
Proceedings of Machine Learning Research – Under Review:1–13, 2022 Full Paper – MIDL 2022

Learning Shape Reconstruction from Sparse Measurements
with Neural Implicit Functions

Tamaz Amiranashvili1,2,3 tamaz.amiranashvili@uzh.ch
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(a) Sagittal training data examples (b) Reconstructions from different inputs

Figure 1: Our model can be trained on sparse, anisotropic segmentations (a) and is able
to reconstruct shapes at any target resolution from a variety of sparse input
configurations (b). Visualized are actual reconstructions of our model.

Abstract

Reconstructing anatomical shapes from sparse or partial measurements relies on prior
knowledge of shape variations that occur within a given population. Such shape priors
are learned from example shapes, obtained by segmenting volumetric medical images. For
existing models, the resolution of a learned shape prior is limited to the resolution of the
training data. However, in clinical practice, volumetric images are often acquired with
highly anisotropic voxel sizes, e.g. to reduce image acquisition time in MRI or radiation ex-
posure in CT imaging. The missing shape information between the slices prohibits existing
methods to learn a high-resolution shape prior. We introduce a method for high-resolution
shape reconstruction from sparse measurements without relying on high-resolution ground
truth for training. Our method is based on neural implicit shape representations and learns
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a continuous shape prior only from highly anisotropic segmentations. Furthermore, it is
able to learn from shapes with a varying field of view and can reconstruct from various
sparse input configurations. We demonstrate its effectiveness on two anatomical structures:
vertebra and distal femur, and successfully reconstruct high-resolution shapes from sparse
segmentations, using as few as three orthogonal slices.

Keywords: shape reconstruction, shape priors, neural implicit shape representations.

1. Introduction

In medical imaging, reconstructing shapes of anatomical structures from only a few sparse
measurements is required in many contexts, such as reconstruction from segmentations of
a few orthogonal slices (Tóthová et al., 2020), or from segmentations of highly anisotropic
volumetric images (Turella et al., 2021). Being an ill-posed problem, solving it requires
prior knowledge of the distribution of shapes of a given anatomical structure that occur in
a population. Various shape models for different shape representations have been developed
in the past.

For surface meshes, statistical shape models are widely used in medical shape analysis
(Heimann and Meinzer, 2009; Lüthi et al., 2017; Ambellan et al., 2021). They have also
been successfully applied for reconstruction tasks (Bernard et al., 2017; Tóthová et al.,
2020). Their first limitation is that they require dense point correspondence between train-
ing shapes, which is tedious to obtain. Second, they require surface meshes for training,
which are hard to extract from volumetric image segmentations, especially if these segmen-
tations are very anisotropic. For voxel-based representations, CNNs have been widely used
to learn shape priors and have also been applied for shape reconstruction (Oktay et al.,
2017; Cerrolaza et al., 2018; Turella et al., 2021). CNNs can handle varying fields of view
and do not require correspondences between training examples, but are fixed to a single
discretization and therefore rely on resampling of volumes with variable spacings to a com-
mon one. In addition, the reconstruction task (e.g., spacing between slices or acquisition
direction of input volumes) has to be known during training in order to generate a realistic
distribution of source inputs. Most importantly, however, both approaches have a strong
common limitation – their resolution is limited to the resolution of their training data.

Recently, neural implicit functions have gained popularity as shape representations
(Mescheder et al., 2019; Park et al., 2019; Chen and Zhang, 2019). In contrast to CNNs,
their main advantage is a continuous formulation, allowing sampling shapes at arbitrary
resolutions both during training and inference. This property makes implicit functions
particularly useful in medical imaging, where volumetric grids with varying spacings and
resolutions occur naturally. In particular, anisotropic scans with low resolution in one axis
are prevalent in medical imaging to reduce motion artefacts, acquisition time, and radiation
exposure. We pose a novel task of utilizing low-resolution, anisotropic volumetric segmen-
tations to learn a shape prior that is able to perform high-resolution shape reconstruction
beyond the resolution of training data (cf. Figure 1). We demonstrate that implicit functions
are able to solve this problem, in contrast to existing CNNs and statistical shape models.
While shape reconstruction from sparse inputs with implicit functions has been studied in
the computer vision community (Mescheder et al., 2019; Chibane et al., 2020), in contrast
to our work, these methods rely on training data in target resolution.

