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Abstract

The information exponent ((BAGJ21]) and its extensions — which are equivalent
to the lowest degree in the Hermite expansion of the link function (after a potential
label transform) for Gaussian single-index models — have played an important role
in predicting the sample complexity of online stochastic gradient descent (SGD) in
various learning tasks. In this work, we demonstrate that, for multi-index models,
focusing solely on the lowest degree can miss key structural details of the model
and result in suboptimal rates.

Specifically, we consider the task of learning target functions of form f,(x) =

Zle ¢(v} - x), where P < d, the ground-truth directions {v} }£_, are orthonor-
mal, and the information exponent of ¢ is L. Based on the theory of information
exponent, when L = 2, only the relevant subspace (not the exact directions) can
be recovered due to the rotational invariance of the second-order terms, and when
L > 2, recovering the directions using online SGD require O(Pd"~1) samples. In
this work, we show that by considering both second- and higher-order terms, we
can first learn the relevant space using the second-order terms, and then the exact
directions using the higher-order terms, and the overall sample and complexity of

online SGD is O(dP%~1).

1 Introduction

In many learning problems, the target function exhibits or is assumed to exhibit a low-dimensional
structure. A classical model of this type is the multi-index model, where the target function depends
only on a P-dimensional subspace of the ambient space R¢, with P typically much smaller than d.
When the relevant dimension P = 1, the model is known as the single-index model, which dates
back to at least [Ich93]. Both single- and multi-index models have been widely studied, especially in
the context of neural network and stochastic gradient descent (SGD) in recent years, sometimes under
the name “feature learning” [BAGJ21, BBSS22, DLS22, AAM22, AAM23, DKPS24, DPVLB24,
OSSW24, DTAT24].

In [BAGJ21], the authors show that for single-index models, the behavior of online SGD can be
split into two phases: an initial “searching” phase, where most of the samples are used to boost the
correlation with the relevant (one-dimensional) subspace to a constant, and a subsequent “descending”
phase, where the correlation further increases to 1. They introduce the concept of the information
exponent (IE), defined as the index of the first nonzero coefficient in the Taylor expansion of the
population loss around 0, which also corresponds to the lowest degree in the Hermite expansion of the
link function in Gaussian single-index models. They prove that the sample complexity of online SGD
is O(al(IE*UV1 ). After that, various lower and upper bounds have been established for single-index
models in [BBSS22, DNGL23, DPVLB24]. Similar results for certain multi-index models have also
been derived in [AAM22, AAM23, BBPV23, OSSW24]. In all cases, the sample complexity of
online SGD scales with ™~ when IE > 3.
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Later, it was realized that the notion of information exponent is not stable under modifications of the
algorithm. In particular, the information exponent of a link function can be greatly reduced by reusing
batches or applying a suitable label transformation [ADK 24, DTA*24, LOSW24, DPVLB24].
For example, the IE of any fixed degree polynomial can be reduced to at most 2 via monomial
transformations. This observation leads to the notion of generative exponent (GE) [DPVLB24], which
is defined as the lowest information exponent among all L? transform of the original link function.
It yields bounds that match the previous results for non-gradient-based methods [CM20, TDD 24,
BKM™19]. Despite the improvement over the vanilla information exponent, in the framework of
generative exponents, still only the lowest order is considered. As we will discuss later, this makes it
suffer from the same issue of information exponent in the context of multi-index models.

Consider multi-index models of form f, (x) = Z,I;l @(v-x), where {v} }, are orthonormal vectors.
In this setting, there are two types of recovery: recovering each direction v}, and recovering the
subspace spanned by {vj }. The former notion is stronger, and once the directions are learned, the
learning task essentially reduces to learning the one-dimensional ¢ : R — R. However, directional
recovery is not always possible. To see this, consider the case ¢(z) = ha(z), where h; is the I-th
(normalized) Hermite polynomial. One can show that this corresponds to decomposing the projection
matrix (a second-order tensor) of the subspace span{v; };. Hence, recovering the directions is
impossible due to the rotational invariance (see Section 3.1 for more discussion). In other words, in
any framework that considers only the lowest order (IE or GE), if the lowest order is 2,' we cannot
get guarantees beyond subspace recovery due to the existence of the ¢ = ho example.

On the other hand, if ¢ contains some higher-order terms, e.g., = ha + hy, then one should
expect that directional convergence is possible, even though TE(¢) is still 2, because of identifiability
property of (higher-order) orthogonal tensor decomposition problem [GLM18, LMZ20, GRWZ21].
In addition, we should be able to first recover the subspace using the second-order terms, which
should require O(d poly P) samples, and then recover the directions using the higher-order terms.
Moreover, since we have learned the relevant subspace, the number of samples needed in the second
step should be much smaller than what is needed if there were no second-order terms.

In this work, we formally prove the above conjecture and show that the overall sample complexity
is O(dPL’l), where L is the (lowest) order of the higher-order terms. Note that this bound scales
linearly with the ambient dimension d, and it matches the sample complexity of separately learning
P independent single-index models with the relevant subspace known but the noise scales with d, up
to potential logarithmic terms. More formally, we prove the following theorem.

Theorem 1.1 (Informal version of Theorem 2.1). Suppose that the target function is given by
fo(@) = S, d(vi - ) where ¢ = gohg + 3352, dihy, with L > 3, 3,62 > 0, and {vi}E_,
are orthonormal, and the input x follows the standard Gaussian distribution N (0, I1). Then, we
can use online SGD (followed by a ridge regression step) to train a two-layer network of width O(P)
to learn (with high probability) this target function using (j(dPL*I) samples and steps.

Organization The rest of the paper is organized as follows. First, we review the related works and
summarize our contributions. Then, we describe the detailed setting and state the formal version of
the main theorem in Section 2. In Section 3, we discuss the easier case where the training algorithm
is population gradient flow. Then, in Section 4, we show how to convert the gradient flow analysis
to an online SGD one. Finally, we conclude and discuss the limitations in Section 5. The proofs,
simulation results (Appendix F), and a table of contents can be found in the appendix.

1.1 Related work

In this subsection, we discuss works that are directly related to ours or were not covered earlier in the
introduction.

Along the line of information exponent, the paper most related to ours is [OSSW24]. They show
that for near orthogonal multi-index models, the sample complexity of recovering all ground-truth
directions using online SGD is O(Pd™~!) when IE > 3. Their results do not apply to the case

'The IE = 2 case is particularly important as the information exponent of many functions, including all fixed
degree polynomials, can be reduced to at most 2 by a suitable label transform [DPVLB24], and the information
exponent of any even functions is at least 2.



IE = 2 for the reason we have discussed earlier. They propose first removing the second-order
terms using the technique in [DLS22, DKPS24], which requires d? samples. Our result considers
the situation where both the second and L-th order terms are present and show that in this case, the
sample complexity of online SGD (without any preprocessing) is O(dPL~1).

Another recent related work is [BAGP24]. Our main results are not directly comparable since the
settings are different. They run SGD on the Stiefel manifold, which automatically prevents the model
from collapsing to a single direction, but allow the target model to have condition number larger
than 1. In addition, only the lowest degree is considered in their work. However, they also show (in
their setting) that when the second order term is isotropic, the subspace and only the subspace can be
recovered. A similar idea is also used in our analysis of Stage 1.1 (cf. Section 3.1).

Another related line of research is learning two-layer networks in the teacher-student setting ([ZSJ ™17,
LY17, Tial7, LMZ20, ZGJ21, GRWZ21]). Among them, the ones most relevant to this work are
[LMZ20] and the follow-up [GRWZ21], both of which consider orthogonal models similar to ours
and use similar ideas in the analysis of the population process. However, they do not assume a
low-dimensional structure and only provide very crude poly(d)-style sample complexity bounds.

1.2 Our contributions

We summarize our contributions as follows:

* We demonstrate that information/generative exponent alone is insufficient to characterize certain
structures in the learning task and show that for a specific orthogonal multi-index model, if we
consider both the lower- and higher-order terms, the sample complexity of directional recovery
using online SGD can be greatly improved over the vanilla information exponent-based analysis.

* As aby-product, we derive a collection of user-friendly technical lemmas to analyze the difference
between noisy one-dimensional processes and their deterministic counterparts, which may be of
independent interests (cf. Section 4.1 and Appendix E).

2 Setup and main result

In this section, we describe the setting of our learning task and the training algorithm, and then
formally state our main result. We will also convert the problem to an orthogonal tensor decomposition
task using the standard Hermite argument as in [GLM18].

Notations We use [|-||,, to denote the p-norm of a vector. When p = 2, we often drop the subscript
and simply write ||-||. For a,b,6 € R, a = b+ ¢ means |a — b| < |4| and a V b = max{a,b} and
a A b = min{a,b}. Beside the standard asymptotic (big O) notations, we also use the notation
fa = Og(gaq), which means there exists a constant Cjy > 0 that can depend only on ¢ such that
fa < Cygq for all large enough d. Sometimes we also write f; Sg ga for fg = Og(ga). The actual
value of C can vary between lines.

2.1 Input and target function

We assume the input x follows the standard Gaussian distribution N (0, I;) and the target function
has form f,(x) = kaﬂ d(v} - x), where log” d < P < d for a large universal constant C' > 0,

{v,’g}kpz1 are orthonormal and ¢ : R — R is the link function. In addition, we assume ¢ satisfies the
following.

Assumption 1 (Assumptions on the link function). Let hy, denote the degree-k normalized Hermite
polynomial and ¢ = "= ¢.hi, denote the Hermite expansion of ¢ € L*(N (0, I7)).

(a) (IE structure) For some constant L > 2, ¢(z) = (ﬁghg(z) + quhL(z) +>sL qglhg(z).
(b) (IE regularity) ¢, o1, = Q(1) and H¢'||i2 =R < C3 for some constant Cyy > 0.

(c) (Polynomial growth) There exists universal constants C,q > 0 such that |p(x)| V |¢'(x)] <
C(1+ 2%)%/2 forall z € R.



Our target model and algorithm will all be invariant under rotation. Hence, we will assume w.l.o.g. that
v} = ey, where {ey, } is the standard basis of R4,

2.2 Learner model and the training algorithm

Our learner model is a width-m two-layer network
f(®) = f(z;a,V): Zazqﬁ

where @ = (ai,...,a,) € Rmand V = (vy,...,v,,) € (S1)™ are the trainable parameters.
We call {v;}icm the first-layer neurons. We measure the difference between the learner and the
target model usmg the correlation loss. Given a sample (x, f.(x)), we define the per-sample and
population MSE loss as

ZMSE(-'D) = l(CC, a, V) = (f* (:13) — f(:I}, a, V))2 y EMSE(CL, V) = ]EZMSE(-’B; a, V)

N | =

Now, we describe the training algorithm. First, we initialize each output weight a; to be 1. Then, we
symmetrically initialize the first layer neurons. That is, for i € [m/2], we initialize v; ~ Unif(S?~1!)
independently and set v,,, /2 ; = —wv; for the other half of the neurons. After the initialization, we
fix the output weights a and train the first-layer weight v; using online (spherical) SGD with the
correlation 10ss leopr () = — fi(x) f(x) and step size n > 0 for T iterations. Then, we fix the
first-layer weights and use ridge regression to train the output weights a.

Let {(x, f*(mt))}teN be our samples where {x;} are i.i.d. standard Gaussian vectors, and let

Ve = (I —vv ")V, denote the spherical gradient. Then, we can formally describe the training
procedure as follows:

Initialization: ap; =1, v, RN Unif(S?71), Vo,m/24i = —V0,i Vi € [m/2];
Vi1, = Vi + Nfe(®) Vo, 0(vi - ), .
Stage 1: { e an( 1)V 9 ) Vi € [m],t € [T];
Viy1,i = O/ ([0l
| X
Stage 2: a=argmin — S (@rin;a, Vi) + A|d||.

o 2N

n=1
ey
Here, the hyperparameters are the network width m > 0, step size n > 0, time horizon T' > 0, the
number of samples /V in Stage 2, and the regularization strength A > 0.

We will show that after the first stage, for each ground truth direction v}, there will be some neurons
v; that has converged to that direction. As a result, in the second stage, we can use ridge regression
to pick out those neurons and use them to fit the target function. The analysis of this second stage
is standard and has been done in [DLS22, AAM?22, BES122, LOSW24, OSSW24]. Hence, we will
not further discuss this stage in the main text and defer the proofs of this stage to Appendix C.

For the gradient update in Stage 1, we have the following lemma on its expectation and tail. The
proof of this lemma is rather standard and can be found in, for example, [GLM18, OSSW24]. We
also provide a proof in Appendix A.1 for completeness.

Lemma 2.1 (First-layer gradients). Consider the setting described above. Suppose that ¢ satisfies
Assumption 1 and a; = 1 for all i € [m] and {v}}y, are orthonormal. Then, for each i € [m], we
have

P P
E[fu(2) Vo, 6(v; - )] = 203 > (v, v) v + > > 17 (vf,v:)' " vj. @
k=1 I>L k=1

Then, for each fixed neuron (a,v) and direction uw € S~ that is independent of x ~ N (0, I;), we
have

E <f*(w)v’vl¢(v% ’ :B),’u,>2 5(25 P,
| (fu(2) Vo, d(v; - ), u) | <y P2 log> 9 log(m/ép)  with probability at least 1 — 5p.



Remark. We say a random variable X is (02, §)-subweibull [VGNA20, KC22] if
P(|IX| > M) < exp (—(M/o)1/9) , VM > 0. 3)
Hence, this lemma implies that (f. (€)V, ¢(v; - @), w) is (P, 1/(2(1 + q)))-subweibull. &

2.3 Main result

The following is our main result. The proof of it can be found in Appendix D.

Theorem 2.1 (Main Theorem). Consider the setting and algorithm described above. Let C' > 0
be a large universal constant. Suppose that logC d < P < dand {v;} }cp) are orthonormal. Let
dp € (exp(— log® d),1) and £, > 0 be given. Suppose that we choose ag,n, T, N satisfying

5 N P2 _ 62511» ~ PL/2—1
=0O(P), N=06(-= =04 | 57— T=0¢ | —55—)-
n=00 8=6 (). 1= (pr) 70 ()
Then, there exists some A > 0 such that at the end of training, we have Lysg(a, V) < e, with
probability at least 1 — O(0p).

