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ABSTRACT

Graph-based molecular representation learning is essential for accurately predict-
ing molecular properties in drug discovery and materials science; however, it
faces significant challenges due to the intricate relationships among molecules
and the limited chemical knowledge utilized during training. While contrastive
learning is often employed to handle molecular relationships, its reliance on binary
metrics is insufficient for capturing the complexity of these interactions. Multi-
modal fusion has gained attention for property reasoning, but previous work has
explored only a limited range of modalities, and the optimal stages for fusing
different modalities in molecular property tasks remain underexplored. In this
paper, we introduce MMFRL (Multimodal Fusion with Relational Learning for
Molecular Property Prediction), a novel framework designed to overcome these
limitations. Our method enhances embedding initialization through multi-modal
pre-training using relational learning. We also conduct a systematic investigation
into the impact of modality fusion at different stages—early, intermediate, and
late—highlighting their advantages and shortcomings. Extensive experiments on
MoleculeNet benchmarks demonstrate that MMFRL significantly outperforms
existing methods. Furthermore, MMFRL enables task-specific optimizations. Ad-
ditionally, the explainability of MMFRL provides valuable chemical insights,
emphasizing its potential to enhance real-world drug discovery applications.

1 INTRODUCTION

Graph representation learning for molecules has gained significant attention in drug discovery
and materials science, as it effectively encapsulates molecular structures and enables the effective
investigation of structure-activity relationships (Wieder et al., 2020; Zhang et al., 2022; Fang et al.,
2022; Wang et al., 2023). In this paradigm, atoms are treated as nodes and chemical bonds as
edges, effectively encapsulating the connectivities that define molecular behavior. However, it
poses significant challenges due to intricate relationships among molecules and the limited chemical
knowledge utilized during training.

Often, contrastive learning (CL) is employed to study relationships among molecules, but it relies
on binary metrics of positive and negative pairs, and tends to oversimplify complex molecular
interactions. For example, consider Thalidomide: while the (R)- and (S)-enantiomers share the same
topological graph and differ only at a single chiral center, their biological activities are drastically
different—the (R)-enantiomer is effective in treating morning sickness, whereas the (S)-enantiomer
causes severe birth defects. In other words, the (R)- and (S)-enantiomers are similar in terms of
topological stucture but dissimilar in terms of biological activities. Thus, a more sophisticated
approach is required to tackle these scenarios. A potential solution would be to use continuous
metrics within a multi-view space, enabling a more comprehensive understanding of these complex
molecular relationships.

When it comes to multimodal learning for molecules, we often encounter data availability and
incompleteness issues. This raises a critical question: how can multimodal information be effectively
leveraged for molecular property reasoning when such data is absent in downstream tasks? Recent
studies have demonstrated the effectiveness of pretraining molecular Graph Neural Networks (GNNs)
by integrating additional knowledge sources (Wang et al., 2021; 2022b; Liu et al., 2022a; Xu et al.,
2023a). Building on this foundation, a promising solution is to pretrain multiple replicas of molecular

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Multimodal Fusion with Relational Learning for Molecular Property Prediction
(MMFRL). This figure shows our proposed idea about how to transfer the knowledge from other
modalities and use fusion to improve the performance further. Unlike the general contrastive learning
framework shown in Appendix Figure A.2, MMFRL doesn’t need to define positive or negative pairs
and is capable of learning continuous ordering from target similarity.

GNNs, with each replica dedicated to learning from a specific modality. This approach allows
downstream tasks to benefit from multimodal data that is not accessible during fine-tuning, ultimately
improving representation learning.

Facing these challenges and opportunities, we propose MMFRL (Multimodal Fusion with Relational
Learning for Molecular Property Prediction), a novel framework features relational learning (RL) and
multimodal fusion (MMF). RL utilizes a continuous relation metric to evaluate relationships among
instances in the feature space (Balcan & Blum, 2006; Wen et al., 2023). Our major contribution
comprises three aspects: Conceptually: We introduce a modified relational learning metric for
molecular graph representation that offers a more comprehensive and continuous perspective on
inter-instance relations, effectively capturing both localized and global relationships among instances.
To the best of our knowledge, this is the first work to demonstrate such generalized relational learning
metric for molecular graph representation. Methodologically: Our proposed modified relational
metric captures complex relationships by converting pairwise self-similarity into relative similarity,
which evaluates how the similarity between two elements compares to the similarity of other pairs in
the dataset. In addition, we integrate these metrics into a fused multimodal representation, which has
the potential to enhance performance, allowing downstream tasks to leverage modalities that are not
directly accessible during fine-tuning. Empirically: MMFRL excels in various downstream tasks for
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Molecular Property Predictions. Last but not least, we demonstrate the explainability of the learned
representations through two post-hoc analysis. Notably, we explore minimum positive subgraphs and
maximum common subgraphs to gain insights for further drug molecule design.

2 PRELIMINARIES

Directed Message Passing Neural Network (DMPNN). The Message Passing Neural Network
(MPNN) (Gilmer et al., 2017) is a GNN model that processes an undirected graph G with node
(atom) features xv and edge (chemical bond) features evw. It operates through two distinct phases:
a message passing phase, facilitating information transmission across the molecule to construct a
neural representation, and a readout phase, utilizing the final representation to make predictions
regarding properties of interest. The primary distinction between DMPNN and a generic MPNN lies
in the message passing phase. While MPNN uses messages associated with nodes, DMPNN crucially
differs by employing messages associated with directed edges (Yang et al., 2019). This design choice
is motivated by the necessity to prevent totters (Mahé et al., 2004), eliminating messages passed
along paths of the form v1v2 . . . vn, where vi = vi+2 for some i, thereby eliminating unnecessary
loops in the message passing trajectory.

