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Abstract

Equivariant Graph Neural Networks (GNNs) have demonstrated significant suc-
cess across various applications. To achieve completeness—that is, the universal
approximation property over the space of equivariant functions—the network must
effectively capture the intricate multi-body interactions among different nodes.
Prior methods attain this via deeper architectures, augmented body orders, or in-
creased degrees of steerable features, often at high computational cost and without
polynomial-time solutions. In this work, we present a theoretically grounded
framework called Uni-EGNN for constructing complete equivariant GNNs that
is both efficient and practical. We prove that a complete equivariant GNN can be
achieved through two key components: 1) a complete scalar function, referred to
as the canonical form of the geometric graph; and 2) a full-rank steerable basis
set. Leveraging this finding, we propose an efficient algorithm for constructing
complete equivariant GNNs based on two common models: EGNN and TFN.
Empirical results demonstrate that our model demonstrates superior completeness
and excellent performance with only a few layers, thereby significantly reducing
computational overhead while maintaining strong practical efficacy.

1 Introduction

Various types of scientific data, including chemical molecules, proteins, and other particle-based
physical systems, are often represented as geometric graphs [1; 2]. This data structure not only
captures node characteristics and edge information but also includes a 3D vector (such as position,
velocity, etc.) for each node. To effectively process geometric graphs, equivariant Graph Neural
Networks (GNN5s) have been developed that enable equivariant message passing over nodes while
adhering to the E(3) or SE(3) symmetries inherent in physical laws. These models have achieved
significant success in various scientific tasks, including physical dynamics simulation, molecular
property prediction, and protein design [3-30].

In current literature, a key objective in the design of equivariant GNNs is to achieve com-
pleteness, which refers to the universal approximation property [31]. This concept was ini-
tially explored by [32], who proved the universality of high-degree steerable models, specif-
ically TFN [33]. Subsequent models, such as SEGNN [34] and MACE [35], can be simi-
larly confirmed to be complete by establishing their relations with TFN. Regrettably, the the-
ory proposed by [32] applies only to point clouds (i.e., fully connected geometric graphs)
and relies on sufficiently large values of the layer number, body order, and feature degree.
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More recently, the introduction of the GWL-
test [36] and further researches [37—40] have
provided a new perspective by connecting the
completeness of invariant models to the geo-
metric isomorphism problem through an exten-
sion of the Weisfeiler-Lehman (WL) test [41].
Unfortunately, the GWL-test has only quasi-
polynomial solutions [42], inheriting the same
weakness as the original WL-test.

In this paper, we explore complete equivariant
GNNs in a more effective and operable way. To
begin with, we reformulate existing equivari-
ant GNNs as an expansion of multi-body high-
degree bases coupled with the Clebsch—Gordan
(CG) tensor product (Egs. (2) and (3)). This
reformulation allows us to clearly identify the
key limitations of current methods: they fail to
achieve complete expansion when the degree
and body order of CG tensor products are con-
strained, or incur prohibitively high computa-
tional costs otherwise. To overcome these weak-
nesses, we propose a novel expansion of equiv-
ariant GNNs (Eq. (4)), which does not necessar-
ily require CG tensor product: the sum over a
finite basis set with dynamic weights dependent
on the input. The completeness is achieved if the
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Figure 1: Difference between current methods and
our Method. (a) Current methods can be under-
stood as an expansion of multi-body high-degree

bases BEZ) coupled with the Clebsch—Gordan (CG)
tensor product (Eq. (3)). The completeness is
achieved with sufficiently large values of the body
order and feature degree. (b) In contrast, our
method proposes a novel expansion which does
not necessarily require CG tensor product (Eq. (4)):
the sum over a finite basis set with dynamic
weights dependent on the input. The complete-
ness is ensured if the weights (the scalar function

I'(G)) are complete and the basis set V() is full-

weights (called the scalar function) are complete rank.

and the basis set is full-rank.

Interestingly, constructing a complete scalar function is equivalent to solving the geometric isomor-
phism problem, which, unlike the traditional isomorphism task on topological graphs, can be resolved
in polynomial time [42]. Actually, we have presented an algorithm operating with a complexity of
O(N°®) where N is the number of nodes, based on the four-point positioning principle, and further
turned it into canonical form for comprehensive embeddings of geometric graphs. Additionally, we
theoretically prove that a full-rank basis set of any degree can always be constructed, if the input
geometric graph is asymmetric. Building on this foundation, we propose a more efficient algorithm
with a complexity of O(N?) to construct the canonical form specifically for asymmetric graphs.

Thanks to our theoretical findings, we modify existing equivariant GNNs (such as EGNN [43]
and TFN [33]) into complete models. Specifically, we introduce two complete implementations of
EGNN, termed EGNN/TFNj,-global and EGNN/TFN_p;-local. We conduct seven sets of experiments,
validating our theoretical results and demonstrating the superior performance of our method compared
to previous models. Our model achieves great performance with few layers, thereby significantly
reducing computational overhead while maintaining strong practical efficacy?.

2 Related Work

Equivariant GNNs. According to the operators used to build the model, equivariant GNNs can
be categorized into two main classes: scalarization-based models and tensor-product-based models.
Scalarization-based models (e.g., EGNN [43] and PaiNN [44]) utilize scalars (e.g. distance and angles)
as coefficients to linearly combine 3D vectors during node updates. In contrast, tensor-product-based
models (e.g., TFN [33] and MACE [35]) utilize spherical harmonics to maintain the equivariance
of message passing and realize interactions between steerable features of different degrees through
CG tensor products. Historically, researchers maintained that tensor-product-based models could
provide richer information, despite their significantly higher computational resource demands [45—
47]. However, the recent success of spherical-scalarization models such as SO3KRATES [48],
HEGNN [49], and GotenNet [50] has prompted a reevaluation of this assumption, suggesting a

2Code is available at https://github. com/GLAD-RUC/Uni-EGNN.
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potential shift towards scalar learning. Our research provides an important conclusion in this direction:
a complete /th-degree steerable model can be constructed using two components—a complete scalar
model and a full-rank basis set of [th-degree steerable features.

Completeness of Equivariant GNNs. Completeness in equivariant GNNs refers to their ability to
approximate any continuous function with arbitrary precision on geometric graphs, thus sparking
diverse research avenues. Initially, [32] demonstrated the universality of tensor-product-based models,
notably TEN [33], in fully connected geometric graphs. Subsequently, building on the work of [51],
later studies began examining the completeness of scalar models. For instance, [52] established
the completeness of models such as DimeNet [53], GemNet [54], and SphereNet [55] under A-
unsymmetry conditions. Meanwhile, frame-based models [56—-59] emerged, innovatively separating
geometric structures into group operations and orbits for separate processing. However, this approach
can disrupt permutation invariance in symmetric graphs. Furthermore, the GWL test framework,
inspired by the WL-test on topological graphs, offers an upper bound on the expressive power of
equivariant GNNs over sparse graphs, thereby influencing further researches [37-40]. Nevertheless,
it is worth noting that many of these methods rely on message passing and require multiple iterations,
akin to multi-layer networks. Our method utilizes the canonical form to derive a complete scalar
function, and when integrated with a basis set, facilitates the construction of a fully equivariant neural
network that can be effectively achieved with just a single-layer architecture.

3 Method

In this section, we first introduce necessary preliminaries in § 3.1. Then in § 3.2, we review existing
equivariant GNNs from the perspective of basis construction. Subsequently, we present our framework
in § 3.3, which proposes to construct complete equivariant GNNs from the perspective based on
output space. The two components to achieve completeness, including a canonical form of geometric
graphs and a full-rank steerable basis set, are presented in § 3.4. Finally in § 3.5, we demonstrate how
to modify typical equivariant GNNs to be complete based on our theoretical findings. Comprehensive
theoretical analysis and proofs are provided in Appendix A.

3.1 Preliminaries

Geometric graph. A geometric graph of N nodes is defined as G = (H, X ; A), where H =
{h; € R}V and X = {& € R3}¥, are node features and 3D coordinates, respectively;
A € RVXV s the adjacency matrix representing topological connections between different nodes
and each edge could be assigned with an edge feature e;; if necessary.

Equivariance. Let X and Y be the input and output vector spaces, respectively. A function
¢ : X = Y is called equivariant with respect to group & if

Vg € 6, 9(px(9)x) = py(9)o(x), (1)

where px and py are the group representations in the input and output spaces, respectively. Since
translation invariance can always be achieved by translating the center of all coordinates to the
origin, we omit translation and focus solely on equivariance concerning O(3), the group consisting
of rotation and inversion. This implies O(3) = SO(3) x C;, where SO(3) represents the rotation
group, and C; = {e, i} denotes the inversion group, with ¢ as the identity and i as the inversion. We
define two additional groups: the Euclidean group E(3) that further involves translation into O(3),
and permutation group Sy acting on a set of N elements.

Irreducible representations and steerable features. For a group element v € SO(3), its rep-
resentation is typically achieved through irreducible representations such as the Wigner-D matrix
DW(r) € REHDXCHD) "where [ denotes the degree. We call features ©(!) as Ith-degree steer-
able features if they are transformable using D). The most common steerable features can be

obtained via spherical harmonics, expressed as Y (£/||&||) = [Y,%) (Z/||1Z]))]%,,—_;» which satisfy
the property Y V(R /|| R.&||) = D® ()Y W (&/||Z||). According to [60], spherical harmonics
provide a complete basis set for SO(3)-equivariant functions on the sphere. Clebsch—Gordan (CG)
tensor products are usually leveraged to facilitate interactions between steerable features of differ-
ing degrees. Specifically, given features #('*) and ©"2), a new feature ) can be generated, for
[ly = I3] <1 <1y + l. This calculation is abbreviated as ONSIGY Qcg ©(). By including



parity [61], the above concepts can be naturally extended to the orthogonal group O(3). A more
detailed discussion is available in Appendix A.1.

3.2 Rethinking equivariant GNNs: a perspective based on basis construction

By definition, a complete equivariant model is able to express any equivariant function. For in-
stance, spherical harmonics provide complete bases for SO(3)-equivariant functions on the sphere:
¢(Z/||Z||), enabling the representation of all such functions. In 3D space beyond the sphere, a com-
plete function is achieved by combining spherical harmonics with a learnable radial basis function
©(||Z||). However, deriving complete equivariant functions on geometric graphs, namely ¢()(G),? is
more complex due to the need to consider multi-body interactions and permutation symmetry.

To begin with, let us define a function set F(!), which encompasses all square-integrable /th-degree
steerable functions on geometric graphs. Let BY) ¢ F() denote the basis set that expands the function
space of equivariant GNNs. The learning process of equivariant GNNs becomes an approximation:

$1(G) ~ Y0 g iy (9), @)

where a; € R are weight coefficients independent of the input. Enhancing the expressiveness of
equivariant GNNs involves enlarging B() until it coincides with F). When span(B")) = F(), the
model is termed a complete [th-degree steerable model, or simply a complete model, and the basis set
is denoted as B

opl- Specifically, complete Oth-degree steerable models are referred to as complete
scalar models.

Below, we demonstrate that standard equivariant GNNs share a common basis set construction,
differing primarily in their body-order formulation. For simplicity and without loss of generality, we
assume uniform node and edge features that can either be treated as identical or safely ignored. This
abstraction allows us to focus purely on the geometric and topological aspects of the problem while
maintaining the core theoretical insights.