Remark. Note that N < T. Hence, the total number of samples needed is T = O¢(dPL_1),
which matches the sample complexity of separately learning P single-index models with the relevant
subspace known a priori and the noise scales with the ambient dimension d. &

3 The gradient flow analysis

In this section, we consider the situation where the training algorithm in Stage 1 is gradient flow over
the population correlation loss instead of online SGD. The discussion here is non-rigorous and our
formal proof does not rely on anything in this section. Nevertheless, this gradient flow analysis will
provide valuable intuition on the behavior of online SGD.

For notational simplicity, we will assume w.l.o.g. that v}, = e;. In addition, we will assume
¢ = hy + hp with L > 2 for ease of presentation. Let v be an arbitrary first-layer neuron. By
Lemma 2.1, the dynamics of v are controlled by?>

o, =250 (T —vv e + LY f_ ot ™Y (T —vv T )ey.

The second term on the RHS comes from the normalized/projection. For each k € [d], we have

d _
Tk~ 20{k < P} (24 Lvf ) o} -2 (2 lvoepl® + L ||v§P||§) 2. @
We further split Stage 1 into two substages. In Stage 1.1, the second-order terms dominate and

lo<p|® / |lvsp|? grows from ©(P/d) to O(1). In Stage 1.2, v converges to one ground-truth
direction relying on the signal from the higher-order terms.

The direction to which v will converge depends on the index of the largest v? at the beginning
of Stage 1.2. With some standard concentration/anti-concentration argument, one can show that
maxpe[p] v? is at least 1 + c times larger than the second-largest v? for a small constant ¢ > 0 with
probability at least 1/ poly(P) at the initialization (of Stage 1.1). Hence, as long as this gap can be
preserved throughout Stage 1, we can choose m = poly(P) to ensure all ground-truth directions can
be found after Stage 1.2.

3.1 Stage 1.1: learning the subspace and preservation of the gap

In this substage, we track |Jv<p||* / |vsp|| and v2 /vZ where p, q € [P] are arbitrary. The goal is to
show that ||v<p I? / |lvs p||* will grow to a constant while v2 /v stay close to its initial value.

’In the main text, we use 7 to index the time in this continuous-time process (as ¢ has been used to index the
steps in the discrete-time process) and will often omit it when it is clear from the context.



For the norm ratio, by (4), we have

L
d verl® & lv<rl®  verl® g llvsel® _ Aocpl® | 2L||l;
2 2 2 2
T lospl?  osrlP osrl fosrl? Tospl® * losrl
2 L 2 2 L
2(2llvspl® + LlvcbF o<r® oo p? 2 (2 lv<pl + Llveptiiosrl
: Cle 2 |
>P >P
s pl s pl

In particular, note that the terms coming from normalization cancel with each other. Moreover, this
2 2
impliesi ||”SP|| ||”SP||

I Toarl® 2 Fosrl? , and therefore, it takes only at most LZ(U log(d/P) = ©(log(d/P))

amount of time for the ratio to grow from O(P/d) to ©(1). If we choose a small step size 1 so
that online SGD closely tracks the gradient flow, then the number of steps one should expect is

O(log(d/P)/n).
Meanwhile, for any p, ¢ € [P], we have

d U L—2 2 UI%
— = 2(2+ Lok ) 2 —2 (2ocp | + Lvsrll}) 2
T v2 v Yq

v? v2
— 2 (2024 Lof %) =2 (2llvrl + Liverlly ) ) = 2L (v 2 —vi?) 2.
q q

Note that not only those terms coming from normalization cancel with each other, but also the
second-order terms. In particular, this also implies that we cannot learn the directions using only the
second-order terms. At initialization, with high probability v} = O0(1/d) for all k € [P]. Hence, if
we assume the induction hypothesis v2 = O(1/P), then above will become 102 /v2 < P~102 /2.
As aresult, v7 /o7, < (1+0(1))vg ,/vg , for any ¢ < O(log(d/P)), as long as P 2 poly log d.

3.2 Stage 1.2: learning the directions

Let v be a first-layer neuron with v% > (1+4¢) maxo< < p v,% for some small constant ¢ > 0 at
initialization. By our previous discussion, we know at the end of Stage 1.1, the above bound still

holds with a potentially smaller constant ¢ > 0. In addition, since |[v<p||* = ©(1), we also have
2 > Q(1/P) at the end of Stage 1.1. We claim that v will converge to e;. The argument here is
s1m11ar to the proofs in [LMZ20] and [GRWZ21].

Again, by (4), we have

d _ _
Evf ~ 2 (2 — 2||'v§p||2 —i—LvlL 2 —L||v§p||§) vl > 2L (vf 2 ||v§p||€) v

Assume the induction hypothesis v? > (1 + ¢) maxo<g<p v; and write

2

P
— L — 2 v —
o2~ Jocplly = vF 72 (1= 03) = (Jocpl® = 03) Y —— ol
k=2 ||USP|| -V

Note that the summation is a weighted average of {v,? *2}k>2 and therefore can be upper bounded by

lgvf/(l +¢)) L=t o < (1 — ¢z, )vE~2 for some constant ¢z, > 0 that can only depend on L. Thus, we
ave

d _
EU% > 2L (vf 2(1—0f) - <||v<p|| - vl) (1 —cp)vl™ 2) v} > 2L (1 —of) vt

When v < 3/4, this implies £-07 >, vf. As aresult, it takes at most OL(PL/2 1) amount of time

for v} to grow from ©(1/P) to 3/4 under gradient flow. It is important that v? = Q(1/P) 1nstead of
Q(1/d) at the start of Stage 1.2, since otherwise the time needed will be Or, (d"~ ) After v% reaches

3/4, we have 4 L(1—v?) Sp — (1 —v}). Thus, v] will converge linearly to 1 afterwards.



4 From gradient flow to online SGD

In this section, we discuss how to convert the previous gradient flow analysis to an online SGD one.
Our actual proof will be based directly on the online SGD analysis, but the overall idea is still proving
that the online SGD dynamics of certain important quantities closely track their population gradient
descent (GD) counterparts. Our choice of learning rate n will be much smaller than what needed for
GD to track GF, so the bottleneck comes from the GD-to-SGD conversion, not the GF-to-GD one.
Provided that SGD tracks GD well, the number of steps/samples it needs to finish each substage is
roughly the amount of time GF needs, divided by the step size 7.

The rest of this section is organized as follows. In Section 4.1, we collect a few useful lemmas for
controlling the difference between noisy dynamics and their deterministic counterparts. The idea
behind them has appeared in [BAGJ21] and is also used in [AAM22]. Here, we simplify and slightly
generalize their argument and provide a user-friendly interface. When used properly, it reduces the
GD-to-SGD proof to routine calculus. Then, in Section 4.2, we discuss how to apply those general
results to analyze the dynamics of online SGD in our setting.

4.1 Technical lemmas for analyzing general noisy dynamics

We start with the lemma that will be used to analyze ||v<p|| / |[vs p||°. The formal proofs of it and
all other lemmas in this subsection can be found in Section E.

Lemma 4.1 (Stochastic Gronwall’s lemma). Suppose that (X;); satisfies
Xep1 = (1 + @)Xy + &1+ Zpg1,  Xo =20 >0, 5

where the signal growth rate o > 0 and initialization xo > 0 are given, (&;); is an adapted process,
and (Z4)¢ is a martingale difference sequence. Define x; = (1 + a)txg.

Let T > 0 and dp € (0,1) be given. Suppose that there exists some op ¢ € (0,1) and =, 07 > 0 such
that for every t > 0, if X; = (1 & 0.5)xy, then we have |&,41| < (1 4+ «)'= with probability at least
1 — 8p¢ and Zy 1 is conditionally ((1 + «)'c%, 0)-subweibull. Then, if

G

_ 6
Tlog"* (T /6p) ©

Zo 2
— and oy <
T Z ~Y

we have X, = (1 £ 0.5)z, for all t € [T with probability at least 1 — ép — T'p ¢.

Condition (6). One may interpret Z; 1, as those terms coming from the difference between the
population and mini-batch gradients, whose variance is typically quadratic in 7, and &4 as the
higher-order error terms. « is usually small. In our case, it is proportional to the step size 7.
T is usually the time needed for X; to grow from a small g > 0 to ©(1), which is roughly
a~tlog(1/xg). Since the LHS’ of (6) are O(n?) while the RHS’ are Q(n), (6) can be alternatively
viewed as a condition on 7. &

Stochastic induction. One important feature of this lemma is that it only requires the bounds
&) < (1 + a)'Eand E[Z7,, | F;] < (1 + a)'o% to hold when X; = (1 £ 0.5)x;. This can be
viewed as a form of induction and is particularly useful when considering the dynamics of, say, v3.
Similar to how the RHS of %vik = 207 ;07 1, depends on v, i, the size of § 11, Z; 1 will usually
depend on X;. Hence, we will not be able to bound them without suitable induction hypotheses. ¢

Remark on the subweibull condition. We assume the martingale difference terms (Z;1); are
conditionally subweibull. This allows us to get poly-logarithmic dependence on dp, which is important
as we will eventually take union bound over poly P events. One may replace this condition with the
weaker condition E[Z7,; | 73] < (1 + a)'o%. This will lead to a linear dependence on dp. &

Proof sketch of Lemma 4.1. For the ease of presentation, we assume that |£;11| < (1 + «)'E with
probability at least 1 — dp ¢ and E[Z? , | F;] < (1 + a)o% always hold. This step can be made
formal using a stopping time argument. See Section E for details. Then, Unroll (5) to obtain



Xin = (14 ) a4+ 3 (1 + )€1 + 320, (1 + @)'*Z,, 1. Divide both sides with
(1 + «)t*! and replace t + 1 with ¢. Then, the above becomes

X1+ 0) ! =m0+ X, (L @) 76 + X0, (14 ) Ze.

The second term is bounded by 7'= (uniformly over ¢ < T') with probability at least 1 — T'0p ¢. Note
that (1 + «)~*Z, is still a martingale difference sequence. Hence, by Doob’s L2-submartingale
inequality, the third term is bounded by z/4 with probability at least 160% /(«x3). Thus, when (6)
holds, the RHS is (1 £ 0.5)x with probability at least 1 — T'dp ¢ — dp. Multiply both sides with
(14«)*, and we complete the proof. To improve the dependence on dp from linear to poly-logarithmic,
it suffices to replace Doob’s L2-submartingale inequality with a variant of Freedman’s inequality that
works with subweibull variables (cf. Appendix E). O

Using the same strategy, one can prove a similar lemma that deals with the case o = 0, which will be
used to show the preservation of the gap in Stage 1.1. Another interesting case is where the growth
is not linear but polynomial. This is the case of Stage 1.2 in our setting. For this case, we have the
following lemma.?

Lemma 4.2. Let (X;); be a non-negative stochastic process satisfying
Xep1 > Xo+aXP + Zipy + &1, Xo =20 >0, @)

where a > 0, (Z;+1)¢ is a martingale difference sequence, and (&;)¢ is an adapted process. Let &y
be the solution to the deterministic recurrence relationship 111 = & + ail &9 = zo/2.

Let op € (0, 1) be given and T' := inf {t S (pa(xo/Q)pfl)fl Xy > 1} . Suppose that there exists
=,07 > 0and dpe € (0,1) such that if Xy > &4 and t < T, we have |&;| < EX, with probability at
least 1 — 6p ¢ and Zy 11 is conditionally (0% Xy, 0)-subweibull. Then, if

agah " p, E<pastt, 0% < poal)polylog(T/dp), ®)
we have X; > %y for all t < T and X, > 1 with probability at least 1 — T'ép ¢ — Op.

The proof of this lemma can be found in Section E. It is similar to the previous proof in spirit: we
replace (1 + )" with Hi;é( 1 + aXP?~1) and unroll the recurrence. However, unlike the linear
case, it is generally difficult to upper bound the difference between X, and Z;, as this type of
polynomial systems exhibit sharp transitions and blow up in finite time. Consequently, |£;| < EX;
and E[Z7,, | F1] < 02X, do not directly imply that |¢;| < 22, and E[Z?,, | F;] < 0% &, and
this makes the analysis tricky as the RHS’ are not deterministic. To handle this issue, we use the
following recoupling argument: whenever X; > 4&,, we replace the current ;; with X /2. Clear that
this can only increase 2, and it ensures X; < 4z, always holds. Moreover, after each recoupling, &+
will at least double. As a result, the conditions we need to absorb the noises will also become weaker.

4.2 Sample complexity of online SGD

In this subsection, we demonstrate how to use the previous results to obtain results for online SGD

and discuss why the sample complexity is O(dP=~1) instead of O(d”~!) even though we are relying
on the L-th order terms to learn the directions.

4.2.1 A simplified version of Stage 1.1

As an example, we consider the dynamics of Pvg / (dvg) where p < P and ¢ > P and assume both
of v, and v, are small and Pv?/(dv2) < 1. This can be viewed as a simplified version of the analysis

of |[u<p||® / |vsp|® in Stage 1.1. The analysis of other quantities/stages is essentially the same —
we rewrite the update rule to single out martingale difference terms and the higher-order error terms,
and apply a suitable lemma from the previous subsection (or Section E) to complete the proof.

For the ease of presentation, in this subsection, we ignore the higher-order terms. In particular, we
assume the approximation ;41 ~ vy + 29 (]l{k; < P} - ||v§p||2) +nZi41,k, forall k € [d],

3In an early version of this manuscript, we did not relax the conditions on the noises when X; grows as in
Lemma 4.1. We thank Eshaan Nichani for pointing out that this would result in a suboptimal rate.



where Z, 1 j represents the difference between the population and mini-batch gradients. Then, we
compute

s~ (1440 (1{k < P} = lospl®) ) o} + 2002y + Con®(1V Z),

Here, the last term is the higher-order term and will eventually be included in £. For simplicity,

we will also ignore them in the following discussion. The second term is the martingale difference

term. Its (conditional) variance depend on vy, and this necessitates the induction-style conditions in
2 2 _ a2 22

Lemma 4.1. Note that v’ ; /v’ , = 9741 , /711 4 Hence, we have

2
By (14 (1= llo<plP) ) w2 + 200,2,

2
Vi1 (1 — 4y ||USP||2) V2 + 20,7,

Repeatedly use the elementary identity —5 = + (1 ~2 (1 — aLM)) ~L(1-2)foranya >0

and small § > 0, we can rewrite the above equation as
2 2 2
Pviip Py Puy 2,2, N 2P, 7,
dv? dvg vg dvg

Suppose that v> ~ v at initialization and assume the induction hypothesis Pv/(dvZ) = (1 +
0.5)(1 + 4n)" Pvg ,/(dvg ,). Then, by Lemma 2.1, the conditional variance of the martingale
difference terms (the last two terms) is bounded by Oy, ((1 + 47)!n? P2 /d). Using the language of

Lemma 4.1, this means 0% < Oy, (n>P?/d). Meanwhile, by our gradient flow analysis, the number
steps Stage 1.1 needs is roughly log d /7. Hence, in order for (the second condition of) (6) to hold,

it suffices to choose 1 = 0(1 /d). One can also show that for the higher-order terms to be small, it
suffices to choose n = O(1/(dP)). As aresult, for Stage 1.1, the sample complexity is O(dP).