Relational Learning. Original Relation Learning (Zheng et al., 2021) ensures that different
augmented views of the same instance from computer vision tasks share similar features, while
allowing for some variability. This approach captures the essential characteristics of the instance,
promoting consistency across the views without requiring them to be identical. By doing so, it
enhances the model’s ability to generalize and recognize underlying patterns in the data. Suppose zi
is the original embdding for the i− th instance. Then z1i is the embedding of first augmented view
for zi, and z2i is the embedding of second augmented view for zi. In this case, the Loss of Relational
Learning (RL) is formulated as following:

s1ik =
1i̸=k · exp(z1i · z2k/τ)∑N
j=1 1i ̸=j · exp(z1i · z2j /τ)

s2ik =
1i̸=k · exp(z2i · z2k/τm)∑N
j=1 1i ̸=j · exp(z2i · z2j /τm)

LRL = − 1

N

N∑
i=1

N∑
k=1
k ̸=i

s2ik log(s
1
ik).

Multi-Modality Fusion. Multi-Modality Fusion combines diverse heterogeneous data (e.g. text,
images, graph) to create a more comprehensive understanding of complex scenarios (Lahat et al.,
2015; Khaleghi et al., 2013; Poria et al., 2015; Ramachandram & Taylor, 2017; Pawłowski et al.,
2023). This approach leverages the strengths of each modality, potentially improving performance in
tasks like sentiment analysis or medical diagnosis. While challenging to implement due to the need to
align different data streams, successful fusion can provide insights beyond what’s possible with single
modalities, advancing AI and data-driven decision-making. In particular, the way to fuse different
modality should also depends on the dominace of each unimodality (Pawłowski et al., 2023).

3 METHODS

We first explain our proposed modified metric in relational learning to facilitate smooth alignment
between graph and referred unimodality. Then, we introduce approaches for integrating multi
modalities at different stages of the learning process.

3.1 MODIFIED RELATIONAL LEARNING IN PRETRAINING

We propose a modified relational metric by adapting the softmax function as a pairwise weighting
mechanism. Let |S| denote the size of the instance set. The variable si,j represents the learned
similarity distribution where zi is the embedding to be trained. On the other hand, tRi,j defines the
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target similarity distribution that captures the relationship between the pair of instances in the given
space or modality R, where zRi is a fixed embedding. The detailed formulation for the Loss of
Modified Relatioal Learning (MRL) is provided below:

si,j =
exp(sim(zi, zj))∑|S|
k=1 exp(sim(zi, zk))

(1)

tRi,j =
exp(sim(zRi , z

R
j ))∑|S|

j=1 exp(sim(zRi , z
R
k ))

(2)

LMRL = − 1

|S|

|S|∑
i=1

|S|∑
j=1

tRi,j log(si,j). (3)

Notably, unlike other similarity learning approaches (Wang et al., 2019; Zhang et al., 2021), our
method does not rely on the categorization of negative and positive pairs for the pair weighting
function. Additionally, the use of the softmax function ensures that the generalized target similarity
ti,j adheres to the principles of convergence as following:

Theorem 3.1 (Convergence of Modified Relational Learning Metric). Let S be a set of instances
with size of |S|, and let P represent the learnable latent representations of instances in S such that
|P| = |S|. For any two instances i, j ∈ S, their respective latent representations are denoted by Pi

and Pj . Let ti,j represent the target similarity between instances i and j in a given domain, and let
di,j be the similarity between Pi and Pj in the latent space. If ti,j is non-negative and {ti,j} satisfies
the constraint

∑|S|
j=1 ti,j = 1, consider the loss function for an instance i defined as follows:

L(i) = −
|S|∑
j=1

ti,j log

(
edi,j∑|S|
k=1 e

di,k

)
(4)

then when it reaches ideal optimum, the relationship between ti,j and di,j satisfies:

softmax(di,j) = ti,j (5)

For detailed proof, please refer to Appendix Section B.1.

3.2 FUSION OF MULTI-MODALITY INFORMATION IN DOWNSTREAM TASKS.

During pre-training, the encoders are initialized with parameters derived from distinct reference
modalities. A critical question that arises is how to effectively utilize these pre-trained models during
the fine-tuning stage to improve performance on downstream tasks.

3.2.1 EARLY STAGE: MULTIMODAL MULTI-SIMILARITY

With a set of known target similarity {tR} from various modalities, we can transform themto
multimodal space through a fusion function. There are numerous potential designs of the fusion
function. For simplicity, we take linear combination as a demonstration. The multimodal generalized
multi-similarity tMi,j between ith and jth objects can be defined as follows:

tMi,j = fusion({tR}) (6)

=
∑

wR · tRi,j (7)

where tRi,j represents the target similarity between ith and jth instance in unimodal space R, wR is
the pre-defined weights for the corresponding modal, and

∑
wR = 1. Then we can make ti,j = tRi,j

in equation 3. Such that, it still satisfy the requirement of convergence (See proof in Appendix
SectionB.2). In this case, the learnt similarity during pretraining will be aligned with this new
combined target similarity.
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3.2.2 INTERMEDIATE STAGE: EMBEDDING CONCATENATION AND FUSION

Intermediate fusion integrates features from various modalities after their individual encoding pro-
cesses and prior to the decoding/readout stage. Let f1, f2, . . . , fn represent the feature vectors obtained
from these different modalities. The resulting fused feature vector can be defined as follows:

ffused = MLP(concat(f1, f2, . . . , fn)) (8)

Where concat represents concatenation of the feature vectors. The fused features are then fed into
a later readout function or decoder for downstrean tasks prediction or classification. The MLP
(Multi-Layer Perceptron) is used to reduce the dimension to be the same as fi.