Example 3.1 (Basis Set of Common Equivariant GNNs). The basis set for common equivariant
GNNs, such as EGNN [43], HEGNN [49], TEN [33], and MACE [35], can be unified into the
following form:

l v - N
BY = {5 Xjent @t Y @5/ I35 1)}, 3
where v > 1 denotes the body order, j = (j1,...,J,) represents all chosen ordered neighbors, and
&ij, = &; — ©;,. When only single-body neighbor is considered (i.e., v = 1), Eq. (3) forms the

ba51s set for EGNN [43] and HEGNN [49], applicable to degrees | = 1 and [ > 1, respectively. In
contrast, for multi-body interactions, Eq. (3) corresponds to TEN [33] when the body order v = 1, or
MACE [35] with higher body orders v > 1.

Although these models adhere to the form of Eq. (3), their expressive power differs markedly. Multi-
body models can create entirely new bases through tensor products and achieve completeness by
either utilizing a sufficiently high body order [62] or stacking multiple layers [32], whereas single-
body steerable models could not. However, multi-body models suffer from notable limitations: a)
They may not encompass steerable features of all degrees, if input degrees are improperly chosen. b)
The computational complexity increases sharply with higher degrees [ and body orders v, resulting in
significant computational costs.

3.3 Reformulating equivariant GNNs: a perspective based on output space

Expanding the basis set of a complete equivariant GNN is theoretically appealing but practically
challenging. In this section, we adopt an alternative approach by deriving the necessary model design
from the characteristics of the desired output results. We identify a key insight: a complete [th-degree
steerable model can be constructed using two components—a complete scalar model and a full-rank
basis set of [th-degree steerable features.

3For clarity, our main text focuses exclusively on graph-level functions, where q,7)(l) (G) remains invariant to
any node permutation. Notably, our discussion is generalizable to both node- and edge-level functions, which
will be discussed in Appendix A.2



We denote the target /th-degree steerable function as oM e FO, Although it might be repre-
sented with infinite bases in ]B%Ef))l, the output of ¢()(G) is still a vector in R?+1, Let V(V(G) =

[f)il) 9),... ,f;g) (G)] € RHDXC define an Ith-degree steerable model with C'-channel outputs of
lth-degree steerable feature (C' > 2] + 1). We have the following theorem:

Theorem 3.2 (Dynamic Method). Given a geometric graph G, suppose there is a matrix v (9)

with C channels of lth-degree steerable features denoted as e (G) satisfying span(V W (G)) =

FO(G) == {fD(G) | FO € FDY c R+, Then for any lth-degree steerable function ¢ € F®),

there always exists w*) (G) := [u?ﬁo) (G)]S_, with C-channel output scalars, such that

d"(G) =X, 57 (G)8d(9). )

A notable distinction from Eq. (2) is that the coefficient in front of the steerable features changes from
a;, which is independent of the input, to a scalar (function) that depends on the entire graph, denoted
as uigo) (G). A natural idea is that if we can get a complete scalar model (capturing all possible scalars),
then we can always satisfy the requirements of Theorem 3.2. Another crucial consideration is that
the validity of Theorem 3.2 requires the basis matrix V' ()(G) to satisfy span(V ¥ (G)) = FO(G).
We call such basis matrix that meets this criterion as F)(G)-full-rank. When F()(G) = R+, the
concept of F()(G)-full-rank is equivalent to the traditional definition of full-rank. For simplicity, in
contexts with no ambiguity, we refer to it as full-rank.

By comparing Eq. (4) with Eq. (2), our proposed dynamic method offers greater flexibility and
simplicity, embodying the concept of complexity transfer. Instead of constructing the difficult
complete basis set BE?, we transform the process into obtaining a complete scalar function and then
design the complete steerable model through Theorem 3.2. In the next section, we will detail how to

acquire the complete scalar model and the full-rank basis set of /th-degree steerable features needed
for Theorem 3.2.

3.4 Reach completeness: canonical form and full-rank basis set

In this section, we introduce how to obtain the complete scalar function w§°> (G) (referred to as the

canonical form) and the full-rank basis set V() (G) required by Theorem 3.2.

Geometric isomorphism and canonical form. An equivalent problem to constructing a complete
scalar function is determining the isomorphism of geometric graphs. To differentiate this from
traditional graph isomorphism problem for topological graphs, we specifically refer to our task
involving geometric graphs as geometric isomorphism. This concept can be defined similarly to
the GWL-test [36], which assesses the equivalence of geometric graphs based on their geometric
structures and embeddings.

Definition 3.3 (Geometric Isomorphism). Two geometric graphs G(X9), A©)) and

H(X M, AM) are called geometrically isomorphic if they fulfill both of the following
isomorphisms

1. Point Cloud Isomorphism: The two point clouds X9 and XM are isomorphic, i.e.,

Jdo eSn,g€ E(S),Vi,:i'l(-g) =g- :Ef:({l)) Here, all (o, g) make a nonempty set M(G, H).

2. Topological Isomorphism: The topological graphs associated with the point clouds are

isomorphic, i.e., 3(o,g) € M(G, H), Vi, Vj, [Agjg)] = [AS({Z,))UU)].

Moreover, we denote the geometric isomorphism between G and H as G = H.

The most significant difference from the isomorphism problem in topological graphs is that, to date,
it remains unclear whether there exists a polynomial-time algorithm capable of determining whether
two topological graphs are isomorphic [42; 63]. In contrast, when it comes to distinguishing whether
two geometric graphs are geometrically isomorphic in accordance with Definition 3.3, the situation
appears to be more favorable. There are indeed algorithms that can resolve this issue in polynomial
time, as highlighted by [64]. For example, we present Algos. 1 and 2, which is based on the four-point
positioning principle and operates with complexities of O(N%) and O(N?®), respectively.



In most applications, the objective of an equivariant GNN is not to distinguish two geometric graphs,
but rather to obtain a comprehensive embedding of a geometric graph. Consequently, we define the
canonical form similarly to the definition provided in [64] as follows:

Definition 3.4 (Canonical Form of Geometric Graph). A canonical form of geometric graph is a
graph-level scalar function T : (RNV>3 RN*N) o RE satisfy G =2 H = T(G) = T(H).

Built upon Algos. 1 and 2, we have derived a canonical form I'(-) as presented in Algo. 3. In summary,
the process involves three steps: a) traversing all ordered four-point sets to serve as reference points
for four-point positioning, with a time complexity of O(N*); b) transforming the original coordinates
into distance vectors measured from the reference points, and converting both point sets and edge
sets into scalar sets, with a time complexity of O(NN); ¢) mapping these scalar sets to the desired
canonical form using DeepSet [65].

Theorem 3.5 (General Canonical Form). Given any geometric graph G, Algo. 3 provides a method
to create canonical form with time complexity O(N°).

However, Algo. 3 remains impractical because of its high complexity. We now explore the feasibility
of attaining a more efficient canonical form by sacrificing some versatility. The crux of Algo. 3 lies
in the choice of four non-coplanar points, which contributes to a quartic complexity in traversal.
If we reformulate this as a generative problem, by treating the non-coplanar points as learnable
graph-level features, we may reduce this quartic complexity factor. Specifically, we consider applying
a E(3)-equivariant GNN ( to generate four non-coplanar nodes (called virtual nodes below). We
regard them as reference points in the four-point positioning principle, avoiding the fourth-order
complexity cost by the original traversal. Thus, we derive Algo. 4, yielding more efficiency.

Theorem 3.6 (Faster Canonical Form). Given an E(3)-equivariant function ( that generates four
non-coplanar points on G, Algo. 4 is able to create canonical form with time complexity O(N?).

It should be noted that Algo. 3 can encode any geometric graph, while Algo. 4 requires that four
non-coplanar reference nodes can be learned through an equivariant GNN. In past studies, such
as FastEGNN [66], it is assumed that non-coplanar virtual nodes can always be found, but in the
discussion later, we will see that this is not the case.

Full-rank basis set. As previously addressed, the validity of Eq. (4) critically depends on the
F® (G)-full-rank basis set, a condition not easy to satisfy. The study in [49] has demonstrated that,
for symmetric geometric graphs (defined in Definition A.5), F)(G) will degenerate to zero functions
for certain values of degree [, implying that it is hard to design a full-rank basis set in this case.
In practice, most scenarios study the case of asymmetric graphs, so we give priority to discussing
them here. Our key inquiry is whether full-rank basis sets can always be constructed for asymmetric
geometric graphs. We first present a pivotal theorem that significantly aids in our analysis.

Theorem 3.7 (Coloring on Asymmetric Graph). In an asymmetric geometric graph, each point
can be assigned a unique color. This implies the existence of an E(3) invariant function that maps
the features of the ith node to distinct values h;. Similarly, for directed edges ij, their features are
mapped to distinct values e;;.

We propose two node coloring methods: a) Distance to the center, denoted as &; b) Tensor product,
denoted as ®. We denote the uncolored model by & and illustrate the coloring procedure in Fig. 2,
taking the ¢ method as an example. A detailed description is provided in Table 9. This theorem is
fundamental and forms the core of our subsequent analyses. It decouples the roles of different nodes
and edges, simplifying our discussion. This framework enables us to enhance or suppress specific
basis functions by selecting appropriate weight functions, or even to focus on a particular basis
function by setting the weights of all other basis functions to zero. Given that the node coordinates
of the entire geometric graph are non-coplanar, the coordinate differences {&;; } form a full-rank
matrix, which allows us to achieve the desired v (G). Additionally, spherical harmonic functions
facilitate the mapping of first-degree steerable features to higher-degree representations. We obtain
the following theorem.

Theorem 3.8 (Existence of Full-Rank Basis Set). For any given asymmetric graph G, an F)(G)-
full-rank V'O (G) can always be constructed for any degree .
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Figure 2: Different vectors are decoupled by coloring, thereby expanding the space of virtual nodes.
The yellow area in the figure represents the out space of 1st-degree functions. Fig. 2(a): All nodes
have the same features, and the output can only appear in a straight line in one-dimensional space.
Fig. 2(b): Calculate the distance to the center ||&;.|| to update each node feature so that each node
has a different color (feature). Fig. 2(c): After coloring, all vectors are decoupled, so the output can
be generated in the entire 3D space.

For symmetric graphs, the situation is more complex, making the construction of a full-rank basis set
considerably difficult. An potentially feasible approach could be using a tensor-product-based model,
such as TFN [33] for basis set construction, which will be detailed in the appendix Appendix A.1.3.

3.5 Implementation of Complete Models

The last subsection demonstrated how to achieve theoretical completeness. Here, we present a
practical implementation of complete models, using EGNN [43] as an example due to its simplicity
and universality. In Example 3.1, we point out that EGNN could be incomplete since its basis set
B is possibly reduced to the sum of all edges {Z;; }. However, the edge set itself {Z;; } is full-rank
and could be consider as the full-rank basis set V(1) in Theorem 3.2. To make EGNN complete,
the remaining issue is how to implement the complete scalar function ﬁ;ﬁo). Inspired by Algo. 4,
we derive the E(3)-equivariant function ¢ in Theorem 3.6 using FastEGNN [66; 67], along with the
pre-coloring process and several other modifications.