4.2.2 The improved sample complexity for Stage 1.2

To see why the existence of the second-order terms can reduce the sample complexity from d'®~! to
dpoly(P), first note that after Stage 1.1, max;,c(p] va will be 2(1/P). Also note that the conditions

in Lemma 4.2 depend on the initial value. With the initial value being Q(1/P) instead of O(1/d),
the largest possible step size we can choose will be O(1)/(PdP/?~1), which is much larger than
the usual O(1/(Pd"/?)) requirement from the vanilla information exponent argument. Meanwhile,
by our gradient flow analysis, we know the number of iterations needed is O(P*/2~! /). Combine
these and we obtain the O(dP~~1) sample complexity.

5 Conclusion and limitations

In this work, we study the task of learning multi-index models of form f,(x) = kazl o(vi - x)
with P < d, {v} } be orthogonal and ¢ = bahs + Ser é1hy. By considering both the lower- and
higher-order terms, we prove an O(d poly(P)) bound on the sample complex for strong recovery of
directions using online SGD, which improves the results one can obtain using vanilla information
exponent-based analysis.

The main limitation of this work is the orthogonality condition. This can potentially be relaxed to
near-orthogonality as in [OSSW24]. Extending this result beyond near-orthogonal teacher neurons is
an interesting but challenging future direction, as when the teacher neurons are not near-orthogonal,
this task is hard in general. However, we conjecture that when the target model has a hierarchical
structure across different orders, online SGD can gradually learn the directions using those terms of
different order sequentially.

Another limitation of this work is the assumption that the signal strengths are isotropic. When this is
not true, training with the second-order terms and correlation loss will make all neurons collapse to
the largest direction or require d> samples if we perform only one gradient step [DLS22, DKPS24].
That being said, it is still reasonable to expect the overall sample complexity to be improved if we
can leverage the second-order terms properly. Formally establishing this is also a potential future
direction.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Theorem 2.1.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13



Justification: See Section 2 and the appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See the supplementary material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Appendix F and the code.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Our experiments are very simple simulations with small variance across
different runs.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix F.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This is a theoretical result and has no potential negative societal impacts.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This is a theory paper considering a theoretical model.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This is a theory paper.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The simulations use synthetic data.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are only used to check the grammars and polish the sentences.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Preliminaries

A.1 Population and per-sample gradients

In this subsection, we show that the task of learning the multi-index target function fi(x) =
25:1 ¢(v}; - ) can be reduced to tensor decomposition and prove the tail bounds in Lemma 2.1.
For the first goal, we will need the following classical result on Hermite polynomials (cf. Chapter 11.2
of [O’D14]) and correlated Gaussian variables.

Lemma A.1 (Proposition 11.31 of [O’D14]). For k € N> denote the normalized Hermite polyno-
mials. Let p € [—1,1] and z, 2’ be p-correlated standard Gaussian variables. Then, we have

E, [l (2)y ()] = 1{k = j}o"
Lemma A.2. Under the setting described in Section 2, we have

E [fu(2)Voi(v - @) ZZZ@ (vi.v)' o

k=11=1

Proof. Let ¢ = ZZOZO g?)khk be the Hermite expansion of ¢ where the convergence is in L? sense.
For any p € [—1, 1] and p-correlated standard Gaussian variables z, z’, we have

E {¢(2)¢(2')} = Z Py E Ahe(2)u ()} = Z%P ;

k,l=0

where the first equality comes from the Dominated Convergence Theorem and the second from
Lemma A.1. Therefore, we have

E[fu(@)¢(v-z)] =

z,2’

E[o(v - @)d(v )] =D D 4 (vi,v

1 k=11=1

M*u

£
I

Then, we compute

P
E[fu(@)Vod(v-a)] =D > Vs (vf,0) =

k=11=1

> 167 (vi o)

11=1

ANGE

O

Now, we consider the per-sample gradient. The goal here is to prove variance and tail bounds for
(f«(x)Vyo(v - ), u), where u € S9! is an arbitrary direction that is independent of . First, we
upper bound f,. To this end, we will use need the following concentration inequality for the sum of
independent subweibull variables. It is a consequence of Theorem 3.2 of [KC22] and the discussion
after Definition 2.3 of the same paper.

Lemma A.3 ([KC22]). Let o (z) = exp(z®) — 1 and ||-||,, denote the corresponding Orlicz norm.
Leta < land Xy,...,X, bei.id. mean zero random variables with variance o and || X [, < o0
Then, for any op € (0,1), we have

S x

i=1
Lemma A.4. Suppose that Assumption 1 holds and {v}; }1, are orthonormal. Then, for any op € (0, 1),
we have

<o Vnolog?(1/6p) + v/n 1 X1lly, log?/“(n/8p), with probability at least 1 — &p.

|f(x)] S VPlog?(P/dp), with probability at least 1 — p.

Proof. Write Y}, := ¢(v} - ). By the orthonormality of {v} }x, {Y%}« are independent variables.
For any p > 1, we have

Wil < (B |¢|p(z))1/p§0 (; [(Hf)pq/ﬂ)”p

2~N(0,1) z~N(0,1)
< Cpq\/ E [(1+22)1] <p?,

z2~N(0,1)
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where the first inequality in the second line comes from the Gaussian hypercontractivity. This implies
that ||Y7]| v, < land VarY; < 1. Thus, by Lemma A.3, we have with probability at least 1 — dp

that
()| S VPlog"?(1/8p) + VPlog?(P/dp) < VPlog(P/dp).
O

Lemma A.5. Suppose that Assumption 1 holds and {v}} i are orthonormal. Then, we have
E(f.(2)Vod(v-a),u)’ o P,
| (fu(2) V(v - x),u) | Sy P2 log>**9 log(m/ép)  with probability at least 1 — 8p,
where q is the degree of ¢ if it is a polynomial and Q) = 0 if ¢ is Lipschitz.

Proof. Note that (V,¢(v - x),u) = ¢'(v - x) (x, u). First, for the variance, we have

E(fo(2)¢(v- @) (u,2)* SE [} +E@ (v 2)° + E(u,2)° S P,

where the second inequality comes from Assumption 1 and the hypercontractivity of Gaussian. This
implies E (V f(z), u)” < P. For the tail bound, first recall from the previous lemma that | f, ()| <
V/Plog?(P/dp) with probability at least 1 — dp. The proof of it also implies |¢' (v - )| < log?(P/dp)
with probability at least 1 —dp. Finally, since (x, ) is 1-subgaussian, we have |z - u| < log'/?(1/dp)
with probability at least 1 — ép. Combine these bounds, take the union bound over m learner neurons,
and we complete the proof. O

A.2 Typical structure at initialization

In this subsection, we use the results in Section A.3 to analyze the structure of vy,...,v,, at
initialization. Recall that we initialize v; with Unif(S%~1) independently. Meanwhile, note that for
v ~ Unif(S¢1), we have v < Z/ || Z|| where Z ~ N (0, I,y).

We start with a lemma on the largest coordinate.

Lemma A.6 (Largest coordinate). Let v ~ Unif(S?1). Forany K > 1, we have

4y/2K logd 4
max |v;| < VAR 08D it probability at least 1 — —.
i€[d) Vd d¥

As a corollary, for any dp € (0, 1), at initialization, we have

4+/2log(4m/é
max ||v; _ < 4y/2log(4m/p)

i€[m] \/ﬁ

Proof. Let Z ~ N (0,1,). Recall that Z/ || Z|| follows the uniform distribution over the sphere.
By Lemma A.11, we have || Z|| > +/d/2 with probability at least 1 — 2exp(—d/18). Then, by
Lemma A.13, with probability at least 1 — 2¢=4/18 — 2¢=5"/2 we have

maxe(q) |Zi| _ v2logd+s _ 2y/2logd L2
1zl = Vdj2 Vd Vd
Let K > 1 be arbitrary. Choose s = /2K log d and the above becomes
max;e|q) | Zi < 42K logd
izl = Vd
For the corollary, use union bound and choose K = log(4m/dp)/ log d, we have

4./2log(4
max v, < —og( m/ %)
i€m) Vd

with probability at least 1 — 6p.

4
with probability at least 1 — K

4
with probability at least 1 — d—ZL =1-dp.
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Suppose that we only have higher-order terms. Then, for a neuron v € S%~! to converge to a
ground-truth direction e, in a reasonable amount of time, we need v? to be the largest among all v?
and there is gap between it and the second largest v2. The following lemma ensures that when m
is large, for every ground-truth direction {ey }1c[p), there will be at least one neuron satisfying the
above property. Note that in our case, we only need to ensure v,% is the largest among all {U?}ie[ Pl
instead of {vf}ie[d], as the second-order term will help us identify the correct subspace.

Lemma A.7 (Existence of good neurons). Let 6p € (e~'°8" %, 1) be given. Suppose that m >
2P log(P/dp) = ©(P). Then, at initialization, with probability at least 1 — 0p, we have
v? 1 -

LP =1+06(1).

Vp e [P|di e [m] suchthat —————— >14+ ————
7] [m] maXe [P\ {p} Vs q 2001og(48P)

Proof. Let §p be a parameter to chosen later and let dp o be the probability that max,c(p) vg
is smaller than 1 4 §p times the second largest vg. For each p € [P], let B, be the event

{Vk‘ € [ml], v, < (1 + do) maxge(p)\ (p} vzyq}. To bound P[B,], we write

P[B,] = P 2 <1 2
Byl (vNUnif(Sdl) [v” = (1+¢) qe?lg}a\)%p} Uq])

=(P|? maxv2]+IP’[v2< 1+¢) max v2
( [p#qe[P] a = )qe[m\{p} e

1 dpo\"
—(1- 24 %®0)
(1-5+%)

By Corollary A.12, if we choose dp o = 1/2, then we can choose

1
~ 200log(48P)"

With the above choices of parameters, we have

1\™ m
Pl B, §P<1—2P> SPeXp(—ﬁ>.

pE[P]

2 2 2 2
v: = maxv:| P |v2 = maxv
P qelp] q] [1’ q€[P] qD

do

For the last term to be bounded by Jp, it suffices to choose m > 2P log(P/dp). O

Lemma A.8 (Typical structure at initialization). Let 5p € (e~ '°8" 4 1) be given and cg > 0bea
small constant. Suppose that {vy}7*, ~ Unif(S?~!) independently with

m = O (Plog(P/dp)).

Then, with probability at least 1 — 36p, we have

Vp € [P]3Ji € [m] such that Yip >14 %7 )
maxge(p)\{p} |Vi.ql log P
. 20+/log(P/dp)
Vie[m], |vill, < —
P P
Vi € [m), VP _ vzrl < 3VP

3vd ~ vl vd

Proof. The first two bounds comes directly from Lemma A.6 and Lemma A.7 and the fact that we
use symmetric initialization. By Lemma A.11, we have

P(1Z] - Bl 2l = V/2) < 2¢7%,

P (1 Z<pl —EllZ<p|| = VP/2) < 2¢77F5.
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As a result, for any v ~ Unif(S?~1), we have with probability at least 1 — 4~/ that

Z E|Z +VP/2 P
Iosel o \Z<rl _BIZsel £ VP2 g [P

[v]l 1Z]| E|Z| + vVd/2
Since we assume P > logcl d for a large C’, we have 4e~F/8 < op/m. This gives the third

bound. O

A.3 Concentration and anti-concentration of Gaussian

Lemma A.9. Let 71, ..., Z4 be independent N (0, 1) variables. Let Y1, Y5 be the largest and second
largest of | Z1), . .., | Za|. For any ép € (0,1), we have

Y, op

>14 — ith probability at least 1 — Op.
Y, © +1210g(12d/5p) with probaoility at leas P

Proof. The following proof is adapted from this MathOverflow answer [Pin20]. Let f and F denote
the PDF and CDF of |Z| with Z ~ N (0, 1), respectively. We have f(y) = 2¢(y)1{y > 0} and

F(y) = erf(y/v/2)1{y > 0}, where ¢ is the PDF of AV (0, 1) and erf is the error function. We will
use the following formula for the joint PDF of two order statistics:

Friva(yisy2) = d(d = 1) F2(y2) f(y2) f (1) 1{0 < y2 <y }.
Consider small s > 0. We compute

Yl o0 o0
P (Y > 1+s> :/ / Hyr > (14 s)y2} fri,ve (W1, y2) dyadyy
0 0

2

- /OOO /OOO Py ((1+ 8)ya + 7, 2) dyadr
—da-1) [P ([ A+ k) ar)

— d(d—1) / T F2 () (2) (1 — F((1+ 5)ya) dye.

Let G = F~1. With the change-of-variables u = F(y3), y2 = G(u), we can rewrite the above as

1
b @ S14 > — d(d—1) / u=2 (1= F((1+ 5)G(u))) f(G(u)) G (u)

2

1
— d(d—1) / w2 (1= F((+ 9)6() (G du

— d(d— 1)/0 W2 (1= F((1 4 5)G(w))) du.

Now, we analyze the last integral. We will use the following expansion of the (complementary) error

function: ,
-y*/2 1 > 2
1-F(y)=1-—erf V2 :e<1_/ rle " dr).
(v) (y/ ) N N

For notational simplicity, put w = G(u). Then, we have
—(145)%w?/2 1 0
e 2
1-F(l4+s)jw)=—+—[1—-— r2e”" dr
(14 s)w/m/2 VT Jassw
_ 2 2 2 7w2/2 1 oo 5
:eXp< (S+S/)1U)6 1— — 7,2677” dr
1+s wy/7/2 VT Jas)w
exp (—(s + s%/2)w?)

