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ABSTRACT

Real-world human–AI cooperation is challenging due to the wide range of in-
terests and capabilities that each party brings. To maximize joint performance,
cooperative AI must adapt its policies to the competence and incentives of its spe-
cific human partner. Prevailing approaches address this challenge by training on
human data or simulated partners. In this paper, we pursue an orthogonal ap-
proach: grounded on theory from social science, we hypothesize that equipping
agents with human-like trust beliefs enables them to adapt as efficiently as humans
do. We formulate the agent’s problem asTRUSTPOMDP, a variant of POMPDs,
and develop a trust model that captures three key factors known to shape human
trust beliefs: ability, benevolence, and integrity (ABI). A key advantage of the ap-
proach is that it only requires minimal modifications to a POMDP agent. TRUST-
POMDPS can be trained with real or simulated partners, provided sufficient di-
versity in the three dimensions. Results from both simulated and human-subject
experiments (N=102) show that TRUSTPOMDP-based agents adapt more rapidly
and effectively, even to malevolent behavior, while baselines methods tend to over-
or undertrust, reducing team performance. These findings highlight the promise
of incorporating social science-informed trust models into RL agents to advance
collaboration with humans.

1 INTRODUCTION

Cooperating with humans in real-world environments requires accounting for their diverse capabil-
ities, motivations, and behaviors (Wang et al., 2024; Hong et al., 2023). Some human partners may
have limited competence, others may prioritize personal credit over team success, and still others
may be willing to violate social norms (Summerfield & Tsetsos, 2015; Cacioppe, 1999; Haselton
et al., 2015). As illustrated in Figure 1, such factors should be accounted for, or the agent may risk
waiting in vain for help from a selfish teammate, delegate critical tasks to an incompetent one, or
rely on someone who disregards norms.

How to learn cooperative policies that adapt to such characteristics of human partners is an open
problem. Prevailing approaches tackle this challenge by training on human data (Carroll et al.,
2019) or on simulated partners (Carroll et al., 2019; Papoudakis et al., 2021; Liang et al., 2024;
Hong et al., 2023; Strouse et al., 2021). Recent work on zero-shot coordination (ZSC) emphasizes
generalization by exposing agents to diverse partners (Carroll et al., 2019; Papoudakis et al., 2021;
Liang et al., 2024; Hong et al., 2023; Strouse et al., 2021), typically through constructing simulated
partner populations with diversity (Papoudakis et al., 2021; Liang et al., 2024; Strouse et al., 2021).

In this paper, we take an orthogonal approach. We build on theories of trust from social and behav-
ioral sciences. Correctly calibrated trust is a requirement for effective human collaboration (Mayer
et al., 1995; Lewicki et al., 2006; McAllister, 1995; Cook et al., 2005). In our work, we want to ex-
ploit a key insight from this literature, which is that humans form and update trust beliefs about their
partners, which in turn guide reliance, allocation of tasks, and strategies of cooperation, with pos-
itive effects on team performance (Dirks, 1999; De Jong et al., 2016). Informed by these findings,
we hypothesized that equipping agents with human-like trust beliefs will enable them to effectively
adapt to diverse and previously unseen human partners.

Our technical contribution is the definition and study of a novel variant of the Partially Observable
Markov Decision Process (POMDP) that incorporates a belief model designed to capture three key
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Figure 1: When cooperating with a human, optimal policy depends on how competent, benevolent,
and norm-obeying the partner is. Learning an accurate representations about these factors enable
an agent to adapt its policy better, whereas incorrect beliefs can lead to miscalibrated trust—either
over-trusting (e.g., relying on an incapable or uncooperative partner) or under-trusting (e.g., failing
to rely on a competent and well-intentioned partner).

traits that humans naturally consider in interpersonal collaboration (Mayer et al., 1995). Ability de-
notes the belief that the trustee has the competence to be effective, Benevolence the belief that the
trustee intends to act in the trustor’s interest beyond self-gain, and Integrity the belief that the trustee
upholds principles and norms acceptable to the trustor (Mayer et al., 1995). We formalize TRUST-
POMDP, in which a human partner’s ABI traits are unobservable to the AI. The agent has a belief
model that allows it to infer these traits probabilistically and to condition its policy accordingly.
A notable advantage of this formulation is its representational efficiency: in the minimal setup ex-
amined in this paper, only two additional observation variables (the mean and uncertainty) per ABI
dimension are added to a standard POMDP agent. We further prove when the human partner behaves
as social science suggests (i.e., is ABI-like), the approach improves cooperative policies.

We propose Trust Co-play, an approach to training TRUSTPOMDPS inspired by work on ZSC. In
principle, TRUSTPOMDPS can be trained with either real or simulated partners, provided there is
sufficient diversity across the three dimensions. In our approach, we construct a trustee agent popu-
lation by varying the ABI traits. We vary the levels of ability through Boltzmann rationality, while
benevolence and integrity are controlled via reward design. This yields a controllable distribution of
partner behaviors, ensuring that the agent learns to deal with extreme behaviors that may be more
rare in human behavior but that require adapting one’s policy (e.g., norm-abusing partners). Further,
Trust Co-play allows training a probabilistic ABI inference model, which in turn allows the agent to
better handle uncertainty and scarce observations.

We systematically evaluate the approach with synthetic and real humans in Overcooked, a widely
used and complex multi-agent environment (Hong et al., 2023; Wang et al., 2024; Strouse et al.,
2021; Zhao et al., 2023). First, in the simulation study, we compared TRUSTPOMDP with estab-
lished ZSC methods—FCP (Strouse et al., 2021) and MEP (Zhao et al., 2023)—as well as an ab-
lation baseline: a POMDP agent also trained on the trustee population but without the ABI model.
TRUSTPOMDPS achieved on average higher team rewards. Second, we conducted a human-subject
experiment (N = 102) in which participants were free to interact with the AI agents in any way they
chose. TRUSTPOMDP again achieved the highest team rewards, adapting more effectively to di-
verse human partners and yielding a better cooperative experience. In contrast, in both studies, the
baselines often exhibited miscalibrated trust—either over-trusting or under-trusting. Our findings
highlight the promise of drawing from social sciences to build human-like inferential capabilities
into cooperative agents that work with humans.

2 RELATED WORK

Trust in Human-Human Collaboration. Trust—defined as the willingness to be vulnerable based
on positive expectations of another’s behavior (Mayer et al., 1995)—is fundamental to human collab-
oration. It influences behavior in information sharing, joint problem solving, and tolerance for mis-
takes (McAllister, 1995; Lewicki et al., 2006), and plays a critical role in coordination, conflict reso-
lution, and the pursuit of shared goals (Olson et al., 2006; Williams, 2001). Appropriately calibrated
trust is thus essential for effective teamwork, whereas over-trust or under-trust can lead to subopti-
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mal or even failed collaborative outcomes (Lee & Moray, 1994). The ability–benevolence–integrity
(ABI) model offers a compact account of interpersonal trust and explains diverse cooperative be-
haviors (Mayer et al., 1995; Yan & Holtmanns, 2008; Cho et al., 2015). Building on this theory,
we extend trust modeling from human–human to human–AI collaboration, enabling both agents to
iteratively evaluate their partners’ reliability and adapt their behaviors accordingly.

Trust in Human-AI Cooperation. In human–AI collaboration, human trust beliefs are shaped by
factors such as AI’s capability (Yin et al., 2019; Rechkemmer & Yin, 2022), transparency (Zhang
et al., 2020), explainability (Wang & Yin, 2021), and uncertainty communication (Schemmer et al.,
2023; Ma et al., 2023; Bansal et al., 2021; Rastogi et al., 2022). Some work modeled humans’
trust in AI. For example, Chen et al. (2020) model human trust in a robot and adapt the robot’s
policy to the inferred trust, thereby improving team performance. Prior work generally assumes
a unidirectional form of trust in which humans are treated as trustworthy, positioning the human
as the trustor and the AI as the trustee. In real-world cooperation, however, humans also vary in
trustworthiness. Effective collaboration therefore requires bidirectional trust, where AI agents can
evaluate the reliability of their human partners and learn when and how to trust them. This paper
advances this underexplored perspective.

Zero-shot Coordination (ZSC). A central goal of ZSC is to learn to coordinate effectively with
previously unseen partners, whether other AI agents or humans (Wang et al., 2024; Carroll et al.,
2019). Existing approaches can be grouped into three categories. (1) Training with human data.
Some methods leverage datasets of human cooperation (Carroll et al., 2019), but these are limited in
scale, subject to highly diverse human behaviors, and struggle to capture latent preferences, often re-
sulting in brittle coordination policies (Hong et al., 2023). (2) Inferring partner types. Some papers
adopt Theory of mind (Premack & Woodruff, 1978) approachs to infer latent partner traits using
Bayesian models (Wu et al., 2021; Shum et al., 2019) or learned embeddings (Grover et al., 2018;
Papoudakis et al., 2021), enabling adaptation to different types of partners. However, the inferred
latent variables often lack interpretability. (3) Zero-shot coordination via simulated populations.
Agents are trained with diverse simulated partners to improve generalization, using techniques such
as FCP (Strouse et al., 2021), MEP (Zhao et al., 2023), LIPO (Charakorn et al., 2023), HSP (Yu
et al., 2023b), TrajeDi (Lupu et al., 2021), and CoMeDi (Sarkar et al., 2023). These methods intro-
duce variation in partners’ abilities or preferences. Yet they overlook human trustworthiness—even
though it plays a central role in collaboration. In contrast, we take an orthogonal approach: explicitly
modeling a trust belief about human partners, grounded in established social science theory.

