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Abstract

Survival prediction from electronic health records
(EHRs) is crucial for clinical decision-making but
remains challenging due to data heterogeneity, ir-
regular sampling, and the presence of competing
risks. We propose a novel multi-modal graph neu-
ral network that dynamically constructs and inte-
grates modality-specific graphs from time-series,
demographics, diagnostic codes, and radiographic
text. Our hierarchical attention mechanism fuses
intra- and inter-modality interactions while pro-
viding interpretable, cause-specific risk predic-
tions. Trained end-to-end with a combination of
negative log-likelihood, ranking, and structural
losses, our model significantly outperforms exist-
ing survival and graph-based baselines across five
real-world EHR datasets. We further demonstrate
improved calibration and interpretability, high-
lighting its potential for robust and transparent
clinical risk stratification.

1. Introduction

Electronic health records (EHRs) offer rich but complex
data for clinical risk prediction, characterised by irregular
sampling, missingness, and heterogeneity across modalities.
Time-to-event models enable prediction not only of whether
an event occurs, but also when, making them critical for
applications such as ICU triage or transplant planning (Lee
etal., 2019; Qiu et al., 2025). However, classical models like
Cox Proportional Hazards assume linear effects and fixed co-
variates, limiting their utility in dynamic, high-dimensional
EHR settings (Martinussen, 2022).

Recent deep learning methods have improved performance
in survival prediction, yet most focus on single-risk settings
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or unimodal data (Katzman et al., 2018; Lee et al., 2018;
Mesinovic et al., 2024). Models like Dynamic-DeepHit and
DySurv handle temporal dependencies but lack interpretabil-
ity and multi-modal integration. Graph neural networks
(GNNis) offer an expressive framework to model temporal
and structural relationships in EHRs (Boll et al., 2024; Xu
et al., 2021), though prior works rely on S or hand-crafted
graphs and remain limited to single modalities (Liu et al.,
2024; Mesinovic et al., 2025).

We introduce a novel multi-modal spatio-temporal graph
neural network for survival analysis with competing risks.
Our model learns dynamic graphs for each modality, time-
series, demographics, ICD codes, and radiographic text,
and fuses them using hierarchical graph attention. This
enables interpretable modelling of intra- and inter-modality
dependencies without any predefined graph structures.

Our contributions are as follows:

1. We introduce the first unified framework for dy-
namic cross-modal graph learning in healthcare, where
modality-specific spatio-temporal graphs are con-
structed and F through hierarchical attention without
relying on predefined structures.

2. We propose a novel hierarchical interpretability mech-
anism that enables fine-grained attribution across fea-
tures, time steps, and modalities, under competing
events.

3. We demonstrate that our approach outperforms state-of-
the-art survival models and graph baselines on multi-
ple real-world EHR datasets, achieving calibrated and
interpretable competing risk prediction across ICU,
emergency, and transplant care.

2. Methods

Data. We evaluate our model on two datasets adapted for
competing risk prediction: PBC2 and MC-MED. The PBC2
dataset contains monthly biomarker measurements and S
clinical variables from a randomised trial on primary biliary
cirrhosis, with competing risks of death and liver transplan-
tation. The MC-MED dataset comprises 118,385 emergency



department visits from 70,545 patients at Stanford Health
Care, incorporating multimodal data such as vital signs,
lab tests, demographics, ICD9/10 histories, and free-text
radiography reports, with competing outcomes of hospital
admission, observation, and ICU admission. We retain the
top 500 ICD codes and use six time steps (windows) per
patient to enable graph construction. Missing values are
imputed via forward and backward filling, and sequences
are padded using the latest available measurements. The
pre-processing pipeline for MIMIC-IV was based on pre-
viously published workflows, and eICU was based in part
on work done by (Mesinovic et al., 2024; Rocheteau et al.,
2021). We used the imputation as suggested by the pipeline.