- P - Pw)

1 0 2 ,—r?
1_ﬁf(1+s)wr e " dr
1— % fso r2e=r* dr
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Note that the last factor is at least 1 and F(w) = F(G(u)) = F(F~'(u)) = u. Therefore,

T (),

1-F(1+4s)w) > g

As a result, we have
1 _ 2 2
IP’(Y121+S> Zd(d—l)/ ud_g(l—u)e}(p( (s+s5°/2)G (u)) du
Y2 0 1+s
1—¢ . 2 2
> d(d - 1>/ w21 — o) SR F S/ DEW)
0 1+s

where € > 0 is a parameter to be chosen later. By the next lemma, when u < 1 — ¢, we have
G?(u) < 2log(2/¢). Therefore,

Yl 1—e
P(Y>1+s>>d(d—l)/ u?2(1 — u)du
0

2

du,

exp (—(2s + s?)log(2/e))
1+s

1—e
1 €\4s
> d(d 1)/O w2 (1 ) dup— (2)

S

de 1 €\ 4s
—(1-e)(1 (f) .
(1-2) ( * 1- 5) 1+s1\2
Let dp € (0, 1) be our target failure probability. We choose

(1—¢)? (1 + ldg ) e p

>1—-— = —.
T3 Y T
With this choice of €, we compute
£\ 4s 5p se \ Y Op op op op
=) >1-—— « (=] >1-— <« dslog|-—]>-—— < s<—0—r.
(5) =15 <12d) =3 P8 \12d) = 73 5_1210g(%d)
P

Note that for s satisfying this condition, we automatically have 1/(1+ s) > 1 — dp/3. Thus, we have

L a—

Y2 12log (%ﬁ)

with probability at least 1 — Jp.

O

Lemma A.10. Let F(y) = erf(y/v2)1{y > 0} be the CDF of |N (0,1)
G=F"1Ifu<1-1/(dlogd), then G(u) < \/2log(2/¢).

Proof. Note that G(u) < M iffu < F(M)iff 1 —u > 1— F(M)iff 1 —u > P(|Z| > M). In
other words, our goal here is to find the smallest M such that P(|Z| > M) < e. By the standard
Gaussian concentration, we have P(|Z| > M) < 2exp(—M?/2). For the RHS to be upper bounded

, respectively. Let

by e, it suffices to choose M > /2log(2/¢). O
Lemma A.11. Let 2y, ..., 2z, be independent N (0, 1) random vectors. Then, for any € > 0, we
have
P <Vk € [m], lzell 1‘ < 5) >1— 2me /3,
E ||z

Proof. 1t is well-known that any 1-Lipschitz function of A/ (0, I;) is 1-subgaussian (see, for example,
Theorem 5.2.2 of [Ver18]). Hence, for any s > 0, we have

m 2
P (;gﬁ 2l - E zell) ) < S Pzl — Ellzel| > 5) < 2me2
m k=1
Set s = ¢ E || zx|| and the above becomes

12|

P <Vk € [m], -1l < 5> > 1 —2me=< El=lD?/2,
E |z
To complete the proof, it suffices to note that ||z || follows the x4 distribution, and therefore we have
E |z > Vd(1 —2/d). O
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Corollary A.12. Let v ~ Unif(S%"1) and wy and wo denote the largest and second largest of
log?(P/ép) —log®
1y -y Pl ~ 3 © 5 . y
vy ] |vp|. Suppose that logd e 5 and 6p € (e84 1). Then, we have
P
w1 (5]}»

— >l —— ith probability at least 1 — 6p.
wy = +10010g(24P/5]p) with probability at leas P

Proof. Let z ~ N (0, 1) vectors. Note that v 4 z/||z||. By Lemma A.11, we have, for any
dp € (0, 1), that

l| 2| 1‘ < 3log(2/dp)

E|z| 7 with probability at least 1 — dp.

Suppose that |z, | and |z, | are the largest and second largest of |z1[, ..., |zp|. By Lemma A.9 (with
d replaced by P), we have

‘Zk1| op . .-
>4 th probability at least 1 — p.
ok + 1210g(12P/35) with probability at leas P

3log(2P/dp
o )1—\/%” 5 . [3lo(2d/0¢)

w1

> (1
wy < + 121log(12P/dp)

>4+ ——
1 3log(2d/8) + 121og(12P/dp) d
/a7

In order to merge the last term into the second last term, it suffices to require

op S 3log(2d/dp) - d_ logg(P/é]p).
121og(12P/8p) — d logd ™~ 62

Then, with probability at least 1 — 20p, we have

w1 5]1:7
—>14+-—
wa 241og(12P/6p)
Replace dp with dp/2 and we complete the proof. O

Lemma A.13 (Upper tail for the maximum). Let Z1,...,Zq ~ N (0, 1) be independent. We have
the upper tail

P(m%mz 210gd+8>§26_52/2, Vs > 0.
1€

Proof. For notational simplicity, put Z* = max;¢[q) Zi- By union bound and the Chernoff bound,
we have for each 5,60 > 0,

d

E ef%1 2
P(Z*>s)=P|\/ Zi>s| <dP(Z) >s) <d—5— =de” /7.

e@s

i=1

Choose ff = s to minimize the RHS, and we obtain P(Z* > s5) < ¢l°® d=s*/2, Replace s with

v/2log d + s? and this becomes
ig (Z* > 210gd+5) <P (Z* > \/2logd+52) <52

Use the fact — min;e(q Z; 4 max;¢[q) Zi and we complete the proof. O
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B Stage 1: recovery of the subspace and directions

In this section, we consider the stage where the second layer is fixed to be a small value and the first
layer is trained using online spherical SGD. Let v be a first-layer neuron that is good in the sense
of (9). Assume w.l.o.g. that v, is the largest. Our goal in this section is to show v will converge to
close to e; with probability at least 1 — Jp at the end of Stage 1.

For notational simplicity, let l.o,, and L., denote the per-sample and population correlation loss,
respectively. By Lemma 2.1, we can write its update rule as

Vi41
e 41l
where Z; 1 = (I — vv ") (Vyleorr () — VyLeorr) and, by Lemma 2.1,

~VoLleormw = —(I - va)V L

_2¢22vk —vv ek+zzl¢%vél —vv)ey.

I>L k=1

Vpp1 = vy + nﬁﬁcorr +Ndiy1, Vig1 =

In particular, for each k € [d], we have*
Drs1k = vk + 2003 (ﬂ{k <P} — ||v§P||2> v + g, (ﬂ{k < Ploy ™2 — ||v§P||£> Uk

+n Y167 (1{k < PYoj = lo<pll}) ve + nZes
I>L

= v +n1{k < P} (2033 +LTop P+ > gy 2)

I>L

- <2¢3§ lo<pl® + Lé7 [v<plf + D 167 ||U§P||§> Ok + N Z141k-
For notation simplicity, we define o
p =203 [v<p|® + LéF v<plly + > 16} [v<pll - (10)
Note that p is independent of the coordinate k, and we can \;;;

Oer1,6 = ve +nl{k < P} (%3 +LoTvof P+ ) gty 2) Uk = Npvk + N2tk (1)
5L

For the martingale difference term Z, note that by Lemma 2.1, for any u € Se-1, (Ziy1,u) isa

(M2, 0)-subweibull variable with Mz = P*/2 and 1/6 = 2(1 + Q). In particular, this implies
(Zip1,u)| S¢ Mz log®(1*@ log(d/ép) =: My, with probability at least 1 — 6p/d°C (12)

where C' > 0 is any fixed constant.

In addition, we have the following lemma on the dynamics of v7. The proof is routine calculation

and is deferred to the end of this section (cf. Section B.3).

Lemma B.1 (Dynamics of v?). For any first-layer neuron v and k € [d), we have

071k = Vg + 20ekVi g + 2000k Zeg 1k + Sk
where vy == 1{k < P} (2(;3% + Lgszv,f T+ lgzgfviﬁ) — p is a Fy-measurable random

variable with |y, 1| < 20(;25 and (§¢11)seqr) is (uniformly) bounded by O¢(772M%) with probability
at least 1 — dp.

To proceed, we split Stage 1 into two substages. In Stage 1.1, we rely on the second-order terms
to learn the relevant subspace. We will also show that the gap between largest and second-largest
coordinates, which can be guaranteed with certain probability at initialization, is preserved throughout
Stage 1.1. These give Stage 1.2 a nice starting point. Then, we show that in Stage 1.2, online spherical
SGD can recover the directions using the L-th order terms.

“We will often drop the subscript ¢ when it is clear from the context.
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B.1 Stage 1.1: recovery of the subspace and preservation of the gap

In this subsection, first we show that the ratio ||v<p||* / ||vs p||* will grow from Q(P/d) to O(1)

within O(dP) iterations. We will rely on the second-order terms and bound the influence of higher-
order terms. This leads to the desired complexity. The next goal to show the initial randomness can
be preserved. In our case, we only need the gap between the largest and the second-largest coordinate
to be preserved, which will ensure that the neurons will not collapse to one single direction. Formally,
we have the following lemma.

Lemma B.2 (Stage 1.1). Let v € S~ be an arbitrary first-layer neuron satisfying ||v|| < log? d/d,
H'USPHQ /vsp|*> = P/d, and vp = (14 do) argmax ¢ pp\ () Vs at initialization. Let 5p be given.
Suppose that

P>4log?d and n< % P/\ L =0 o2
¢ 10g an /ST dPlOgd M% M%10g9+1(d/5p) =Yy ap .

Then, with probability at least 1 — O(dp), we have

14 0(1)

2
d ~
l<rll” S ) ihin T = 2 Jog <P> — O(dP) iterations.

vep]? 4¢3

In addition, at the end of Stage 1.1, we have v} = (1 + 89/2) argmax, ¢ (p}\ (p} Vs-
Proof. 1t suffices to combine Lemma B.4 and Lemma B.6. O

To prove this lemma, we will use stochastic induction (cf. Section E), in particular, Lemma 4.1 and
Lemma E.3. For example, to analyze the dynamics of |[v<p||® / |vs p||?, it suffices to write down

the update rule of |v< p||® / |vs p||” and decompose it into a signal growth term, a higher-order error
term, and a martingale difference term as in Lemma 4.1. Then, we bound the higher-order error terms,
and estimate the covariance of the martingale difference terms, assuming the induction hypotheses.

The induction hypotheses we will maintain in this substage are the following:

Jve<pl® o llvo<pl® 5 log’d
—5 = O(1)(1 +4¢3n) —=—5, v, < . (13)
[ve,>pll vo,>pll P

They are established in Lemma B.4 and Lemma B.7.

B.1.1 Learning the subspace

Now, we derive formulas for the dynamics of the ratio ||lv<p I? / |lvs p||?. As we have mentioned
earlier, the goal here is separate the signal terms, martingale difference terms, and higher-order error
terms.

Lemma B.3 (Dynamics of the norm ratio). Assume the induction hypotheses (13) at time t < T.

N1
Suppose that n < (dM%) . Let v be an arbitrary first-layer neuron. Then, at time t, we have

2 2
v <P v<p n
o <ol 101 (1 4y s ) + o +
i1 >pl"  [lospll

where e, == 3,5, 17 ||v§p\|§ / v<pl®, where (Hyy1); is a martingale difference sequence

that is conditionally (O¢((1 + 4$%n)t§), 9) -subweibull, and (&:); is an adapted process with
€i1] <o (1 +4030) > MEP for all t € [T) with probability at least 1 — Jp.

Proof. First, recall from Lemma B.1 that

~2 2 2 2_ 2 2 2r72 2_ 2
Viprk = Vi T 207k + 2000k Zepr e + 0 ViRV T Ziga ke + 207 VR Ve i1k
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where v, := 1{k < P} (25)3 + LngQLv,f*2 +D st lgiglzviﬁ) — p is a Fy-measurable random
variable with |; ;.| < 2C7. First, for |9< p||°, we have
1141.<p ) = (1 +4ng3 — 277P) lo<pl® + 20> 16} llv<p|® + 21 (v<p, Z<p)
I>L
+8CHn” [v<pl” £ 207 | Z<p|*.

=:€<pt+1

Similarly, for |9~ p||, we have

N 2 2 2 2 2
100415 P[I” = llvspl” = 20p lvspII” + 20 (vs p, Zo p) £8CE0? [lvs plI” £ 207 | Z5 p|” -

=:&>Pt41

For notational simplicity, we also write &, := > ;5 . 10? |lv<p H; / |lv<p|?. Note that by Assump-

tion 1 and the fact that ||'u§p||§ /lv<pl> < 1,6, < C3. Since [[lv<p| / |lvspll = [o<pll /[0 P,
we have
2 9
lvers<pl® _ (1 Ands ~ 277p+2775”> o<l ,_ 2n{v-p, Z-p) E&p
2 = 2 - . 2 . 2
[ves1,>pll (1 —2np) [lvspll [Dt+1,> Pl [Dt+1,> Pl
2n (v<p, Z<p) §<p
1415 I D115 P

(1 +4n¢3 — 2np + 27751,) |lv<pll?
2
(1 —2np) [lvspl|
~ 2
(1 + 4093 — 20p + 2776”) lw<rl” 2y (wop, Zop) | 20 (v<p, Z<p)

2 ~ 2 ~ 2
(1—2np) lvs P 9115 Pl [
n 2
(14 4nd3 — 2mp + 22, ) o<rl® ¢, Eer
(1—20p) [vsp | 19ec05PI 11,5 Pl

||Ut+1.<PH2 Hvt+1,<P||2 ||”t+1,<PH2
=T E——— + T2 ) + T3 —— T )
[veg1,>pll [ve1,> Pl [ve1,> Pl
where each T; represents one line. Note that, up to some higher order terms, T contains the signal

terms and T, contains the martingale difference terms. Now, our goal is to factor out those higher
order terms.

For Ty, recall that |p| < C7 and use the fact that

1
142

=1-2422% V2| <1/2, (14)

to obtain

2 2

v v ~

T <” t+1v<P”2> _ SPH2 (1 + 4ng3 — 277p+277€v> (14 2np = 47%p)
lve+1. P lo> P

2
) ~
_ v<P2 (1 + g2 + e, + 300;;772) .
>P

Now, we consider

lvep|® 1+ 403 — 2np + 20, 2 (vsp, Z=p) 20 (v<p, Z<p)

lvs p|* 1=2np 601, plI” 601,52
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First, we estimate the 1/ || 9,1 - p||°. We write

1 1

N 2 2
[Ot+1,> Pl (1 =2np) lvspll” +2n(vsp, Z>p) + &Pttt
<1 _ 2n(vsp, Z>p) + §>P,t+1>
2 ~ 2 ‘
(1 —2np) lvspl| [Dt41,> Pl

By (12), we have with probability at least 1 — Jp that
[osp - Zsp| A [o<p - Z<p| A ﬁ?ﬁ'zﬂ So M.
Note that the above conditions also imply

e<p| < 8C40* lv<p|® + 20*PM} <o 1 PM3,
) ) X
&5 p| <8CHN? |lvsp|” + 202 dMG Sy ndM.