3 PRELIMINARY

Partially Observable Markov Decision Process (POMDP). We model the AI agent’s decision
problem as a variant of Partially Observable Markov Decision Process (POMDP) (Kaelbling et al.,
1998). A POMDP is defined by the tuple M = ⟨S,A,O, T ,R, γ⟩, where S is the state space,
A the action space, O the observation space, T (s′ | s, a) the state transition function, R(s, a)
the reward function, and γ ∈ (0, 1) the discount factor. At each step, the agent receives a partial
observation o ∈ O rather than the full state s, and selects an action a ∈ A. Because the environment
is partially observable, agents maintain beliefs distribution over key latent states. In our setting, the
latent component of interest is the human partner’s ABI type.

Human–AI Cooperative Game. Human–AI cooperation is here modeled as a two-player
POMDP with a shared team reward (Carroll et al., 2019; Strouse et al., 2021):

M = ⟨S, OH , OA, AH , AA, T , R, γ⟩,

where S is the state space; OH ,OA are the human and AI observation spaces; AH ,AA their action
spaces; T the transition dynamics;R the team reward; and γ the discount factor. At each step t, the
human receives oH

t ∈ OH and selects aHt ∈ AH under policy πH , while the AI receives oA
t ∈ OA

and selects aAt ∈ AA under policy πA. The objective of cooperative AI is to learn an AI policy that
maximizes expected return against diverse human partners:

max
πA

EπH∼PH
[J(πA, πH)] , J(πA, πH) = E

[∑
t

γtR(st, aAt , aHt )

]
.
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Two-Player Hidden Utility Markov Game. However, real-world cooperation often involves par-
tially aligned rewards (Gallo Jr & McClintock, 1965), where teammates follow hidden utility func-
tions that pursue both collective goals and personal gains, such as credit recognition (leading to low
benevolence) or advancement through unethical means (leading to low integrity). These dynamics
complicate coordination. Human-AI cooperation under such settings can be modeled by a hidden
utility Markov game (Yu et al., 2023b): ⟨S, OH , OA, AH , AAI , T , RH , RAI⟩, where the hu-
man and AI may have distinct rewardsRH andRAI . The human rewardRH is hidden from the AI
and may drive diverse behaviors. In this setting, cooperative AI is typically trained by aligningRAI

with the team reward, encouraging the AI to optimize team performance regardless of its human
partner’s incentives.

4 METHOD

4.1 PROBLEM FORMULATION: TRUSTPOMDP

Environment

oa aor r

𝑧̂𝑧𝑧𝑧

Environment

oa aor r

𝑧𝑧
𝑃𝑃 (𝐴𝐴𝐴𝐴𝐴𝐴 | ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)

BA

A B IA B I

Figure 2: When collaborating with humans, AI
agents encounter partners with varying ABI (Abil-
ity, Benevolence, Integrity) traits. (a) In a standard
POMDP, the agent has no explicit representation
of the human partner’s latent ABI. (b) In TRUST-
POMDP, the agent uses observations to form a
belief over the human’s latent ABI and incorpo-
rates it into its observations, enabling policies that
better adapt to the human partner’s traits.

We model cooperation with a human partner
who may vary in capability and pursue incen-
tives only partially aligned with the AI’s as a
TRUSTPOMDP from the AI’s perspective. The
partner is characterized by a latent trustworthi-
ness type (ABI) z ∈ Z , which is unobservable
to the AI and must be inferred through ongoing
interaction (Figure 2b). Formally,

MTrustPOMDP = ⟨S, O, Z, A, T , U , R, Ẑ⟩,

where S is the environment state space; O the
AI agent’s observation space; Z the human
partner’s trustworthiness (ABI) space;A the AI
agent’s action space; T the transition dynam-
ics under joint actions; U the inference function
updating the belief ẑt from interaction history;
R the AI’s reward function; and Ẑ the AI’s ABI
belief space (ẑt ∈ Ẑ). The AI agent follows a
trust-aware policy that conditions not only on its observation ot ∈ O but also on its current belief
ẑt of the human partner’s latent ABI state: πAI(aAI

t | ot, ẑt). We further show that TRUSTPOMDP
preserves the Markov property of standard POMDPs in Appendix A.1.

4.2 MODELING ABI

With TRUSTPOMDP, we aim to equip the AI agent with the ability to infer a human partner’s
trustworthiness (Mayer et al., 1995). To this end, we construct a synthetic population of agents with
diverse ABI profiles, grounded in trust theory—referred to as the trustee agent population. The
modeling of each ABI dimension is detailed below.

Ability: Rationality-Modulated Policy via Boltzmann Distribution Instead of encoding ability
directly as an estimate of achievable reward, we model it by modulating policy stochasticity through
Boltzmann rationality (Baker et al., 2007; Bobu et al., 2020) applied post-training. The policy of
agent i is defined as

πi(a | s) =
exp(βiQi(s, a))∑

a′∈A exp(βiQi(s, a′))
, (1)

where Qi(s, a) is the action-value function,A is the action space, and βi ∈ [0,+∞) is the rationality
coefficient. Larger βi produces more rational, less stochastic behavior, reflecting higher ability.
This formulation is agnostic to the agent’s original reward, policy, or task, and enables systematic
variation of ability.

Benevolence: Partner-Oriented Reward via Event-Based Credit Assignment To model benev-
olence, drawing on social MDPs (Leibo et al., 2017) and credit-assignment methods in multi-agent
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RL (Zhou et al., 2020), we adjust how agents weight their own versus their partner’s contributions
to team-progressing events. For a reward-triggering event e ∈ E , the benevolence-weighted reward
of agent i is:

R
(B)
i = λ · rself + (1− λ) · rother, (2)

where rself denotes rewards from self-completed events and rother from partner-completed events.
The parameter λ ∈ [0, 1] regulates self-centeredness: λ = 1 corresponds to a fully self-oriented,
low-benevolence agent, while λ = 0 reflects complete altruism. This formulation captures a contin-
uum of cooperative and helping intentions.

Integrity: Norm Adherence via Reward Design Integrity is closely tied to adherence to social
and ethical norms (Mayer et al., 1995; Huberts, 2018). We model integrity by penalizing norm-
violating actions. Formally, let V denote the set of norm-violating actions, which may be defined
by the scenario through explicit task rules, social conventions, or imposed constraints. Agent i then
receives an integrity-related penalty:

R
(I)
i =

{
δ, if ai ∈ V,
0, otherwise,

(3)

where δ denotes the magnitude of the norm-violating incentive. A positive δ encourages unethical
or deceptive behavior, reducing integrity, whereas a negative δ discourages norm-violating actions,
fostering higher integrity.

4.3 INFERRING ABI

While ABI dimensions can in principle vary continuously, without loss of generality, we simplify by
discretizing each into binary values (0 for low, 1 for high). This still yields diverse policies through
their interplay, though extending to finer-grained, continuous forms remains for future work.

To enable the trustor agent to infer its partner’s ABI, we design an inference model that represents
each dimension with a Beta distribution rather than a single scalar. The Beta distribution is well-
suited for variables bounded in [0, 1] and naturally models evidence accumulation (e.g., successes
vs. failures) (Nielsen et al., 2007), aligning with incremental trust updates during interaction:

qϕ(ẑd | x1:T ) = Beta(αd(x1:T ;ϕ), βd(x1:T ;ϕ)) , d ∈ {A,B, I}, (4)
where x1:T is the observed interaction history, ẑd the inferred latent trust variable for dimension d,
and ϕ the network parameters. The predictive mean and concentration are pd = αd

αd+βd
, Sd =

αd + βd, with pd estimating ABI level and Sd quantifying confidence. We prove the benefits of
maintaining a trust belief when the human partner’s ABI is uncertain in Appendix A.2.