For the time-series variables, we use forward filling as clin-
icians in practice would only consider the last recorded
measurement. If the first set of measurements is missing for
some time-varying features, instead of dropping those fea-
tures or patients, we backward-fill from the closest measure-
ment in the future. The time-series features were resampled
to 1-hour intervals. For the ICU datasets, we considered
only observations collected up to 24 hours before the reg-
istered outcome. For MC-MED, since it is an ED dataset,
the entirety of the patient cohort is within 24 hours of stay
within the emergency department, and we include all of
this information before the event time itself. For PBC2, we
resampled the data into a monthly timescale. Patient ad-
missions were randomly split into train, validation and test
sets (8:1:1). Details of the features included can be found in
Supplementary Tables 1, 2, and 3.

For eICU, MIMIC-1V, and MC-MED, the data contains de-
identified patient electronic health records data, which can
only be obtained after the ethical review of the proposed
analysis on the PhysioNet page. Some certification of train-
ing modules is also required for access. We have cited the
sources for the datasets in the text accordingly under Data.
Consent for data use has been obtained by the providers,
de-identification and licensing are in line with HIPAA re-
quirements and compatible with the research conducted,
which has passed ethical review and certification for data
access.

We address the task of survival prediction under competing
risks, where patients may experience one of several mutually
exclusive event types (e.g., [ICU admission, death), or be
censored. Each patient ¢ is associated with an outcome
Y; = (e;,t;), whereg; € € ={1,2,..., E} U {@} denotes
the event type (or censoring), and ¢; € R is the observed
time to event or censoring. The aim is to estimate cause-
specific cumulative incidence functions (CIFs),

E(t|X)=P(T <te=el|X),

which quantify the risk over time of experiencing event e,
given patient covariates X, while accounting for the pres-

ence of competing risks and right-censoring. This is par-
ticularly relevant in clinical settings where understanding
differential risk across multiple outcomes is critical for prog-
nosis and intervention.

Each patient ¢ is represented by a multi-modal input:

X, = {XZ_(TS)’XZ_(S)’Xi(XR)7Xi(ICD)}
« X™) ¢ R4X!: time-series of clinical measurements (e.g.,
vitals, labs),
. Xi(S) € R%: S demographic variables (e.g., age, sex),
. Xz'(XR) € R?: text embeddings of radiographic reports,
¢ Xz'(ICD) € R4 diagnostic code histories (ICD9/10).

Together, these modalities provide complementary and lon-
gitudinal insight into the patient’s state.

To capture evolving dependencies in X, i(Ts), we divide the se-
quence into s windows and construct one graph per window
using learnable node embeddings:

At:@;r\IJtERdXd, tzl,...,S.

We apply top-k sparsification and add directed temporal
edges from nodes in window ¢ — 1 to corresponding nodes
in window ¢. To control memory, redundant nodes are

aggregated. This yields a temporal graph set {A;};_; €
Rdxdx‘s'

Each modality is modelled as a separate graph:

1. S features: fully connected graph A(S) € R xds

2. ICD codes: Top 500 codes are embedded via co-
occurrence. Cosine similarity forms A(CP) ¢ R500x500,
followed by learnable pooling:

AUCD) _ f;CD(A(ICD)) c Rd/xd’.

3. Radiographic reports: We encode reports using Clinical-
Longformer (Li et al., 2022):

— .2
Tt = (b(’l"t)7 Att' = exp <M>

for all reports 7; in the patient’s history. This yields
patient-specific temporal graphs.

To integrate across modalities, we learn cross-modality at-
tention matrices:

Wm=n) ¢ Rémxdn vy e {TS, S, XR, ICD}

Each is trained jointly with intra-modality graphs to form
the fused graph:
A(TS)
AF _ W(SHTS)

W(TS—>S)
A®)



Each graph and cross-attention map is paired with a trainable
interpretability matrix 7™ or I(™—=") updated via gradient
attribution.

The fused graph is passed through stacked GIN layers with
temporal pooling and convolutional clustering. The result-
ing graph is flattened and passed through 2 MLP branches,
one per event type. Each outputs @, ¢, a probability estimate
of event e at time ¢. CIFs are estimated via:

Zt]<5 /a\f»é
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We train the model using a combined loss:

Lol = Ereg +alnir + BLrank + 7 Lstruct-

where

* Negative Log-Likelihood (NLL) models the joint likeli-
hood of event type and time for uncensored, and censor-
ing distribution for censored patients.

* Ranking loss enforces consistent risk ordering across
patients with comparable clinical histories.