Essentially, we first color the geometric graph and then construct the reference virtual nodes through
FastEGNN in the following form:

Z =i+ 55N os(h) - (& — &), M= 1% — Z, 5)

where Z € R**3 denotes the coordinates of four reference virtual nodes, Mi € R**3 computes
coordinate difference between node 7 and all virtual nodes, and £, = % Zivzl @; signifies the
coordinate center. In Algo. 4, the key point is to convert the coordinate information into a distance
vector to the reference virtual node. To further refine the information, we employ the inner product
form from GMN [68], as an alternative to distance vectors in Algo. 4. The node features are updated
as follows: o o

hi=h;+en(m;),  m; =M M;/|M;" M;||s. (6)
Afterward, global operations (e.g., pooling) aggregate the information from all points and edges,
mimicking DeepSet [65] calculations to obtain the desired canonical form. Strictly speaking, the
virtual nodes forming the tetrahedron should also be included in Algo. 4, but we omit this term as it
degrades performance in our experiments.

If we consider a single-layer EGNN, it becomes the following form:
EGNNepi () = % Soiy &) = & + > igyee Pa(Mijept) - Tij, (N

where the message 72 cp1 = ©m (i, R, ||Z;;%, €;;) has been a complete scalar function since h;
already contains the information in the canonical form. Through Theorem 3.2, we verify that such
single-layer EGNN is a complete model.

The above approach can also be extended to tensor-product-based models, and we have implemented
corresponding improvements in TEN [33]. Since virtual nodes (i.e. Z) are generated globally across



Table 1: The Completeness Test. Table 2: The Chirality Test.

The Completeness Test The Chirality Test

GNN Layer . ?_Eqd}z‘\\']_ - 73_bb0'dy[ . #Color #TP Fig. 4(a) Fig. 4(b) Fig. 4(c)

(Table. 5n GWL) (Fig. 2(b) in IASR) o 500200 500200  50.0 200
SchNety pody 50.0 0.0 50.0 0.0 ® 100.0 t00 100.0 zt00  50.0 00
EGNN2.ody 50.0 0.0 50.0 0.0 2 ® 100.0 t00  100.0 t0.0  100.0 0.0
GVP-GNN3_poqy 100.0 = 0.0 50.0 0.0 2 1] v 75.0+150 9504150  100.0 0.0
TFN2.body 50.0 00 50.0 0.0 @ v 100.0 00 100.0 z00 100.0 +0.0
MACEj3 pody 100.0 0.0 50.0 0.0 ® v 100.0 z00  100.0 z0.0  100.0 = 0.0
MACE4-b0y ALla00 R0 0Cey o 50000 500200 500200
Basicey 100.0 = 0.0 100.0 = 0.0 3} 100.0 z00  100.0 z0.0  50.0 00
SchNetp| 100.0 = 0.0 100.0 + 0.0 % ® 100.0 00 100.0 z00 100.0 0.0
EGNN,p 100.0 = 0.0 100.0 = 0.0 8 5} v 100.0 z00  100.0 z00  100.0 0.0
GVP-GNN 100.0 = 0.0 100.0 = 0.0 ® v 100.0 z00  100.0 z00  100.0 0.0
TFNp1 100.0 = 0.0 100.0 + 0.0 ® v 100.0 00  100.0 z00 100.0 0.0

Table 3: MSE loss for predicting the coordinates of the Monge point and twelve-point center and
incenter of a tetrahedron. Models with a superscript * indicate that they utilize only half of the
hidden dimension of the standard node embeddings. The optimal value is denoted in bold, while the
suboptimal value is indicated with an underline.

Monge Point Twelve-point Center (x10~1) Incenter (x1072)

1-layer 2-layer 3-layer 4-layer 1-layer 2-layer 3-layer 4-layer 1-layer 2-layer 3-layer 4-layer
EGNN 1.188 0374  0.185  0.131 1.320 0413 0265  0.161 3254 0527 0141 0.036
FastEGNN 1.187 0374  0.149 0979 1.320 0417  0.194  0.107 3240 0421 0.188  0.055
HEGNN 1.188 0356  0.157  0.110 1.320 0317 0.192  0.159 3254 0386 0.078  0.058
TFN 1.188 0467  0.289  0.221 1.320 0519 0315  0.246 3254 2715  0.151 0.060
MACE 1.188  0.468  0.288  0.223 1.320  0.521 0316  0.246 3254 2707  0.153  0.090
Equiformer 0416 0296  0.099 0.116 0456 0.187 0.122  0.147 0.736  0.077  0.055 0.054

EGNN-global ~ 0.108  0.086  0.097  0.104  0.112  0.097 0.099 0.088 0.025  0.018 0.015  0.012
EGNN(,-global ~ 0.175  0.116  0.148  0.111 0.155 0.144  0.174  0.152  0.046  0.025 0.059  0.026
EGNN,y-local 0460 0210 0.083 0.052 0510 0232  0.095 0.067 0.388 0.258  0.031 0.029
EGNNg,-local 0460 0252  0.138  0.091 0.508 0250  0.182  0.102  0.395 0320  0.084  0.090
TFN,pi-global 0468  0.162 0.233  0.084 0516 0319  0.187 0.099 8.983 0398  0.077  0.051
TFN,-global 0473  0.291 0.158 0.096  0.525 0317  0.181 0.105  7.858 0.354  0.085 0.054
TFNpi-local 0460  0.210 0.089  0.088 0518 0237 0.097 0.078 0.676  0.048  0.029  0.021
TFNg,-local 0473 0244  0.082 0.073 0519  0.271 0.122  0.085  0.693 0.056  0.039  0.024

the entire graph, we refer to these models as EGNN/TFN-global. To better capture local information,
virtual nodes can also be generated for individual nodes, resulting in the EGNN/TFN_;-local variants.
Detailed model architectures are provided in Tables 12 and 13.

4 Experiment

In this section, we conduct two categories of experiments, totaling seven in number, to validate our
theory and methods: a) three toy datasets in § 4.1 to assess the expressivity of our models; b) the
remaining four in § 4.2 evaluate the actual performance of our models. Here, we provide a brief
overview of the experiments. For further details, please refer to Appendix B.

4.1 Expressivity

Dataset setup. The completeness test is derived from the GWL-test [32] and the TASR-test [69],
with the objective of distinguishing between two geometrically non-isomorphic graphs. We here
focus on the k-chain test and 2-body/3-body tasks for testing. The chirality test is an experiment
designed by ourselves, which includes three tasks as illustrated in Fig. 4. This study aims to
address two objectives: a) assess the model’s ability to distinguish geometric graphs under reflection
transformations; (2) investigate whether distinct coloring strategies generate different virtual node
coordinates, as validated by determinant calculations serving as mathematical indicators for reflection
determination.

Models. For the completeness test, we selected several baseline models, including SchNet [70],
EGNN [43], GVP-GNN [71], TEN [33], and MACE [35]. Furthermore, models utilizing our
canonical form are denoted as Model.,, with Basicp specifically using the canonical form as the
graph embedding directly. For the chirality test, we provide two options to identify reflections: a)
Determinant det([Z5, Z3, Z4] — Z1113); b) Tensor product, as described in Example A.15.



Table 4: MSE loss on 5-body system.

g

=

§ MSE Loss on 5-body system (x10~2)

= 1-layer 2-layer 3-layer  4-layer

& EGNN 4214  0.780  0.710 0.712

= FastEGNN 3983  0.705  0.640 0.509
HEGNN 4.114  0.801  0.561 0.489
TFN 2.411 1.758 1.758 1.739
MACE 2.403 1.754  1.746 1.746
Equiformer 0.805  0.682  0.465 0.657

EGNN,,-global 0943 0546 0530  0.492
EGNN,-global 0985 0554 0533 0498
EGNNg-local 0768 0537 0481  0.458
EGNNj,-local 0703 0513 0455 0450
TFNg-global ~ 2.144 0934 0916  0.708
TFN;,-global  2.163 0910 0825  0.734

(a) EGNNgy; Model (b) TENgu Model TFNpi-local 0988 0766 0738  0.761

TENg,-local 0.883 0.792  0.734 0.746

sager

Figure 3: Visualization of MSE loss.

Table 5: 100-body dataset. Table 6: Prediction error (x 10~2) on MD17 dataset (3 runs).

MSE Loss (x1072) Aspirin - Benzene  Ethanol ~ Malonal. Naph.  Salicylic Toluene Uracil
EGNN 1.36 EGNN 1441+01s  62.40+0s3  4.64+001 13.64+000 047:002  1.02+0020 11.78+007  0.64+001
FastEGNN 1.10 FastEGNN 9.81x011  60.84x014 4.65+000 12.82:002 0.38+000 1.05:00s 10.88008  0.56=001
TFN; <o 3.77 TFN<2 12.37+018  58.48+198  4.81+004 13.62+008 0.49+001  1.03+002  10.89+001  0.84+002
MACE; <5 3.83 MACE;<2 10431044 59714221 4.83+003  13.78+1004  0.4420020  0.94+001  10.20£01  0.74=00
Equiformer; <5 0.90 Equiformer; < 9.84+010  33.28+015  4.69+003  13.06+004 0341001 0.86+001  9.50+000  0.57+001
HEGNN;<; 1.13 HEGNN; <, 10.32+0s8  62.53+762  4.63+001  12.85+001 0.382001  0.90+00s 10.56x010 0.56+002
HEGNN, <, 0.97 HEGNN, <, 10.04+04s  61.80+592  4.63+001  12.85+001  0.39+001  0.91+00s 10.56+00s 0.55+001
HEGNN <3 0.94 HEGNN,;;; 10.20+023  62.82+425  4.63+001  12.85+002  0.37x001  0.94x010 10.55+016  0.52+001
HEGNN, <4 0.86 HEGNN; < 9.94+007  59.93+s21 4.62+000 1285001 0.37x002  0.88x002 10.56+033  0.54x001
EGNN,;,-global 0.98 EGNNy-global 9.60+009 58244140 4.64+001  12.85+001  0.39x001  0.95+00s 10.37+016  0.56+002
EGNNp-local 0.73 EGNNj-local 9.52+042  44.90+153  4.62+000 12.80+002 0.36+002  0.94+00s 10.21+006  0.57+000
TENpi-global; <5 1.78 TENcpi-globalj<o  9.49+004  58.24x042  4.63:000 12.82:000 0.33:000  0.80x000 10.24002  0.53x000
TENpi-localj< 1.73 TFN¢pi-local; <2 9.52+007  48.77+651  4.64+000 12.83+002 0.34+000 0.81+001 10.95+001  0.53+000

Results. Results are presented in Table 1 (the 2-body/3-body of completeness test), Table 2 (the
chirality test) and Table 10 (the k-chain test of completeness test). As shown in Table 1, all models
with canonical form, i.e. Model.y, reach an 100% accuracy, no matter whether the original model
could distinguish the geometric graphs. As shown in Table 2, the model utilizing the determinant
is highly dependent on the coloring scheme. In the special case illustrated in Fig. 4(c), only the
model employing the tensor product can effectively distinguish between the geometric graphs, which
demonstrates the importance of choosing an appropriate staining strategy.