4.4 TRAINING AND DEPLOYMENT OF THE BELIEF MODEL.

Each trustee agent in the population is annotated with a ground-truth ABI trait. We adopt a super-
vised approach. Given ground-truth ABI labels yd ∈ [0, 1] for each dimension d, the model outputs
Beta parameters (αd, βd) and we use the Beta mean pd = αd

αd+βd
as the predicted probability. The

per-dimension loss combines a Bernoulli cross-entropy (BCE) term with an evidential regularizer
that penalizes overconfident Beta shapes via a KL divergence to a uniform prior Beta(1, 1):

Ld = BCE
(
pd, yd

)︸ ︷︷ ︸
data fit

+ λ ·KL(Beta(αd, βd) ∥Beta(1, 1))︸ ︷︷ ︸
evidential regularization

. (5)

where λ > 0 is a regularization weight (set to 10−3 in our experiments). The total loss is com-
puted as a weighted sum across dimensions, with wA, wB , and wI all set to 1 in this paper.
L = wALA + wBLB + wILI . Unlike unsupervised methods (e.g., Variational Autoencoders),
our approach emphasizes interpretability, producing ABI values that are semantically meaningful
and directly usable for trust-aware decision-making. Model details are provided in Appendix B.3.

Online Update and Smoothing. At inference time, the model produces (αd, βd) for each dimen-
sion, from which we compute the posterior mean and confidence. In addition to these instantaneous
estimates, we maintain a smoothed posterior by treating the predicted mean µd as soft evidence:

α
(t)
d ← ρα

(t−1)
d + κµd, β

(t)
d ← ρ β

(t−1)
d + κ(1− µd), (6)

5
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Ability

Benevolence

Integrity

…

Trustor agent

Co-Play

AI AI AI AI

Real human

Simulate 
humans based 

on the ABI 
framework

Trustor Agent Training

Trustor agent

Trustor Agent DeploymentA B

Infer ABI and 
condition the 

policy on it

Cooperate with

Figure 3: Illustration of Trust Co-Play. (a) The TRUSTPOMDP-based trustor agent is trained
through co-play with a diverse set of trustee agents exhibiting varying levels of Ability, Benevo-
lence, and Integrity. (b) The trained trustor agent can then collaborate with real humans, inferring
their ABI and conditioning its policy accordingly.

where ρ ∈ (0, 1) is a forgetting factor and κ caps the evidence strength. In our implementation, we
set ρ = 0.999 and define κ = min(Smodel, 2.0), where Smodel = αd + βd is the evidence strength
predicted by the model. This smoothing stabilizes long-term estimates. For downstream symbolic
reasoning, we further binarize smoothed probabilities into ±1 labels using a threshold of 0.5.

4.5 TRAINING: TRUST CO-PLAY

Generating the Trustee Population. Each trustee agent is trained with a base reward that combines
benevolence and integrity components: Rbase

i = R
(B)
i + R

(I)
i . The training objective of an ABI-

grounded trustee agent is:

J(πi) = Eτ∼πi

[∑
t

(
Rbase

i (st, at)

]
, (7)

By varying the parameters in Eqs. 2 and 3, we generate different reward functions and thus obtain
trustee agents with diverse benevolence-integrity profiles. To further diversify the population, we
vary their ability by adjusting the rationality coefficient βi in the Boltzmann policy (Eq. 1). We
trained each trustee agent using a pairing scheme, where it was paired with a complementary partner
(e.g., a high-benevolence trustee that provides help was paired with a low-benevolence partner that
receives help). Detailed implementation is provided in the Appendix B.2.

Trust Co-Play. With the trustee population established, we first train the ABI inference model, fol-
lowed by the TRUSTPOMDP-based trustor. Using the same pairing scheme, we collect trajectories
from trustee agents, each labeled with its ABI type, yielding training data (τ, θ) ∈ T × Θ, where
τ is a trajectory and θ the latent ABI label. These pairs are then used to train the inference model
described in Sec. 4.3.

With the ABI inference model, finally, we train the trustor agent via co-play with the trustee
population (Figure 3). In each episode, a trustee agent is sampled, and the inference
model continuously updates the trustor’s belief about the partner’s traits, producing six signals
(Avalue, Aconfidence, Bvalue, Bconfidence, Ivalue, Iconfidence). These signals are appended to the trustor’s ob-
servation space, enabling trust-aware policy learning. The trustor is trained with Proximal Policy
Optimization (PPO). Full model and training details are provided in Appendix B.3.

5 EXPERIMENT 1: EVALUATION WITH SIMULATED AGENTS

We evaluate our approach in Overcooked, a widely used testbed for studying human–AI cooper-
ation (Carroll et al., 2019; Wang et al., 2024; Hong et al., 2023). Prior work in Overcooked has
largely focused on coordination and collision avoidance, while overlooking trust as a key factor.
Trust becomes critical under uncertainty (when a partner’s trustworthiness is unknown) and risk
(when misplaced trust leads to loss) (Mayer et al., 1995), yet standard Overcooked layouts rarely
capture such dynamics. To evaluate our method in trust-sensitive settings, we designed new layouts

6
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Task A B

Lettuce

Plate

Cutting Board

Delivery
Station

Elements

AI Agent Human

Bad Lettuce

Resource Asymmetry Divided Room

Figure 4: Task and two layouts in Overcooked. In this task, a human and an AI agent collaborate
under time constraints to prepare and deliver as many lettuce salads as possible. We design two
layouts—(A) Resource Asymmetry and (B) Divided Room—to induce trust-related challenges. In
both, the human partner’s ABI trait can be uncertainty. For instance, in (A), when the human carries
a lettuce toward the bottom cutting board, the AI cannot tell whether the human intends to hand it
over or plate it themselves after chopping. Such ambiguity creates a trust dilemma: the AI must
decide whether to rely on the human, where misplaced trust can waste time or cause failure.

where agents must decide whether to trust their partners under uncertainty. Misplaced trust in these
layouts leads to negative consequences, such as wasted time and reduced scores.

5.1 METHOD

Task and Environment. In our setting, two agents must prepare and deliver as many lettuce salads
as possible within a limited time. Each salad requires a sequence of actions: retrieving a lettuce,
chopping it on a cutting board, fetching a plate, plating the salad, and delivering it (Figure 4). We
first designed two trust-sensitive layouts (Figure 4): (1) Resource Asymmetry, where key resources
lie on one side of the map, and (2) Divided Room, where agents operate in separate areas with
asymmetric access. In both layouts, the trustee’s intentions can sometimes be temporarily ambigu-
ous (the ambiguity zone, described later), forcing the trustor to decide whether to wait for help or act
independently. This can be a risky decision since misplaced trust (trusting an unreliable partner or
distrusting a reliable one) can waste time and even cause task failure. To test generalizability, we also
create easier variants of these layouts with rearranged item locations, called Resource Asymmetry-
Easy and Divided Room-Easy, where the trustee agent’s intention and trustworthiness are more
perceptible (shown in Appendix D.1).

In Figure 4(a), the AI is positioned near the plates and the human near the lettuce. Ideally, the
human would pass the lettuce, but this may be hindered by low ability (inefficient execution), low
benevolence (withholding help), or low integrity (using bad lettuce). Detecting such traits is espe-
cially difficult in the trait ambiguity zone, where intentions and ABI remain unclear. For example,
if the human moves right before picking up lettuce, their integrity is uncertain (will they use bad let-
tuce?), and if they carry lettuce toward the bottom cutting board, their benevolence is uncertain (will
they pass it or keep it?). In these cases, the AI must decide whether to trust or act independently:
misplaced trust wastes time, while misplaced distrust forfeits potential collaboration.

Baselines and Evaluation We compare our method with several baselines, including an ablated ver-
sion of our model (basic POMDP), which is trained with the trustee agent population but does not
infer or condition on ABI. We also evaluate against widely-recognized zero-shot coordination ap-
proaches such as Fictitious Co-Play (FCP) (Strouse et al., 2021) and Maximum Entropy Population-
based training (MEP) (Zhao et al., 2023). Following prior work (Wang et al., 2024; Yu et al., 2023a),
we construct a set of rule-based agents as deployment-time partners. We deliberately use rule-based
behaviors—rather than learned agents—to create a clear distribution shift from the trustee population
used during training, enabling a stronger test of the trustor agent’s generalization. Implementation
details are provided in the Appendix B.4.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5.2 RESULTS

POMDP
TrustPOMDP FCP MEP

0

500

1000

1500

2000
Overall Team Reward

Figure 5: Overall team performance
in Experiment 1 with simulated agents
across four layouts, reported as means
with 95% confidence intervals.

We evaluate each method on four layouts with an episode
length of H = 400 steps. For every layout-method-
partner combination, we run 10 simulations and report
the mean team reward per episode with 95% confidence
intervals. We employed the Mann–Whitney U test with
posthoc correction for the statistical analysis. As shown
in Figure 5, TRUSTPOMDP achieves higher team re-
wards than FCP and MEP (p < 0.001 for both). Tra-
jectory analysis further reveals cases of under-trust and
over-trust in baseline agents (Figure 6). For instance,
when a benevolent partner (bottom) attempted to pass let-
tuce to the upper agent, FCP and MEP agents (upper)
redundantly fetched lettuce independently, lowering ef-
ficiency. Conversely, when the partner was low in benev-
olence, sometimes, MEP agent waited in vain, wasting
valuable time. In contrast, the TRUSTPOMDP agent in-
ferred the partner’s benevolence from behavioral history
and adapted its strategy accordingly. Detailed statistical analysis results are shown in Appendix D.3.