3.2.3 LATE STAGE: DECISION-LEVEL

Late fusion (or decision-level fusion) combines the outputs of models trained on different modalities
after they have been processed independently. Each modality is first processed separately, and their
predictions are combined at a later stage.

Let p1, p2, . . . , pn be the predictions (e.g., probabilities) from different modalities. The final predic-
tion pfinal can be computed using a weighted sum mechanism:

wi = Ti(fi) (9)
pi = readouti(fi) (10)

pfinal =

n∑
i=1

wipi (11)

Where wi are the weights assigned to each modality’s prediction, and they can be adjusted based on
the importance of each modality. In particular, wi is tunable during the learning process for respective
downsteak tasks.

4 EXPERIMENTS

In this section, we begin by presenting the datasets and selected modalities. Subsequently, we
showcase the results obtained from MMFRL. Finally, we demonstrate the explainability of the
learned molecular representations. (Please refer to the experimental details of pre-training and
fine-tuning in the Appendix Section D.)

4.1 DATASET

4.1.1 SELECTED MODALITIES FOR TARGET SIMILARITY CALCULATION

The following modalities are used for target similarity calculation. For details on training the
corresponding encoders to obtain fixed embeddings for these modalities, please refer to Appendix
Section C.1.

Fingerprint: Fingerprints are binary vectors that represent molecular structures, capturing the
presence or absence of particular substructures, fragments, or chemical features within a molecule.

SMILES (Simplified Molecular Input Line Entry System): SMILES offers a compact textual
representation of chemical structures.

NMR (Nuclear Magnetic Resonance): NMR spectroscopy provides detailed insights into the
chemical environment of atoms within a molecule. By analyzing the interactions of atomic nuclei
with an applied magnetic field, NMR can reveal information about the structure, dynamics, and
interactions of molecules, including the connectivity of atoms, functional groups, and conformational
changes. In our experiments, NMRspectrum provides the information about the overal information of
molecule while NMRpeak provides the information about the individual atoms in the molecule.

Image: Images (e.g., 2D chemical structures) provide a visual representation of molecular structures.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Study on the performances of MMFRLUnimodality. The best results are denoted in bold,
and the second-best are indicated with underlining among the five modalities. The first 8 tasks are for
classification under evaluation of ROC-AUC, while the last three are for regression with evaluation
of RMSE.

DATA SET BBBP BACE SIDER CLINTOX HIV MUV TOX21 TOXCAST ESOL FREESOLV LIPO

SMILES 92.9±1.5 90.9±3.3 64.9±0.3 78.2±1.9 83.3±1.1 80.1±2.5 85.7±1.2 70.5±2.5 0.811± 0.109 1.623± 0.168 0.539± 0.017
NMRSPECTRUM 91.0±2.0 93.2±2.7 68.1±1.5 87.7±6.5 80.9±5.0 80.9±5.0 85.1±0.4 71.1±0.8 0.844± 0.123 2.417± 0.495 0.609± 0.031
IMAGE 93.1±2.4 92.9±1.8 65.3±1.5 86.2±6.5 82.3±0.6 78.7±1.7 86.0±1.0 71.0±1.6 0.761± 0.068 1.648± 0.045 0.537± 0.005
FINGERPRINT 92.9±2.3 91.7±3.6 65.6±0.7 87.5±6.0 81.2±2.5 82.9±3.1 85.3±1.3 70.0±1.4 0.808± 0.071 1.437± 0.134 0.565± 0.017
NMRPEAK 93.4±2.7 89.3±1.7 62.8±2.1 86.1±5.4 82.1±0.4 75.4±5.2 84.9±1.0 70.6±0.8 0.924±0.083 1.707±0.126 0.587±0.021
AVERAGE 92.8±1.9 91.4±2.7 65.3±2.0 85.0±5.7 81.8±2.2 79.4±4.0 85.4±0.9 70.6±1.3 0.830±0.094 1.766±0.394 0.586±0.048
NO PRE-TRAINING 91.9±3.0 85.2±0.6 57.0±0.7 90.6±0.6 77.1±0.5 78.6±1.4 75.9±0.7 63.7±0.2 1.050±0.008 2.082±0.082 0.683±0.016

All of the similarity calculation from the modalities above are listed in Appendix C.2.

4.1.2 PRE-TRAINING

NMRShiftDB-2 (Landrum, 2006) is a comprehensive database dedicated to nuclear magnetic
resonance (NMR) chemical shift data, providing researchers with an extensive collection of expert-
annotated NMR data for various organic compounds with molecular structures (SMILES). There are
around 25,000 molecules used for pre-training and no overlap with downstream task datasets. And
molecular images and graphs are generated via RDkit (RDK).

