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Abstract

The diffusion model has long been plagued by
scalability and quadratic complexity issues, espe-
cially within transformer-based structures. In this
study, we aim to leverage the long sequence mod-
eling capability of a State-Space Model called
Mamba to extend its applicability to visual data
generation. Firstly, we identify a critical over-
sight in most current Mamba-based vision meth-
ods, namely the lack of consideration for spa-
tial continuity in the scan scheme of Mamba.
Secondly, building upon this insight, we intro-
duce Zigzag Mamba, a simple, plug-and-play,
minimal-parameter burden, DiT style solution,
which outperforms Mamba-based baselines and
demonstrates improved speed and memory uti-
lization compared to transformer-based baselines.
Lastly, we integrate Zigzag Mamba with the
Stochastic Interpolant framework to investigate
the scalability of the model on large-resolution
visual datasets, such as FacesHQ 1024 x 1024
and UCF101, MultiModal-CelebA-HQ, and MS
COCO 256 x 256. Long version is at https:
//taohu.me/zigma/.

1. Introduction

Diffusion models have demonstrated significant advance-
ments across various applications, including image pro-
cessing (Rombach et al., 2022), video analysis (Ho et al.,
2022), point cloud processing (Wu et al., 2023), and human
pose estimation (Gong et al., 2023). Many of these models
are built upon Latent Diffusion Models (LDM)(Rombach
et al., 2022), which are typically based on the UNet back-
bone. However, scalability remains a significant challenge
in LDMs(Huang et al., 2024). Recently, transformer-based
structures have gained popularity due to their scalabil-
ity (Peebles & Xie, 2022; Bao et al., 2023a) and effec-
tiveness in multi-modal training (Bao et al., 2023b). No-
tably, the transformer-based structure DiT (Peebles & Xie,
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Figure 1: Motivation. Our Zigzag Mamba method im-
proves the network’s position-awareness by arranging and
rearranging the scan path of Mamba in a heuristic manner.

2022) has even contributed to enhancing the high-fidelity
video generation model SORA (OpenAl, 2024) by Ope-
nAl Despite efforts to alleviate the quadratic complexity of
the attention mechanism through techniques such as win-
dowing (Liu et al., 2021), sliding (Beltagy et al., 2020),
sparsification (Child et al., 2019; Kitaev et al., 2020), hash-
ing (Choromanski et al., 2020; Sun et al., 2021), Ring Atten-
tion (Liu et al., 2023a; Brandon et al., 2023), Flash Atten-
tion (Dao et al., 2022) or a combination of them (Ao et al.,
2024; zhuzilin, 2024), it remains a bottleneck for diffusion
models.

On the other hand, State-Space Models (Gu et al., 2021a;
Gupta et al., 2022; Gu et al., 2022) have demonstrated
significant potential for long sequence modeling, rival-
ing transformer-based methods. Their biological similar-
ity (Tikochinski et al., 2024) and efficient memory state also
advocate for the use of the State-Space model over the trans-
former. Several methods (Gu & Dao, 2023; Gu et al., 2021a;
Fu et al., 2022; Smith et al., 2022) have been proposed to
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enhance the robustness (Yu et al., 2023), scalability (Gu
& Dao, 2023), and efficiency (Gu et al., 2021a;b) of State-
Space Models. Among these, a method called Mamba (Gu
& Dao, 2023) aims to alleviate these issues through work-
efficient parallel scanning and other data-dependent inno-
vations. However, the advantage of Mamba lies in 1D se-
quence modeling, and extending it to 2D images is a chal-
lenging question. Previous works (Zhu et al., 2024; Liu
et al., 2024b) have proposed flattening 2D tokens directly by
computer hierarchy such as row-and-column-major order,
but this approach neglects Spatial Continuity, as shown in
Figure 1. Other works (Liu et al., 2024a; Ma et al., 2024a)
consider various directions in a single Mamba block, but
this introduces additional parameters and GPU memory bur-
den. In this paper, we aim to emphasize the importance of
Spatial Continuity in Mamba and propose several intuitive
and simple methods to enable the application of Mamba
blocks to 2D images by incorporating continuity-based in-
ductive biases in images. We also generalize these methods
to 3D with spatial-temporal factorization on 3D sequence.