6 EXPERIMENT 2: EVALUATION WITH HUMAN PARTICIPANTS

Because human-subject experiments are the gold standard for evaluating cooperative AI, particularly
trust models, we conducted a study with real participants. In this study, participants—blinded to the
underlying model of each AI partner—collaborated with our agent and the baselines.

6.1 METHOD

Task and Participants. We used the same task and environment as in Experiment 1. We recruited
102 participants from Prolific (52 male, 49 female, 1 non-binary; mean age = 39.5, SD = 12.5).

Experimental Design. We compared the TRUSTPOMDP-based trustor agent with FCP and MEP
agents. Since Experiment 1 had already demonstrated that TRUSTPOMDP outperformed its ablated
version, we did not include the basic POMDP in Experiment 2. We employed a within-subject
design in which each participant collaborated with all three AI agents, with the order of agents
counterbalanced.

Experimental Procedure. Each participant completed three tasks, one with each AI agent, with
task order counterbalanced. Every task comprised four rounds of 200 steps, totaling 12 rounds. For
each participant, three layouts were randomly sampled from the four available and paired with the
three agents. Both the agent and the layout changed after each task. The agents were color-coded,
but their underlying models were not disclosed. Participants were told they did not need to play
optimally and could cooperate with the AI in any way they preferred, ensuring that our method was
tested against diverse human strategies.

Before starting, participants were briefed on the study and provided informed consent. In the first
task, at the beginning of each round, they specified the persona they wished to enact. In the subse-
quent tasks, they replayed the same personas to ensure comparability. After each task, participants
completed a questionnaire assessing their collaborative experience and perceptions of the AI partner.
Additional details about the experimental platform are provided in the Appendix D.4.

6.2 RESULTS

We used the Wilcoxon signed-rank test and the Mann–Whitney U test depending on sample in-
dependence. Figure 7 summarizes the results. Overall, the TRUSTPOMDP trustor significantly
outperformed MEP (p < 0.01) and also exceeded FCP, though not significantly. Behavioral logs
clarify these differences: FCP mostly adopted a “distrust” strategy—working independently and ac-
cepting help only after explicit handovers—resulting in frequent under-trust. MEP showed similar

8
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When the partner is benevolent When the partner is not benevolent

TrustPOMDP TrustPOMDPUnder-trust Over-trust

Trustee agent’s moving path Trustor agent’s moving path (appropriate trust, over/under trust)

waiting

do the task
alone

do the task
alone

waiting

Figure 6: Qualitative observations in both Exp 1 and Exp 2. When the trustee agent (bottom) is
benevolent, the TRUSTPOMDP agent learns to wait for assistance, enabling efficient collaboration.
In contrast, the under-trusting agents (FCP and MEP) act independently, reducing efficiency. Con-
versely, when the trustee agent is not benevolent, TRUSTPOMDP adapts by working alone, whereas
the over-trusting agent (MEP) waits excessively, resulting in wasted time.
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(b) Humans' Subjective Perception
TrustPOMDP FCP MEP

Figure 7: Overall team performance and participants’ subjective perceptions in Experiment 2 across
four layouts, shown with means and 95% confidence intervals.

patterns and sometimes over-trusted, waiting for help that never came. By contrast, TRUSTPOMDP
adapted by inferring partner trustworthiness and flexibly deciding whether to cooperate or act alone,
though in rare unseen cases it stalled while gathering more evidence.

Subjective feedback echoed these findings. Participants reported greater trust in TRUSTPOMDP,
perceived its trust calibration as more appropriate, and rated it as more adaptable, easier to under-
stand, and more understanding of them. This fostered higher cooperation satisfaction and a stronger
willingness to collaborate. Together, these results show that conditioning on inferred ABI enables
more flexible, context-sensitive coordination and improves both performance and user experience,
underscoring the value of equipping AI agents with human-like trust reasoning. Detailed statistical
results are provided in Appendix D.5.

7 CONCLUSION

We have successfully demonstrated that equipping AI agents with human-like trust beliefs enhances
their ability to cooperate with humans in the case where their competences and incentives are diverse.
Our unique approach was to formulate a theory-informed and POMPD-compatible trust model that
characterizes human partners along just three dimensions—ability, benevolence, and integrity, yet
capturing a broad spectrum of human behaviors. Our evaluation shows that TRUSTPOMDPS adapt
more effectively and achieve higher team performance than baseline agents when collaborating with
human partners of varying trustworthiness. Participants also reported a better collaboration experi-
ence with our agent. Overall, these findings provide initial evidence that incorporating human-like
trust mechanisms can substantially enhance cooperative AI.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide detailed implementation information for all models as well as the full description of
the user study in the Appendix. In addition, the supplementary material includes our code, trained
models, and the raw data from the user study.

ETHICS STATEMENT

This study included a user experiment conducted in accordance with local ethical requirements. We
ensured that the experiment posed no harm to participants, informed them that they could withdraw
at any time, and guaranteed that all data were collected anonymously and used solely for aggregate
statistical analysis.
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A CLAIMS AND PROOFS

Here, we present some intuitive but important claims and provide proofs.
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A.1 TRUSTPOMDP IS STILL A POMDP

Proposition 1. TRUSTPOMDP preserves the Markov property and is a POMDP.

Proof. Augment the state to xt = (st, zt) ∈ S̃ = S × Z . Human actions are drawn from
πH(aHt | st, zt), the physical transition from T (st+1 | st, aAI

t , aHt ), and ABI dynamics from
Ξ(zt+1 | st, zt, aAI

t , aHt , st+1). Marginalizing aHt gives the single-agent kernel

T̃ (xt+1 | xt, a
AI
t ) =

∑
aH
t

T (st+1 | st, aAI
t , aHt )πH(aHt | st, zt) Ξ(zt+1 | st, zt, aAI

t , aHt , st+1).

Hence

Pr(xt+1∈A | x0:t, a
AI
0:t) = Pr(xt+1∈A | xt, a

AI
t ) =

∫
A

T̃ (dx′ | xt, a
AI
t ),

so {xt} is Markov (under AI control). The AI’s observation is ot+1 ∼ Õ(· | xt+1, a
AI
t ) with

Õ(o | x′, a) = O(o | s′), and its one-step reward is R̃(xt, a
AI
t ) = EaH

t ∼πH(·|st,zt)[R(st, a
AI
t , aHt )].

Therefore the control problem is the standard POMDP M̃ = ⟨S̃,A,O, T̃ , Õ, R̃, γ⟩. Any statistic
such as ẑt = U(ht) is computed from observations and does not alter (T̃ , Õ), hence does not affect
Markovity.

A.2 ASSUMING ABI-LIKE PARTNERS, INFERRING ABI IS BENEFICIAL

Notation and setup.

- Θ = {θ1, . . . , θN}: the set of latent ABI types of the human partner; θ ∈ Θ is the true type, with
prior pi = Pr(θ = θi) and

∑
i pi = 1.

- at ∈ A: the AI’s action at time t; a′, u denote generic actions.

- rt: the immediate reward at time t; γ ∈ (0, 1): the discount factor; T : the horizon (finite or
infinite).

- I: information available at time t (e.g., observations and known model); I+: information after
executing at and transitioning to t+1.

- Q(a | I): the true action-value under information I (with optimal continuation):

Q(a | I) = E
[
rt + γmax

a′
Q(a′ | I+)

∣∣∣ I, at = a
]
.

- Base (ABI-agnostic) policy: does not infer ABI; actions do not condition on θ.

- Trust-aware (ABI-inferencing) policy: computes an ABI estimate ẑt from available evidence
(e.g., an inference module over observations) and allows actions to depend on ẑt.

ABI-like (separability) assumption. The partner is ABI-like if there exists a set of decision points
with positive probability at which type-optimal actions differ across types; i.e., there exist i ̸= j and
a ̸= a′ such that

a ∈ argmax
u

Q(u | θ = θi), a′ ∈ argmax
u

Q(u | θ = θj).

Proposition 2. If the partner is ABI-like and the ABI estimate ẑt is non-degenerate (it carries non-
trivial information about θ), then a trust-aware policy that conditions on ẑt achieves a strictly higher
expected discounted return than any base policy that does not infer ABI.

Proof. Let bt(θ) = Pr(θ | current evidence) be the base policy’s belief over types, and let bσt (θ) =
Pr(θ | current evidence, ẑt) be the belief after incorporating the ABI estimate. Define the respective
one-step greedy actions:

abase
t ∈ argmax

a
Eθ∼bt

[
Q(a | θ)

]
, atrust

t ∈ argmax
a

Eθ∼bσt

[
Q(a | θ)

]
.
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Define the instantaneous gain

∆t := Eθ∼bσt

[
Q(atrust

t | θ)
]
− Eθ∼bt

[
Q(abase

t | θ)
]
.

