.23 72.28 66.48 83.70 81.12 | 67.68 66.27 | 81.85 79.76

(b) Ablation results on CovidEval benchmark.

Table 4: Ablation results of the proposed StruACL on two benchmarks.

CovidEval, compared with the baseline, our Stru-
ACL achieves 1.46%/1.54% accuracy/F1 scores.
For CrossEval, StruACL outperforms the base-
line about 2.46%/2.47% accuracy and F1 scores.
EANN and SAT use adversarial training to learn
domain-invariant or structure-invariant features
across multi-domain data. MDFEND models
domain-specific and domain-shared semantics with
complex neural networks. All methods ignore po-
tential connections between semantics and struc-
ture. StruACL effectively performs knowledge
transfer not only across multiple domains but also
between semantics and structures, achieving the
superior multi-domain detection performance.

Pair-wise Domain Fake News Detection Ta-
ble 3 shows multi-domain detection results on pair-
wise datasets where (a) and (b) indicate results
trained on two heterogeneous datasets, one with
propagation and another without; (c) and (d) in-
dicates results trained on two propagation-based
datasets and two content-based datasets with a ho-
mogeneous setting. From results, our proposed
StruACL-TGN obtains superior average perfor-
mance consistently, showing the effectiveness of
StruACL on both heterogeneous and homogeneous
settings. Additionally, by comparing Table 3 (a)
and (b), which display results under two settings
trained with Weibo21, we observe that our method
shows a more significant improvement on Weibo-
Covid19, which has less training data compared
to Twitter. This suggests our method is capable
of better generalization and adaptation to data-
constrained domains.

4.2 Ablation Study

We further ablate the key components to evaluate
the effectiveness of StruACL objective. w/o Adv
refers to removing all adversarial perturbations dur-
ing training. We also remove the perturbation based
on structure-aware contrastive learning and cross-
entropy classification objectives, respectively, de-
noted as w/o Advgsgycr,, and w/o Advers. w/o
StruCL indicates removing the structure-aware
contrastive learning, ignoring the transfer learning
between structure and semantic. w/o StruACL is
removing the full StruACL objective. As shown in
Table 4, the full model gains the best performance
on both benchmarks, compared with the ablated
models w/o Adv, w/o StruCL, w/o StruACL. The
results demonstrate the effectiveness of each key
component for detection. Additionally, for generat-
ing adversarial samples, eliminating the guidance
of either structure-aware contrastive learning or
task prediction gains (i.e., w/o Advs¢ucL, and w/o
Advcrs) decreases performance to some extent,
demonstrating the effectiveness of both objectives.

4.3 Generalization Evaluation with
Data-constrained Conditions

We evaluate the generalization under multi-domain
data-constrained conditions. We vary the training
set ratios to evaluate detection performance under
limited data conditions. Specifically, for a prede-
fined ratio (e.g., 20%), we randomly sampled sub-
sets from the original training sets of all domains.
All methods are tested using on the same sampled
training subsets to ensure a fair comparison. Fig-
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Figure 3: Results against removing domain-specific propagation in the training sets on CrossEval and CovidEval.
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Figure 4: Results against different training set sizes. We
report the average F1s of datasets on each benchmark.

ure 4 shows results of representative methods and
our StruACL on CrossEval and CovidEval across
various training set sizes. Our proposed StruACL
consistently achieves superior performance across
all data-constrained settings, regardless of the train-
ing set ratio. This demonstrates the strong gen-
eralization capabilities of StruACL in scenarios
with limited data. The performance improvement
of StruACL is not only attributed to its ability to
effectively learn semantic and structural features
from multi-domain data but also to its capacity
for transferring these learned semantic and struc-
tural representations across tasks. These advan-
tages enable StruACL to efficiently utilize limited
data and achieve generalized performance in data-
constrained scenarios.

4.4 Effect of Training Propagation Structure

We analyze the effect of propagation structures in
the training data during transferring between se-

mantic and structure. We remove the propagation
structure of the training set on the specific domain.
As shown in Figure 3, after removing propagation
structures on Twitter and WeiboCovid19, the de-
tection performance on all three datasets declined
consistently. This indicates that propagation struc-
tures play a critical role in identifying fake news, as
they provide complementary signals that enhance
semantic analysis. Our StruACL can fully model in-
teractions between semantic and structural features,
thereby boosting multi-domain fake news detection.
Interestingly, when removing the propagation data
of WeiboCovid19, the detection performance on
the Twitter declined more significantly compared to
the performance drop observed for WeiboCovid19
itself. This may be because that StruACL lever-
ages latent semantic associations related to Weibo,
which facilitates the detection on WeiboCovid19
even in the absence of propagation features. In
contrast, the performance gains on TwitterCovid19
are primarily driven by the transfer of propagation
features from WeiboCovid19. This underscores the
critical role of transferable propagation structure
features in multi-domain detection.

5 Conclusion

This paper studies a propagation-adaptive multi-
domain fake news detection paradigm. To
achieve this, we develop a novel StruACL-TGN to
learn generalized representations from propagation-
based and content-only domains. StruACL con-
trasts semantic and structural representations to
preserve and transfer structural knowledge, while
introduces propagation-guided adversarial training
to enhance the diversity of representations. Ex-
periments on seven datasets show that StruACL-
TGN achieves superior multi-domain detection on
general and data-constraint settings, proving the
effectiveness and generalizability of StruACL.



Limitations

The current framework focuses on text-based se-
mantic and propagation data. The study of multi-
modal inputs, such as images and videos will be
left as future work to further enhance the robust-
ness and versatility of fake news detection systems
in increasingly complex and dynamic information
ecosystems.
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Overall of Appendix

In the appendix, we will provide related work on
fake news detection, and detailed experimental se-
tups.