In summary, our contributions are as follows:
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Figure 2: During training, we optimize the MLP as well as individual latent vectors per
training shape. During inference, only the latent vector is optimized, based on
reconstruction input volume.

1. we propose a method that is able to reconstruct shapes from various sparse measure-
ments, such as anisotropic segmentations with arbitrary orientation and spacing, up
to as few as only three orthogonal slices,

2. our method does not rely on any ground-truth in the target resolution – for training
and model selection,

3. we evaluate the proposed method quantitatively and qualitatively on two publicly
available datasets including two anatomical structures and publish the source code1.

2. Methods

2.1. Shape Representation

A 3D shape is modelled as a decision boundary of a binary classifier (Mescheder et al.,
2019). That is, for a given continuous 3D coordinate x ∈ R3 in the ambient space, such
classifier predicts whether the point x lies inside or outside of the given shape. Modelling
every shape through its own, independent classifier is not useful, since we aim to learn a
shared shape prior for all shapes within a given population. Therefore, a single classifier
is used, which is shared among all shapes, but is conditioned on a latent vector z ∈ Rd

to represent shape variations. The classifier is modelled by a multilayer perceptron (MLP)
network fθ, which takes as input both the 3D coordinate and the latent vector, and returns
an occupancy probability of this point being inside the target shape:

fθ : R3 × Rd → [0, 1]

We choose to predict the occupancy instead of continuous distance fields to the shape
boundary, since 3D distance fields cannot be accurately estimated for highly anisotropic
ground-truth segmentations. For architecture details of fθ, please cf. Appendix A.

1. https://github.com/menzelab/implicit-shape-reconstruction
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2.2. Shape Prior Training

For training of the shape prior, we rely on a set of volumetric, voxel-based binary ground-
truth segmentations. The continuous shape formulation allows us to use heterogeneous
ground-truth segmentations in terms of numbers of voxels, spacings, and anisotropy. To
obtain latent representation zi for every training volume i, we adopt the auto-decoder
scheme (Bojanowski et al., 2018; Park et al., 2019) (cf. Figure 2). That is, during training,
a randomly initialized latent vector zi ∼ N (0, 0.12) is stored for each training shape i.
The individual latent vectors are optimized jointly with the parameters of the MLP fθ.
For supervision, for every volume i and voxel j we extract the exact voxel coordinates
xji ∈ R3 based on physical voxel sizes, as well as corresponding ground-truth occupancy

values yji ∈ {0, 1}. For a batch of randomly chosen voxels, we obtain a set of predicted
occupancy values. Their difference to the ground-truth occupancy is minimized through a
voxel-based loss function, which is defined as a sum of volume-wise soft Dice score and voxel-
wise binary cross-entropy, like in segmentation tasks (Isensee et al., 2021). Additionally, we
employ L2 regularization on the latent representations, following (Park et al., 2019). The
loss is minimized through ADAM optimizer (Kingma and Ba, 2014).

Validation Although the MLP fθ is shared among all training shapes, special care must
be taken to prevent overfitting. Depending on the capacity of the model and the number of
training epochs, the model may overfit the sparse voxel positions of the training volumes and
perform poorly in-between the slices. Hence, we propose a simple, yet effective validation
scheme to perform hyperparameter tuning and early stopping. For a small portion of the
training shapes, we use some slices for the training of the MLP and corresponding latent
vectors, and some slices for validation. This allows us to control how well the network
generalizes to positions, which are unseen during the training.