By optimality, ∆t ≥ 0. Under the ABI-like assumption, there is a set of positive probability on
which the Q-maximizing action depends on θ; since ẑt is non-degenerate, with positive probability
the updated belief bσt shifts toward the realized type enough to change the greedy action and strictly
increase the inner expectation, hence Pr(∆t > 0) > 0. Therefore,

E

[
T∑

t=0

γt ∆t

]
> 0,

which implies that the trust-aware policy attains a strictly higher expected discounted return than the
base policy.

A.3 THE BENEFIT OF ABI ESPECIALLY COMES FROM BETTER DISAMBIGUATION IN
TRAIT-AMBIGUITY ZONES

Definition (Trait-ambiguity zone). A trait-ambiguity zone is any set U of AI-observable obser-
vations (or observation sequences) such that, for all types i, j in Θ,

p(o | θi) = p(o | θj), p(s′ | s, a, θi) = p(s′ | s, a, θj) (∀o ∈ U , ∀a),

so conditioning on U does not update the posterior over θ (posterior = prior).
Proposition 3. In trait-ambiguity zones (observations look the same across ABI types), any ABI-
nonadaptive policy can only choose a single, average-optimal action. If the human is ABI-like (type-
separable payoffs) and ABI inference is above chance, then an ABI-adaptive policy that conditions
on the inferred type strictly outperforms all ABI-nonadaptive policies in such zones.

Proof. Setup. Let partner’s trait type θ ∈ Θ = {θ1, . . . , θN} with prior pi = Pr(θ = θi). At
decision epoch t∗ (discount γ ∈ (0, 1)), choosing a ∈ {1, . . . , N} yields payoff Ra,i if the true type
is θi (later rewards are zero), so the discounted return is γt∗Ra,i. Define the prior-weighted value of
any fixed action and its best value:

Ua :=

N∑
i=1

pi Ra,i, B⋆ := max
a

Ua.

In a trait-ambiguity zone, an ABI-nonadaptive (observation-only) policy must commit to a single a,
achieving at most

V ⋆
non = γt∗B⋆.

An ABI-adaptive policy first infers θ̂ ∈ Θ with confusion probabilities Pj|i := Pr(θ̂ = θj | θ = θi)

and then plays a = θ̂, achieving

Vadapt = γt∗
N∑
i=1

pi

N∑
j=1

Pj|i Rj,i.

Gap formula. Subtracting the nonadaptive bound gives the exact decomposition

Vadapt − γt∗B⋆ = γt∗

 N∑
i=1

pi

N∑
j=1

Pj|i Rj,i −max
a

N∑
i=1

piRa,i

 . (8)

Sufficient condition. Assume ABI-like separability: for each type i, the type-matched action strictly
dominates all others,

∆i := Ri,i −max
a ̸=i

Ra,i > 0.

Let the accuracy margin on column i be

εi := Pi|i −max
a̸=i

Pa|i.
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If there exists a subset I ⊆ {1, . . . , N} with positive prior mass
∑

i∈I pi > 0 such that εi > 0 for
all i ∈ I (i.e., inference is above chance on those types), then a standard column-wise comparison
yields

N∑
i=1

pi

N∑
j=1

Pj|i Rj,i − max
a

N∑
i=1

piRa,i ≥
∑
i∈I

pi εi ∆i > 0.

Plugging this lower bound into equation 8 gives Vadapt > γt∗B⋆.

Intuition. In trait-ambiguity zones, observation-only policies are forced to make pooled (average)
decisions. ABI adaptation converts pooled decisions into type-contingent ones. Whenever the infer-
ence is even modestly better than chance on a nontrivial set of types, the positive margins εi combine
with the type-separation gaps ∆i to produce a strictly positive improvement.

B IMPLEMENTATION DETAILS

B.1 ENVIRONMENT

Observation. Each observation is represented as a 32-dimensional feature vector, consisting of:
(1) the ego agent’s absolute position and a binary flag indicating whether it is holding an object; (2)
the relative position and holding status of its partner; (3) the relative positions and current states of
all items in the environment with respect to the ego agent (e.g., whether a lettuce is chopped, or a
plate/cutting board is occupied); and (4) a binary flag indicating which agent is the ego.

Reward. The reward function is defined as follows:

• Cutting a lettuce: +10
• Plating a chopped lettuce: +20
• Delivering a correct dish: +200
• Delivering an incorrect item (e.g., an empty plate, a dish not on the menu): –50
• Each step taken: –1

Action Space. The action space includes high-level discrete actions: “stay”, “get lettuce”, “get
plate”, “go to knife”, “deliver”, “chop”, and “go to counter”. These are supported by primitive
actions: “left”, “right”, “up”, and “down”. High-level actions are executed via A* path planning to
generate corresponding low-level movement sequences.

We choose high-level action abstraction over purely primitive actions for two reasons. First, it en-
hances sample efficiency and accelerates learning, especially in larger maps—crucial for our focus
on trust dynamics rather than motor control. Second, high-level actions better reflect human reason-
ing patterns. For example, humans tend to think in terms of “getting lettuce” rather than low-level
movements like “up-up-left”. This abstraction enables agent behaviors that are more interpretable
and trust-relevant.

B.2 TRUSTEE AGENT

For each map, we constructed ten trustee agents with different ABI profiles: (1)
highA–highB–highI–1, (2) highA–highB–highI–2, (3) highA–highB–lowI, (4) highA–lowB–highI,
(5) highA–lowB–lowI, (6) lowA–highB–highI–1, (7) lowA–highB–highI–2, (8) lowA–highB–lowI,
(9) lowA–lowB–highI, (10) lowA–lowB–lowI.

Modeling ABI. Table 2 summarizes the original ABI definitions in (Mayer et al., 1995) and our
corresponding operationalizations.

For Ability, we adjust the parameter βi in Eq. 1. High-ability agents are modeled without Boltzmann
sampling, equivalent to βi = +∞. Low-ability agents are modeled with βi = 0.3, introducing
stochasticity into their policies.
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Layout Trustee agent Paired trustor agent Reward shaping

Resource Asym-
metry

highB highI (1) lowB highI

trustor pick up lettuce from counter + 50 (first time only)
trustee go to cutting board + 50 (first time only)
trustee pass chopped lettuce + 50 (first time only)
trustor wait for help + 50 (first time only)

highB highI (2) lowB highI

trustor pick up lettuce from counter + 50 (first time only)
trustee get lettuce + 50 (first time only)
trustee pass lettuce + 50 (first time only)
trustor wait for help + 50 (first time only)

highB lowI lowB lowI

trustor pick up bad lettuce from counter + 50 (first time only)
trustee get bad lettuce + 100 (first time only)
trustee pass bad lettuce + 50 (first time only)
trustor wait for help + 50 (first time only)
trustor/trustee plate bad lettuce + 20

lowB highI lowB highI -

lowB lowI lowB highI

trustor plate bad lettuce - 200
trustor pick up bad lettuce - 100
trustee plate bad lettuce + 200
trustee pick up bad lettuce + 200 (first time only)

Resource Asym-
metry easy

highB highI (1) lowB highI

trustor pick up lettuce from counter + 50 (first time only)
trustee go to cutting board + 100 (first time only)
trustee pass chopped lettuce + 100 (first time only)
trustor wait for help + 50 (first time only)

highB highI (2) lowB highI

trustor pick up lettuce from counter + 50 (first time only)
trustee get lettuce + 50 (first time only)
trustee pass lettuce + 50 (first time only)
trustor wait for help + 50 (first time only)

highB lowI lowB lowI

trustor pick up bad lettuce from counter + 20 (first time only)
trustee get bad lettuce + 20 (first time only)
trustee pass bad lettuce + 20 (first time only)
trustor wait for help + 20 (first time only)
trusee plate bad lettuce + 20
trutor plate bad lettuce + 20

lowB highI lowB highI -

lowB lowI lowB highI

trustor plate bad lettuce - 200
trustor pick up bad lettuce - 100
trustee plate bad lettuce + 200
trustee pick up bad lettuce + 200 (first time only)

Divided Room highB highI (1) lowB highI

trustor pick up lettuce from counter + 50 (first time only)
trustee go to cutting board + 50 (first time only)
trustee pass chopped lettuce + 50 (first time only)
trustor wait for help + 500 (first time only)

highB highI (2) lowB highI

trustor pick up lettuce from counter + 50 (first time only)
trustee get lettuce + 50 (first time only)
trustee pass lettuce + 50 (first time only)
trustor wait for help + 500 (first time only)

highB lowI lowB lowI

trustor pick up bad lettuce from counter + 20 (first time only)
trustee pass bad lettuce + 20 (first time only)
trustor wait for help + 1000 (first time only)
trustor/trustee plate bad lettuce + 20

lowB highI lowB highI -

lowB lowI lowB highI
trustee plate bad lettuce + 20
trustee pick up bad lettuce + 200 (first time only)