A Related Work
A.1 Fake News Detection

Fake news detection aims to automatically identify
a news piece as real or fake.

Early works on content-based fake news detec-
tion rely on feature engineering to capture textual
characteristics, e.g., topic features (Castillo et al.,
2011), writing styles and consistency (Popat, 2017;
Potthast et al., 2018). After the emergence of deep
learning, some works (Ma et al., 2016; Ruchan-
sky et al., 2017; Karimi and Tang, 2019) applied
various neural networks to learn high-level linguis-
tic features from the source news or combing its
retweets.

Generally, users on social media share opinions,
conjectures and evidence for checking fake news.
Through their various interactive behaviors, a prop-
agation tree describing the law of information trans-
mission is formed and plays a significant role in
fake news detection. Vosoughi et al. (2018); Jang
et al. (2018) have empirically shown that com-
pared with the truth, false news has deeper propa-
gation structures, and reaches a wider audience. To
leverage structure properties, propagation-based
fake news detection models (Ma et al., 2016; Shu
et al., 2019; Khoo et al., 2020) learn the sequen-
tial structure features in the propagation trees by
RNN-based or attention-based modules. (Shu et al.,
2019) jointly learned the sequential effect of com-
ments and correlation between source news and
the corresponding comments. To capture structural
propagation patterns, (Ma et al., 2016) constructed
a tree-structured neural network to model the prop-
agation structure. (Khoo et al., 2020) adopted
Transformer (Vaswani et al., 2017) to learn long-
distance interactions. Recently, many researchers
(Bian et al., 2020; Hu et al., 2021; Lin et al., 2021;
Wei et al., 2021, 2022b; Mehta et al., 2022; Yang
et al., 2022) regard the propagation tree as a graph,
and employ various graph-based models (Kipf and
Welling, 2017; Schlichtkrull et al., 2018; Chen
et al., 2020; Velickovic et al., 2018) to capture topo-
logical structure features for detection. applied two
graph convolutional networks (GCNs) (Kipf and
Welling, 2017) to learn structural patterns from
two distinct directed graphs. (Hu et al., 2021; Lin
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et al., 2021) further lored multi-relational interac-
tions in the propagation graph. Wei et al. (2024)
study cold-start propagation and lore transferable
features from samples with propagation for improv-
ing detection of content-only samples.

A.2 Fake News Detection across Multiple
Domains

In real-world scenarios, fake news typically orig-
inates and propagate across various domains or
platforms, due to real-time events, social trends,
and other factors. Thus, multi-domain fake news
detection has draw significant attention.

Most works aims to study domain-shared (Zhu
et al., 2023; Liang et al., 2022) and domain-
invariant semantic features (Wang et al., 2018;
Zhang et al., 2021; Li et al., 2024) for detecting
fake news across multiple domains. For exam-
ple, Wang et al. (2018) learn event-invariant rep-
resentations for multi-domain detection via con-
sidering the effect of event diversity. Nan et al.
(2021) utilize domain gate to alleviate the domain
shift issue for aggregation of multi-domain repre-
sentations. Li et al. (2024) study the unbalanced
multi-domain data issue and leverage two teacher
models to mitigate the domain bias via knowledge
distillation. (Zhu et al., 2023) introduce a domain
adapter to extract domain-shared features from sim-
ilar domains for fake news detection. Liang et al.
(2022) design a fuzzy domain label to lore multi-
domain knowledge. Tong et al. (2024) design a pro-
gressive hierarchical extraction network to achieve
domain-adaptive domain-related knowledge extrac-
tion. Most of the above multi-domain methods
focus on the news content across different domains,
ignoring potential shared propagation structures for
detection.

B Datasets

All experiments are conducted on seven fake news
detection datasets. Specifically, Weibo21 (Nan
et al., 2021) collects Chinese tweets without propa-
gation data on Sina Weibo platform ranging from
2010-12-15 to 2021-03-31. Regarding to the break-
ing event COVID-19 pandemic, Covid19 (Patwa
et al., 2021) collects English textual tweets related
to the topic of COVID-19 from from public fact ver-
ification websites and social media (e.g., Facebook
and Twitter!). TwitterCovid19 Kar et al. (2021);
Lin et al. (2022) collects English textual tweets

"Renamed X in 2023.



Dataset Prop. Resource Lang. Event #Train  # Valid #Test # Total
Weibo21 X Weibo CN Hybrid 5,751 1,918 1,923 9,592
Covid19 X Hybrid EN  COVIDI9 6,420 2,140 2,140 10,700
Twitter v Twitter EN Hybrid 3,109 777 3,888 7,774
WeiboCovid19 v Weibo CN  COVIDI9 163 40 208 411
TwitterCovid19 v Twitter EN  COVIDI9 159 39 202 400
Arabic v Twitter AR  COVIDI9 136 36 184 356
Cantonese v Twitter YUE COVIDI19 577 143 724 1,444

Table 5: Statistics of 7 datasets for fake news detection. Prop. refers to whether the dataset contains propagation
data. Lang. indicates language used in the dataset where CN, EN, AR, and YUE represent Chinese, English, Arabic,
and Cantonese, respectively. Event summarizes the types of social events collected in the dataset. # Total refers to
the total number of samples in each dataset.

and the corresponding propagation from Twitter.
WeiboCovid19 (Lin et al., 2022) contains relevant
Chinese textual claims and the propagation thread
on Sina Weibo and X platform. Arabic and Can-
tonese, originally collected by Alam et al. (2021)
and Ke et al. (2020), contain textual claims in Ara-
bic and Cantonese, respectively. Lin et al. (2023)
further collect the propagation thread of each claim
tweets on both datasets. The statistics of the above
datasets are shown in Table 5.
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