By our definition of Stage 1.1, we have ||'f)t+17>p||2 > 1/2. Then, we have

1 1 ( ¢ 4 2 122
- 1+ 4nM, + 32C412d N )
lorriopl? (L= 20p) JosplP N 2T ez
1

= T oo (£ 0e02)).

. . . ~ 2 .
Using the above two estimations of 1/ ||0;+1,>p||”, we can rewrite Ty as

lv<pl 1+ 4963 — 2np + 20es 20 (vsp, Z>p) '
TQ:— = 5 i_Q z > ) (1:|:O¢(7’]MZ))
lvspll np (1 —2np) [|vspl|
2 VA .
mose Zr) (10, i)
(1—2np) [|lvspl
_lv<pl® 14403 — 2np + 2ney 20 (vsp, Z5p) 2n (v<p, Z<p)
- 2 2 2
[lvspll L=2np (1=2np) lospll” (1 —2np)[|vspl
3
v ~ ~ v ~ N
+ 20! Sp”gan()qs(an)ﬂ” <2l 1,0, (nit)
lvspll vspll
_llv<pl® 144063 — 2np + 20e0 20 (vsp, Z5p) 2 (v<p, Z<p)
- 2 2 2
lvspll L =2np (1 =2np) lospll” (1 —=2np)[|vspl
lv<pll 217 2)
+0 ( ="Mz | .
“\ospl” 74
Finally, consider the third term
n 2
. (1 +4n¢3 — 277p+2776v) lo<pll™ e, Eop
3= 2 - 2 A_ 2"
(1 —2np) |lvspl| [0t41,> Pl [[0t41,>Pll

By our previous bounds on &, we have

2 42 372

2
+ 32040 PME < 100C40> M3 <P v lo<rl d) :

2~ 2 2
o> plI” [[941, Pl [ospll
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Combine the above bounds, and we get

||Ut+1,§P||z _ ||”§PH§ (1+477<ZA5§ +2775v)
lverispll”  llospell
_ ||'U§P||2 1+ 477‘% —2np +2ngy 20 (vsp, Z>p) 21 (v<p, Z<p)
o> L= 2np (1—20p) [ospl® (1 - 20p) [vsp|?
[v<p|”

- 230040 + 100002 |: verl 2y (1vnanty)

+ 100C42 M3 (P v H:<P”2d> .
>P

lvs p*

Let Hy;1 denote the second line and £, denote the last two lines. Recall our induction hypothesis
lve<pl? /[0 pl* = o(1 )(1+4¢2n) lvo,<p|* / llvo,>p|I* = ©((1+443n)" P/d). Meanwhile,

note that 1221l < Jo<e \/ & Then, we compute

lospll = Hv>P||2

N P N P /d - N . R
Se1l S (1+403m)" S0 + (1+ 4d3n)' = | 502 N3 (1 ndiLz ) + w2 W5 (1 + 4d3m)' P
So (1+ 463m)'n? N1 (VPdniiz v P)
<o (1+4d5n)'n* MZP
Then, consider H;, 1. We have

2n (v<p, Z<p)
2
(1= 2np) [lvsp|

||U<P||2 1+ 4nd3 — 2np + 2ne, 21 (vsp, Zp)
Jvspl? L=2np (1 - 2np) |vspl?

|Higa| <

X P K P\ /2
S (144630 @5, 2o+ (1460 ) nliozm Ze).

Since both |(v>p, Z~ p)| and |(V<p, Z< p)| are conditionally (P, #)-subweibull, H;,, is condition-
ally <O¢((1 +4620)t D), 6)-subweibull. O

With the above formula, we can now use Lemma 4.1 to analyze the dynamics of the ratio of the
norms.

Lemma B.4 (Learning the subspace). Suppose that

P>4log*d and _ P—2/\ P _o, (L

Then, throughout Stage 1.1, we have

(L +43n)" |lvo.<p|”
2

2 n 2
lo<pl” _ 3(1+463n)" [vo.<pl
2

<
2 = 2 =
lvospll” — llospl

lvo,pII*

and Stage 1.1 takes at most (1 + o(1))(4¢31) = log (d/P) = O (dP) iterations. For this result to
hold for the P good neurons (satisfying (9)), it suffices to replace op with op/ P.

Proof. First, by Lemma B.3, we have forany ¢t < T,

2 2
v v 2
locn<pll_ | SP”2 (1 + 4ndh + 277%) + Hip1 + 41,

loeerspl®  llospll

where €, = > ;5 , 16? vapHi / HvSPHQ, where (H:41): is a martingale difference sequence

that is conditionally (O¢((1 + 4(2)%77)'5%), 9) -subweibull, and (&;); is an adapted process with
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€0i1] So (14 463n)'m2MEP for all t € [T] with probability at least 1 — dp. By our induction
hypothesis vg < log? d/ P, we have

C2logl=2d

n -2
Oégv = QZld)l ZU}C SZZQSIQH'USPHOO S q})l;ﬁ:: (51}.

I>L k=1 I>L

In particular, note that 5@ does not depend on ¢ and is o(1). For notational simplicity, let X; :=
| %, a7 = (144n)txg and 2 = (1 + 4n(1 4 6,))*zo. =F will serve as the lower
and upper bounds for the deterministic counterpart of X, since

(1 + 4%77) Xe+&m1+Hpr < X1 < (1 +4¢3n(1 + 5v)> Xt + &1+ Hegr.

Moreover, note that for any ¢ < T', we have

:cj_<1+4¢2n (1+46,) )

= o ( 1+ 4n(1 +4,)) (1 —4$§nio¢(n2)>)t

< (1448305, £ 040

Sex (04)( )TIT (51) + 77)) .
Since T' <S4 log d/m, the above implies

+
1<+ - <exp(0Og(1)logd (6, + 1)) <14+ 0y(1)logd (6, +1) =1+ 0(1),
t
where the last (approximate) identity holds whenever

1 C2log"~*d 1
ogd =PIzl Siogd

In particular, this implies that the (multiplicative) difference between mf and z; is small. Now, we
apply Lemma 4.1 to X;. In our case, we have

by < = P>ylog’d

— A P
ESen°MZP, o} N¢772sz,

o = 4(1 + o(1))$3n and Xy = O(P/d). Recall that T <4 log d/n. Hence, to meet the conditions
of Lemma 4.1, it suffices to choose

X, 1
S T
dMZlogd
2
2 2 Lo P
=M, Sy ——F—— & < .
Pgthie ~e Tlog" (T /6p) e dM2 log dlog’™ (T /6p)
Then, by Lemma 4.1, we have, with probability at least 1 — O(dp), 0.5z, < X; < 1.531::r . Since

rf = (1 + o(1))x,, this implies 0.5z; < X; < 2x;. To complete the proof, it suffices to

note that for z; to grow from ©(P/d) to 1, the number of iterations needed is bounded by (1 +
o(1))(4¢3n) " log (d/P). =

B.1.2 Preservation of the gap

Now, we show that the gap between the largest coordinate and the second-largest coordinate can
be preserved in Stage 1.1. Let p = argmax;¢ p) v7(0) and consider the ratio v; /v, where g € [P]
is arbitrary. The proof is conceptually very similar to the previous one, except that we will use
Lemma E.3 instead of Lemma 4.1.
Lemma B.5. For p = argmax; p; v (0) and any q € [P], we have

2
3 —L + Hyp1 + g1,

Vitip Uty

where (Hy11); is a martingale difference sequence that is conditionally (O¢(n2 dM%), 9) -subweibull,
and (&) is an adapted process that is uniformly bounded by O¢(n2dM%) with probability at least
1 — dp.

”t+1,q
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Proof. For notational simplicity, define p; 4/, 1= vﬁ o vf’p, Our goal is to upper bound p; ,/,,. Recall
from Lemma B.1 that for any £ < P, we have

~2 2 2 2 2 2 272 2 2
Vihq e = Vi + 207k g + 200tk Zet1k + 0 Vi kUi T 17 i1 + 20 Vi iVt kLt ks

=: &4k
where yy,.¢ == 203 + LoZvr 2 + 3,0 ; 1670k~ — p. Then, we compute

(1 +2n07t,9) Ut2,q + 20vt,gZit1,g + Et41,q

<
Prtale = T 2y,,) VFp + 2000 p Zi1p + 1 p
_ (]‘ + 2777t,q) vtz,q . (]‘ + 2777t,q) vtz,q 277vt,pZt+1,p 277vt,th+1,q
(1 + 277’715717) U752,p (1 + 277715717) UtQ,p {}t2+1,p (1 + 27]7@?) ’Ut2,p
Citg (L 20700) VP g €y 2y g Ziv1q 2NVt pZivip + Eit1p
+ =3 - 2 52 - 2 ~2
Vit1,p (1+ 277%,1)) Vep Vit+1,p (1+ 277%,1») Vip Vir1,p

=T (thrl,q/p) + T2(pt+1,q/p) =+ T3(pt+1,q/p)v

where T contains the first term (signal term), To contains the next two terms (approximate martingale
difference terms), and T3 contains the last line (higher order error terms).

First, for the first term, we compute

277715 §
T, = 1+2 1-2 1l———"—
1 pt»‘]/p( + n'yt,q) ( "7%,17 ( 1 _|_ 2,',},_Yt7p

= Prg/p (1 + 21Vt,q) (1 —20yp = 5772%2,;7)
= prasp (1420 (Ve = 7ep) £200° (47, V 124)) -
Recall that |7, | < 2C3 and note that v,.g — ¥ = > ;5 l0F0L 72 = Yoo 1670472 < 0. Hence,
T1 < prq/p (1+80C;0°) .
Now, consider the martingale difference term

L+ 20,9 200t p Zt41,p 21vt,qZt+1,4

Ty := —prq/p 14297 f)t2+1’p 1+ 27]%71)) Ut2,p.
We rewrite the denominator as
1 1
0211 N 0F 5+ 207,07, + 2000 p Zet1p + St
B 1 1 20Vt pZisip + Et41,p
0, 2mepvE,  OF, + 2mepvd, 021, '

By (12), with probability at least 1 — §p/d”, we have
[Ep+1] So 1°07, + 1P MG + 177 0rp| Mz Sp 0 M.

Therefore,

1 1 1 nMy
) ) 2 ® 2 :
Vij1p  Vip T 21%,pV% Vep Utp
Then, we can rewrite Ty as

Ty = —p 1420V 20V pZiyip 2n4,q 2141, +0, 772@
VP Iy 7y + 2R, (L 20p) V7,

2
Vtp

= Ht+1 + O¢ (17sz%> .

Note that Hy; is a martingale difference term with

Z Vi g| 2,
(Hona| o 1022l W0alital (2,114 | Zegnal)
t,p t,p
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Since Zi41, and Z;41, are both conditionally (M%,0)-subweibull, H;y; is conditionally
(Og(n*dM%),6)-subweibull. Finally, consider

Ta e Civ1q  (L+2771,4) Ut2,q &i+1,p 200t,.qZ¢+1,q 2V pLit1p + Etgip
3 1= e — .

’ﬁt2+1,p (1 + QT]FYtap) UtQ,p {}t2+1,p (1 + 2777"’,?) vt2,p ﬁ%—l—l,p
Since |q.t4+1] V |€pe+1] < n? M2 and | Zi1,p] V| Zig1,4] < My, we have
ITs| So nd M.
Combining the above bounds, we get
Pirtasp < Prasp (1+80C40*) + Hipy + Oy (UZdM%) = prq/p + Hir1 + Oy (nQdMﬁ) .
O

Lemma B.6 (Preservation of the gap). Consider 6. € (0,1), p = argmax;¢|p v2(0) and any
q € [P]. Suppose that

52 P P ~ ( 0,
<p— [ = A =05 ) :
1~ dPlogd (Mg M2 10g9+1(T/(5p)> ?\dP
Then, we have

vig Vb
sup ?’q — T’q < 6. with probability at least 1 — Jp.
t<T \Vtp  Vop
Proof. By Lemma B.5, we have
2 2

Vg1, U,

# < 54+ Hepr + €41,

Vit1,p Vip

where (Hy1); is a martingale difference sequence that is conditionally (O (n*dM%), 6)-subweibull,

and (&), is an adapted process that is uniformly bounded by O¢(n2dM 2) with probability at least
1 — ép. Hence, by Lemma E.3, we have

’U2 1}2 ~
sup< ba _ B0 <, 1ydNid + \/2dMET 10g" T (T)55)

<y ndMZlogd + \/ndM% log?™ (T /6p) log d.
For the RHS to be bounded by 4. € (0, 1), it suffices to require

J

dMZlogd <46, <= n<y—o—o,

~

52
dM21log? ™ (T /6p) logd. <4 8. <« < c .
\/?7 7log"" (T'/dp)logd. S¢ e N Se AN log® (T /63) log d

B.1.3 Other induction hypotheses

In this subsection, we verify the induction hypothesis: v2 < log? d/ P for all p € [P)]. This condition
is used to ensure the influence of the higher-order term is small compared to the influence of the
second-order terms.

Lemma B.7 (Upper bound on vf,). Suppose that

logd [ P P
nSe =5 A 071 :
ap M% M% log”* (d/dp)

Then, throughout Stage 1, we have vfj < log? d/P.
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Proof. First, by Lemma B.1, for any p < P, we have

ﬁtQJrl,p < th,p + 277 2&% + Z l‘lgl%;ci? UtQ,p + ant,PZtJrlaP
I>L

+ n27152,pvt2,p + 772Z752+17p + 27727152,;01}75:PZ75+1:P

=641
C3 logh=2d
@ PL/2—1

—_————
=: 8,

<v7,+4d3n <1 + )U?,p + 20Vtp Zit1,p + S1

where 7, ; := 203 + Loivf =2 + SsL 1¢?vi=% — p is a F;-measurable random variable with
Iye,p| < 2Cq25. By (12), with probability at least 1 — dp/T’, we have

ri1] S P07, + 1P ME + 02 lvp| Mz S n* M

We maintain the induction hypothesis v7 , < 2(1 + 402n(1 + 6,))t log? d/d. Under this induction
hypothesis, we have

|277”t,pZt+1,p| S 77\/(1 + 4&%77(1 +0y)) 10g2 d/d|Zt+1,p|a

and therefore, is (Og (7*(1 4 4¢3n(1 + 6,)) 03 , M7, 0))-subweibull. Using the language of
Lemma 4.1, we have

. _ log? d
ESen’Mz and oy S n*(1+463n(1 +6,))" Ogd M3.
Therefore, as long as
. log? d/d logd
Mg Sp —— NSe g
T dMz
ylogd < x3 < logd

d 7 Tlog? TN (T 5p) ~ dM10g" (T /65

we have v7, < 2(1 + 4¢2n(1 + 8,))* log? d/d throughout Stage 1. In particular, by Lemma B 4, this

implies

log® d < log® d
da ~ P

vtzyp < expltoe (4&%7)T>

B.2 Stage 1.2: recovery of the directions

Let v be an arbitrary first-layer neuron. Assume w.l.o.g. that v? is the largest at initialization and
US’I / maxo<p<p va . > 1+ 9. By Lemma B.2, we know this gap can be approximately preserved
in the sense that ’0871 / maxao<i<p v& & = 1+ 00/2 holds. For notational simplicity, we will drop the
factor 1/2 in the sequel. Moreover, since we use symmetric initialization, we can further assume that
v1 > 0. In this subsection, we show that v} will grow from Q(1/P) to 3/4 and then to close to 1.
Formally, we prove the following lemma.