In the end, Stochastic Interpolant (Albergo et al., 2023) pro-
vides a more generalized framework that can uniform vari-
ous generative models including, Normalizing Flow (Chen
et al., 2018), diffusion model (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2021), Flow matching (Lipman
et al., 2023; Liu et al., 2023b; Albergo & Vanden-Eijnden,
2022), and Schrodinger Bridge (Liu et al., 2022). Previ-
ously, some works (Ma et al., 2024b) explore the Stochastic
Interpolant on relatively small resolutions, e.g., 256 x 256,
512 x 512. In this work, we aim to explore it in further more
complex scenarios e.g., 1024 x 1024 resolution and even in
videos.

In summary, our contributions are as follows: Firstly, we
identify the critical issue of Spatial Continuity in general-
izing the Mamba block from 1D sequence modeling to 2D
image and 3D video modeling. Building on this insight, we
propose a simple, plug-and-play, zero-parameter paradigm
named Zigzag Mamba (ZigMa) that leverages spatial con-
tinuity to maximally incorporate the inductive bias from
visual data. Secondly, we extend the methodology from
2D to 3D by factorizing the spatial and temporal sequences
to optimize performance. Secondly, we provide compre-
hensive analysis surrounding the Mamba block within the
regime of diffusion models. Lastly, we demonstrate that our
designed Zigzag Mamba outperforms related Mamba-based
baselines, representing the first exploration of Stochastic
Interpolants on large-scale image data (1024 x 1024) and
videos.

2. Method

In this section, we begin by providing background infor-
mation on State-Space Models (Gu et al., 2021a; Gupta
et al., 2022; Gu et al., 2022), with a particular focus on a

special case known as Mamba (Gu & Dao, 2023). We then
highlight the critical issue of Spatial Continuity within the
Mamba framework, and based on this insight, we propose
the Zigzag Mamba. This enhancement aims to improve the
efficiency of 2D data modeling by incorporating the conti-
nuity inductive bias inherent in 2D data. Furthermore, we
design a basic cross-attention block upon Mamba block to
achieve text-conditioning. Subsequently, we suggest extend-
ing this approach to 3D video data by factorizing the model
into spatial and temporal dimensions, thereby facilitating
the modeling process. Finally, we introduce the theoretical
aspects of stochastic interpolation for training and sampling,
which underpin our network architecture.

2.1. Diffusion Backbone: Zigzag Mamba

Zigzag Scanning in Mamba. Previous studies (Wang et al.,
2022; Yan et al., 2023) have used bidirectional scanning
within the SSM framework. This approach has been ex-
panded to include additional scanning directions (Liu et al.,
2024a;b; Yang et al., 2024b) to account for the character-
istics of 2D image data. These approaches unfold image
patches along four directions, resulting in four distinct se-
quences. Each of these sequences is subsequently processed
together through every SSM. However, since each direction
may have different SSM parameters (A, B, C, and D), scal-
ing up the number of directions could potentially lead to
memory issues. In this work, we investigate the potential
for amortizing the complexity of the Mamba into each layer
of the network.

Our approach centers around the concept of token rearrange-
ment before feeding them into the Forward Scan block. For
a given input feature z; from layer 7, the output feature z; 1
of the Forward Scan block after the rearrangement can be
expressed as:

zq, = arrange(z;, €;), )
Zq, = scan(zq, ), @
Zi11 = arrange(iﬁi y QL)v 3

Q); represents the 1D permutation of layer i, which rear-
ranges the order of the patch tokens by €;, and €2; and Q;
represent the reverse operation. This ensures that both z;
and z;;; maintain the sample order of the original image
tokens.

Now we explore the design of the {2; operation, considering
additional inductive biases from 2D images. We propose
one key properties: Spatial Continuity. Regarding Spatial
Continuity, current innovations of Mamba in images (Zhu
et al., 2024; Liu et al., 2024b;a) often squeeze 2D patch
tokens directly following the computer hierarchy, such as
row-and-column-major order. However, this approach may
not be optimal for incorporating the inductive bias with
neighboring tokens, as illustrated in Figure 3. To address
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Figure 2: ZigMa. Our backbone is structured in L layers, mirroring the style of DiT (Peebles & Xie, 2022). We use the
single-scan Mamba block as the primary reasoning module across different patches. To ensure the network is positionally
aware, we’ve designed an arrange-rearrange scheme based on the single-scan Mamba. Different layers follow pairs of
unique rearrange operation ) and reverse rearrange (), optimizing the position-awareness of the method.