4.2 Performance on Physical Systems

Dataset setup. We conducted four experiments to evaluate our model’s performance across different
scenarios: a) tetrahedron center prediction, which involves predicting the Monge point, twelve-
point center, and incenter of a tetrahedron based on its four points (with identical node features); b)
5-body system [72], ¢) 100-body system [66], d) MD17 dataset [68], and e) Water-3D mini [66; 67],
where predictions are made based on initial coordinates and velocities. Specifically, for the 5-body,
100-body, and Water-3D mini systems, we predict the future positions of charged particles or fluid
particles, while for the MD17 dataset, we predict future atomic trajectories within eight different
molecules.

These experiments provide a comprehensive evaluation of our model. We assess its performance on
graph-level targets (a) and node-level targets (b-e), explore the influence of model architecture layers
(a-b), and test its scalability in large systems (c,e) as well as its applicability to real-world datasets
(d-e). Detailed information on each dataset can be found in Table 11.

Models. In both experiments, we selected the following baseline models: EGNN [43],
FastEGNN [66; 67], HEGNN [49], TFN [33], MACE [35], and Equiformer [73]. We compared these
baseline models with our proposed models, specifically EGNN/TFN-local and EGNN/TFNp,-
global. More detailed information is provided in Tables 14 and 15.

Results. We evaluated the performance of each model across varying numbers of layers in the first
two experiment. For specific values, please refer to Table 3 and Table 4. The experimental results are
visualized in Fig. 3 to facilitate comparison. Our model demonstrates superior performance across all



Table 7: Results on Water-3D-mini.

MSE Loss on Water-3D-mini (x10~%)
1-layer 2-layer 3-layer  4-layer

EGNN 4904 4323 3.649 3.338
FastEGNN 4.885 4.332 3.782 3.259
HEGNN 4.885 4.138 3.519 3.287

EGNNp-global ~ 4.368  3.711 3.294 3.248
EGNN_p;-local 3.611 3320 2.803 2.495

tasks, often achieving results comparable to those of other models with multiple layers—sometimes
even with just a single layer. In addition, our improved model has also achieved significant improve-
ments on large-scale datasets and real-world datasets, see Tables 5 to 7, where our model is in the
leading position in the former and in the latter, where we achieve performance leadership in more
than half of the tasks.

Additional findings. Furthermore, the baselines in Fig. 3 demonstrate that losses are equal when
a single layer is used, confirming the degradation predicted in Example A.16 and highlighting the
necessity of node coloring. While TFN and MACE outperform EGNN and HEGNN with a single
layer, their advantage decreases with two or more layers. This is likely because EGNN/HEGNN
may initially lack necessary basis functions, whereas tensor products used in TEN/MACE in deeper
layers produce redundant terms. The introduction of the dynamic method significantly enhances
the performance of both EGNN and TFN, showing its ability to construct the missing basis initially
and suppress redundant terms in tensor products, thus achieving adaptive basis construction. From
this perspective, exploring how to encode invariant features with more powerful architectures (e.g.,
advancing from GNNs to Graph Transformers [74]) represents a promising direction for future
research. This perspective also helps explain the performance gains observed in models such as
GotenNet [50] compared with HEGNN [49].

5 Conclusion

We propose a novel framework called Uni-EGNN, which is a dynamic method for constructing
complete equivariant GNNs. In contrast to previous models, which required stacking multiple layers,
increasing body order, and enhancing the degree of steerable features to achieve completeness, our
dynamic method simplifies this process by requiring only two essential components: a) A canonical
form (a complete scalar function) of a geometric graph; b) A full-rank steerable basis set. Additionally,
we have developed an efficient implementation of dynamic method leveraging a polynomial algorithm
for geometric isomorphism problems. Experimental results demonstrate that our dynamic method
excels in both expressiveness and practical performance.

6 Limitations

For symmetric graphs, constructing a full-rank basis set remains an open problem. To date, it has
only been established that tensor-product-based models (e.g., TFN [33]) can construct such a basis,
while for scalar methods (e.g., HEGNN [49]) this remains uncertain—and we even conjecture that
it may not be feasible. Another limitation of this work lies in the experimental evaluation: due to
the lack of tasks with objective functions of degree [ > 2, we are unable to empirically validate the
effectiveness of the proposed method in predicting high-degree steerable objective functions.
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A Theoretical Analysis and Proofs

A.1 Detailed Preliminaries

This section introduces the equivariant representation and the CG tensor product with inversion, along
with the symmetric graph structure and its related properties.

A.1.1 Equivariance

Let X and Y be the input and output vector spaces, respectively. A function ¢ : X — Y is called
equivariant with respect to group & if

Vg € 8, 0(px(9)x) = py(g)¢(z), ®)
where px and py are the group representations in the input and output spaces, respectively.

Since we can permit translation invariance by simply translating the center of all coordinates to
the origin, we only discuss equivariance with respect to O(3) in our paper. Specifically, the group
O(3) consists of rotation and inversion, implying O(3) = SO(3) x C;, where SO(3) is the rotation
group and C; = {e, i} denotes the inversion group with ¢ representing the identity and i representing
the inversion. In the current literature, researchers typically utilize irreducible representations (i.e.
Wigner-D matrix D®)(v) € REHDX(H1) with | denoting the degree) to represent SO(3) and
parities p € {41} to represent the inversion group C; as follows:

P (em) = o) (m) DU (), ©)

where 0(P)(m) = p if m = i, while ”)(m) = 1 if m = ¢. When considering only rotations, a
(21 + 1)-dimensional variable that can be rotated by the Ith-degree Wigner-D matrices is referred to
as an /th-degree steerable feature. When further involving the concept of inversion, we adopt the
notation presented in e3nn [61]. Specifically, an inversion-invariant /th-degree steerable feature (i.e.,
p = 1) is referred to as an [e-type, while an inversion-equivariant feature (i.e., p = —1) is designated
as an [o-type. These designations correspond to even parity and odd parity, respectively.

Example A.1 (Spherical Harmonics). Spherical harmonics YV (&) = [Y,ﬁf ) (#)]%,__, are lth-degree

steerable features, i.e. YV (R &) = DO (v)Y (V) (&), and the parity is given as p = (—1)". It means
spherical harmonics are [o-type when [ is odd and [e-type when [ is even. According to [60], spherical
harmonics offer a complete set of function bases of SO(3)-equivariant functions.

Another example about common physical quantities is presented in Example A.2.

Example A.2 (Common Physical Quantities). Scalars (e.g. mass, charge and energy) are Oe-type
(invariant to both rotation and inversion). Pseudo-scalar (e.g. magnetic charge and magnetic flux)
are Oo-type (invariant to rotation but change signs under inversion). Vectors (e.g. coordinate and
velocity) are 1o-type, while pseudo-vectors (e.g. torque and angular momentum) are le-type.

Example A.3 (Common Invariant features). Due to the various advantages of scalars, there are a
large number of construction methods, which we briefly list here:

1. Purely mathematical representation: tensor product (spherical-scalarization) [48—50], topo-
logical characteristics [75—77], cluster expansion basis [78; 79], subgraph blocks [80-82],
frames [56; 83; 84], normalization operators [85; 86], LLM-based information [87];

2. Features based on physical and biochemical prior knowledge: distance matrix [40; 88—
92], chemical bond length, angle and dihedral angle [93-97], force [98; 99], fractional
coordinates [21; 100; 101], canonical ordering [102; 103].

A.1.2 Clebsch—-Gordan (CG) tensor product

Tensor product ®(-, -) is a common operator to describe interaction between steerable features. Given
an [; th-degree steerable feature ©('*) and an [yth-degree steerable feature ©(/2), calculating their tensor
product yields a new feature ©(1) @ ©(2) with its group representation as D(1)(v) @ D) (t). The
Clebsch-Gordan rule reveals that any tensor product of irreducible representations can be represented
as the direct sum of the irreducible representations. Let V() and V(2) denote the irreducible
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representation space of [ith-degree and Isth-degree, respectively. Then, we have the following
relation: .
v g vt = @iz v, (10)

This further demonstrates that the group representation matrix D(1)(v) @ D{2)(t) is similar to the

matrix @i:{;ﬁ_ bo| D®(v). In general, the /th-degree component from the tensor product &) @ o(/2)

can be expressed as

(I,m) 1 1
Z Z QU (L) Vi 052, (11

mi=—l1 ma=—l2

where lemn)h ). (ls,ms) is called the Clebsch—Gordan coefficients. To simplify writing, when

specifying the degree of the input and output, we directly abbreviate the above formula to

o) = ) Rcg ©(2), We introduce the decomposition of the moment of inertia in Example A.4 to
enhance understanding.

It is straightforward to extend the tensor product to incorporate inversion. When performing the
tensor product of two steerable features—one exhibiting odd parity and the other exhibiting even
parity—the resulting feature will necessarily exhibit odd parity. Conversely, if both features share
the same parity, the result will be of even parity. For simplicity, we will omit discussions related to
inversion in the subsequent analyses.

Ay
Example A.4 (Decomposition of Reducible Representations). For the moment of inertia vec( I ) =
Sl )1? - 19 — &; ® &;) € RY. The first item is a scalar (Oe) of 9 channels denoted as 9x0e, while
the corresponding group representation of the second item ) , &; ® &; is R, ® R, (the inversion

are canceled). According to the Clebsch—Gordan rule, this representation is similar to @12:0 DO(v),
which can be transformed through a specific coefficient matrix, and ) _, &; ® &, can be decomposed
into irreducible features of three types: Oe, 1e, 2e.*

A.1.3 Discussion on Symmetric Graphs

A symmetric graph is a special kind of geometric graph. [49] points out that in a symmetric graph,
steerable features of a particular degree will degenerate, so we list this case separately for analysis.

Definition A.5 (Symmetric Graph). A geometric graph G is called a symmetric graph, if there
exists a finite and nontrivial subgroup $ < O(3),$ # {¢}, satisfying thatVh € 9, -G = G. All
subgroups making G symmetric yields a set H(G), and all geometric graphs that are symmetric
w..t. §) constitute a set denoted as G(5)). Moreover, all other graphs are referred to as asymmetric
(geometric) graphs.

It is straightforward to conclude that an asymmetric geometric graph must contain non-coplanar
nodes; otherwise, if all the nodes lie in the same plane, the graph would coincide with itself after
reflection across that plane. Therefore, the presence of non-coplanar nodes is a necessary condition
for the asymmetry of the geometric graph.

Lemma A.6 (Image Space of Functions on Symmetric Geometric Graphs). Given a symmetric graph

G. FOG) € NyesngyTare1 — PO @) where pV () = 57 Xy, 1V (0) denotes the group
averaging.

Here, we strengthen the conclusion of [49]. Below, we give an example that makes the steerable
features confined to a subspace instead of degenerating into a zero vector.

Example A.7. Consider a cone with a square base, defined by the set G =
{(#1,0,-1),(0,+1,-1),(0,0,4)}. For I = 1, it is straightforward to find that F()(G) =
{(0,0,2)} C R®, and constructing a F")(G)-full-rank function is relatively easy. However, for
cases where [ > 1, while the analysis can still be performed using the orthogonal complement of the
group average, constructing a IF(") (G)-full-rank function becomes significantly more challenging. We
propose using tensor-product-based models, such as TFN [33], to construct a basis set. These models,
despite their computational complexity, have been proven to be complete. Once constructed, this
basis set can be applied with our method to achieve the desired result.