Lemma B.8 (Stage 1.2). Let v € S~ be an arbitrary first-layer neuron satisfying v%hl >c/P

and v%hl/ maxy<p<p V3, > 1+ ¢ for some small universal constant ¢ > 0. Let 6p € (0,1) and
€y > 0 be given. Suppose that we choose

< 0o i/\i 1 A Ex P A e«dP
U TE M2 Mzlog?t(d/sp) ) dP \ MZlog(1/e.) MZlogdlog?t!(d/dp)

Then, with probability at least 1—O(8p), we have v} > 1—e, within Oy ((PL/2=1 +log(1/e,)) /)

iterations.
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Proof. 1t suffices to combine Lemma B.10 and Lemma B.11. O

Lemma B.9 (Dynamics of v%). We have

. ) l i
Vi 2 0P [ 1420 167072 = 20> 167 [ve<plly | + Herr + &,
I>L I>L

where Hy 1 is a martingale difference term that is conditionally (Og(n*v} | M%), 0)-subweibull and
111 is bounded by O¢(772dM%vtz71) uniformly over t € [T) with probability at least 1 — Jp.
Proof. Recall from Lemma B.1 that
071k = ik 2070kV7 g + 2000k Zeg 1k + S ks
where v, := 1{k < P} (2@% + Lgf%v,f*2 +D st lé%viﬁ) — p is a Fy-measurable random

variable with |7, x| < 2C3 and (£;41)¢e(ry is (uniformly) bounded by Oy (n? M%) with probability
atleast 1 — dp. Sum over k € [d] and we get

d
el =1+2n) (Mk < P} <2¢>§ + Lotof 2 + Zw%vf;?) - p) Vi + 20 (0, Zia) + €4

k=1 I>L
~ - !
=142 (263 [ve<pll” + > 167 [ve<pll = plloel? | + 20 (v, Zegr) + &4y
I>L

<142 (%3 - p) +20Y 167 [vr<pll +20 (01, Zegr) + &,
I>L

—. N2
_'Nv

where &, is bounded by Og4(72dM2). Recall from (12) that | (vy, Z;41) | S¢ Mz and choose
n < (dM%)~t. As aresult,

[ (1 (v, Zi) + 6 (1 2w, Ze) + 6 ))
e ||> — N2 N2 NF 420 (v, Zesa) + &y
1 i277 <'Ut, Zt+1>

Z N2 T N2 N2

v

+ 0y(n*dM3).
Meanwhile, we have

U411 = Vi1 + 21 (2% - P) Vi1 420 Y 1670 + 2001 Zean + S
I>L

where |&,41.1| Sg 72 M. Therefore,

2 1 1 20 (v, Ziya)
HLIANZ N2 N2

02 02 o2n (v, Z, ~
_ i1 Yty 77< ts t+1>i0¢(n2dM%vt2,1)

2 A
Vi1 =0

" 0¢(772dM§))

NZ NZ NZ
v, +2n (243% - P) v, +2n dsr 1620
N7

2171)15’th+1’1 U?,l +2n (2925% - p) Ut2,1 +2n ZZZL l¢l2Ul1 2n <1)157 Zt+1>
Ng NG Ny
== O (nszgva)

=T ('Ut2+171) + To (UtQJ,-l,l) + O¢ (nZdM%v?J) ’
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where we have used the fact that v}, > 1/P to merge error terms of form 7?M% into

Oy (nQdM%vfll). Meanwhile, for Ty, we have [Tao| Sg [nve1Zes1,1] + [nvE (ve, Zis1)|. There-
fore, itis a (Og(n*v7 M%), 0)-subweibull. For the signal term Ty, by (14), we have

vy +2n (2¢§ - P) Vi + 2025, lp7v}

T1 = N N
120 (203 = p) + 20 15 167 Jor <
. - ; l
=vi (142 (2¢§ - p) +2n) 167 | | 1—2n (2¢>§ - p) —20 Y 16} |vr,<pl; + Oy (n?)
I>L I>L
5 1
= oty [ 1+ 20D 1670 =20y 16F [[ve<plly £ Oy (i)
I>L I>L

Combine the above estimations, set H; 1 = T2, and we complete the proof. O

Lemma B.10 (Weak reocovery of directions). Suppose that we choose

5o P d 1
NS o | v N T e |-
dPL/2 \ M2 M3 log"+' (d/p)

Then with probability at least 1 — O(8p), we will have v > 3/4 within the following number of

iterations:
-1
pL/2—1 P d 1
O¢< ) =0 | PAPT 2 | N oy
n M2 Mzlog"" (d/bp)

Remark. Note that when M2, M2 = O4(P), then the above is roughly P x (dP~~2). The dP*~2
is the usual bound for online SGD when the noise has order d instead of P. The first P comes from
the fact that there are P directions. &

Proof. By Lemma B.9, we have

. . .
Vi 2 iy |1+ 2772 Igjvy* - 2772197512 lve,<plly | + Her + &1,
I>L I>L

where H, is a martingale difference term that is conditionally (Oy(n*MZv7 ), 6)-subweibull, and

€41 is bounded by Oy (n2dM2v?,) for all ¢ € [T] with probability at least 1 — dp. For the signal
term, we write

P 2

- 2 v
o7 — ol = o}~ o - ka:vl (=) = (loepl® — ) 3 b0
-

k=2 ||’U§P||

T
[\

Note that the last term is a weighted average of vfc_2. Similar to the proof in Section B.1.2, one can
show that the induction hypothesis v/ maxa<j<p v3 > 1 + dp/2 remains true,” which gives

P

02 L/2-1 02 L/2—-1 ’UL 2
E 7’;%—2 < ( max vi) < (1) e T
= |lv<p| —0? 2<k<P 1+ d0/2 1+ dp/2

The only difference is that now the L-th order terms cannot be simply 1gnored as we no longer have the
induction hypothesis v < log? d/P. To handle them, it suffices to note that if v > v , then those L-th order

terms of v7 are also larger which will even lead to an amplification of the gap. In fact, thrs is why we can recover
the directions using them.
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Therefore,

1—2 l -2 2 2 2 711L72
o = ol 2 21— ) = (Jlosel = ob) {7
- o (1 + 80(1 —v?) — ||v<P||2) 5 %012 (1—27).
14 6¢/2 = - !

As a result, for the signal term, we have

vP | 1420 167007 =20 ) 167 lv<pll | > o + Léido (1 —o7) nof.
I>1 I>L

In particular, when vf < 3/4, we have
2 o L 5 L
Vip11 =01 F TL5O77U1 + Hyppr + &rr
Thus, using the notations of Lemma E.5, we have
L¢? _ .
a:%%%m ESentdM?, of Sen*Mz, p=L/2, x0=9Q(1/P).

To meet the conditions of Lemma E.5, it suffices to choose

-1 1 p—1
a S ah <= aSéytah

]
=< qzP ! <, %
HNO"IO <= 77N¢ dMEPL/2717
P
2 o < o 1
log? ™t <log(1/m0)/(ax8716]p)) MZ P2 10g"* (d/6p)

Combine the above and we get the condition

. do P d 1
N3¢ gprrz \ vz " IE 1afEl :
apr M? 7 log"™ (d/5p)
Finally, we apply Lemma E.5 to complete the proof. O

Lemma B.11 (Strong recovery of directions). Let v € S*~! be an arbitrary first-layer neuron. Let
op and €, be given. Suppose that we choose

Ex P e.dP
1% 5 | 172 N o+1 :
dP \ MZlog(1/e.) MZlogdlog” " (d/dp)
Then, with probability at least 1 — O(8p), we have vi > 1 — e, within Oy4(log(1/e.)/n) iterations.

Proof. Again, By Lemma B.9, we have

Vi =iy | 1420 ) 167 = 20 167 [on<plly | + Hivr + &,
I>L I>L

where Hy, 1 is a martingale difference term that is conditionally (O (n*MZvZ ), 6)-subweibull, and

€41 is bounded by Og(n?dM%v? ) for all t € [T'] with probability at least 1 — dp. Meanwhile, by
the proof of the previous lemma, we have

A A A [
of 1420y 167072 =20 ) 16f |v<pl; | 2 of + 205 72— (1 —of) mof
I>L I>L )
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for some constant ¢4 4 > 0 that depends only on ¢4, 7, and ¢. Thus,
1— ”t2+1,1 > (1 — vf) —N0Cg,L,é (1 - U%) —Hip1 — &y
In the language of Lemma 4.1,% we have
a=-ncgrs 1T Selog(l/e.), 0% Son*Mz, E S ndMy.
To meet the conditions of Lemma 4.1, it suffices to choose

Ex £
ESXE o« Sp ———————,
~T T dMZlog(1/e.)
02 < I R n < el )
7™ Tlog (T /5p) ~ M2 logdlog?t*(d/dp)

Under the above conditions, by Lemma 4.1, we have v} > 1 — &, within T' = Og4(log(1/c.)/n)
iterations with probability at least 1 — O(dp). O

B.3 Deferred proofs in this section

Proof of Lemma B.1. First, recall from (11) that

V1,6 = vk +nl{k < P} (%3 + Lojvg 2 + Z 161312022) Uk — NpVk + NZt41 k-
I>L

Therefore,

Of 1k = Vig + 2000k (]l{k < P} (2@53 + Lo P+ z&ﬁﬁ) Vg — pUk + ZtH,k)
I>L

2
i (n{k <P} (2&)3 +LTop P+ lé?vw) ok — Uk + Zm,k)
I>L
= vtz,k +T (@1524-1,1@) +Tq (ﬁt2+1,k) .
For the first term, we rewrite it as

= o, (m < p) (z@s; IR zz@%vw) . p) T
I>L
Consider the second term. For notation simplicity, put

= 100 21 (28 138 4 G -
I>L
Note that ~y, ; is F;-measurable and by Assumption 1, we have
203 + Lot vy 2+ ) lfvl * <203 + Lof + > 16} < C3,
I>L I>L
. . L . . . . .
p =203 llo<pl” + Loi lo<ply + D167 lo<pll < 263 + Lot + ) 16 < CF,
I>L I>L
and therefore |, ¢| < 20(125. Then, we compute
T
77; = (Vepvk + Zt+1,k)2 = WtQ,kUtQ,k + ZtQ-i-l,k + 2’7t2,kvt,th+1,k-
Combine the above two bounds and we get
0711k = Vi 20YekVi g + 200k Zert e + O VikVik + 0 L g + 20V R VR DLk
Now, consider the last three terms. By (12), we have | Z; 11 1| So M, with probability at least 1 — &p
for all ¢ € [T. Thus,

P20t e + P 2R + 207 e Zesn ] S P M3

SWhen o is negative, it suffices to replace zo with our target e..
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C Stage 2: training the second layer

Lemma C.1. Suppose that for each p € [P], there exists a first-layer neuron v;, with v;, , >

V1= ¢, for some small positive €, = O(1/P), then we can choose a, € R™ with ||a.| = VP
such that
L(a,, V) :=E(f.(z) - f(z;a.,V))? < 2003 P%,.

Proof. Choose one v;, for each p € [P]. Then, we set the ip-th entries of a. to be 1 and all other
entries 0. Then, we write

E
xz~N(0,I)

Hence, for k = [, we have

E (¢(x1) = $(vi, - 2))* = E¢(a1) + E¢*(vy, - @) — 2E §(ay,) (v, - )

Meanwhile, for k& # [, we have

E(¢(zr) — ¢(viy - 2)) (6(21) — ¢(vy; - x))
= E¢(zr)o(z1) + E (v, - )9(v;, - @) — Ed(ar)d(vi, - ) — E (v, - @) (1)

o0
— E: 72 o NE i i
= ¢Z (<v2kvvlz> - Uil,k - U’L')C,l) :
i=2
2 2
Note that v, , Vv ; < &, and

(’uik,vil>2 < 21)1'2[71@ +2(v;, — ek,vil)Q < 2, +2||v;,, — e;.c||2 =2, +4 (1 — v 1) < bey.
As a result,
E (¢(x1) — ¢(viy, - @) (d(1) — p(vy, - ) < 10Cze,.
Combining these two cases, we obtain
L=E(f(z) - f(z;a.,V))* <2003 P%,.
O

Now, we are ready to prove the following generalization bound for Stage 2. The proof of it is adapted

from Section B.8 of [OSSW24], which in turn is based on ([DLS22, AAM22, BEST22]).

Lemma C.2. Suppose that for each p € [P), there exists a first-layer neuron v;, with v?p’p >1—gy
for some small positive £, = O(1/P). Then, there exists some A > 0 such that the ridge estimator G
we obtain in Stage 2 satisfies

X 8la.| vm
2@, V) = full ey < NNV AT P2
1 ) = Fillzapy N

with probability at least 1 — 20p.
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Proof. For notational simplicity, let D = N(0, 1) and D= % Zﬁle 0z, denote the empirical
distribution of the samples we use in Stage 2. In addition, we write f, for f(-;a, V') where V is the
first-layer weights we have obtained in Stage 1 and X = (x7,,))_;.

Let a,. € R™ denote the second-layer weights we constructed in Lemma C.1 and @ € R™ denote
the ridge estimator obtained via minimizing @ — || f, — fal|? L2p) T A |la||®. By the equivalence
between norm-constrained linear regression and ridge regression, there exists A > 0 such that

Ifs = falZz(py < s = fa.

Choose this A and let F := {f(-;a) : |la|| < ||a||} be our hypothesis class. Note that fz € F.
Moreover, we have

1a = Foll sy = (Ifa = Felliaoy = I1fa = Follpapy ) + fa = Fllaco)

2 N
2oy and ] < a.].

<o (o = Foll sy = Ifa = Fell ooy ) + 1fa = fell o)
< s (Ifa= Lellpw) = o= Follgsy) + e = follaga)

a:llal<[la.]

where we used the fact that || fa — fil 11 (p) < Ifa — fellp2py < 1 fa. = fill 11 (p) in the last line.