* Structural loss encourages smooth graph evolution across

time:
!
Zi,j Aij : Aij)
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* Regularisation smoothens the penalty across node embed-
dings:

Leg=X Y lhi—hyl.

(i,9)€E

This combination enables accurate, robust, and interpretable
cause-specific risk prediction over time from complex mul-
timodal EHR data.

3. Results

We evaluate our model against two groups of baselines for
both single-risk and competing-risk survival analysis tasks.
A complete set of comparisons is in Table 1, which shows
the results in the same settings with results averaged over
5 seeds. Our model consistently outperforms all baselines
across different datasets and care environments. The largest
improvements are observed in concordance metrics, reflect-
ing our model’s strong temporal discrimination capabilities.
The combination of ranking loss and structural regularisa-
tion enables our model to predict both short- and long-term
survival outcomes robustly across diverse clinical settings.
Moreover, the superior IBS and IBLL scores indicate better
generalisation and calibrated event probability estimates,
avoiding the inflated concordance behaviour seen in prior
ranking-based models.

3.1. Competing Risk Survival Performance

We evaluate our model on five real-world EHR datasets
across both single-risk and competing-risk scenarios. Ta-
ble 2 reports the cause-specific time-dependent concordance
index (C’fn‘fm) on two challenging competing risk datasets:
PBC2 and MC-MED. Our model consistently outperforms
established baselines, including Dynamic-DeepHit (Lee
et al., 2019), MedGNN (Fan et al., 2025), and MM-STGNN
(Tang et al., 2023). On the PBC2 dataset, we observe
improvements of up to 2.5 percentage points over MM-
STGNN for predicting death, and a similar gain for liver
transplant prediction. On the MC-MED dataset, our model
achieves especially strong gains in hospital admission pre-
diction (0.880 vs. 0.798 for MM-STGNN), where cross-
modal interactions between longitudinal vitals, diagnostic
codes, and radiography reports are critical. These results
underscore the value of learning dynamic graphs and hierar-
chical attention jointly over diverse modalities.

3.2. Interpretability and Temporal Dynamics

To interpret the model’s temporal reasoning, we visualise the
learned attention weights from the time-series interpretabil-
ity matrix I™. As shown in Figure 1, the top 10 predictive
features for each competing outcome display evolving atten-
tion patterns over six time steps. These heatmaps illustrate
that the model learns not only S importance but also dy-
namically shifts its focus as patient trajectories evolve. This
provides clinicians with temporal insight into which physio-
logical variables are most salient for a given risk, enabling
time-sensitive and interpretable risk stratification.

3.3. Cross-Modality Contributions

In addition to feature-level attention, we examine how the
model attends across data modalities. Figure 2 shows 4 x 4
modality-level interpretability matrices extracted from the
F graph for each competing outcome in MC-MED. Time-
series and radiographic report embeddings contribute heav-
ily across all tasks, reflecting their rich temporal and seman-
tic signal. Notably, for ICU admission, we observe strong
cross-modality attention from ICD code history to time-
series and radiography, suggesting that diagnostic context
informs escalation decisions. In contrast, ED observation
relies on more diffuse inter-modality influence, consistent
with its heterogeneous clinical profiles.

3.4. Ablation Analysis

To quantify the impact of individual model components
and input modalities, we perform a comprehensive ablation
study on the MC-MED dataset (Table 3). In the architec-
tural ablations, removing either the ranking loss or structural
regularisation term leads to consistent declines in concor-



Table 1. Single-risk evaluation results across five datasets using three common time-to-event metrics. Results are averaged over 5 seeds.
For Concordance Index (1), higher is better; for IBS and IBLL ({.), lower is better. Best values per dataset are bolded.