Divided Room
easy

highB highI (1) lowB highI

trustor pick up lettuce from counter + 20 (first time only)
trustee go to cutting board + 50 (first time only)
trustee pass chopped lettuce + 50 (first time only)
trustor wait for help + 1000 (first time only)
trustor/trustee plate bad lettuce - 20
trustor/trustee pick up bad lettuce - 10

highB highI (2) lowB highI

trustor pick up lettuce from counter + 50 (first time only)
trustee get lettuce + 50 (first time only)
trustee pass lettuce + 50 (first time only)
trustor wait for help + 1000 (first time only)
trustor/trustee plate bad lettuce - 20
trustor/trustee pick up bad lettuce - 10

highB lowI lowB lowI

trustor pick up bad lettuce from counter + 20 (first time only)
trustee pass bad lettuce + 50 (first time only)
trustee [ass bad lettuce + 20 (first time only)
trustor wait for help + 50 (first time only)
trustor/trustee plate bad lettuce + 20

lowB highI lowB highI
trustor/trustee plate bad lettuce - 20
trustor/trustee pick bad lettuce - 10

lowB lowI lowB highI

trustee pick up bad lettuce + 20
trustee plate bad lettuce + 200
trustor pick up bad lettuce - 100
trustor plate bad lettuce -200

Table 1: Reward shaping used to derive different trustee agents.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Dimension Original Definition Operationalization in This Work
Ability The belief that the trustee has the group of

skills, competencies, and characteristics that
enable them to have influence within some
specific domain (Mayer et al., 1995).

Operationalized as the agent’s tendency to se-
lect the action with the highest expected re-
ward in a given state. A more deterministic,
goal-directed policy reflects higher ability.

Benevolence The belief that the trustee will want to do good
to the trustor, aside from an egocentric profit
motive (Mayer et al., 1995).

Operationalized as the degree to which an
agent values team success over personal gain.
A more benevolent agent contributes to its
partner’s reward more heavily.

Integrity The belief that a trustee adheres to a set
of principles that the trustor finds acceptable
(Mayer et al., 1995).

Operationalized as the agent’s adherence to
implicit norms or task constraints, such as
avoiding shortcuts or unethical actions, even
at the cost of immediate reward.

Table 2: Original definitions of ABI dimensions (Mayer et al., 1995) and their operationalization in
our framework.

Trustee Agent Paired Partner Agent
High B, High I Low B, High I
High B, Low I Low B, Low I
Low B, High I Low B, High I
Low B, Low I Low B, High I

Table 3: Pairings between trustee and partner agents. Trustee agents form the final population, while
partner agents are used only for training.

For Benevolence, we define a set of credit-earning events incorporated into the reward function,
such as chopping a vegetable (+10), plating (+20), and delivering a correct dish (+200). We then
adjust the weighting parameter λ in Eq. 2. In the high-benevolence condition, we set λ = 0, making
the agent’s reward fully determined by its partner’s reward. In the low-benevolence condition, we
set λ = 1, making the agent’s reward fully self-centered.

For Integrity, we design norm-violating actions, such as using spoiled lettuce to prepare a dish. In
the high-integrity condition, we set the parameter δ in Eq. 3 to zero or a negative value (depending on
the layout). In the low-integrity condition, δ is set to a positive value, incentivizing norm-violating
behavior.

We designed a agent-pairing scheme where each trustee agent is paired with a trustor partner (Table
3), rather than relying on the self-play approach. This explicit role assignment was intentional: self-
play makes it difficult to establish clear distinctions between trustor and trustee, and often leads to
coordination failures. For example, two high-benevolence agents may both attempt to help each
other, resulting in ambiguous and unstable behaviors. Note that these trustor partners are only used
for traingin trustee agents but not used for later stage.

Finally, to encourage trustee agents to better learn the intended behaviors, we incorporate additional
reward shaping (Table A.3). For example, two versions of highA-highB-highI are derived based on
different reward shaping for diversity.

RL Algorithm and Hyperparameters. We use Proximal Policy Optimization (PPO) for training.
The model is trained with a learning rate of 3× 10−4, rollout horizon of 256 steps, and batch size of
128. Each update consists of 10 epochs of gradient descent. We use a discount factor of γ = 0.95
and GAE parameter λ = 0.95. The clipping range is set to 0.3, the entropy coefficient to 0.02, and
the value loss coefficient to 0.5. Gradients are clipped at 0.5. The policy and value networks are
implemented as separate multilayer perceptrons with hidden layers of size 256, 128, and 64.

For each trustee agent, we trained 4.1× 106 steps and ensured convergence.

B.3 TRUSTPOMDP-BASED TRUSTOR AGENT

Reward. The reward function for the TRUSTPOMDP-based trustor agent is identical to the team
reward, without any additional modification or reward shaping.
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Hyperparameters. To accelerate training, we use 8 parallel environments for rollout collection,
set n steps = 3600 and batch size to 600, while keeping all other hyperparameters the same as
those used for the trustee agents.

ABI Inference Model Each state xt ∈ RD is first linearly projected into a hidden space of di-
mension H = 32 and encoded by a lightweight Transformer encoder (1 layer, 2 attention heads,
feed-forward size 2H = 64, ReLU activation, batch-first). This produces contextualized represen-
tations h1:T .

For each trust dimension d ∈ {A,B, I}, we construct a dimension-specific temporal mask Md that
retains only the most recent kd steps (kA = 15, kB = 30, kI = 30), combined with padding masks
for variable sequence lengths. A shared learnable attention vector v ∈ RH is then used to compute
an attention-pooled summary:

h̃d =

T∑
t=1

wt,dht, wt,d =
exp(h⊤

t v)∑
j∈Md

exp(h⊤
j v)

,

where masked positions are excluded.

The pooled representation h̃d is passed through a dimension-specific MLP head (Linear(H→64) +
ReLU), followed by two linear layers that output the Beta distribution parameters:

αd = softplus(fα
d (h̃d)) + ϵ, βd = softplus(fβ

d (h̃d)) + ϵ,

with ϵ = 10−4 ensuring numerical stability and αd, βd > 0. The Beta mean pd = αd/(αd + βd)
represents the inferred trust value, while the strength Sd = αd + βd captures the model’s certainty.

The model parameters are optimized with Adam (learning rate 1×10−3). A simpler baseline variant
replaces the Beta outputs with sigmoid predictions for each trust dimension, while using the same
encoder and attention-pooling backbone.

To improve sampling efficiency, we collect a trajectory snapshot whenever the trustee agent places
down an item (of any type). The same event is used during deployment, where the trustor agent
updates its ABI inference in real time whenever the trustee agent puts down an item. In addition,
the historical observations used for inference include only the partner agent’s position and the item
being held (a 6-dimensional vector), rather than the full observation. This design prevents the trustor
agent’s own behavior from influencing the inference of the trustee agent’s ABI.

Conditioning the policy on ABI. We append a six-dimensional ABI context to each observa-
tion, (Avalue, Bvalue, Ivalue, Aconfidence, Bconfidence, Iconfidence), where Avalue, Bvalue, Ivalue ∈ [−1, 1] are
the signed ABI estimates and Aconfidence, Bconfidence, Iconfidence ∈ [0, 1] are estimator confidences. The
extractor ABIGatedExtractorWithConf splits the input into the non-ABI part x and the ABI context.
The non-ABI features are encoded by a shared backbone f = ϕ(x) ∈ RD (two-layer MLP with
ReLU).

To allow the policy to react differently to positive vs. negative evidence, we form signed gates

A+ = ReLU(A), A− = ReLU(−A),

(and analogously for B, I). Each gate multiplicatively modulates the shared feature f , yielding six
gated streams (f ⊙A+, f ⊙A−, f ⊙B+, f ⊙B−, f ⊙ I+, f ⊙ I−). These are concatenated with
the raw ABI signals and confidences:

feat =
[
f⊙A+; f⊙A−; f⊙B+; f⊙B−; f⊙I+; f⊙I−;A,B, I, confA, confB , confI

]
,

resulting in a feature vector of dimension 6 · base dim + 6 (with base dim = 64 by default).
The actor–critic heads then operate on this ABI-aware representation. Concretely, we use Stable-
Baselines3 with a custom feature extractor (ABIGatedExtractorWithConf ) and set the base hidden
dimension to 64. The policy and value networks (pi and vf ) are both two-layer MLPs with sizes
[128, 64]. Thus, both the policy π and value function V are conditioned on features that (i) separate
positive and negative evidence per ABI dimension, (ii) scale their influence by certainty, and (iii)
retain the raw ABI and confidence values, enabling the agent to adapt to the inferred partner profile.
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Training. We adopted a cumulative learning scheme, empirically adjusting the proportion of
trustee agents in the population for different layout during training. The agent was trained for 8×106
updates, which, with 8 parallel environments, corresponds to 6.4× 107 environment steps.