4.1.3 DOWNSTREAM TASKS

For Downstream tasks, our model was trained on 11 drug discovery-related benchmarks sourced
from MoleculeNet (Wu et al., 2018a). Eight of these benchmarks were designated for classification
downstream tasks, including BBBP, BACE, SIDER, CLINTOX, HIV, MUV, TOX21, and ToxCast,
while three were allocated for regression tasks, namely ESOL, Freesolv, and Lipo. The datasets
were divided into train/validation/test sets using a ratio of 80%:10%:10%, accomplished through the
scaffold splitter (Halgren, 1996; Landrum, 2006) from Chemprop (Yang et al., 2019; Heid et al.,
2023), like previous works. The scaffold splitter categorizes molecular data based on substructures,
ensuring diverse structures in each set. Molecules are partitioned into bins, with those exceeding
half of the test set size assigned to training, promoting scaffold diversity in validation and test sets.
Remaining bins are randomly allocated until reaching the desired set sizes, creating multiple scaffold
splits for comprehensive evaluation.

4.2 RESULTS

4.2.1 THE EFFECTIVENESS OF PRE-TRAINING

We first illustrate the impact of pre-training initialization on performance. As shown in Table 1, the
average performance of pre-trained models outperform the non-pre-trained model in all tasks except
for Clintox. The results of various downstream tasks indicate that different tasks may prefer different
modalities. Notably, the model pre-trained with the NMR modality achieves the highest performance
across three classification tasks. Similarly, the model pre-trained with the Image modality excels
in three tasks, two of which are regression tasks related to solubility, aligning with findings from
prior literature (Xu et al., 2023a). Additionally, the model pre-trained with The fingerprint method
achieves the best performance in two tasks, including MUV, which has the largest dataset.

4.2.2 OVERALL PERFORMANCE OF MMFRL

As shown in Table 2 and Table 3, MMFRL demonstrates superior performance compared to all
baseline models and the average performance of DMPNN pretrained with extra modalities across
all 11 tasks evaluated in MoleculeNet. This robust performance highlights the effectiveness of our
approach in leveraging multimodal data. In particular, while individual models pre-trained on other
modalities for ClinTox fail to outperform the No-pretraining model (DMPNN), the fusion of these
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Table 2: Overall performances (ROC-AUC) on classification downstream tasks. The best results are
denoted in bold, and the second-best are indicated with underlining. For early fusion of MMFRL,
all the predefined weight of each modality are 0.2. (Note: N-Gram is highly time-consuming on
ToxCast.)

DATA SET BBBP BACE SIDER CLINTOX HIV MUV TOX21 TOXCAST

ATTENTIVEFP 64.3±1.8 78.4±2.2 60.6±3.2 84.7±0.3 75.7±1.4 76.6±1.5 76.1±0.5 63.7±0.2
DMPNN 91.9±3.0 85.2±0.6 57.0±0.7 90.6±0.6 77.1±0.5 78.6±1.4 75.9±0.7 63.7±0.2
N-GRAM 91.2±0.3 79.1±1.3 63.2±0.5 87.5±2.7 78.7±0.4 76.9±0.7 76.9±2.7 -
GEM 72.4±0.4 85.6±1.1 67.2±0.4 90.1±1.3 80.6±0.9 81.7±0.5 78.1±0.1 69.2±0.4
UNI-MOL 72.9±0.6 85.7±0.2 65.9±1.3 91.9±1.8 80.8±0.3 82.1±1.3 79.6±0.5 69.6±0.1
INFOGRAPH 69.2±0.8 73.9±2.5 59.2±0.2 75.1±5.0 74.5±1.8 74.0±1.5 73.0±0.7 62.0±0.3
GRAPHCL 67.5±3.3 68.7±7.8 60.1±1.3 78.9±4.2 75.0±0.4 77.1±1.0 75.0±0.3 62.8±0.2
MOLCLR 73.3±1.0 82.8±0.7 61.2±3.6 89.8±2.7 77.4±0.6 78.9±2.3 74.1±5.3 65.9±2.1
MOLCLRCMPNN 72.4±0.7 85.0±2.4 59.7±3.4 88.0±4.0 77.8±5.5 74.5±2.1 78.4±2.6 69.1±1.2
GRAPHMVP 72.4±1.6 81.2±9.0 63.9±1.2 79.1±2.8 77.0±1.2 77.7±6.0 75.9±5.0 63.1±0.4
UNIMODALITYavg 92.8±1.9 91.4±2.7 65.3±2.0 85.0±5.7 81.8±2.2 79.4±4.0 85.4±0.9 70.6±1.3
MMFRLearly 91.6±5.0 94.3±2.4 66.4±1.9 85.3±6.8 82.0±2.4 80.6±3.2 85.2±0.2 69.8±1.1
MMFRLintermediate 95.4±0.7 95.1±1.0 64.3±1.2 93.4±1.1 81.2±1.3 83.5±1.6 85.1±0.1 71.9±1.1
MMFRLlate 94.7±0.6 91.6±2.6 64.2±1.2 87.0±0.4 82.9±0.2 82.1±1.7 77.7±0.5 70.2±0.3

Table 3: Overall performances (RMSE) on regression downstream tasks. The best results are denoted
in bold, and the second-best are indicated with underlining. For early fusion of MMFRL, all the
predefined weight of each modality are 0.2.