Concordance Index (1)

Model MIMIC-IV eICU PBC2 MC-MED SUPPORT
Cox PH 0.711 £ 0.013 0.642 + 0.016 0.676 £ 0.012 0.589 £ 0.018 0.664 + 0.014
DeepSurv 0.752 £ 0.011 0.684 + 0.014 0.702 £ 0.015 0.654 £ 0.017 0.698 + 0.013
DeepHit 0.778 £ 0.010 0.723 £ 0.012 0.706 £ 0.011 0.739 £ 0.014 0.719 + 0.012
Dynamic-DeepHit 0.807 + 0.009 0.758 + 0.010 0.716 £ 0.011 0.786 £ 0.010 0.749 £ 0.011
DySurv (Mesinovic et al., 2024) 0.832 + 0.008 0.782 %+ 0.009 0.736 &£ 0.009 0.809 + 0.008 0.779 %+ 0.009
GCN 0.649 £ 0.014 0.598 + 0.015 0.631 + 0.012 0.579 + 0.015 0.622 + 0.014
GAT 0.674 + 0.012 0.621 + 0.013 0.659 + 0.011 0.602 £ 0.014 0.647 + 0.012
GraphSAGE (Liu et al., 2023) 0.697 + 0.013 0.643 + 0.012 0.681 + 0.010 0.634 £+ 0.014 0.669 + 0.013
TodyNet (Liu et al., 2024) 0.738 £ 0.011 0.685 + 0.010 0.706 + 0.011 0.719 £ 0.010 0.708 &+ 0.011
DynaGraph (Mesinovic et al., 2025) 0.803 + 0.008 0.744 £+ 0.009 0.726 + 0.010 0.832 + 0.008 0.761 &+ 0.010
MedGNN 0.759 + 0.009 0.708 &+ 0.011 0.698 + 0.010 0.776 + 0.009 0.732 + 0.010
MM-STGNN 0.767 £ 0.010 0.725 + 0.010 0.693 + 0.012 0.762 + 0.011 0.731 + 0.011
Ours 0.861 £ 0.007 0.809 + 0.008 0.768 + 0.008 0.832 £ 0.007 0.797 + 0.008
Integrated Brier Score (IBS) (])
Model MIMIC-1V eICU PBC2 MC-MED SUPPORT
Cox PH 0.251 + 0.012 0.304 + 0.015 0.281 + 0.014 0.332 + 0.016 0.270 + 0.012
DeepSurv 0.222 + 0.011 0.261 + 0.013 0.246 £ 0.013 0.299 £ 0.015 0.238 £ 0.012
DeepHit 0.209 + 0.010 0.248 + 0.012 0.257 + 0.012 0.278 + 0.013 0.247 £ 0.011
Dynamic-DeepHit 0.186 £ 0.009 0.219 £ 0.011 0.237 £ 0.011 0.199 £ 0.012 0.227 £ 0.010
DySurv 0.171 #£ 0.008 0.209 £ 0.010 0.218 + 0.009 0.177 £ 0.010 0.210 £ 0.009
GCN 0.321 £ 0.014 0.357 £ 0.016 0.336 £ 0.014 0.374 £ 0.015 0.351 £ 0.014
GAT 0.301 £ 0.012 0.341 £ 0.014 0.318 £ 0.013 0.351 £ 0.014 0.327 £ 0.013
GraphSAGE 0.282 £ 0.013 0.324 £ 0.012 0.309 + 0.012 0.336 £ 0.014 0.298 £ 0.012
TodyNet 0.239 £ 0.011 0.279 £ 0.010 0.274 £+ 0.011 0.257 £ 0.012 0.285 £ 0.011
DynaGraph 0.198 + 0.009 0.234 £ 0.010 0.246 + 0.011 0.216 £ 0.011 0.239 £ 0.010
MedGNN 0.186 =+ 0.009 0.215 £ 0.010 0.231 + 0.010 0.209 £ 0.010 0.227 + 0.009
MM-STGNN 0.202 £ 0.010 0.242 + 0.011 0.259 + 0.011 0.212 £ 0.011 0.252 £ 0.010
Ours 0.139 + 0.006 0.183 + 0.007 0.189 + 0.007 0.128 + 0.007 0.171 + 0.006
Integrated Binomial Log-Likelihood (IBLL) (])
Model MIMIC-IV elCU PBC2 MC-MED SUPPORT
Cox PH -0.223 + 0.011 -0.257 + 0.012 -0.243 £+ 0.011 -0.284 4+ 0.012 -0.249 + 0.011
DeepSurv -0.258 4+ 0.010 -0.299 + 0.011 -0.281 £ 0.011 -0.317 + 0.011 -0.288 + 0.010
DeepHit -0.278 4 0.009 -0.322 + 0.010 -0.304 + 0.010 -0.337 + 0.011 -0.308 £ 0.010
Dynamic-DeepHit -0.318 4 0.008 -0.369 + 0.009 -0.351 4 0.009 -0.381 4+ 0.010 -0.356 &+ 0.009
DySurv -0.339 4+ 0.007 -0.391 &+ 0.009 -0.367 & 0.008 -0.413 4 0.009 -0.379 + 0.008
GCN -0.184 4+ 0.012 -0.212 + 0.013 -0.194 + 0.012 -0.228 +0.013 -0.202 + 0.012
GAT -0.201 + 0.011 -0.238 + 0.012 -0.219 + 0.011 -0.251 4+ 0.012 -0.226 + 0.011
GraphSAGE -0.215 + 0.011 -0.248 + 0.011 -0.234 + 0.010 -0.271 + 0.011 -0.238 + 0.010
TodyNet -0.292 4+ 0.010 -0.335 £ 0.010 -0.311 £ 0.010 -0.353 £ 0.010 -0.319 £ 0.010
DynaGraph -0.298 + 0.009 -0.342 £ 0.010 -0.318 £ 0.010 -0.362 + 0.010 -0.329 £ 0.010
MedGNN -0.308 % 0.009 -0.362 £ 0.010 -0.337 £ 0.009 -0.373 % 0.009 -0.347 £ 0.009
MM-STGNN -0.301 = 0.010 -0.354 £ 0.010 -0.328 £ 0.010 -0.361 = 0.010 -0.338 £ 0.010
Ours -0.398 + 0.006 -0.442 + 0.007 -0.417 + 0.007 -0.459 + 0.007 -0.426 + 0.007