Table 1: Ablation of Scanning Scheme Number. We evalu-
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(c) zigzag-scan with 8 schemes

(a) sweep-scan

Figure 3: The 2D Image Scan. Our mamba scan design
is based on the sweep-scan scheme shown in subfigure (a).
From this, we developed a zigzag-scan scheme displayed
in subfigure (b) to enhance the continuity of the patches,
thereby maximizing the potential of the Mamba block. Since
there are several possible arrangements for these continuous
scans, we have listed the eight most common zigzag-scans
in subfigure (c).

this, we introduce a novel scanning scheme designed to
maintain spatial continuity during the scan process. Addi-
tionally, we consider space-filling, which entails that for
a patch of size NV x N, the length of the 1D continuous
scanning scheme should be N2. This helps to efficiently in-
corporate tokens to maximize the potential of long sequence
modeling within the Mamba block.

To achieve the aforementioned property, we heuristically
design eight possible space-filling continuous schemes', de-
noted as S; (where j € [0, 7]), as illustrated in Figure 3.
While there may be other conceivable schemes, for simplic-
ity, we limit our usage to these eight. Consequently, the
scheme for each layer can be represented as €2; = Sy,
where % denotes the modulo operator.

'We also experimented with more complex continuous space-
filling paths, such as the Hilbert space-filling curve (McKenna,
2019). However, empirical findings indicate that this approach
may lead to deteriorated results. For further detailed comparisons,
please refer to the Appendix.

ate various zigzag scanning schemes. Starting from a simple

“Sweep” baseline, we consistently observe improvements as

more schemes are implemented.

MultiModal-CelebA256 MultiModal-CelebA512

FID* | FDD’* | KID** || FID°* | FDD’* | KID*

Sweep | 158.1 | 759 | 0.169 || 162.3 | 103.2 | 0.203
Zigzag-1 | 65.7 47.8 | 0.051 || 121.0 | 78.0 | 0.113
Zigzag-2 | 54.7 455 | 0.041 96.0 59.5 | 0.079
Zigzag-8 | 45.5 264 | 0.011 34.9 29.5 | 0.023

3. Experiment

In this section, we begin by detailing the experimental setup
concerning image and video datasets, as well as our training
details. Subsequently, we delve into several in-depth anal-
yses aimed at elucidating the rationale behind our method
design across various resolutions. Finally, we present our re-
sults obtained from higher-resolution, we defer more results
on video in long version.

3.1. Ablation Study

Scan Scheme Ablation. We provide several important find-
ings based on our ablation studies on MultiModal-CelebA
dataset in various resolutions in Table 1. Firstly, switching
the scanning scheme from sweep to zigzag led to some gains.
Secondly, as we increased the zigzag scheme from 1 to 8, we
saw consistent gains. This indicates that alternating the scan-
ning scheme in various blocks can be beneficial. Finally, the
relative gain between Zigzag-1 and Zigzag-8 is more promi-
nent at higher resolutions (512 x 512, or longer sequence
token number) compared to lower resolutions (256 x 256,
or shorter sequence token number), this shows the great
potential and more efficient inductive-bias incorporation in
longer sequence number.
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Table 2: Main result on FacesHQ-1024 dataset with 4,094
tokens in latent space. Our method can outperform the
baseline and can achieve even better results when the train-
ing scale is increased.