B.4 BASELINES

FCP. Fictitious Co-Play (FCP) is a two-stage training framework. In the first stage, it builds a
diverse partner population by pre-training self-play (SP) agents with different random seeds and
saving multiple checkpoints at different training stages to capture policies of varying “capabilities.”
In the second stage, an FCP agent is trained by repeatedly playing against partners sampled from this
population. In our implementation, we trained five SP agents with seeds 15, 25, 35, 45, and 55, each
for 6.1M steps. For each SP agent, we saved checkpoints at steps 100k, 200k, 400k, 2M, and 6.1M,
covering the full spectrum from early learning to convergence. This yields a partner population of
5 × 5 = 25 agents. In the second stage, we trained the FCP agent for 2 × 107 steps. The policy
network architecture and hyperparameters for both SP and FCP agents match those used for the
trustee agents described earlier.

MEP. Maximum Entropy Population-based training (MEP) is a variant of FCP. It introduces a
maximum-entropy diversity bonus into the task reward, which encourages the population in the first
stage to explore a wider range of strategies. In the second stage, a robust agent is trained by rank-
based prioritized sampling from this population. Given the evaluation returns of the population, we
rank partners by difficulty (lower return ⇒ higher difficulty) and sample partners with probability
proportional to rankβ . Here, β controls the sharpness of the sampling distribution: β = 0 yields
uniform sampling, β = 1 samples proportionally to rank, and larger β further concentrates training
on the most challenging partners. In our implementation, we constructed five SP agents with seeds
15, 25, 35, 45, and 55, using α = 1.0 for the entropy bonus in the first stage, and β = 3 for
prioritized sampling in the second stage following the original paper’s setting. We trained the FCP
agent for 2× 107 steps. The policy network architecture and hyperparameters for both SP and MEP
agents match those used for the trustee agents described earlier.

C USAGE OF LARGE LANGUAGE MODELS

We used GPT-5 to check grammar and mathematical formulas. In addition, the cartoon elements in
Figure 1 were created with the assistance of GPT-5.

D EXPERIMENTS

D.1 ADDITIONAL LAYOUTS

In addition to the two layouts presented in Figure 4 (Resource Asymmetry and Divided Room),
we also designed two simplified variants: Resource Asymmetry–Easy and Divided Room–Easy
(Figure 8). The key difference is that the original layouts contain large ambiguity zones, where
it is difficult to infer the trustee agent’s intention from observation alone. By contrast, the Easy
variants have little or no ambiguity. For example, in Figure 8(a), when the trustee agent on the
right moves left, it is immediately clear that it intends to use the lettuce, while moving down-right
reveals an intention to use the bad lettuce—making integrity easy to infer. Similarly, after picking
up a vegetable, moving left indicates a willingness to help, while moving right implies self-serving
behavior. After chopping, moving left suggests cooperation, whereas moving up suggests acting
alone to complete the dish. The same logic applies to Figure 8(b). We introduced these Easy layouts
primarily to examine under what conditions ABI inference provides meaningful benefits.

D.2 RULE-BASED AGENTS IN EXPERIMENT 1

We designed nine rule-based agents, each focusing on a single type of behavior: pass plate, pass
lettuce, pass chopped lettuce, pass plated lettuce, pass dirty lettuce, pass chopped dirty lettuce, pass
plated dirty lettuce, make clean salad alone, and make dirty salad alone.
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A B
Resource Asymmetry-Easy Divided Room -Easy

Figure 8: Another two layouts where the trustee agent’s (the bottom and right one) intention is easier
to perceive. In other words, the ambiguity zone is small.

Table 4: Pairwise reward comparisons aggregated across all layouts for Experiment 1 (Mann–
Whitney U, unpaired).

Model A Model B n Mean A Mean B Diff Stat p adjusted-p Effect r

POMDP TrustPOMDP 80 1838.10 1945.42 -107.33 700.50 0.3406 0.3406 0.11
POMDP FCP 80 1838.10 772.25 1065.85 1327.00 0.0000 0.0000 0.57
POMDP MEP 80 1838.10 551.88 1286.21 1459.00 0.0000 0.0000 0.71
TrustPOMDP FCP 80 1945.42 772.25 1173.17 1495.00 0.0000 0.0000 0.75
TrustPOMDP MEP 80 1945.42 551.88 1393.54 1520.00 0.0000 0.0000 0.77
FCP MEP 80 772.25 551.88 220.37 962.50 0.1186 0.1424 0.17

We observed that several of these agents, such as pass lettuce, pass chopped lettuce, pass dirty
lettuce, make clean salad alone, and make dirty salad alone, exhibit behaviors similar to those in
our trustee population. However, others—such as pass plate, pass plated lettuce, pass chopped dirty
lettuce, and pass plated dirty lettuce—differ substantially from our trustee agents. This ensures a
broader out-of-distribution (OOD) test set, providing a stronger evaluation of model generalization.

During testing, we additionally duplicated the pass lettuce and pass chopped lettuce agents to bal-
ance the proportion of trustworthy and untrustworthy partners at approximately 1:1.

D.3 ADDITIONAL RESULTS IN EXPERIMENT 1

Tables 4 and 5 present the statistical analyses of Experiment 1, comparing the four models both
overall and within each layout. We employed the Mann–Whitney U test and report both raw p-
values and adjusted p-values, the latter corrected using the Benjamini–Hochberg False Discovery
Rate (FDR) procedure.

Figure 9 shows the average team reward of the four models across four layouts. We observe that
on the two Easy layouts, there is no significant difference between TrustPOMDP and POMDP. This
indicates that in environments with low ambiguity, reasonable performance can be achieved without
ABI inference or conditioning the policy on inferred ABI—training with our constructed trustee
agent population alone is sufficient. In contrast, when the partner’s traits involve higher ambiguity,
ABI inference and policy conditioning become crucial for effective cooperation.
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Table 5: Pairwise comparisons within each layout (Mann–Whitney U with BH–FDR correction).
Model A Model B n Mean A Mean B Diff Stat p adjusted-p r

Resource Asymmetry
POMDP TrustPOMDP 20 1214.62 1371.62 -157.00 0.00 0.0001 0.0002 0.85
POMDP FCP 20 1214.62 -116.15 1330.77 100.00 0.0001 0.0002 0.85
POMDP MEP 20 1214.62 77.08 1137.54 100.00 0.0001 0.0002 0.85
TrustPOMDP FCP 20 1371.62 -116.15 1487.77 100.00 0.0002 0.0002 0.85
TrustPOMDP MEP 20 1371.62 77.08 1294.54 100.00 0.0002 0.0002 0.85
FCP MEP 20 -116.15 77.08 -193.23 3.00 0.0004 0.0004 0.79

Divided Room
POMDP TrustPOMDP 20 1449.69 1777.85 -328.15 0.00 0.0002 0.0003 0.85
POMDP FCP 20 1449.69 1484.38 -34.69 27.00 0.0869 0.1043 0.39
POMDP MEP 20 1449.69 1447.62 2.08 59.00 0.5172 0.5172 0.15
TrustPOMDP FCP 20 1777.85 1484.38 293.46 100.00 0.0002 0.0003 0.85
TrustPOMDP MEP 20 1777.85 1447.62 330.23 100.00 0.0002 0.0003 0.85
FCP MEP 20 1484.38 1447.62 36.77 73.50 0.0814 0.1043 0.40

Resource Asymmetry-Easy
POMDP TrustPOMDP 20 2739.15 2747.54 -8.38 45.00 0.7337 0.7337 0.08
POMDP FCP 20 2739.15 410.00 2329.15 100.00 0.0002 0.0002 0.85
POMDP MEP 20 2739.15 -386.46 3125.62 100.00 0.0002 0.0002 0.85
TrustPOMDP FCP 20 2747.54 410.00 2337.54 100.00 0.0002 0.0002 0.85
TrustPOMDP MEP 20 2747.54 -386.46 3134.00 100.00 0.0002 0.0002 0.85
FCP MEP 20 410.00 -386.46 796.46 100.00 0.0002 0.0002 0.85

Divided Room-Easy
POMDP TrustPOMDP 20 1948.92 1884.69 64.23 75.50 0.0587 0.0587 0.43
POMDP FCP 20 1948.92 1310.77 638.15 100.00 0.0001 0.0001 0.85
POMDP MEP 20 1948.92 1069.31 879.62 100.00 0.0002 0.0002 0.85
TrustPOMDP FCP 20 1884.69 1310.77 573.92 100.00 0.0001 0.0001 0.85
TrustPOMDP MEP 20 1884.69 1069.31 815.38 100.00 0.0002 0.0002 0.85
FCP MEP 20 1310.77 1069.31 241.46 100.00 0.0001 0.0001 0.85

POMDP
TrustPOMDP FCP MEP

0

500

1000

1500

Te
am

 R
ew

ar
d

Resource Asymmetry

POMDP
TrustPOMDP FCP MEP

0

500

1000

1500

Te
am

 R
ew

ar
d

Divided Room

POMDP
TrustPOMDP FCP MEP

0

1000

2000

Te
am

 R
ew

ar
d

Resource Asymmetry-Easy

POMDP
TrustPOMDP FCP MEP

0

500

1000

1500

2000

Te
am

 R
ew

ar
d

Divided Room-Easy

Figure 9: Detailed team performance in the four layouts.