“Note that since it is a symmetric tensor, the components of 1e are actually zero.
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A.2 Connection between graph-level and subgraph-level functions

In practice, the focus of many problems lies in some local features, such as node-level or edge-level
features, which we collectively refer to as subgraph-level. In this section, we will show the connection
between graph-level functions and subgraph-level functions.

In fact, the local features also require the message from the whole geometric graph G, thus for a
subgraph Gy, C G, the [th-degree steerable feature could be denoted as f' @ (Gsub, G). Moreover,
we denote FO (Goup, G) = {FD (Goun, G)| F© € FO} € R2HL, Note that the whole graph is also a
subgraph, £()(G) and F)(G) are actually the simplified version of f()(G,G) and (G, G).
Lemma A.8. Given a geometric graph G, where G, C G is a subgraph (e.g. node, edge), then we
have FO(G) € FO (G, G).

Proof. Note that for the subgraph-level function f ® (Gsub, G), let the function ignore the previous
input Gy Therefore, for any graph-level function, there is always a subgraph-level function that is
equal to it. O

Lemma A.9. Given a geometric graph G, where Gy, C G is a subgraph (e.g. node, edge). We have
F(Gop, G) = REHL ifF(G) = RE+L,

Proof. Tt is obvious that F(Gyyp,G) C R2*1. And we have R?*+! = F(G) C F(Ggw,G), thus
IE‘(gsub7 g) = F(g) = R2l+1~ O

Proposition A.10. Given a geometric graph G, where Gy, C G is a subgraph (e.g. node, edge),
suppose there is a matrix VU)(gwb, G) with C channels of lth-degree steerable features denoted
as 6£l)(gsub, G) satisfying span VU)(QM,, G) = FY (G, G). Then for any lth-degree steerable
Sfunction tO € FO there exists u3<0>(gm,,, Gg) = [wﬁo)(gwh, g)]§=1 with C-channel output scalars,
such that

£ (Gon, G) = S0 0 (Gouty, §)8L (G, G). (12)

Proof. Note that the proof of Theorem 3.2 does not depend on the input form of the function, so the
generalization from Theorem 3.2 to this proposition still holds. O

Proposition A.11. Given a geometric graph G, where Gy, C G is a subgraph (e.g. node, edge)

and F(Gywp, G) = F(G). Suppose there is a matrix V') (G) with C' channels of lth-degree steerable
features denoted as o (G) satisfying span VW (G) = FUW(G). Then for any lth-degree steerable

function tV) € FO, there exists w©) (Gyp, G) = [u?éo)(gwb, G))S_, with C-channel output scalars,

such that ~
D (Gon, G) = X7, 0 (Gour, §)8(G). (13)

Proof. Note that 3 (G) € FO(G) € FO (Gyp, G), so this proposition still holds. O

Note that for invariant functions, if we can obtain the canonical form at the graph-level, then we can
naturally obtain the canonical form at the subgraph-level. Therefore, the discussion of subgraph-level
and graph-level is consistent. To simplify the writing, only the graph-level case will be discussed in
the following.

A.3 The full form of dynamic method

Before giving a complete theoretical analysis, let us review Theorem 3.2 as follows.

Theorem 3.2 (Dynamic Method). Given a geometric graph G, suppose there is a matrix vO (9)
with C channels of lth-degree steerable features denoted as 135” (G) satisfying span(f/:(l)(g ) =
FO(G) = {fD(G) | FO € FO} € R+, Then for any lth-degree steerable function ¢ € FO,

there always exists w'®) (G) := [d)ﬁo) (6)]S_, with C-channel output scalars, such that

d"(G) =X, 5”68 (9). o)
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This form decomposes the problem of constructing a complete equivariant function into two compo-
nents. However, determining the explicit forms of 1(*) (G) and VvV remains a highly nontrivial task.
To provide insight into this construction, we present two corollaries of Theorem 3.2, corresponding
to two special cases of the equivariant space F(V) (G ): one where it reduces to the trivial set consisting
solely of the origin, 6 := {041}, and the other is the opposite, i.e. dimF!)(G) > 0.

Proposition A.12. Given a geometric graph G with TV (G) = 6, let WO < F©) denote all invariant
functions that can be expressed by model, any lth-degree steerable function could be written into the
form of Theorem 3.2, if W) is not empty.

Proof. Since F()(G) = 6, any equivariant output of degree / must be the zero vector. In particular,

both the target output £!)(G) and each basis component e (G) in the decomposition of Theorem 3.2

are identically zero.

As a result, the decomposition in Theorem 3.2 holds trivially for any choice of invariant scalar
function w(® (9) € W) because both sides of the equation reduce to the zero vector. Hence, any
Ith-degree steerable function admits the desired representation, as long as W(? is non-empty. [

Proposition A.13. Given a geometric graph G with dimF")(G) > 0, let W ¢ F©) denote all
invariant functions that can be expressed by model, any Ith-degree steerable function could be written
into the form of Theorem 3.2, iff W(©) = FO) i.e. the invariant model is complete.

Proof. The sufficiency is evident. By Theorem 3.2, there exists an invariant function of the required
form, and such a function is clearly contained in the space F(©).

To prove necessity, assume by contradiction that W) C F(®) but that the decomposition in Theo-
rem 3.2 still holds for all steerable functions. Let V() (G) be a set of linearly independent equivariant
vectors that spans F® (G), i.e., a basis of F® (G). Now, consider any w0 e FO) \ WO . Then the
function tV(G) = 3", @<0>(g)ﬁé”(g) is a valid steerable function in F()(G), as it results from a
linear combination of basis elements with coefficients in F(9), However, since @ is not expressible

by the model, the decomposition cannot be achieved using elements in W(®), contradicting the
assumption that the decomposition is always possible.

Therefore, the assumption must be false, and we conclude that W(® = F(©) is necessary for the
representation to hold for all steerable functions. O

A.4 The construction of canonical form

In order to losslessly encode the information of a geometric graph, we define the concept of canonical
forms in this section. Then, we give a method to construct canonical forms in polynomial time. Here,
we assume that the geometric graph is fully connected and use a double-loop set comparison method
to estimate the worst time complexity of the algorithm.

A.4.1 An algorithm for determining point cloud isomorphism

Here, we give Algo. 1 for determining whether two geometric point clouds are isomorphic and prove
its correctness. It is noteworthy that this algorithm resembles that of [104], centered on the principle
of four-point positioning in three-dimensional space. Our subsequent designs will leverage this
principle to adapt it for use in geometric graph scenarios and neural network applications.

For two given point clouds, represented as X and X, we recognize that if these point clouds
are isomorphic, there must exist a local substructure (composed of at least four points, i.e. U, and

Vg) that is also isomorphic. It is worth noting that this is the isomorphism judgment between two
point clouds of a certain size, so it is always of constant complexity.

According to the four-point positioning principle, the coordinates of any point @; € X or
(9] ()
ord;

v; € X ™) can be expressed as distance vectors, i.e. d, , relative to these four foundational
points. Consequently, sets of coordinates X (9, X (%) can be transformed into sets of distance

vectors D(9) D). When there is a set of isomorphic substructures with matching distance vector
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Algorithm 1: Check point clouds isomorphic with time complexity O(N°).

Data: Two point clouds X and X M) each containing N nodes.
Result: True or False, indicating whether the two point clouds are isomorphic.
// O(N%), the worst case requires traversing all permutations.

1 Find an ordered tuple containing four non-coplanar points Ua (ﬁ&gi))le inG;

// O(N%), the permutations of 4 elements from a set of size N.

2 for all ordered subsets of X containing four elements donated by ‘_/"g — (_'[(;1{))?:1 do
// O(1), comparison of two ordered sets of a certain size.

3 if ﬁa and ‘75 is not point clouds isomorphic according to matching (ﬁ&gi), 172,{)) then
4 | continue;
5 end
6 | fori; € X9 do

// O(N), get a 4-channel scalar vector.

g L L L L

7 i (8 = G || 18 — G | 115 — iy | 18— s )
8 end

9 | forw; € XM do
// O(N), get a 4-channel scalar vector.

H . L L L,
10 d? < (|8 =, |, 18 = Ts, I, |15 — T [, 18 — B )
11 end
// O(N), change the node set into scalar set.

2 | DO, DM set([d?]Y,), sev((d"]L,):

// O(N?), the complexity of comparing two sets varies depending on
the choice, such as double loop comparison.

B3 | ifD =DM then

14 | return True;

15 end

16 end

return False;

—
2

sets, the point clouds are necessarily isomorphic. Conversely, if no isomorphic substructure can be
identified or if the distance vector sets cannot be rendered equivalent for any potential isomorphic
substructure, then the point clouds must not be isomorphic.

A.4.2 An algorithm for determining geometric graph isomorphism

Furthermore, we discuss how to design an algorithm to distinguish the isomorphism of two geometric
graphs. Note that at this point, all node coordinates have been converted to distance vectors, so it is
also easy to transform the edge set as follows.

A.4.3 A general canonical form

Now, we further give a method to construct the canonical form of a geometric graph. From Algos. 1
and 2, it is not difficult to see that the core of the algorithm is to transform a set of 3D coordinates
into a set of distance vectors. Here we give Algo. 3 as follows.

To encode the set, we employ DeepSet [65] for encoding, which losslessly encodes set data. Here, we
ignore the complexity of the neural network (because this is a function of the hidden layer dimension
H), and only consider the complexity of the set size. It is not difficult to see from Eq. (14) that for a
set of size M, the complexity of DeepSet is O(M).

Lemma A.14 (DeepSet). A set function could be always written into such form:
Fadly) = p(iL, ¢(@). (14)
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Algorithm 2: Check geometric graph isomorphism with time complexity O(N®).

Data: Two geometric graphs G and H, each containing /N nodes.

Result: True or False, indicating whether the two point clouds are isomorphic.

// O(N%), the worst case requires traversing all permutations.
1 Find an ordered tuple containing four non-coplanar points Uq < (ﬁgg) )i,in G;

// O(N%), the permutations of 4 elements from a set of size N.
2 for all ordered subsets of X containing four elements donated by Vg — (ﬁgf))f:l do
// O(1), comparison of two ordered sets of a certain size.

3 it Uy, and ‘7}3 is not point clouds isomorphic according to matching (ﬁ&?, ﬁgj)) then
4 | continue;
5 end
6 | fori; € X9 do
// O(N), get a 4-channel scalar vector.

g o S oo PN
7 A\ (|th; = o, ||, 185 — oy |, s — T |, 115 — i, )
8 end

9 | forz;, € X do
// O(N), get a 4-channel scalar vector.

H L, L, L, L
10 d™ = (15; = T, 1 19 = T, 1, 115 = G, ], 15 — G, s
11 end
// O(N + N?), change the node set and edge set into scalar set.

2 | D@, DM  set([dVN ), set([dV]N,);

(2

3 | E@EM « set([d?,d, el ee@), ser([d,d™ el 1 ceon);
// O(N? + N*), the complexity of comparing four sets (node-node,
edge-edge) varies depending on the choice, such as double loop

comparison.
1 | if D9 =D and B9 = E®) then
15 | return True;
16 end

17 end
18 return False;

Proof. This proof is a simplification of Theorem 7 in Deepset [65]. The necessity, that is, that

this form satisfies the permutation invariance of sets is obvious, and its sufficiency is proved below.