dance, particularly for hospital admission, highlighting the
effectiveness of multi-objective training. Replacing the GIN
backbone with a standard GCN also results in performance
degradation across all outcomes. In the modality addition
analysis, we observe the largest performance gain when
time-series features are added to S inputs, with further im-
provements from the inclusion of ICD codes and radiogra-
phy reports. These results confirm the complementary value
of each modality and highlight the importance of structured
multi-modal fusion. The same trends hold on MIMIC-1V
and eICU (see Supplement), supporting the robustness of
our design across diverse clinical settings.

4. Discussion

Our results demonstrate that dynamic, cross-modal graph
learning significantly enhances survival prediction in clini-
cal settings involving heterogeneous and irregular EHR data.

Unlike prior models that rely on S or early-fusion strategies,
our approach constructs modality-specific spatio-temporal
graphs and fuses them via hierarchical attention, enabling
fine-grained, interpretable risk estimation across time and
modalities.

The model consistently outperforms strong baselines on five
datasets, particularly in high-stakes settings like emergency
and ICU care. Its interpretability matrices reveal clinically
meaningful patterns, such as rising influence of renal mark-
ers over time or ICD-derived context contributing to ICU
escalation. These findings support real-world deployment
in triage, monitoring, or discharge planning workflows.

Limitations include the absence of treatment variables and
external validation on non-US datasets. Future work will
extend our framework to incorporate intervention effects
and explore subgroup-specific attention patterns to audit for
potential biases.



td

Table 2. Cause-specific concordance index (Ciyg ) on the PBC2 and MC-MED datasets for competing risks. Our model consistently
outperforms all baselines. Higher is better.

Model PBC2 (Death) PBC2 (Transplant) ICU Adm. Hosp. Adm. ED Obs.
MedGNN 0.758 0.740 0.812 0.785 0.773
Dynamic-DeepHit 0.765 0.743 0.816 0.791 0.778
MM-STGNN 0.770 0.749 0.821 0.798 0.781
Ours 0.790 0.766 0.827 0.880 0.797
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Figure 1. Temporal heatmap of the top 10 time-series features in MC-MED for ICU admission, ED observation, and hospital admission.
Attention weights from the interpretability matrix 7™ highlight the model’s temporal reasoning.

Impact Statement

The model supports clinical decision-making through trans-
parent, time-aware predictions across multiple modalities.
The ability to attribute predictions to specific features and
modalities may improve trust and adoption in clinical
settings. Our study uses de-identified, ethically sourced
datasets.
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