2.3. Shape Reconstruction

After training of the MLP, we can now reconstruct a new, previously unseen shape from a
given sparse segmentation S. Reconstruction happens in two steps – first, we determine the
latent vector corresponding to given input S. Second, we sample the obtained continuous
occupancy function at the target resolution to obtain the voxel-based reconstruction.

The latent vector that corresponds to a given observation S is obtained through gradient
descent. We initialize the latent vector from a normal distribution close to zero: z ∼
N (0, 1e−42), following (Park et al., 2019). Similarly to the training procedure above, the
MLP fθ is sampled at positions of voxels from observation S. We minimize the same loss
function as during MLP training, except that only the latent vector is optimized this time.
The MLP is frozen, since it represents the common shape knowledge that has been learned
from the population of training shapes. The loss is minimized w.r.t. all voxel positions and
their occupancy values (xk, yk) ∈ S:

zrec = argmin
z

∑
k

L(fθ(xk, z), yk)

In contrast to MLP training above, we find the convergence to be stable, without a need
for validation data to control overfitting. The learning rate and number of iterations are
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therefore chosen based on the loss convergence. Given the determined latent vector, the
resulting continuous occupancy function fθ( · , zrec) can be sampled at any desired resolution
and spacing to obtain the high-resolution voxel-based reconstruction.

It is worth noting that a single trained MLP can perform reconstructions from a variety
of different input observations – such as segmentations in arbitrary directions, spacings
and resolutions, i.e. decoupled from the training data resolution. Furthermore, the target
resolution of the reconstruction is also decoupled from both the training data resolution as
well as input resolution, since the acquired representation is continuous.

3. Experiments and Results

3.1. Datasets

Two publicly available datasets were used for evaluation – spine data from the MICCAI chal-
lenge ”Large Scale Vertebrae Segmentation Challenge” (Verse) (Sekuboyina et al., 2021),
and knee data from (Ambellan et al., 2019).

In the Verse dataset, we reconstruct shapes of lumbar vertebrae, following clinical mo-
tivation in (Turella et al., 2021). The dataset contains healthy and pathological anatomies,
such as vertebrae with fractures. For simplicity of experimental design and evaluation,
we choose isotropically spaced scans and extract subvolumes of size 1283 voxels with an
isotropic spacing of 1mm3 around each vertebra. This results in 287 volumes, from which
we randomly draw 230 volumes for training and validation, and 57 for testing. The training
and test sets are separated so that no vertebra from the same patient is in both sets.

In the knee dataset, we reconstruct the shape of the distal femur. The dataset includes
healthy and pathological anatomies with varying field of view. All volumes have a resolution
of 160 × 384 × 384 voxels and an anisotropic voxel size of 0.7 mm × 0.36 mm × 0.36 mm.
We randomly choose 254 volumes for training and validation, and 100 volumes for testing.

Both datasets exhibit pose variations – rotational between the vertebrae and transla-
tional between femur bones. The data have not been aligned to demonstrate the model’s
ability to deal with realistic pose variations.

3.2. Shape Prior Training

Our goal is to demonstrate that our model can learn a continuous shape prior from sparse
data. According to (Turella et al., 2021), it is realistic for volumetric scans to have an
anisotropic voxel size of 4.7mm × 0.6mm × 0.6mm, which corresponds to approx. 8-fold
anisotropy along the sagittal axis. To simulate such anisotropy in our data, we generate
training data from high-resolution ground-truth volumes by taking every 8-th slice on the
sagittal axis, skipping the slices in-between. The positions of the chosen slices are randomly
selected per patient. This selection happens only once per patient and is fixed during train-
ing. This assures that we have only a single set of sparse slices per patient, which represents
a realistic, but challenging training scenario. Please cf. Appendix A for architecture and
Appendix B for optimization details.
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3.3. Reconstruction Performance

In this section, we evaluate our model on various reconstruction tasks and compare the
results to baseline methods. We emphasize that the same trained proposed model per
dataset was used for all reconstruction experiments below.