Data Set ESOL FreeSolv Lipo

AttentiveFP 0.877±0.029 2.073±0.183 0.721±0.001
DMPNN 1.050±0.008 2.082±0.082 0.683±0.016
N-GramRF 1.074±0.107 2.688±0.085 0.812±0.028
N-GramXGB 1.083±0.082 5.061±0.744 2.072±0.030
GEM 0.798±0.029 1.877±0.094 0.660±0.008
Uni-Mol 0.788±0.029 1.620±0.035 0.660±0.008
MolCLR 1.113±0.023 2.301±0.247 0.789±0.009
MolCLRCMPNN 0.911±0.082 2.021±0.133 0.875±0.003
Unimodalityavg 0.924±0.083 1.707±0.126 0.587±0.021
MMFRLearly 1.037±0.170 2.093±0.090 0.607±0.034
MMFRLintermediate 0.730±0.019 1.465±0.096 0.552±0.014
MMFRLlate 0.763±0.035 1.741±0.191 0.525±0.018

pre-trained models leads to improved performance. Besides, apart from Tox21 and Sider, the fusion
models significantly enhances overall performance. In particular, the intermediate fusion model
stands out by achieving the highest scores in seven distinct tasks, showcasing its ability to effectively
combine features at a mid-level abstraction. the late fusion model achieves the top performance in
two tasks. These results underscore the advantages of utilizing various fusion strategies in multimodal
learning, further validating the efficacy of the MMFRL framework.

4.3 ANALYSIS OF THE FUSION EFFECT

4.3.1 GENERAL COMPARISON AMONG VARIOUS WAYS OF FUSIONS

Early Fusion is employed during the pretraining phase and is easy to implement, as it aggregates
information from different modalities directly. However, its primary limitation lies in the necessity for
predefined weights assigned to each modality. These weights may not accurately reflect the relevance
of each modality for the specific downstream tasks, potentially leading to suboptimal performance.

Intermediate Fusion is able to capture the interaction between modalities early in the fine-tuning
process, allowing for a more dynamic integration of information. This method can be particularly
beneficial when different modalities provide complementary information that enhances overall
performance. If the modalities effectively compensate for one another’s strengths and weaknesses,
Intermediate Fusion may emerge as the most effective approach.
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In contrast, Late Fusion enables each modality to be explored independently, maximizing the potential
of individual modalities without interference from others. This separation allows for a thorough
examination of each modality’s contribution. When certain modalities dominate the performance
metrics, Late Fusion can maximize on these strengths, ensuring that the most impactful information
is utilized effectively. This approach is especially useful in scenarios where the dominance of specific
modalities can be leveraged to enhance overall model performance.

4.3.2 EXPLAINABILITY OF LEARNT REPRESENTATIONS

To demonstrate the interpretability of learnt representations of fusion, we present post-hoc analysis
for two tasks, ESOL and Lipo, as demonstration. The results showcase learnt representations can
capture task-specific patterns and offer valuable insights for molecular design.

ESOL with Intermediate Fusion. As presented in Table 3, the intermediate fusion method 3.2.2
exhibits superior performance on the ESOL regression task for predicting solubility. To further analyze
this performance, we employed t-SNE to reduce the dimensionality of the molecule embeddings from
300 to 2, resulting in a heatmap visualized in Figure 2. The embeddings derived from individual
modalities prior to fusion do not display a clear pattern, showing no smooth transition from low
to high solubility. In contrast, the embeddings by intermediate fusion reveal a distinct and smooth
transition in solubility values: molecules with similar solubility cluster together, forming a gradient
that extends from the bottom left (indicating lower solubility) to the upper center (representing higher
solubility). This trend underscores the effectiveness of the intermediate fusion approach in accurately
capturing the quantitative structure-activity relationships for aqueous solubility.

Additionally, we examined the similarity between the respective embeddings prior to intermediate
fusion and the resulting fused embedding, as depicted in Figure 3. Our analysis indicates that the
embeddings from each modality exhibit low similarity with the intermediate-fused representation.
This observation suggests that the modalities complement each other, collectively enhancing the
resulting representation of the intermediate-fused embedding.

Lipo with Late Fusion. As detailed in Table 3, the Late Fusion method (described in Section 3.2.3)
demonstrates superior performance on the Lipo regression task for predicting solubility in fats, oils,
lipids, and non-polar solvents. According to Equation 11, the final prediction is determined by the
respective coefficients (wi) and predictions (pi) from each modality.

In Figure 4, we present the distribution of values for the coefficients, predictions, and their products
for each modality. Notably, the SMILES and Image modalities exhibit a broad range of values,
suggesting their potential for significant contributions to the final predictions. This observation aligns
with the strong performance achieved when pretraining using either of these two modalities, as
shown in Table 1. In contrast, the NMRPeak values display a narrower range, indicating its role as a
modifier for finer adjustments in the predictions. Furthermore, we observe that the contributions from
NMRSpectrum and Fingerprint modalities are minimal, with their corresponding values approaching
zero. This outcome highlights the advantages of the Late Fusion approach in effectively identifying
and leveraging dominant modalities, thereby optimizing the overall predictive performance.