D.4 HUMAN-SUBJECT EXPERIMENT DETAILS

We developed a web-based experimental platform with a front-end interface and deployed the RL
models on a server. The front end captured participants’ keypress events, which were transmitted

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: Pairwise reward comparison (overall, Paired Wilcoxon).
Model A Model B n Mean A Mean B Mean Diff Stat p adjusted-p Effect r

TrustPOMDP FCP 102 571.82 517.75 54.07 2322.5 0.310 0.310 0.100
TrustPOMDP MEP 102 571.82 466.80 105.02 1735.0 0.0029 0.0088 0.295
FCP MEP 102 517.75 466.80 50.95 2090.0 0.100 0.150 0.163

via HTTP to the server; the server processed the inputs, updated the environment state, and returned
the rendered state to the front end.

At the beginning, we introduced the purpose of the study and asked participants to sign a consent
form. They were then directed to an introduction page, where the task was explained. Participants
were required to practice until they successfully completed one dish delivery, ensuring that they
had mastered the basic gameplay before proceeding. On the instruction page, we emphasized that
participants did not need to pursue the optimal strategy and could play however they preferred. This
design choice was made to avoid participants’ behaviors becoming overly narrow or optimized for
high scores, which would reduce the effectiveness of testing model cooperation with diverse human
strategies. Importantly, participants were not asked to adopt any predefined personas; they were free
to play according to their own preferences.

For each task, participants first entered a practice page where they could view the layout and AI
teammate and engage in trial play. In the formal task phase, they were asked to describe a self-chosen
persona they intended to adopt for that round, and then play 200 steps according to that persona.
After completing four rounds of a task, participants were directed to a questionnaire page, where we
collected their evaluations of the cooperation experience and perceptions of the AI teammate. After
finishing the first task, participants proceeded to complete the remaining two tasks, following the
same procedure across all three tasks.

D.5 ADDITIONAL RESULTS IN EXPERIMENT 2

Tables 6, 7, and 8 present the statistical analyses of Experiment 2, covering the overall performance
of the three models, their performance across different layouts, and participants’ subjective ratings,
respectively. For overall performance and subjective ratings, we used the Wilcoxon signed-rank test
because the within-subjects design produced paired samples. For comparisons across layouts, each
participant interacted with only one model per layout, resulting in independent samples; therefore,
we employed the Mann–Whitney U test. We report both raw p-values and adjusted p-values, with
the latter corrected using the Benjamini–Hochberg False Discovery Rate (FDR) procedure.

As shown in Figure 15, we compare the performance of different models across the four layouts.
We find that in Divided Room and Divided Room-easy, TrustPOMDP underperforms the baselines,
whereas in Resource Asymmetry and Resource Asymmetry-easy, TrustPOMDP significantly outper-
forms them. Our analysis suggests that in the Divided Room layouts, agents can achieve reasonable
rewards by completing the task alone and consistently distrusting their partner. Accordingly, FCP
and MEP learn policies that always work independently, regardless of the partner’s trustworthi-
ness. In contrast, TrustPOMDP learns to first infer the partner’s trustworthiness and then adapt its
behavior. However, behavioral analysis of human participants revealed that most did not act in a
trustworthy manner, making the adaptive strategy less effective than the baselines’ simpler “always
distrust” approach. In the Resource Asymmetry and Resource Asymmetry-easy layouts, by contrast,
the performance gap between cooperation and non-cooperation is much larger, and in these cases,
simply distrusting the partner is insufficient—highlighting the advantage of TrustPOMDP.

Although our model performed slightly worse on two layouts, we observed that it never crashed
and maintained robust performance even on the most challenging Resource Asymmetry layout. By
contrast, the baselines occasionally exhibited much lower worst-case performance.

We note that participants were free to play in any manner and were not instructed to maximize team
reward. If the objective had been constrained to maximizing team reward, participants would likely
have chosen to behave in a more trustworthy manner, in which case TrustPOMDP would have out-
performed the distrust-based baselines even more substantially. Nevertheless, even under the uncon-
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Figure 10: The introduction page in the human experiment.
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Figure 11: The task instruction page.

Figure 12: The practice page for a new task, where participants were introduced with the assigned
agent and layout.
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Figure 13: The main task page in the human experiment, where participants needed to first specify
a persona whatever they liked to play, then played with the agent for 200 steps.
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Figure 14: The questionnaire page after each task, where we collected participants’ subjective rat-
ings of different statements.
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Table 7: Pairwise reward comparisons within each layout (Mann–Whitney U, unpaired).
Layout Model A Model B n Mean A Mean B Mean

Diff
Stat p adjusted-

p
Effect
r

Divided
Room

TrustPOMDP FCP 53 559.42 648.30 -88.88 241.00 0.1044 0.1566 0.22

TrustPOMDP MEP 63 559.42 592.15 -32.73 442.50 0.4742 0.4742 0.09
FCP MEP 50 648.30 592.15 56.15 385.50 0.0923 0.1566 0.24

Divided
Room-
easy

TrustPOMDP FCP 54 562.44 694.79 -132.35 236.50 0.0295 0.0442 0.30

TrustPOMDP MEP 45 562.44 694.65 -132.21 152.00 0.0259 0.0442 0.33
FCP MEP 49 694.79 694.65 0.14 285.00 0.9271 0.9271 0.02

Resource
Asym-
metry

TrustPOMDP FCP 48 467.12 147.71 319.42 467.00 0.0002 0.0007 0.53

TrustPOMDP MEP 51 467.12 301.63 165.50 406.50 0.1217 0.1217 0.22
FCP MEP 51 147.71 301.63 -153.92 154.50 0.0014 0.0021 0.45

Resource
Asymmetry-
easy

TrustPOMDP FCP 49 729.65 556.91 172.74 352.50 0.2072 0.2072 0.18

TrustPOMDP MEP 45 729.65 312.50 417.15 417.00 0.0001 0.0004 0.57
FCP MEP 54 556.91 312.50 244.41 553.00 0.0010 0.0015 0.45

Table 8: Pairwise questionnaire comparisons (paired Wilcoxon).
Question Model A Model B n Mean

A
Mean
B

Mean
Diff

Stat p adjusted-
p

Effect r

Adaptivity TrustPOMDP FCP 102 4.60 3.87 0.73 891.00 0.000643 0.001930 0.34
TrustPOMDP MEP 102 4.60 4.12 0.48 874.50 0.019491 0.029236 0.23
FCP MEP 102 3.87 4.12 -0.25 1203.50 0.315272 0.315272 -0.10

Agent can
trust

TrustPOMDP FCP 102 4.70 4.03 0.67 734.50 0.000989 0.002968 0.33

TrustPOMDP MEP 102 4.70 4.24 0.46 827.50 0.020835 0.031252 0.23
FCP MEP 102 4.03 4.24 -0.21 1077.00 0.425634 0.425634 -0.08

Satisfaction TrustPOMDP FCP 102 4.58 3.94 0.64 887.00 0.003919 0.011758 0.29
TrustPOMDP MEP 102 4.58 4.18 0.40 1195.00 0.081880 0.122820 0.17
FCP MEP 102 3.94 4.18 -0.24 1023.50 0.193776 0.193776 -0.13

Trust in
agent

TrustPOMDP FCP 102 4.54 3.97 0.57 797.00 0.004942 0.014827 0.28

TrustPOMDP MEP 102 4.54 4.09 0.45 627.00 0.020931 0.031397 0.23
FCP MEP 102 3.97 4.09 -0.12 1029.00 0.619419 0.619419 -0.05

I understand
agent

TrustPOMDP FCP 102 4.63 4.13 0.50 1056.50 0.022346 0.067039 0.23

TrustPOMDP MEP 102 4.63 4.27 0.35 865.00 0.082524 0.123786 0.17
FCP MEP 102 4.13 4.27 -0.15 1046.00 0.430891 0.430891 -0.08

Agent under-
stands me

TrustPOMDP FCP 102 4.46 3.86 0.60 930.50 0.005265 0.007898 0.28

TrustPOMDP MEP 102 4.46 3.80 0.66 701.50 0.000490 0.001469 0.35
FCP MEP 102 3.86 3.80 0.06 1244.50 0.692021 0.692021 0.04

Cooperation
willingness

TrustPOMDP FCP 102 5.10 4.40 0.70 786.00 0.001703 0.005109 0.31

TrustPOMDP MEP 102 5.10 4.48 0.62 957.00 0.007663 0.011495 0.26
FCP MEP 102 4.40 4.48 -0.08 1203.50 0.662152 0.662152 -0.04

strained setting, TrustPOMDP still significantly outperformed the baselines overall, demonstrating
the robustness of our approach.
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Figure 15: Detailed team performance across the four layouts in the human experiment. Layout
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