Consider an Nth degree polynomial P(t) = Z?LO a;t*, which satisfies the set {z; }V; of all the N

roots of P(t) = 0. Thus, the set can be mapped to ordered polynomial coefficients. Vieta’s theorem
and Newton’s identity show that the space of polynomial coefficients is consistent with the space of
sum-of-power functions, so the universal approximation theorem of MLP can be used to prove that
such a mapping can be found. O

Theorem 3.5 (General Canonical Form). Given any geometric graph G, Algo. 3 provides a method
to create canonical form with time complexity O(N®).

Proof. Due to the completeness of Deepset’s encoding, Algo. 3 can naturally distinguish arbitrary
geometric graphs. For a detailed time complexity analysis, see the comments in the algorithm

block. O

A.4.4 A faster method to construct canonical form

In practical applications, it is impractical to traverse all ordered four-point sets because the complexity
is too high. In order to reduce the complexity, a simple and intuitive way is to reduce the number of
four-point sets. Here, a very clever change of mind is that we change the ordered four-point set from
being selected from a geometric graph to being generated from a geometric graph. We call these
generated ordered four-point sets virtual nodes. In order to ensure the correctness of the algorithm, we
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Algorithm 3: A canonical form of geometric graphs.

Data: A geometric graph G, and ¥node; Vedge, Weraph are DeepSet models.
Result: The canonical form I’ € R¥ of point clouds G.
// O(N%), traverse all permutations.
1 T+ @;
2 for any ordered set containing four non-coplanar points Uy {a,}t 1 in G do
3 for @; € X9 do
// O(N), get a 4-channel scalar vector.
4 di  ([[ti — o, ||, |0 — o, ||, @ — tas ||, [ — U,
5 end
// O(N + N?), convert point sets and edge sets into scalar sets.
6 D« Set([di]i\rzl)7 E + set([di, dj, eij]@;,j)gg);
// O(1), decentralization of the four reference points.
7 Ua + (Iixa — %14x4)ﬁa;
// O(N + N?), get the embedding based on current four points.
8 | Do ¢ concat(U] Ua, Ynode(D), Yedee (E)):
9 T+ TU{Ta};
10 end
11 T — grapn (T);
12 return [;

)

need to use a E(3)-equivariant method to implement the generation process. We call this generating
function ¢, thereby simplifying Algo. 3 to Algo. 4.

Algorithm 4: A faster method to construct canonical form.

Data: A geometric graph G, and ¥node; Yedge are DeepSet models.

Result: The canonical form I’ € R¥ of point clouds G.

// Get four non-coplanar reference points via generation.
1V« ((G);
2 for @, € X9 do

// O(N), get a 4-channel scalar vector.

30| di = ([[di — O, [[di — |, || — vs]], || — val]);
4 end

// O(N + N?), convert point sets and edge sets into scalar sets.
5 D« set([di]ﬁil), E set([di,dj,eij]<i7j>€g);

// O(1), decentralization of the four reference points.
6 V< (Inxa — $14x0)V;

// O(N + N?), get the embedding based on current four points.

7« Concat(VT‘_),wnode(D>7¢edge(E));
8 return [';

It is worth noting that Algo. 4 is applicable only when the four virtual nodes generated by ( are not
coplanar. We summarize it as:

Theorem 3.6 (Faster Canonical Form). Given an E(3)-equivariant function ( that generates four
non-coplanar points on G, Algo. 4 is able to create canonical form with time complexity O(N?).

Proof. Let T be the function of Algo. 4, we only need to prove that G 2 H <= T'(G) = T'(H).
We first prove sufficiency, let G = g - H with g = (O, f) € E(3) be a group element. Since ( is
an E(3)-equivariant function, we have V(9 = ((G) = ((g-H) = OV + ' = VM) After
decentralization, we have OV (9) = V(*) — (V(@)TV(9) — (V) TV (*) 1n addition, the
encoding of nodes and edges depends on the relative distance to the virtual node and is therefore
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invariant, i.e. D9 = DY) K9 = E™), Thus, we get T(G) = T'(H). Next, we prove the necessity.
Note that when we take the reference four points as ((G) and ((#), we can directly get G = H in
Algo. 2, thus completing the proof. O

Table 8: Comparison of time complexity.

General Method (Algo. 3) Faster Method

Algorithm Details Time Complexity Algorithm Details Time Complexity

Possible chosen of VNs  Traverse all possible quadruplets ((}1) O(NY) Generate directly. (1)
types).

Construct VNs Use real nodes as virtual nodes. (1) Aggregate by all nodes. O(N)
Get distance vector Calculate N nodes to possible VNs. O(N*-N) Calculate N nodes to possible VNs. O(1-N)
Set of distance vector Each chosen of VN prodive a set. O(N?Y) Each chosen of VN prodive a set. O(1)
Embed set with Deepset N for node and N for edge O(N*- (N + N?)) N for node and N? for edge O(1- (N + N?))
Total O(N®) O(N?)

A.5 Construction of full-rank basis set

In this section, we discuss the full-rank basis set, including its existence and construction method on
asymmetric graphs.

Theorem 3.7 (Coloring on Asymmetric Graph). In an asymmetric geometric graph, each point
can be assigned a unique color. This implies the existence of an E(3) invariant function that maps
the features of the ith node to distinct values h;. Similarly, for directed edges ij, their features are
mapped to distinct values e;;.

Proof. The theorem can be described in the following formal language, given an asymmetric point

cloud X € R3*N | and all function here discussed are node-level scalar function. This theorem
means

I Xy eNY Vit jy #y; (15)
First, we prove that it can be expressed as an equivalent proposition, which is
Vi3 X »yeNY u #y; (16)

According to the logical relationship, it is obvious that Eq. (15) leads to Eq. (16). We will prove
below that Eq. (16) can also lead to Eq. (15). Let f*/ : X ~ y*/ denote a function let y;” # y/,
then consider map g : X +— Y := @; jy*/. We can find that Y; # Y, and notice each f%/ only uses

finite colors, which means we can further assign a new color to each possible output of g, which is
the mapping we want in Eq. (16).

Then we prove it by contradiction Eq. (16), assuming that the following proposition is true:
Ji# VX yeNY y =y, (17)

We now construct a contradiction, hoping to prove that Eq. (17) will lead to point cloud symmetry.
Let the permutation matrix P € Sy represent the exchange between node 7 and node j, so we can
get:

f(PX)=Py=y=f(X) (18)

Since f is an E(3)-invarinat function, we guess PX will fall in set E(3) - X. And now we prove
that PX must fall in such set. And the canonical form " is obvious an E(3)-invarinat function and
could distinguish whether two point clouds are isomorphic, which means PX must be point cloud
isomorphic with X. And notice that f is a node-level function, which means

T; =0 -L;,Tj; =0 ;.

And we have assumed there are no overlapping points, i.e. &; # &;, s0 g # ¢. And it shows that
such a point cloud is symmetric, which constitutes a contradiction and the original proposition is
proved. O

Theorem 3.8 (Existence of Full-Rank Basis Set). For any given asymmetric graph G, an F)(G)-
full-rank V'O (G) can always be constructed for any degree .
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Proof. We give the proof via a constructive method. According to Theorem 3.7, there exists a
mapping let all node be colored differently, and without loss of generality, we denote the color of
node 7 as ¢;. Now we construct function:

N
fe(X) = Zak,ci, & = T, (19)
i=1

It is obviously that such a funtion is E(3)-equvariant, and we and further combine f, of different &,
which can construct a full-rank V(1) since the input point cloud is non-coplanar. O

We just give an existence proof here, which is still affected by the structure of the model itself and
the form of message passing. We give an example in Example A.15.

A.6 Comparison of different coloring methods
Node coloring necessitates updating node features. Here, we propose two alternative solutions:

1. Distance to Center: A simple preliminary coloring can be achieved by calculating the
distance ||&; — &.|| from each node to the coordinate center. While this method is straight-
forward, it lacks practical significance and may not perform well in real-world problems.
Additionally, there are counterexamples, such as in Example A.15, where nodes cannot be
distinguished.

2. Tensor Product: This method extends the previous approach. First, we construct a global

feature Ziil YW (&; — &), which is then used to create the coloring through moments.
While this method is more complex and incurs higher computational costs, it enhances
expressive power.

Table 9: Different Color Methods. For the tensor product method, the set L = {0, ..., L} denotes all
degrees and the learnable weights of tensor product are omitted.

Nothing (2) Distance to Center (&) Tensor Product (®)
Calculation Formula

7 (L N — —
Ao« SN o(|Eell) - YO (&)

2] h; < h; +o(||€:]) ~
hi < h; + hé]:;)lual Reg B Y (&ic)

Scenarios to Avoid

Sparse Graphs Counterexample like Fig. 4(c) Not Founded

Below, we present two examples to illustrate potential issues without coloring.

Example A.15 (Fig. 4(c)). We use the center pooling method to construct such an example. First, we
ensure that the center of gravity of the image is at the origin, and secondly, make it asymmetric. The
construction here requires a basic point cloud:

X = {(—1,0,0), (;12‘3&0> , (éi?@) } :

All nodes in X, o are in the unit circle, which means the distance between each node and the center of
mass is the same. And the final point could is

X = {X()Ri}a

where we sample some random rotation matrix R;. And then it is obviously only using global pooling
will lead all virtual node in the center of mass if we do not use any edge to color this nodes.

However, it could also be solve by high-degree steerable feature. The global steerable features can
construct different virtual nodes with tensor product method in Table 9.

Example A.16 (Degeneration in Uncolored Models). There are specific scenarios in which mes-
sage passing on uncolored geometric graphs can result in degenerate phenomena. A particularly
illustrative example is found in geometric graphs where all node features are identical and all edges
are bidirectional. Considering a single-layer EGNN as an example, it may degenerate because the

27



condition h; = h; implies m;; = m;. Consequently, we have -, . o pz(mi;) - &ij = 03. As
a result, Eq. (7) can only yield the coordinate center &.. This phenomenon can be observed in the
tetrahedron center experiment in § 4, where besides EGNN, advanced models such as HEGNN [49],
TFEN [33], and MACE [35] also degenerate.

B Experiment Details
Our code is available at https://github. com/GLAD-RUC/Uni-EGNN.

B.1 Expressivity Tests
B.1.1 Completeness Test

In this section, we provide additional details that were omitted in § 4.1, focusing on the following
points:

1. The 4-body non-chiral counterexample implemented by the GWL-test (Fig. 2(f) in [ASR-
test) and the 4-body chiral counterexample (Fig. 2(e) in IASR-test) exhibit a significant
issue: the geometric graphs presented by [32] are geometrically isomorphic.

2. Details regarding data construction and model design for the chirality test, which primarily
include the coloring strategy and specifics of the construction of Oo-type features.

Metric. Referring to the settings of the GWL-test [32], we utilize the average accuracy across ten
tests as our evaluation metric. The detailed experimental design is based on the implementation of
the GWL-test [32], available in the code repository®. In this setup, a single GNN layer is employed
to encode the geometric graph, followed by a simple classifier that predicts the label. If a GNN fails
to distinguish between two geometric graphs, the output embeddings will be identical, resulting in
one graph being classified correctly while the other is misclassified, leading to an accuracy of 50%.
Conversely, an accuracy rate exceeding 50% indicates that the GNN can generate distinct embeddings
and successfully differentiate between the two geometric graphs.