5 RELATED WORK

Contrastive Learning on Molecular Graphs. The primary focus within the domain of contrastive
learning applied to molecular graphs centers on 2D-2D graphs comparisons. Noteworthy repre-
sentative examples: InfoGraph (Sun et al., 2019) maximizes the mutual information between the
representations of the graph and its substructures to guide the molecular representation learning;
GraphCL (You et al., 2020), MoCL (Sun et al., 2021), and MolCLR (Wang et al., 2022b) employs
graph augmentation techniques to construct positive pairs; MoLR (Wang et al., 2022a) establishes
positive pairs with reactant-product relationships. In addition to 2D-2D graph contrastive learn-
ing, there are also noteworthy efforts exploring 2D-3D and 3D-3D contrastive learning in the field.
3DGCL (Moon et al., 2023) is 3D-3D contrastive learning model, establishing positive pairs with
conformers from the same molecules. GraphMVP (Liu et al., 2022b), GeomGCL (Li et al., 2022),
and 3D Informax (Stärk et al., 2022) proposes 2D–3D view contrastive learning approaches. To
conclude, 2D-2D and 3D-3D comparisons are intra-modality contratsive leraning, as only one graph
encoder is employed in these studies. And these approaches often focus on the motif and graph levels,
leaving atom-level contrastive learning less explored.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: T-SNE visualization depicting the ESOL molecule embeddings for intermediate fusion in
Section 3.2.2 alongside molecules within the highlighted region. Each point in the heatmap corre-
sponds to the embeddings of respective molecules in ESOL, with color indicating solubility levels.
Red denotes higher solubility, while blue indicates lower solubility. The embeddings derived from
individual modalities prior to fusion do not display a clear pattern, the embeddings by intermediate
fusion forms a gradient that extends from the bottom left (indicating lower solubility) to the upper
center (representing higher solubility).

Figure 3: This figure shows the distribution of similarities between each modality and the intermediate
fusion embedding for ESOL. In both Cosine Similarity and Dot Product, the embeddings from each
modality exhibit low similarity with the intermediate-fused representation.

Similarity Learning. Instance-wise discrimination, a crucial facet of similarity learning, involves
evaluating the similarity between instances directly based on their latent representations or features
(Wu et al., 2018b). Naive instance-wise discrimination relies on pairwise similarity, leading to the
development of contrastive loss (Hadsell et al., 2006). Although there are improved loss functions
such as triplet loss (Hoffer & Ailon, 2015), quadruplet loss (Law et al., 2013), lifted structure loss
(Oh Song et al., 2016), N-pairs loss (Sohn, 2016), and angular loss (Wang et al., 2017), these methods
still fall short in thoroughly capturing relationships among multiple instances simultaneously (Wang
et al., 2019). To address this limitation, a joint multi-similarity loss has been proposed, incorporating
pair weighting for each pair to enhance instance-wise discrimination (Wang et al., 2019; Zhang et al.,
2021). Notably, it is crucial to emphasize that employing these pair weightings requires the manual

9
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Figure 4: Lipo late fusion contribution analysis reveals that the three primary contributors are SMILES,
image, and NMRpeak. In contrast, NMRspectrum and fingerprint exhibit negligible contributions.

categorization of negative and positive pairs, as distinct weights are assigned to losses based on their
categories.

6 DISCUSSION

In summary, we introduce a novel relational learning metric for molecular graph representation
that enhances the understanding of inter-instance relationships by capturing both local and global
contexts. This is the first implementation of such a generalized metric in molecular graphs.Our
method transforms pairwise self-similarity into relative similarity through a weighting function,
allowing for complex relational insights. This metric is integrated into a multimodal representation,
improving performance by utilizing modalities not directly accessible during fine-tuning. Empirical
results show that our approach, MMFRL, excels in various molecular property prediction tasks.
We also demonstrate detailed study about the explainability of the learned representations, offering
valuable insights for drug molecule design. Despite these accomplishments, further exploration is
needed to achieve more effective integration of graph- and node-level similarities. Looking ahead, we
are enthusiastic about the prospect of applying our model to additional fields, such as social science,
thereby broadening its applicability and impact.

ACCESSIBILITY

The code and dataset will be made available upon the date of publication.
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Appendix

A MULTI-SIMILARITY & CONTRASTIVE LEARNING

A.1 MULTI-SIMILARITIES IN CONTRASTIVE LEARNING

Two distinct types of similarities, as illustrated in Appendix Figure A.1, can be identified: self-
similarity (the pairwise similarity between two objects, typically defined through cosine similarity)
and relative similarity (distinctions in self-similarity with other pairs) (Wang et al., 2019).

Positive Pairs Negative Pairs  

Relative Similarity:
§ Positive-Positive: !!	#$. !"
§ Negative-Negative: !#	#$. !$
§ Positive-Negative: !!	#$.	!#,	!!	#$. !$, !"	#$. 	!#, !"	#$. !$

Self-Similarity: !!, !", !#, !$  

Multi-Similarities

!!
!"

!#
!$

Anchor

Figure A.1: Illustration of Different Types of Similarities.

A.2 CURRENT MOLECULAR GRAPH CONTRASTIVE LEARNING APPROACHES

In current molecular graph contrastive learning approaches, positive pairs are commonly formed
through either data augmentation (Sun et al., 2021; You et al., 2020), employing techniques such as
node deletion, edge perturbation, subgraph extraction, attribute masking, and subgraph substitution,
or domain knowledge, as demonstrated by reactant-product pairing (Wang et al., 2022a) or conformer
grouping (Moon et al., 2023).