Baselines To the best of our knowledge, there are no prior data-driven methods, which
can reconstruct shapes from sparse segmentations without relying on ground truth in the
target resolution for training. Therefore, we compare our results quantitatively to trilinear
and cubic B-spline interpolation of sparse input segmentations, thresholded at 0.5 to obtain
binary labels. To put our results additionally into context, we also train a ReconNet from
(Turella et al., 2021). In contrast to our method, ReconNet cannot be trained on sparse
segmentations. Therefore, it is trained on high-resolution ground-truth data, providing an
upper bound to our method. We omit the VAE component from (Turella et al., 2021), since
we only focus on the reconstruction task.

Metrics and Evaluation To quantitatively compare our reconstructions to ground-
truth, we sample the resulting continuous occupancy function at the same volumetric grid
as our original ground-truth volumes. This allows us to precisely compare the two volumes
with established metrics – average surface distance, 95-percentile Hausdorff distance and
Dice score. Note that we only use the ground truth in target resolution at test time to
evaluate our method.

Reconstruction from Sagittal Slices First, we evaluate our method on the reconstruc-
tion task from anisotropic segmentations with 8-fold anisotropy in the sagittal direction.
The input distribution is therefore similar to the one in training examples. Quantitative
results for both datasets on corresponding test sets can be found in Table 1. All three met-
rics show a consistent picture on both datasets. The femur dataset exhibits better accuracy
overall since it’s a much smoother and less intricate structure than the lumbar vertebrae,
which makes the reconstruction task easier. Our method outperforms both interpolation
methods by a large margin. However, if high-resolution training data is available and the
reconstruction task is fixed and known beforehand, ReconNet delivers even more accurate
results. It is worth noting that the femur volumes were too large for the ReconNet to even
perform inference on a single example on a 32GB GPU. Therefore, we had to resort to
training on random crops and fuse them at inference time. In contrast, our model is very
flexible w.r.t. batch size, since all coordinates are inferred independently, allowing arbitrary
batch sizes. For more results on thick slice segmentations, cf. Appendix E.

Reconstruction from Axial and Coronal Slices Second, we reconstruct shapes from
axial as well as coronal sparse slices with 8-fold anisotropy (cf. Table 2). Our results are
similar to reconstruction from sagittal slices (cf. Table 1), which shows that our model
generalizes well to new, previously unseen spacings in the input. See Figures 1 and 3 for
qualitative results.

Reconstruction from Orthogonal Slices Our last reconstruction setting is reconstruc-
tion from three orthogonal slices (cf. Table 3). While the metrics drop compared to the
two reconstruction tasks above, they are still in a reasonable range. First, it showcases the
ability of our model to reconstruct shapes from very sparse inputs, far from the distribution
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Figure 3: Reconstruction results for coronal input slices of the vertebra and sagittal input
slices of the femur.

of inputs seen during training. Second, it highlights that our model does not smoothly
interpolate any given input observation individually, but has indeed learned a population-
wide prior. In this example, no interpolation technique would have been able to extrapolate
beyond the input observations without a data-driven shape prior, like our model does. See
Figure 1 as well as Figures A1 and A2 in the Appendix for qualitative results.

3.4. Generative Model

Our model follows a generative approach and therefore allows sampling shapes from the
learned latent representation. To evaluate the validity of the emerging latent space qual-
itatively, we generate a shape represented by the mean of the learned latent vectors from
the training set. Figure A3 in the Appendix shows our learned mean shapes of vertebra
and distal femur, sampled at very high resolution – beyond the resolution of the training
data in all axes. We thereby qualitatively show that our model can learn and produce a
plausible mean shape from sparse measurements.