Now, we bound the first term. Let o := (0,)N_; be i.i.d. Rademacher variables that are also
independent of everything else. By symmetrization and Theorem 7 of [MZ03], we have

E [ sup (||fa_f*|L1(D)_||fa_f*||L1(lA7))‘|

X |a:llal<|a.]|

<2 E ot | fa(®rin) — fo(®rin)]
X.0q; |\a|\<|\a*n N Z

<2 E *Zat fa wT-‘rn) f*(wT-‘rn))

X.oq: |\a|\<|\a*n

0

2 N 1 N
<< E sSup tha(wTJrn) +2 E — t *($T+n)'
N Xﬁa:nansna*u; X =1

Note that the first term is two times the Rademacher complexity Rad y (F) of F (see, for example,
Chapter 4 of [Wail9]). By (the proof of) Lemma 48 of [DLS22], we have

la.| 2 _ el |5
Rady(F) < = E 2(v - x
~( )_\/JV mNN(OId)W( z)|| i ;mwN(%ﬁ(la )
— ||a*||\/a ]E 9252(931)
VN 21 ~N(0,1)
_2fa v
vN
In other words, we have
4lla.| v'm
E swp (o= Ffollpw) = 1fa— filliap) <
a:flal|<[la.| B O ETUN
Hence, for any dp € (0, 1), by Markov’s inequality, we have
dlla.l vm
swp (o= Filliagoy ~ o = Fllnoy) € =
P

a:llal<[la.|
with probability at least 1 — dp. Apply the same argument to || fa, — fill - (b and recall from
Lemma C.1 that || fo, — f*||L2 ) < 10LP%¢,, and we obtain

8 a,
Ifa = fell oy < H\F”\F 10LP2%,,
]P’
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with probability at least 1 — 2Jp. O

D Proof of the main theorem

Theorem 2.1 (Main Theorem). Consider the setting and algorithm described above. Let C' > O
be a large universal constant. Suppose that logC d < P < dand {v} }rcp) are orthonormal. Let

bp € (exp(—1log® d),1) and e, > 0 be given. Suppose that we choose ag,n, T, N satisfying

N N P2 5 526P _ pL/2-1
=0(P), N=0|-=], =04 —7+—|, T=0 .
m=6) N=6(zg) 1= (ppr). 70 (T
Then, there exists some A > 0 such that at the end of training, we have Lyisg(a, V) < e, with
probability at least 1 — O(dp).

Proof. First, by Lemma A.8, we should choose m = © (P log(P/dp)) and the dy in Lemma B.2 and
Lemma B.8 can be chosen to be ©(1/log P). Meanwhile, by Lemma C.2, to achieve target L!-error
€, with probability at least 1 — O(dp), we need

2 2
N> Pm :@<P log(P/(S]p))’ 571:O¢<€*)~

~ 2282 252 P2
€308 €205 P

By Lemma 2.1, we have My <4 P'/? and My <, P'/?log? log(P/dp) where § = 1/(2(1 + q)).
Then, to meet the conditions of Lemma B.2 and Lemma B.8 (uniformly over those P good neurons),
it suffices to choose

< 1 1 g2
[/INT 20+3 dPL/2 A Plog(1
log?'+3(d/6p) og(1/ex)
Then, by Lemma B.2 and Lemma B.8, the numbers of iterations needed for Stage 1.1 and Stage 1.2

are Oy(log(d/P)/n) and Oy ((P*/*=! +1log(1/e,)) /n), respectively. Thus, the total number of
iterations is bounded by

L/2-1 5 L/2
T-0, <logd+P j —|—10g(P/€*)> 0, <dPL1 v P lzg(l/g*)) .

E Stochastic Induction

Our proof is essentially a large induction: When certain properties hold, we know how to analyze the
dynamics and can show certain quantities are bounded with high probability. Meanwhile, certain
properties hold as long as those quantities are still well-controlled. In the deterministic setting, this
seemingly looped argument can be made formal by either mathematical induction (in discrete time)
or the continuity argument (in continuous time). In this subsection, we show the same can also be
done in the presence of randomness and derive a stochastic version of Gronwall’s lemma and its
generalizations.

We start with an example where Doob’s submartingale inequality can be directly used. Let
(Q, F, (Ft)+, P) be our filtered probability space and (Z;); be a martingale difference sequence.
Suppose that E[Z? +1 | F¢] is uniformly bounded by 02, Then, by Doob’s submartingale inequality,
for any M > 0 and T > 0, we have

t

>z

s=1

t<T

) ’ To?
-2 _ z
ZM]SM E(E ZS> = =

s=1

P [sup

In particular, this implies that when M = w(ozV/T), we have sup,<r ‘22:1 Zs| < M with high

probability.

Note that there is no need to do any kind of “induction” in the above example because of the
unconditional uniform bound on E[Z? .1 | Fi]. However, things become subtle if instead of assuming
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E[Z?,, | F¢] is always bounded by 0%, we assume it to be bounded by 0% whensup,, [>°7_, Z,| <
< M holds with high probability, the

bounds E[Z?,, | F;] < o% should also hold with high probability and we can still use Doob’s
submartingale inequality as before. Now, we formalize this argument.

M . Intuitively, since M is chosen so that sup, ’2221 Zs

Lemma E.1. Let (Zt);; be a martingale difference sequence. Suppose that there exists M,o7 > 0
such that if sup <, |> 7y Zs| < M, then we have E[Z?, | | F;] < 0%. Then, we have

t
Zs
s=1

TO'%
M2

]P’[sup >M| <

t<T

Note that this bound is the same as the one we obtained with the assumption that E[Z} | | F;] < 0%,
always holds.

Proof. Consider the stopping time 7 := inf{t > 0 : ‘22:1 Zs| > M}. By definition, we have
sup,<; [>or_) Zs| < M for all t < 7. Then, we define ;1 = Z;;11{t < 7}. Note that (Y}) is
a martingale difference sequence with IE[YE_H | Ft] < 0%. As aresult, by Doob’s submartingale

> M] < To% /M?. To relate it to (Z;);, we compute

inequality, we have P {suptST ‘22:1 Ys

t t T
P |sup Zs| > M| =P |sup Z|>MANANTT| =P Zg|>MANAT LT
=P Z Y, >MAT<T
s=1
TO'%
— M2 )
where the first and second identities comes from the definition of 7 and the third from the fact Z;, = Y;
forallt < 7. O]

Now, we consider a more complicated case, where the process of interest is not a pure martingale.
Suppose that the process (X ), satisfies

Xip1 =1+ a) Xy + 641+ Zip1, Xo=x0>0,

where the signal growth rate « > 0 and initialization xg > 0 are given and fixed, (&;); is an adapted
process, and (Z;); is a martingale difference sequence. In most cases, (& ); will represent the
higher-order error terms.

Our goal is control the difference between X; and its deterministic counterpart z; = (1 + ). To
this end, we recursively expand the RHS to obtain

X1 =0+ a)P’Xi+ T+ )&+ & + (L+ ) Zy + Ziga
t

t
=([1+a) Moo+ > (1+a) 1+ > (1+a) " Ze.

s=1 s=1
Divide both sides with (1 + «)**! and replace ¢ + 1 with ¢. Then, the above becomes

t t

X(1+a)  =ag+ > (1+a) 6+ (1+a)°Z.

s=1 s=1

Note that ((1 + )" Z;), is still a martingale difference sequence. Ideally, |¢;| should be small as it
represents the higher-order error terms, and we have bounds on the conditional variance of Z; so that
we can apply Doob’s submartingale inequality to the last term. Unfortunately, in many cases, since
&1 and Zy 4, particularly their maximum and (conditional) variance, can potentially depend on
(Xs)s<t, we may only be able to assume |&;41| < (1 + «)'=E with probability at least 1 — dp ¢ (for
eacht) and E[Z7, | | F4] < (1 + )'o% for some &p ¢, = and 0% when, say, X; = (1 £ 0.5)z,. Still,

43



we can use the previous argument to estimate the probability that X; ¢ (1 + 0.5)z; for some ¢t < 7.
We now formalize this argument. In addition, instead of Doob’s L? submartingale inequality, we will
use the following extension of Freedman’s inequality, which allows us to improve the dependence on
failure probability from linear to poly-logarithmic. The proof of this lemma is deferred to the end of
this section.

Lemma E.2 (Freedman’s inequality with subweibull variables). Let {Z;}: be a martingale difference
sequence that is conditionally (o, 0)-subweibull, i.e.,

P[|Z] > M| Fi1] < Cexp (— (M/o—)l/@) . YM >0,

Sfor some universal constant C > 0. Then, for any dp € (0, 1), we have

T
Z Zy| S oy T logf*! (T'/dp), with probability at least 1 — Jp.

t=1
Lemma 4.1 (Stochastic Gronwall’s lemma). Suppose that (X;): satisfies

Xiy1 =14+ a)Xe + &1+ Zip1, Xo=m0>0, %)
where the signal growth rate o > 0 and initialization xo > 0 are given, (&;); is an adapted process,

and (Z4)y is a martingale difference sequence. Define x; = (1 + a)txg.

Let T > 0 and dp € (0,1) be given. Suppose that there exists some op¢ € (0,1) and =, 07 > 0 such
that for every t > 0, if X; = (1 & 0.5)xy, then we have |&,41| < (1 4 «)'= with probability at least
1 — 0p ¢ and Zy 11 is conditionally (1 + «)tc%, 0)-subweibull. Then, if
&
Tlog’ ™ (T /ép)’

we have X, = (1 £ 0.5)z; for all t € [T] with probability at least 1 — op — T'p ¢.

‘ijf and 0% < (6)

Remark. This lemma can be easily generalized to cases where we have multiple induction hy-
potheses. For example, if we have another process X, = (1 + o)X] + &, + Z;,, and
we need both X; = (1 + 0.5)z; and X{ = (1 £ 0.5)z} for the bounds on {411, &} 1],
E[Z? | Fi]. E[(Z]1)? | F4] to hold. In this case, the final failure probability will be bounded by
T(0p,¢ + Op.er) + 20p. L]

Remark. If the recurrence relationship is X; 1 < (14 «)X; + &+41 + Zi41, and we only want an
upper bound, then we can replace zy with any xar > xp in (6) and the definition of the deterministic
process (). )

Proof. Let 7 := inf{t >0 : X, ¢ (1+£8)x,} and set &1 = &1 1{t < 7} and Z;,, :=
Zy11{t < 7}. Clear that 7 is a stopping time, é is adapted, and Z is still a martingale differ-
ence sequence. Moreover, by our hypotheses, we have |&;| < (1 4 «)'Z with probability at least
1 — dp ¢ and Z;, 1 is conditionally ((1 + )0%, §)-subweibull. As a result,

t
Z(l +a)"%¢,| < St < TE  with probability at least 1 — Tope,
s=1
and by Lemma E.2,
t
sup | (1+ @) Z,| < 021/Tlog" ' (T/6p) with probability at least 1 — Jp.
tE[T] s=1

Hence, for any dp € (0, 1), if we assume

2
_om
Tlog”™ (T /6p)

ES

i) 2
— and o3 <
T Z ~Y
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then with probability at least 1 — dp — T'dp ¢, we have

t

Y U+a) e+ (1+a)"Z

s=1 s=1

x
<0

7).
5 VtelT]

Recall that

Xi=(1+a) (xo + Z(l +a) %+ Z(l + a)_sZS.> and z; = (14 a)'zo.

s=1 s=1

Then, we compute

P[3t e [T], X, ¢ (1£0.5)z] =P[3t € [T],X; ¢ (1£0.5)z AT < T
=P[X, ¢ (1£0.5)z, AT < T

_Pl

T

Y l+a) 6 +) (1+a)*Z,

205$0AT§T

s=1 s=1

=P D 1+a) 6 +> (1+a) " Z|> 0500 AT <T
s=1 s=1

< dp+Tope.

O

The above lemmas will be used in Stage 1.1 to estimate the growth rate of the signals. The next
lemma considers the case where o is 0 and will be used to show the gap between the largest and the
second-largest coordinates can be preserved during Stage 1.1.

Lemma E.3. Suppose that (X;); satisfies
Xip1 S Xp + &1+ Zig1, Xo=z0 >0,

where the signal growth rate o > 0 and initialization xo > 0 are given and fixed, (&), is an adapted
process, and (Z) is a martingale difference sequence.

LetT > 0 and ép € (0, 1) be given. Suppose that there exists some ép ¢ € (0,1) and =,07 > 0
such that for every t < T, || < E with probability at least 1 — ép ¢ and Z; 1 is conditionally
(0%, 0)-subweibull. Then, we have

sup | X: — zo| < TE + 024/ TlogeH(T/(S]p) with probability at least 1 — T'ép ¢ — Jp.
t<T

Proof. Recursively expand the RHS, and we obtain

t t
Xt S Zo +Z§s +ZZS
s=1 s=1

Clear that ,

sup
t<T

&| < TE  with probability at least 1 — T'0p ¢.
1

s=

Meanwhile, by Lemma E.2, we have

t
Z Zs| < 021/Tlog’ ™ (T'/dp) with probability at least 1 — Jp.

s=1
Combine the above bounds and we complete the proof. O

sup
t<T

Now, we consider the case where the signal grows at a polynomial instead of linear rate. This
lemma will be used in Stage 1.2, where the L-th order terms dominate. We will need the following
estimations on the corresponding deterministic process. Its proof is deferred to the end of this section.
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Lemma E4. Consider the process xy11 = x4 + ozl where xo, o are small positive real numbers
and p > 1. Let T' be the time x first goes above 1. We have

T—1
1 1 1
T<——"—— and 2 < ifa <xbh™ " /p.
~ —1 ~ -2 ~ 0
(p— 1axh ; pazh

Remark. This lemma provides upper bounds on the time needed for x; to grow from 2o = o(1) to 1
and the sum of z; in this process. Note that the second upper bound is essentially 7T'x. Intuitively,
this is because due to the sharp transition behavior of this polynomial system, z; ~ zo for most of
the time. s

Lemma E.5. Let (X;); be a non-negative stochastic process satisfying
Xep1 2 Xe+aXP + Zir + &1, Xo=120 >0, (15)

where « > 0, (Zy11): is a martingale difference sequence, and (1) is an adapted process. Let &,
be the solution to the deterministic recurrence relationship ;11 = &y + aif o = x0/2.