General Framework of Intra-Modality Graph Contrastive Learning

a. Current Contrastive Learning Approaches on Molecular Graphs

Construct Binary Pairs Shared GNN Projection Contrastive Learning

§ reactant-product pair
§ conformer pools
§ …

Discrete Binary Pairs

2. Knowledge Determination

§ atom/node deletion
§ atom/node masking
§ bond/edge deletion
§ bond/edge perturbation
§ fragment/subgraph extraction
§ … 

1. Graph Augmentation:

…
!(ℎ)

GraphMSL Framework

b. Multi-View Graph Multi-Similarity Learning for Molecular Property Prediction (GraphMSL)

Design Target Metrics %!"# ,	%$%& 	 Shared GNN Multi-Similarity Learning (MSL)

Continues Similarity Metrics

%!,"# 		=	()*+,-	(*!,",	-!,",	/!,", !#,$ ,	…)
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Figure A.2: General framework of Intra-Modality Graph Contrastive Learning. It relies on definition
of positive and negative pairs.

B SUPPLEMENTARY PROOF

B.1 REVISITING THEOREM OF CONVERGENT SIMILARITY LEARNING

Let S be a set of instances with size |S|, and let P represent the tunable latent representations of
instances in S such that |P| = |S|. For any two instances i, j ∈ S, their latent representations are
denoted by Pi and Pj , respectively. Let ti,j represent the target similarity between instances i and j
in a given domain, and di,j be the similarity between Pi and Pj in the latent space.
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Theorem B.1 (Theorem of Convergent Similarity learning). Given ti,j is non-negative and {ti,j}
satisfies the constraint

∑|S|
j=1 ti,j = 1, consider the loss function for an instance i defined as follows:

L(i) = −
|S|∑
j=1

ti,j log

(
edi,j∑|S|
k=1 e

di,k

)
(B.1)

then when it reaches ideal optimum, the relationship between ti,j and di,j satisfies:

softmax(di,j) = ti,j (B.2)

Proof. In order to optimize the loss L(i), we need to set the following partial derivative to be 0 for
each di,j with 1 ≤ j ≤ |M|. Here are the detailed steps:

∂L(i)

∂di,j
=

∂

∂di,j

(
−ti,j log

edi,j

edi,j +
∑

k ̸=j e
di,k

)
︸ ︷︷ ︸

When the numerator includes edi,j

+
∂

∂di,j

∑
k ̸=j

−ti,k log
edi,k

edi,j +
∑

k ̸=j e
di,k


︸ ︷︷ ︸

When the numerator does not include edi,j

= −(ti,j − ti,j · softmax(di,j))−
∑
k ̸=j

ti,k · softmax(di,j)

= −

ti,j −

ti,j +
∑
k ̸=j

ti,k

 · softmax(di,j)


Since

∑|M|
l=1 ti,l = 1, we can further simplify it as

∂L(i)

∂di,j
= −(ti,j − softmax(di,j))

In order to optimize, we need to see the above partial derivative to be 0:

∂L(i)

∂di,j
= −(ti,j − softmax(di,j)) = 0

In addition, the corresponding second partial derivative denoted as ∂L(i)
∂d2

i,j
manifests as follows:

∂L(i)

∂d2i,j
= softmax(di,j)(1− softmax(di,j))

As softmax(di,j) takes values within the open interval (0,1), it follows that ∂L(i)
∂d2

i,j
is always positive.

Consequently, the global optimum is global minimum.
Furthermore, when it comes to optimum:

ti,j = softmax(di,j)

di,j = log(ti,j) + log

 ∑
1≤l≤|M|

edi,j


It is easy to show that when it reaches optimum, di,j is consistent with target similarity metric ti,j .
Without loss of generosity, suppose ti,j > ti,j′ :

di,j − di,j′ = log(ti,j) + log

 ∑
1≤l≤|M|

edil

−

log(ti,j′) + log

 ∑
1≤l≤|M|

edil


= log(ti,j)− log(ti,j′)

= log

(
ti,j
ti,j′

)
> 0
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B.2 GUARANTEE OF SUM OF FUSED MULTIMODAL SIMILARITY

Given sets of uni-modal generalized similarity {tR} and
∑

wtR = 1, the sum of fused multimodal
similarity also equals 1, as demonstrated below:∑

(tRi,j) =
∑∑

(wR · tRi,j)

=
∑

(wR

∑
tRi,j)

=
∑

wR · 1 = 1

C REVISITING TARGET SIMILARITY SETTINGS

C.1 ENCODERS & PACKAGES

To derive the target similarities, we need to reply on pre-trained encoders or well-defined packages as
follows:

Table C.1: Encoders and packages used to produce self-similarities

Unimodal Representation Encoder/Package Pre-trained Source
Image 2D image CNN Img2mol (Clevert et al., 2021)
SMILES Sequence Transformer CReSS (Yang et al., 2021)
13CNMR Spectrum Sequence 1D CNN AutoEncoder (Costanti et al., 2023)
13CNMR peak Scalar NMRShiftDB2 (Steinbeck et al., 2003) N/A
Fingerprint Sequence RDKit (Landrum, 2006) N/A

C.2 TARGET SIMILARITY AT GRAPH LEVEL

Fingerprint. The mathematical formula of fingerprint similarity, denoted as SF
i,j , can be viewed as

follows:

SF
i,j = Tanimoto(A,B) =

|A ∩B|
|A ∪B|

(C.1)

where A and B are sets of molecular fragments for molecule i and j, and |A∩B| and |A∪B| denote
the size of their intersection and union, respectively.

Image. The self-similarity for Image, denoted as SI
i,j , can be defined as follows:

SI
i,j = Cos(Vi,Vj) =

Vi · VT
j

∥Vi∥ · ∥Vj∥
(C.2)

where Vi,Vj represents the embedding of Image for two given molecules.