4. Conclusion

We have posed a novel task of reconstructing high-resolution shapes from sparse measure-
ments without relying on high-resolution data for training. To the best of our knowledge,
this task has not been attempted to be solved before. We show that neural implicit func-
tions are an effective tool in this context. The reconstructions are good on average, even
though small, patient-specific details may be missing. In future work, uncertainty quantifi-
cation would make the reconstructions even more reliable. Besides the good reconstruction
capabilities, our model provides a common, compact latent representation, allowing unifi-
cation of heterogeneous segmentations in a joint shape prior. This work therefore opens
up possibilities to study the emerging latent space for statistical shape analysis, as well as
embedding the shape prior into other ill-posed segmentation tasks in the future work.
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Table 1: Test set accuracy for vertebra and distal femur reconstruction from input seg-
mentations with 8-fold anisotropy in sagittal axis. Note that in contrast to our
method, ReconNet has been trained on full-resolution data and, therefore, repre-
sents an upper bound for our method. The metrics are average surface distance
(ASD), 95-percentile Hausdorff distance (HD95), and Dice similarity coefficient
(DSC).

Vertebra ASD [mm] ↓ HD95 [mm] ↓ DSC ↑
Trilinear Interpolation 0.69± 0.08 2.52± 0.32 0.89± 0.01
B-spline Interpolation 0.63± 0.09 2.52± 0.53 0.89± 0.01

Ours 0.48 ± 0.13 2.20 ± 0.93 0.92 ± 0.01

ReconNet 0.23± 0.05 1.17± 0.31 0.95± 0.01

Femur

Trilinear Interpolation 0.52± 0.02 1.86± 0.12 0.96± 0.00
B-spline Interpolation 0.49± 0.02 1.74± 0.14 0.96± 0.00

Ours 0.25 ± 0.07 0.92 ± 0.27 0.98 ± 0.00

ReconNet 0.14± 0.03 0.74± 0.09 0.99± 0.00

Table 2: Test set accuracy for vertebra and distal femur reconstruction from input seg-
mentations with 8-fold anisotropy in all axes. These results highlight the model’s
ability to generalize to anisotropy in various directions. The metrics are aver-
age surface distance (ASD), 95-percentile Hausdorff distance (HD95), and Dice
similarity coefficient (DSC).

Vertebra ASD [mm] ↓ HD95 [mm] ↓ DSC ↑
Sagittal 0.48± 0.13 2.20± 0.93 0.92± 0.01
Coronal 0.47± 0.13 2.12± 0.86 0.92± 0.02
Axial 0.52± 0.15 2.22± 0.86 0.91± 0.02

Femur

Sagittal 0.25± 0.07 0.92± 0.27 0.98± 0.00
Coronal 0.22± 0.06 0.84± 0.21 0.98± 0.00
Axial 0.22± 0.06 0.83± 0.21 0.98± 0.00

Table 3: Test set accuracy for vertebra and distal femur reconstruction from three orthog-
onal segmentation slices. The metrics are average surface distance (ASD), 95-
percentile Hausdorff distance (HD95), and Dice similarity coefficient (DSC).

Vertebra ASD [mm] ↓ HD95 [mm] ↓ DSC ↑
Ours 0.89± 0.29 3.77± 1.44 0.87± 0.03

Femur

Ours 0.59± 0.15 2.09± 0.50 0.96± 0.01
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Appendix A. Architecture Details

For the occupancy prediction, our latent vectors have the dimensionality 128 for both
datasets. Our MLP has 8 linear layers with 128 dimensions each, with skip-connections
and ReLU non-linearities in-between. The coordinates are concatenated with the latent
vector at the MLP input, as well as with intermediate activations at layer 4, similar to
(Park et al., 2019).

Appendix B. Optimization Details

For training of the MLP, we use a learning rate of 0.001 and batches of 8 volumes. For
each epoch, we randomly select 643 voxels per example volume within a batch. The latent
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Figure A1: Reconstruction of a pathological vertebra from three orthogonal slices.

vector regularization coefficient was set to 1e-4. Models for both datasets were trained in
under 12 hours each on an Nvidia V100 32GB GPU.