Method FID**  FDD*
Bidirection Mamba-16GPU (Zhu et al., 2024) 51.1 66.3
Zigzag-Mamba -16GPU 37.8 50.5
Zigzag-Mamba -32GPU 26.6 31.2

Ablation study about the Network and FPS/GPU-
Memory. In Figure 4 (a,b),we analyze the forward speed
and GPU memory usage while varying the global patch di-
mensions from 32 x 32 to 196 x 196. For the speed analysis,
we report Frame Per Second (FPS) instead of FLOPS, as
FPS provides a more explicit and appropriate evaluation
of speed. For simplicity, we uniformly apply the zigzag-1
Mamba scan scheme and use batch size=1 and patch size=1
on an A100 GPU with 80GB memory. It’s worth noting
that all methods share nearly identical parameter numbers
for fair comparison. We primarily compare our method
with two popular transformer-based Diffusion backbones,
U-ViT (Bao et al., 2023a) and DiT (Peebles & Xie, 2022).
It is evident that our method achieves the best FPS and GPU
utilization when gradually increasing the patching number.
U-ViT demonstrates the worst performance, even exceeds
the memory bounds when the patch number is 196. Sur-
prisingly, DiT’s GPU utilization is close to our method,
which supports our backbone choice of DiT from a practical
perspective.

Order Receptive Field. We propose a new concept in
Mamba-based structure for multidimensional data. Given
that various spatially-continuous zigzag paths may exist in
multidimensional data, we introduce the term Order Re-
ceptive Field which denotes the number of zigzag paths
explicitly employed in the network design.

Ablation study about the Order Receptive Field and
FPS/GPU-Memory. As depicted in Figure 4 (c,d), Zigzag
Mamba consistently maintains its GPU memory consump-
tion and FPS rate, even with a gradually increasing Order
Receptive Field. In contrast, our primary baseline, Paral-
lel Mamba, along with variants like Bidirectional Mamba
and Vision Mamba (Liu et al., 2024b; Zhu et al., 2024),
experience a consistent decrease in FPS due to increased pa-
rameters. Notably, Zigzag Mamba, with an Order Receptive
Field of 8, can perform faster without altering parameters.

3.2. Main Result

Main Result on 1024 x 1024 FacesHQ. To elaborate on the
scalability of our method within the Mamba and Stochas-
tic Interpolant framework, we provide comparisons on a
high-resolution dataset (1024 x 1024 FacesHQ) in Table 2.

6 8 156 £ 64 128
Patch Number Patch Number

(b) GPU Memory v.s. Patch Number.

GPU Memory (G)
FPS

- - - - - = o — — - - -
1 2 a 8 16 32 1 2 a 8 16 32

(c) Order Receptive Field v.s. GPU Memory. (d) Order Receptive Field v.s. FPS.

Figure 4: (a, b).GPU Memory usage and FPS between
our method and transformer-based methods(U-VIT (Bao
et al., 2023a) and DiT (Peebles & Xie, 2022)). (c). Order
Receptive Field and GPU memory (d). Order Receptive
Field and FPS. Order Receptive Field denotes how many
scan paths we consider in our network design.

Our primary comparison is against Bidirectional Mamba, a
commonly used solution for applying Mamba to 2D image
data (Liu et al., 2024b; Zhu et al., 2024). With the aim of
investigating Mamba’s scalability in large resolutions up to
1,024, we employ the diffusion model on the latent space of
128 x 128 with a patch size of 2, resulting in 4,096 tokens.
The network is trained on 16 A100 GPUs. Notably, our
method demonstrates superior results compared to Bidirec-
tional Mamba. Details regarding loss and FID curves can be
found in long version. While constrained by GPU resource
limitations, preventing longer training duration, we antic-
ipate consistent outperformance of Bidirectional Mamba
with extended training duration.

4. Conclusion

In this paper, we present the Zigzag Mamba Diffusion
Model, developed within the Stochastic Interpolant frame-
work. Our initial focus is on addressing the critical issue of
spatial continuity. We then devise a Zigzag Mamba block
to better utilize the inductive bias in 2D images. Further,
we factorize the 3D Mamba into 2D and 1D Zigzag Mamba
to facilitate optimization. We empirically design various
ablation studies to examine different factors. This approach
allows for a more in-depth exploration of the Stochastic In-
terpolant theory. We hope our endeavor can inspire further
exploration in the Mamba network design. We anticipate
that our scan path will be suitable for other linear attention
models such as RWKYV (Peng et al., 2024), xLSTM (Beck
et al., 2024), HGRN (Qin et al., 2024), GLA (Yang et al.,
2024a), and several others listed at FLA (Yang & Zhang,
2024)>.

Zhttps://github.com/sustcsonglin/flash-linear-attention
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