NMR Spectrum. The self-similarity for NMR spectrum, denoted as SC
i,j , can be defined as follows:

SC
i,j = Cos(Vi,Vj) =

Vi · VT
j

∥Vi∥ · ∥Vj∥
(C.3)

where Vi,Vj represents the embedding of NMR spectra for two given molecules.

Smiles. The self-similarity for Smiles, denoted as SS
i,j , can be defined as follows:

SS
i,j = Cos(Vi,Vj) =

Vi · VT
j

∥Vi∥ · ∥Vj∥
(C.4)

where Vi,Vj represents the embedding of Smiles for two given molecules.

NMR Peak The similarity among nodes (atoms) is derived from the positions of their signal peaks
on 13C NMR spectra, measured in parts per million (ppm). The ppm values are continuous, typically
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ranging from 0 to 200 (see more introduction of ppm in Appendix C.3). The self-similarity of NMR
peaks SP

l,m can be defined as following:

SP
l,m =

τ2
|ppml − ppmm|+ τ1

(C.5)

where ppml and ppmm are the positions of NMR peaks for the lth, mth Carbon atom, τ1 and τ2 are
temperature hyper-parameter.

C.3 A BRIEF INTRODUCTION TO PPM FOR NMR PEAK

In chemistry, 13C NMR stands out as a common technique for structural analysis by revealing
molecular structures by elucidating the chemical environments of carbon atoms and their magnetic
responses to external fields (Gerothanassis et al., 2002; Lambert et al., 2019). It quantifies these
features in parts per million (ppm) relative to a reference compound, such as tetramethylsilane (TMS),
thereby simplifying comparisons across experiments. As a result, the continuous peak positions,
measured in parts per million (ppm), offer a robust knowledge span—a natural ordering metric that
can be employed to derive measures of similarity (Xu et al., 2023b).

C.4 CONFIGURATION OF EARLY FUSION

A simple linear combination is used to formulate the multimodal relational similarity tMi,j between the
ith and jth molecules, represented as as follows:

tMi,j = wSM · tSM
i,j + wC · tCi,j + wI · tIi,j + wF · tFi,j + wF · tFi,j + wP · tPi,j (C.6)

where tSM
i,j denotes the similarity based on SMILES, tCi,j denotes the similarity with respect to 13C

NMR spectrum, tIi,j denotes the similarity regarding images, F denotes the similarity based on
fingerprints, and P denotes the similarity based on fingerprints. wSM , wC , wI , and wF are the
pre-defined weights for their respective similarity, and wSM + wC + wI + wF + wP = 1.

D EXPERIMENTAL SETTINGS

D.1 PRE-TRAINING SETTING

During pretraining, we utilized an Adam optimizer with a learning rate set to 0.001, spanning 200
epochs and employing a batch size of 256. The model was trained on around 25,000 data points. The
NMR data were experimental data, extracted from NMRShiftDB2 (Steinbeck et al., 2003). Other
chemical modalities, such as images, fingerprints and graphs, were produced from SMILES by RDKit
(Landrum, 2006).

D.2 FINE-TUNING SETTING

D.2.1 DATASETS

For fine-tuning, our model was trained on 11 drug discovery-related benchmarks sourced from
MoleculeNet (Wu et al., 2018a). Eight of these benchmarks were designated for classification
downstream tasks, including BBBP, BACE, SIDER, CLINTOX, HIV, MUV, TOX21, and ToxCast,
while three were allocated for regression tasks, namely ESOL, Freesolv, and Lipo. The datasets
were divided into train/validation/test sets using a ratio of 80%:10%:10%, accomplished through the
scaffold splitter (Halgren, 1996; Landrum, 2006) from Chemprop (Yang et al., 2019; Heid et al.,
2023), like previous works. The scaffold splitter categorizes molecular data based on substructures,
ensuring diverse structures in each set. Molecules are partitioned into bins, with those exceeding
half of the test set size assigned to training, promoting scaffold diversity in validation and test sets.
Remaining bins are randomly allocated until reaching the desired set sizes, creating multiple scaffold
splits for comprehensive evaluation.
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D.2.2 BASELINES

We systematically compared MMFRL’s performance with various state-of-the-art baseline models
across different categories. In the realm of supervised models, AttentiveFP (Xiong et al., 2019)
and DMPNN (Yang et al., 2019) stand out by leveraging graph attention networks and node-edge
interactive message passing, respectively. The unsupervised learning method N-Gram (Liu et al.,
2019) employs graph embeddings and short walks for graph representation. Predictive self-supervised
learning methods, such as GEM (Fang et al., 2022) and Uni-Mol (Zhou et al., 2023), are specifically
designed for predicting molecular geometric information. Moreover, our evaluation encompasses a
range of contrastive learning methods, namely InfoGraph (Sun et al., 2019), GraphCL (You et al.,
2020), MolCLR (Wang et al., 2022b), and GraphMVP (Liu et al., 2022b), all serving as essential
baselines. The baseline results are collected from recent works (Fang et al., 2022; Zhou et al., 2023;
Moon et al., 2023; Fang et al., 2023).

D.2.3 EVALUATION

To assess the effectiveness of our fine-tuned model, we measure the ROC-AUC for classification
downstream tasks, and the root mean squared error (RMSE) metric for regression tasks. In order
to ensure a fair and robust comparisons, we conduct three independent runs using three different
random seeds for scaffold splitting across all datasets. The reported performance metrics are then
averaged across these runs, and the standard deviation is computed as prior works.
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