For optimization of the latent vector during reconstruction, we use a learning rate of
0.001 and latent vector regularization coefficient of 1e-4. Instead of using stochastic gradi-
ent descent with minibatches, we use all available voxels (per shape) in each gradient step.
Number of optimization steps represents a trade-off between reconstruction speed and accu-
racy. For vertebra, we optimize for 1200 steps for anisotropic reconstructions and for 2000
steps for orthogonal reconstructions. For femur, we optimize until the rounded training dice
score stops increasing for 5 blocks of 100 steps in a row to speed up the optimization.

Time required for latent vector optimization depends on the number of voxels present
in the sparse reconstruction input. Furthermore, we found that some shapes converge after
fewer steps than others. On average, latent vector optimization for sagittal anisotropic
inputs took ∼1min and ∼2.5min per shape for vertebra and femur correspondingly on a
consumer-grade Nvidia RTX 3090 24GB GPU. Consequent high-resolution sampling is fast
with ∼0.1s per vertebra, and ∼1s per distal femur.

Appendix C. Learned Mean Shape

Since our model is a generative one, we are able to sample the shape at the mean of training
latent vectors. The resulting shapes look like mean shapes of the population. Figure A3 in
the Appendix shows these shapes, sampled at very high resolution – beyond the resolution
of the training data in all axes.

Appendix D. Comparison to Image Segmentation Performance

To put the achieved results into a larger context, we provide metrics for state of the art
segmentation methods on full-resolution image data. For lumbar vertebra segmentation
from CT images, winner method in (Sekuboyina et al., 2021) achieved a Dice score of
∼0.92 (ASD and HD95 metrics not available). For the distal femur segmentation from MRI
images, (Ambellan et al., 2019) achieved an average surface distance of 0.17± 0.05mm and
Dice score of 0.986± 0.003 (HD95 metric not available).
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Figure A2: Reconstruction of a pathological femur from three orthogonal slices.

Figure A3: Learned mean shape of our generative model sampled at high resolution repre-
sented by the mean of latent representations in the training set.
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Table A1: Test set accuracy for vertebra and distal femur reconstruction from input seg-
mentations with thick slices and 8-fold anisotropy in sagittal axis. Note that
in contrast to our method, ReconNet has been trained on full-resolution data
and, therefore, represents an upper bound for our method. The metrics are aver-
age surface distance (ASD), 95-percentile Hausdorff distance (HD95), and Dice
similarity coefficient (DSC).

Vertebra ASD [mm] ↓ HD95 [mm] ↓ DSC ↑
Trilinear Interpolation 0.69± 0.07 2.80± 0.26 0.89± 0.01
B-spline Interpolation 0.63± 0.08 2.36± 0.33 0.89± 0.01

Ours 0.52 ± 0.10 2.08 ± 0.62 0.91 ± 0.01

ReconNet 0.22± 0.04 1.12± 0.23 0.96± 0.01

Femur

Trilinear Interpolation 0.54± 0.02 2.04± 0.09 0.96± 0.00
B-spline Interpolation 0.52± 0.03 2.00± 0.13 0.96± 0.00

Ours 0.31 ± 0.05 1.06 ± 0.22 0.98 ± 0.00

ReconNet 0.14± 0.02 0.73± 0.06 0.99± 0.00

Appendix E. Thick Slice Performance

In clinical practice it is also common to have thick slices, i.e. slices with large distance, which
average the measurements in their surroundings. We simulate such scenario by averaging
and thresholding chunks of slices for both training data and reconstruction inputs. Results
can be seen in Table A1. We observe that our method has a slight drop in performance
compared to thin slices, while the upper bound method (ReconNet) improves a little. This
is probably due to the fact that our model did not see precise, high-resolution thin slices
in training, making it harder to build a high-resolution prior. ReconNet, on the other
hand, benefits from added information in each thick slice about its surroundings. This
information can be effectively utilized, since ReconNet still has high-resolution, thin slices
as ground-truth during training.
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