Additionally, the accuracy of the Basic model in Table 2 does not reach 100% due to a limited number
of training epochs for the classifier (set to 100). Increasing the number of epochs (e.g., to 200)
can achieve 100% classification accuracy. Notably, the EGNN model, with the same settings, also
achieves 100% accuracy. We speculate that EGNN improves the embedding of geometric graphs
during the message passing process.

Results of k-chain test. This experiment comes from GWL-test. The canonical form introduced by
our model can easily obtain global information, so only one layer is needed to identify the geometric
graphs differentiation task that other models require multiple layers.

Table 10: k-chain Test.

(k = 4-chains) Number of layers

GNN Layer Kl 15]+1=3 |&]+2 51 +3 5] +4
EGNN 50.0 0.0 50.0 0.0 50.0 0.0 50.0 0.0 100.0 0.0
GVP-GNN 50.0 0.0 100.0 0.0 100.0 t0.0  100.0 0.0  100.0 0.0
TFN 50.0 £0.0 50.0 £0.0 50.0 £0.0 100.0 0.0  100.0 0.0
MACE 50.0 0.0 100.0 = 0.0 100.0 0.0 100.0 0.0 100.0 0.0
Basicp 100.0 + 0.0 100.0 0.0 100.0 0.0 100.0 t00 100.0 +0.0
SchNetp 100.0 + 0.0 100.0 + 0.0 100.0 t0.0  100.0 £0.0 100.0 = 0.0
EGNNp 100.0 = 0.0 100.0 0.0 100.0 0.0 100.0 00 100.0 +0.0
GVP-GNN; 100.0 0.0 100.0 = 0.0 100.0 0.0 100.0 z00 100.0 0.0
TFNcp1 100.0 + 0.0 100.0 = 0.0 100.0 0.0 100.0 t00 100.0 +0.0

Geometrical isomorphism of 4-body counterexample. In the open source notebook provided by
GWL-test [32], four tasks are presented, the first two of which are the 2-body and 3-body tasks tested

*https://github.com/chaitjo/geometric-gnn-dojo.
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in Table 1. The other two tasks are termed the 4-body non-chiral counterexample and the 4-body
chiral counterexample, both originating from IASR-test [69]. According to the experimental results
provided in GWL-test, only MACEs 04y successfully passed the 4-body non-chiral counterexample;
moreover, the results for the 4-body chiral counterexample were not presented.

We successfully reproduced and cited the experimental results of the 2-body and 3-body from GWL-
test [32]. However, we were unable to reproduce the results reported in the article despite multiple
testing attempts, consistently achieving an accuracy of only 50%, indicating that MACEs_poay failed
this task. Furthermore, recent literature [77] also reported similar failures in the test. Upon thorough
investigation, we discovered that the geometric graphs used in the two tests were geometrically
isomorphic. We suspect that there may be a minor mistake in the GWL-test.

Specifically, the two graphs Gi, Gs of the 4-body non-chiral counterexample are constructed as
follows:

1. Consider three sub-graphs: Hi = {(3,2,—4),(0,2,5),(-3,2,—4)}, Ho =
{(3,-2,-4),(0,-2,5),(—3,—-2,—4)}, and H3 = {(0,5,0)}. R, is a random matrix
for rotation around the Oy-axis. Let M., M, denote the reflection about yOz-plane and
zOz-plane.

2. Gi=H1U(Ry-Ha)UHzand Go = H1 U (R, - Ho) U (M, - Hg).
Now we show G; = H, notice there are serval relation:
* Internal symmetry of geometric graph: H; = M, - H;(i = 1,2), Hz = R, Hs;
* Symmetry between geometric graphs: H, = M, - Ha;
* Properties between geometric transformations: M2 = My2 =1, RM, = MR,
R/M, = MyRJ.
Then we have:
Gr =M1 U (Ry - H2) UHs = (M, - H2) U (R,M, - H,)U (M, - Hs)
:(RyMy “Hi)U (Mu ’ H2) U (Mu - Hs)
:(MyR; ) %1) U (My ’ H2) U (My : H3)
(MyR)) - [H1UR,H> U R3]
(MyR,) - [H1U R,Hs U Hs]
(MR, M,) - [M,H, UM,R,H> U M,Hj]
(M,R, [H1U Ry M, Ho U M, Hs)
(
(
(

M,) -
MR, M,) - [H1U RyHy U M, Hj]
M,R, M,) -G,

M,R,M,)" - Gs.

Moreover, the 4-body chiral counterexample also contains two geometric graphs Gs, G4, where

Gs = Gy

1. Consider two sub-graphs: H4 = {(3,0,—4),(0,0,5), (—=3,0,—4)} and Hs = {(0,5,0)}.
M, M, denote the reflection about yOz-plane and zOz-plane.

2. Gs=HsUHsand G4 = H4 U (MyH5).
Now we show G3 = H3, notice there are serval relation:

* Internal symmetry of geometric graph: Hz = M, - H3, Hz = MyHsz and Hy = M, Hy;

* Properties between geometric transformations: M2 = M; =1

Then we have:
Gs =H4UHs = (MﬁMy) . [7‘[4 U MyH5] = (MxMy) -Ga.
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B.1.2 Chirality Test

Details of the chirality test.

1.

2.

3.

Fig. 4(a): Choose G; from the 4-body non-chiral counterexample, and another geometric
graph is —Gj.

Fig. 4(b): Since G3,Gs are symmetric, we modify it to G5 = {(3,0,—4),R, -
(0,0,5),(-3,0,—4),(0,5,0)}, where R,, is a random matirx for rotation around the Oy-
axis.

Fig. 4(c): Similar to Example A.15.

o S
9
57 ] o’ ] —do
TR, T —_ :j)) g
// // g // J
) v y ? JT 5]
o
9

9 \ \

(a) Inversion (b) Mirror (c) Counterexample

Figure 4: Examples to test whether the model can recognize chirality. Figs. 4(a) and 4(b) are modified
from GWL-test’s implementation [36] of IASR-test [69], while Fig. 4(c) is designed by ourselves.
Fig. 4(a): Test whether models could distinguish this geometric graph with itself after inversion.
Fig. 4(b): Test whether models could distinguish this geometric graph with itself after mirror about
the xOz-plane. Fig. 4(c): The task is same as Fig. 4(a), while all nodes are on the unit sphere, and the
center point coincides with the center of the sphere. Such counterexample cannot produce separable
virtual nodes by simple center distance coloring.

Details of construction of Oo-type features. There are two ways to construct Oo-type features:

1.
2.

Determinant: Calculate det([Uy — ¥, U5 — U1, Uy — U1]);

Tensor Product: We still begin by constructing Zf\il YW (2; — &.), and employing
moments, specifically at least 3rd-order moments, to derive Oo-type features. This approach
clearly serves as an extension of the previously established method.

B.2 Performance Tests

We conducted four experiments:

1.

Tetrahedron center prediction, which entails predicting graph-level targets, i.e. Monge
points, twelve-point centers, and incenters, given the coordinates of four points (with the
same node features) of a given tetrahedron.

. 5-body system [72] involves predicting node-level targets, i.e. the coordinates of each

charged particle at a specific moment in the future, given its initial coordinates and velocity.

. 100-body system [66], a generalization of the 5 body system, is used to test the performance

of the model in large-scale systems.

. MD17 dataset [68], containing eight molecules, is used to predict node-level targets, i.e.

the future coordinates of each atom in the molecular trajectory. This dataset can be used to
test the performance of the model on real datasets.

. Water-3D mini dataset [66; 67], is used to test the performance of the model in large-scale

systems and real datasets. Due to time constraints, we only evaluate a substantial subset
(Water-3D-mini: 3,000/300/300 for train/val/test).
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Table 11: Details of each dataset.

Dataset Target Type #sample (train / valid / test) Node Number Edge connection

Tetrahedron graph-level Synthetic Dataset 500 /2,000 /2,000 4 fully_connected
5-body node-level Synthetic Dataset 5,000 /2,000 /2,000 5 fully_connected
100-body node-level Synthetic Dataset 5,000 /2,000 /2,000 100 fully_connected
MD17 node-level Real-world Dataset 500/ 2,000/ 2,000 5-13 distance_cutoff
Water-3D mini  node-level Real-world Dataset 3,000/ 300/ 300 ~8,000 distance_cutoff

B.2.1 Tetrahedron Center Prediction and N-body System

We conducted experiments on a single NVIDIA H20 GPU. In both experiments, we configured the
batch size to 100, the learning rate to 5 x 104, and the weight decay to 10~ 2. For the tetrahedron
center prediction task, the maximum number of training epochs was set to 300. In the case of the
N-body system task, we implemented early stopping with a patience of 100 steps.

Metric. We use Mean Squared Error (MSE) to measure the accuracy of the prediction results in
both experiments.

Tetrahedron Center Prediction. We generated our dataset using the calculation formulas for the
Monge point &, twelve-point center £ and incenter & from [105]. Given a tetrahedron defined
by four points £p, & 4, € g, Lo, with the vectors d = £4 — Lo, b = &g — o, C = o — Lo, We
can compute the desired points as follows:

a- (b+e)(bxc)+b-(c+

2a -

-, -,

)(Ex @)+ & (@+b)(d x b)
x &)

S . 1. S
LEr =Tp + g(wo — Zr), (20)

Q

Ty = To + s

—
S

& x €|a@+ ||&x @l||b+ ||@ x b||é

1bx &+ ||€x d| +|@xbl|+[|bx E+Exa+axb|

Ly =

We utilize 500/2000/2000 samples for training, validation, and testing, respectively. ¢ = 10~¢ was
added to the denominator to avoid division by zero. In addition, to avoid numerical problems caused
by the center point being extremely large, we generated the circumscribed sphere of the tetrahedron
when generating the tetrahedron, ensuring that the radius of the sphere is less than or equal to 6.

N-body system. N-body system [72] is a dataset generated from simulations. In our simulations,
each system consists of 5 charged particles with random charges ¢; € {£1}, whose movements are
governed by Coulomb forces. The task is to estimate, a node-level target, i.e. the coordinates of the
N particles after 1000 timesteps. The initial node feature is set as the kinetic energy, while the edge
features include the distance and the product of the charges. We use 5000/2000/2000 samples for
training, validation, and testing like the setting in HEGNN [49]. Since the particles have different
initial velocities, they initially have different characteristics (coloring).

B.2.2 Implementation of Baselines

We undertook further development based on the codes of EGNN [43], TFN [33], and MACE [35]
provided in the GWL-test repository. Following our testing, we eliminated the Gate modules from
both TFN and MACE, as their inclusion resulted in significantly degraded performance. Additionally,
for HEGNN [49], we utilized the code® from the original paper and opted for the inner product
normalization option.

Each model utilizes at most 4 layers, and the dimension of the hidden embedding is fixed at 64. The
last three models employ at most 2nd-degree steerable features. Both TFN and MACE utilize 8
channels for steerable features, with the correlation parameter for MACE set to 4.

B.2.3 Implementation of Our Models

We provide two complete implementations of EGNN [43] and TFN [33] as follows.