Let 6p € (0,1) be given and T := inf {¢ > 0 : X, > 1} . Suppose that there exists 2,07 > 0 and
Op.e € (0,1) such that if Xy > & and t < T, we have |§;| < ZX, with probability at least 1 — p ¢
and Z 1 is conditionally (0% X, 0)-subweibull. Then, if

—_ p—1 2 OLCCS
« 5 xO /p7 = 5 pOéiUO ) Oz 59 0+1 p—1 )
log”*! (log(1/0) /(' ) )

then with probability at least 1 — 0p ¢/ (a(w0/2)P~") — 0p, we have T < (pa(a:o/Q)p_l)_l and

Xy > 2y forallt <T.

Proof. Note that we can rewrite (15) as X; 11 > X; (1 + aXffl) + & + Z; and view it as the linear
recurrence relationship in Lemma 4.1 with a non-constant growth rate. This suggests defining the
counterpart of (1 + a)* as

o [T +axz), >
s’ 1, t=s.

Then, we can unroll (15) as
X, > X, (1 + axg*) + &+ 7,
X2 Z (X() (1 + OéXgil) + 51 + Zl) (1 + OéXfil) + 52 + Z2

> X, (1 n axg—l) (1 n aX{"l) n (1 n axf‘l) 1+ 21) + &+ Zs
=XoPo2+ P2 (& + Z1) + &+ 2o,
X3 > X, (1 + angl) e+ Zs

> (XoPoz + Pra (€1 + 2) + &+ Z) (14 aXE ™) + &5+ 2
=XoPos+ Pi13(§&1+ Z1) + Pas (& + Zo) + &3 + Zs.
Continue the above expansion, and eventually we obtain

t—1
Xy > Xy Py + Z P14 (bsp1+ Zsy1), YE>tg>0.

s=to
Since X is non-negative, we have P, ; > 1 > 0. Hence, we can rewrite the above as

t—1
PiXe > Xy + Y Pty (Gasr + Zogn), VE> 10 > 0.

S:to
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We wish the repeat the argument in the proof of Lemma 4.1, showing that the last term is smaller than
Zo/2. Unfortunately, this approach will not work directly. We have only assumed |£;41| < ZX; and
E[Z? ,|F:] < 0% X,. Since X; can be much larger than £, we cannot directly use our assumption
to control the size of noises. On the other hand, note that if X; > 2, the induction hypothesis will
less likely be violated, so in principle, X; > &; should help us. To “enforce” the X; < &, condition,
we consider the following recoupling strategy: whenever X; > 4i,, we restart &; at X,;/2. This
recoupling will only increase the value of Z;, and it ensures X; < &; always hold.

We now formalize the above argument. To this end, let ®; : Ryy — R be the flow map of the
recurrence relationship 2411 = x; + ax?. That is, ®4(x) is the value of x4 if (x5), is generated by
T4y41 = i +axt with xg = x. Then, we inductively define the following sequences of “deterministic”
processes and stopping times:

20 = 3,(X0/2), L) = inf {t >0: X, > 4:@§°)} :

A(k) =0, ,m (X,m/2), JFHD — inf {t > ) X > 4£Ek)} , Vk>1.
In words, ¢(¥) is the time we switch to the kth couphng By construction, By construction, ac( Vi
non-decreasing in both ¢ and &, 0 =: /(9 < ... < () < ... ‘and :I:((k)) =X,m/2> 29?:(ﬁ) 2 2

237(52 112 > ... > 2F=1g,. In particular, the last property implies that there are only finitely many

A()

couplings before z; ’ reaches any fixed constant.

Then, we abuse notations, redefining

TES Z 1 {L(k) <t< N““)}:%E’“).

k=0

Clear that at each ¢, only one summand is nonzero. By construction, we always have X; < 42;. Since
this Z; is no smaller than the original one, it suffices to bound the probability that X; < z; for some
t < T. Note that X; < @, if and only if there exists some k € N> with ¢t € [¢«(®), (¥ such that

. (k
Xuow + Z L<k> s+l (€41 + Zo1) < P<k1> txg g
(F) =0
In addition, note that if X, > Z, for all s < ¢, then we have ngl)ijrgk) < ;E(fk)) = X, /2.
Therefore,
Xs > 25,Vs < t,
t—1

_ ~(k
Z PL(kl)’S+1 (fs+1 + Zs+1) < _xf(k))'

s=u(k)

Elt7Xt S :'i't :> Elk 6 N207t E |:L(k)7L(k+1)) St

In other words, it suffices to upper bound the probability that RHS happens before ¢. To this end, we
define 7 := inf {t Z 0: Xt S jt}, €t+1 = §t+1]]-{t < ’T}, and Zt+1 = Zt—',-l]]-{t < ’T}. Then, we
can further rewrite the above as

J3t<T, Xy <y
(tAT)—1 (tAT)—1
= Jk € Nsg,t € {L(k), L(k+1)) s.t. Z ng) s+1€5+1 + Z L(k) et s+1 > x((k))
s=u(k) s=y(k)

We now estimate the last term as follows. First, for (&;):, we have |£t+1| < EZX; < 4E§c£k) if
t € [1F),,(F+1)) Therefore,

(tAT)—1 (tAT)—1 —
—1 o - A(k:) < =

Z PL()C)78+1£8+1 S 4_‘ Z $3+1 ~ [A(k}) ]p_2 ’
s=u (k) s=u(k) palT (i)
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where the second inequality comes from Lemma E.4. For the RHS to be smaller than fcfﬁ?), it suffices
to require

(k)]pAJ

= N -1
E S pald) i )

[1]

& < paxf

-1
Also, by Lemma E.4, when the induction hypothesis is true, we have T' < (ax’o’fl) . Thus, the

above implies that with probability at least 1 — dp ¢ /(cx’ "), the total contribution of (&), is small,

as long as = < pazh .

Then, we consider the martingale difference terms. Note that P, Zt+1 is a martingale difference

(k> 1
sequence that is conditionally (40 Z:vffk)) , 0)-subweibull. Hence, for each k, by Lemma E.2, we have

-1
(tAT) -1 IOg”l((a[f(ﬁ))]p‘WP,Z) )
j{: < 2 (k)
L<k> 541 Zs1| So AN (k)
s () a2, P

logf ™! (1/(a$g_15p7z)>
N X

~ -2 )

P
o

with probability at least probability at least 1 — dp_z. For the RHS to be smaller than z, it suffices to
require
2 azg

o7 6 .
log*" (1/(awh0r.2) )

Recall that we recouple at most O(log(1/z¢)) times. Hence, it suffices to replace dp z with
dp/log(1/x) to ensure the total contribution of (Z;); is small. O

E.1 Deferred proofs

Proof of Lemma E.2. First, consider the case where ¢ = 1. Let M > 1 be a parameter to be chosen
later. Then, define Z; = Z;1 {|Z;] < M} and write

Zzt Z( [ZAEJMZT:E[Z“EI} +§T:Zt11{|zt|>M} T ATy 4T,
t=1 t=1

Since Z; is conditionally (1, §)-subweibull, we have
P(T; #0) <P (3t € [T],|Z| > M) < CT exp (—MW) .
For the last term to be bounded by Jp, it suffices to choose
M >log” (CT/53).

Then, we consider Ts. Since E[Z; | F;_1] = 0, we have
E [Z} | ft_l} —E [Zt — 7| ft_l} =E[Z,1{|Z,] > M} | Fi_1].

For the last term, using the layer cake representation, we obtain

E[Z:1{[Ze] > M} | Fer]] SE[Ze|1{[Z:] = M} | Fi-1]

= [ POzRZI 2 0y 25| Fi as
0
:/ P(|Z) > MV s|F_1)ds

0

— MP(|Z] > M| Frs) +/ P(Z|> s | Fio1) ds.
M
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Therefore, for each summand in T5, we have

‘IE [Z} | fHH < CM exp (7M1/9> +/MOO C exp (751/9) ds

= CM exp (—M1/9> + CO’/ e *s' 1 ds.
M1/

Note that if s/log s > 2(f — 1), we have e 5571 = ¢=s+(0—1Dlogs < ¢=5/2 Hence, if we choose

M such that .
M/ M 200 -1
>20-1) <« T 2 ( ( )) )
log” M 0

log (M1/9) —
oo oo 1
C’/ e *sP71ds < C’/ e %/?ds = 2C exp (Ml/e) .

M1/e M1/6 2

then we have

As a result, we have
1 1
|To| < CT (Mexp (—Ml/e) + 2exp (—2M1/0>) < 4CMT exp (—2M1/9) .

Finally, consider T;. Note that (Zt — E[Zt | Fi—1])+ is a martingale difference that is bounded by 2\
and has conditional variance bounded by Cy for some Cy > 0. Therefore, by Bernstein’s inequality,
we have

P(|T1| > K) < 2exp (—%) :

For the RHS to be bounded by dp, it suffices to require

K > VT+\/(Cy + 2M)log (2/6p)

Finally, combining the above analysis, we obtain

T
D7

t=1

< 4CMT exp (—Ml/"/Q) + VT\/(Cy + 2M) log (2/57),

0
with probability at least 1 — 2dp, where M > loge (CT/ép) and M/ log‘9 M > (2(0;1)) . Now,
we simplify the RHS as follows. Note that

4CMT exp (—;MW) < VT+/2M log (2/6)

1 1 2log (2/6
< exp <210gM 2]\41/9) < M

4C\T

M
7 > 29 M24010g9<
log” M

8C2T )
= .

log (2/dp)
In other words, we can choose
M =6, (1og9 (T/ép)) ,

T
Z Zi| So \/Tlog"™* (T/0p).
t=1

Finally, for general o > 0, it suffices to note that if X is (¢2, §)-subweibull, then X /o is (1,6)-
subweibull.

and obtain

O

49



Proof of Lemma E.4. First, we consider the upper bound on 7". We compute

D D D D
Ty Ty Tyt Ty

p p T
N Ti41 — Tt i 'rt-‘,-l L1 — X B $t+1 / i1 1 dy
Tt

D
Tit1
al o [Tl a1 1 1
S D 7p dy = ¥y 1 p—1 - p—1 .
Lt Tt Y Ty P — T Ty

P
In addition, note that 2}, /z} = (1 + axf_l) < (14 «a)? < 2P, Therefore,

< e 1 1 N 1 < 1 (p—Da
a - - .
T\ ey i Tt e

Sum both sides from 0 to t — 1 and we get

1 1 tp—1 1 P
— < _tp=1a = xt2< —e_o‘p(p—l)at> .

p—1 eop

In particular, this implies

1 ap
T<|——1]———.
g (p—1a

Now, we consider the upper bound on Zt 2. Let (Zy), be the solution to the continuous-time ODE
%JNC}L = i:z with o9 = x¢. Note that 7 is increasing and therefore

«
~ -7 =D ~ =D
T(t41)a = Tta + / Ty dr > Tio + aay,.
0

Hence, by induction, we have z;,, > z; for all ¢. In addition, zj, has the closed-form formula:

1

) 1 o
Ty = < pl—(p—l)h> .
Lo

When p = 2, we have

T-1 To -1
1 1 1 1 1 1 2
<= ——h) dh=Zlog|—— V< Zlog(—— )< Z
th‘a/o (xo ) a0g<1xOTa>_aOg<162°‘+x062‘1)_a’

t=0

as long as @ < xg so that 7, = O(1). When p > 2, to have Z1, < 2, it suffices to have

1 1 e —1 1
—(p— ap _
;vgﬂ (p—1aT > < e > 5T

-1
p—1 p—1 ~ %0
2 zh
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Let T be the time T, reaches 2. We have T <—1 _and

(p—1)azh ™"
T—1 7 — =7
- 1 (T( 1 r
t=0 @ Jo Zo
1
1 1 1 )
=== -(@-DT
ap—2 zg
iy +
~ 1 1 P 1 P
x [ (p—1T+ P —1+< p_1> (p_l—(p—l)T>
Lo Lo Lo
S
(p—2)axh”

F Simulation

We include simulation results for Stage 1 in this section. The goal here is to provide empirical
evidence that (i) if we have both the second- and L-th order terms, then the sample complexity
of online SGD scales linearly with d and (ii) without the higher-order terms, online SGD cannot
recovery the exact directions.

The setting is the same as the one we have described in Section 2. We choose the hyperparameters
roughly according to Theorem 2.1. To reduce the demand of computational resources, we choose
m = ©(P?) instead of Q(P?). Note that by the Coupon Collector problem, we need m = (P log P)
to ensure that for each p € [P], there exists at least one neuron v with vz > maxy<p vg. Since we
are mostly interested in the dependence on d, for the learning rate, we choose 17 = ¢/d, where c is a
tunable constant that is independent of d but can depend on everything else. 1" is chosen according to
Theorem 2.1 and we early-stop the training when for all p € [P}, there exists a neuron with vg >0.95
(in the moving average sense).

All experiments are performed on the authors’ laptop without using GPUs, and it takes less than one
day to complete the experiments.
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¢=h2+h4

¢ = h> + hy (train both layers)

1.0 1.0
0.8 4 0.8
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x x
E; E;
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iterations (x1000) iterations (x1000)

Figure 1: Recovery of directions. The above plots show the evolution of the correlation with each of
the ground-truth directions. We fix the relevant dimension P = 5 and vary the ambient dimension d.
Different colors represent different d. For each color, one curve represents max,, vg for one p € [P].
In the first row, the link function is ¢ = hy + hy4. In the left plot, we use the algorithm (1), while in
the right plot, we train both layers simultaneously. The second row contains simulation results for

other link functions.

¢=h2 VS¢=h2+h4

1.0 '
— ¢=hz+h
¢=ha+h 075 eom-m—m—m—""_
— $=h, —_
0.8 1 0.70 1 \
S
———————— = 0651
~No
B — > /\\—M
é 0.6 = 0.601
= - o .:)t —
e — LY
0.4 £ —_—
0.501
T T T - - 0.40 1 . . . T -
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

iterations (x1000) iterations (x1000)

Figure 2: Necessity of the higher order terms. In these two figures, we choose P = 10 and d = 100.
The left plot shows the maximum correlation each of the ground-truth directions (also see Figure 1).
We can see that in the isotropic case, whether online SGD can recover the ground-truth directions
is determined by the presence/absence of the higher-order terms. The right plot shows the change
of max, v2/ [[v< p|? for each p € [P] in Stage 1 when the link function is /. One can observe
that they are almost unchanged throughout training. This, together with the left plot, shows that the
increase of the correlation is caused by learning the subspace instead of the actual directions.
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