Unlike FastEGNN [66], the virtual nodes in this approach are not updated following their initialization
during the message-passing layers. We define the normalization coefficient as a; :== 1/|A(7)]. For

Shttps://github.com/GLAD-RUC/HEGNN/.
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the ith node, we denote its features as h; and its coordinates as &;. Here, C represents the channels

of the virtual nodes, and Z € RY*3 denotes all coordinates. Specifically, for TENp-global, we
employ the canonical form to build a new feature w; for each node, thereby rescaling the norm of
steerable features in a manner analogous to HEGNN [49], which is consistent with Theorem 3.2.

Table 12: Complete global models.

EGNN_-global TFN,pi-global
Node Coloring h; = Color(h;,distance_to_center) iLEm = Color(ﬁ 2 ,distance_to _center)
Generate VNs Z =1cF, + Ouzl 1oz (hg) - Eie Z =1c%. + oy ZL 1 ,oz(h(o ) - Tic
Create Canonical Form M, = 1¢&; — Z, m; ol = M, M;/||M;” M| M, =1c&; — Z,m,, ol = M, M;/|| M M|z
Update Node Feature h; = h; + @cpi(mi op1), hi = Message_Passing(h;,G) = }17(0) + ept (M cp1)

I - (L) _ gL L) (7.
= Gm(hishy, e, [E5]12), 1y = palmiy) &y My = B e Y@)
Message Passing (x L) m; = q; E,e N () m” m; = Z]e N () T iLEL) = EEL) +a; Zye,'\f(z) m;;
P = b+ enlhom), & = & + 1B R = o ) B, w0, = wi+ (a0 B

Readout (node-level) hi = ou(h;), T = &; h; = ',a(,ut(ﬁ(o))‘ T =a; + 3nn 03. Llnear(hm)
Readout (graph-level) hg = «ppm.(ﬁ Z\: hi), &g = 27 L hg = %OM(% Z\:l h), g = & 21 L&

To enhance the model’s performance, we permit the virtual nodes to be updated layer by layer, similar
to the approach taken in FastEGNN [66]. We denote the normalization coefficient cv; :== 1/|N (7)].
We define the normalization coefficient as «; := 1/|A(¢)|. Notably, we allocate C' virtual nodes to

each node, denoted as ZZ € RE*3_and these C virtual nodes share a scalar feature represented by s;.

Table 13: Complete local models.

EGNN_p-local TFN¢pi-local
— 0) (0]
mij = o (hi. by e, |E5?) mij = (R, B e, |123512)
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Parameter Quantities. Here, we present the number of parameters for each model in the tasks
shown in § 4.2. Since the inputs for the two tasks differ, the number of parameters for models with
the same number of layers also varies.

Table 14: Tetrahedron dataset. Table 15: N-body dataset.
Total Parameters Total Parameters

1-layer 2-layer 3-layer 4-layer 1-layer 2-layer 3-layer 4-layer
EGNN 337k 67.1k  100.6k 134.1k EGNN 335k 66.9k 100.4k  133.8k
FastEGNN 67.4k 1344k 201.7k 268.8k FastEGNN 67.5k 134.6k 201.4k 268.4k
HEGNN 469k 849k 1229k 160.9k HEGNN 46.7k  84.6k 122.6k 160.5k
TFN 46.5k  93.0k  139.4k 185.9k TEN 46.4k  92.8k 139.2k  185.6k
MACE 489k  97.8k  126.6k 195.5k MACE 472k 943k 141.5k  188.6k
Equiformer 313.5k  340.5k  367.5k  349.4k Equiformer 313.6k 340.6k 367.5k 394.5k
EGNN-global  181.7k  215.2k  248.7k  282.1k EGNNj-global  181.3k  214.7k  248.1k  281.5k
EGNN(,-global 468k 554k  63.9k  72.5k EGNNg-global ~ 46.6k  55.1k  63.6k  72.1k
EGNNp-local  107.5k  180.7k  253.8k  327.0k EGNN_-local 107.3k  180.4k 253.5k  326.6k
EGNNg,-local 28.2k 473k 66.5k  85.7k EGNNg,-local 28k 472k 66.4k 855k
TEN,p-global 2152k 291.1k 267.1k  443.1k TEN,i-global 215.6k 291.6k 367.7k 443.7k
TFN;,,-global 703k 104.6k 1389k 173.3k TEN,-global 70.5k 104.8k 139.2k  173.6k
TFN,p-local 138.0k 241.7k 345.5k 449.2k TFNp-local 138.2k  242.0k 3458k 449.7k
TENg;-local 51.0k  93.1k 1352k 177.3k TEN,-local SI.lk 933k 1354k 177.5k
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C Rethinking the Equivariance and General Functions

In this section, we give a Fourier series-like approach to understanding equivariant GNNSs.

C.1 Rethinking equivariance: A perspective from Fourier expansion.

According to [106], the Fourier expansion of a multivariate function necessitates the simultaneous
consideration of the basis functions associated with all variables, as demonstrated below:

an exp(—2mjnt) — f(t) Z frexp(—2min't Z fn H exp(—2mjngty),
nez nezd nezd
1)
represents a multi-dimensional variable. In fact, any function defined on the unit sphere can be
expressed as a summation of spherical harmonics. Let & denote a point on the unit sphere.

=0 m=—1 l:O

This formulation offers two representations. The fully expanded form aligns more closely with the
Fourier series, while the inner product formulation facilitates a connection to equivariance. At this
juncture, we introduce a second point ¢ on the unit sphere and consider the expansion of the function
with two inputs, & and y.

f(@,9) = ii Z Z frl) v @)y (g). (23)

11=01l2=0m1=—11 ma=—I>

We observe that the product Y,Sf;)(:ﬁ)Y,ﬁfj)(y) constructs (2l; + 1) - (2l2 + 1) basis functions,
i.e. elements in Y1 (2) @ Y2)(g) € REuFD-Cltl) et fh®@) ¢ REL+1)(241) be the
coefficients. Consequently, the expansion can also be expressed in an inner product form as follows:

f(@,9) = Z Z ll®12 ll)(ii?) ®Y(lz)(:‘))> (24)

11,=012=0

According to the notation of tensor product, we denote the [th-degree steerable feature derived from
the tensor product Y1) (z) @ Y (2) (g) as b(1®2=D (g, ¢), which can be expressed as follows:

l1+12
P b (@,g) = Qe (Y (@) 0 Y(g)). (25)
I=|t1— s
Let us define @ﬁlvf L wh®2=l = (QUiel))T p(hi®l2) This leads us to the following expres-

sion:
f(@,9) = Z Yo (wEhmh pEll (g g)), (26)
1=0 |1y —la|<I<ly+1o

where a Ith-degree steerable function £()(&, ¢) incorporates only the Ith-degree components in
Eq. (26), and can be expressed as follows:

Ill —12|§l§l1+lg

Eq. (27) offers a more concrete understanding of the framework. It is important to note, however, the
formula in Eq. (3) is invariant to permutations of the inputs, while the inputs in Eq. (27) are presented
with a specific order. Nevertheless, this specificity does not preclude us from conducting an analysis
based on this formulation:

1. Since /; and l5 can take any values, there will be infinite basis functions in B® when the
geometric graph accommodates interactions involving more than two bodies.
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2. Not all bases in Eq. (27) will be meaningful; that is, some bases may not emerge in the
objective function, although they satisfy the equivariance constraints.

From this perspective, the advantages and disadvantages of the equivariant model become evident.
By incorporating an equivariance prior into the model design, it effectively eliminates components
that cannot exist within the framework. However, this constraint necessitates a limited selection
of operators in the model design. In the current setup, only the tensor product exhibits strict
equivariance (while others can be transformed and expressed using tensor products, e.g. tensor
decomposition in frame averaging [56; 84]), whereas other operators, such as group convolution,
require approximations under current floating-point operation systems and can achieve only partial
equivariance. This limitation, in turn, constrains the model’s capacity for learning.

C.2 Rethinking General Functions: the Equivariant Decomposition

Generally, the input of a geometric graph could be denoted as {%;} Y ,, without loss of generality, we
assume that these coordinates are decentralized. Although in practice, people generally use edges as
input (i.e. {%; — &}V “j=1)- for the sake of convenience we still discuss the vectors of points here,

and it is easy to verify that they are equivalent. Then a normal function f : R3*Y — R2/+1 we want
in a [-degree problem could be rewritten as:

O = > w.b(@)+ £ (28)

5% (G)eB®

To completely give the expansion formula of such f(), we need to analyze each dimension separately.
And we denote the mth-dimension (=] < m <) of f 0 as f(&™) (similarly, b(-™) represents the
mth dimension in b(l)), which is:

f(l’m) (g) _ Z l)b(l m) + Z Z Z w(s t)b(b t) ) (29)

by (G)eB® ) (G)eB() =9

(1,m)

And it could find that he mth-dimension f e Of f, (1?6 could be donated as:

G Z > Z G0 (g). (30)

)(g)GB(g) t=—s

0 (Lm)

Here « and 8 are dummy index for enumeration and both w¢,’ and w 5 are constant (or only the

function about all radials {||#;||}2,). Notice that the same basis may appear in both two items in the
equation, to ensure uniqueness, we set

@

Faw(@)|F = argmin 37 Z ty2 31

N _ .
wl = argflr?m |
We We b(’)(g ept) s=—1

And with definition of equivariance error in Spherical CNNs [107], we could find that
Lew =E[[0"(@) £9(@) - £V 9]
—E [ 0V(0)- £809) - #8260 9)|
<E ([0 £52@1+ If5e- 9|

<2- [ £50(9)]

Traditionally, practitioners have opted for data-driven methods such as data augmentation, to achieve

equivariance. This approach aims to constrain the norm || felse || by adjusting the parameters wl?
throughout training, with the goal of minimizing their values. In contrast, models derived from
geometric learning directly incorporate the equivariance constraint into the model architecture,

effectively achieving || f 0

else

(32)

|l = 0. A fundamental aspect of these models is the construction of the
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basis set B() , allowing them to systematically remove irrelevant or non-existent components from
the learning process.

Moreover, for a f()(G), obtaining flg?t(g) or calculating || fé?t(g)Hcan be intractable. However, a
plausible approach is to utilize another general model whose output is bounded by a constant M to
learn the residue. This leads us to the relationship || £1(G)|| < [| £ (G)|| < M. We introduce this
concept here, hoping it will inspire future research.

Additionally, it is important to emphasize that we only require the inference model to be equivariant.
In practice, we allow the use of non-equivariant methods for training our model. For instance, noise
injection in SaVeNet [108] and the Huber loss in MEAN [102] are examples of such methods. These
approaches modify the coefficients w,,, but they do not violate the equivariance constraint.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We prove that a complete equivariant GNN can be achieved through two
key components: 1) a complete scalar function, referred to as the canonical form of the
geometric graph; 2) a full-rank steerable basis set.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide all these in § 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide all these in Appendix A.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide all these in Appendix B.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Our code is available at https://github.com/GLAD-RUC/Uni-EGNN.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide all these in Appendices B.2.2 and B.2.3.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We performed multiple runs and reported the variance in all expressivity tests
and experiments with MD17.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We conducted experiments on a single NVIDIA H20 GPU.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We used the code from https://github.com/GLAD-RUC/HEGNN and

https://github.com/chaitjo/geometric-gnn-dojo, which are available under the
MIT license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Our code is available at https://github.com/GLAD-RUC/Uni-EGNN.
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:|[NA|
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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