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ABSTRACT

Preserving face identity is a critical yet persistent challenge in diffusion-based
image restoration. While reference faces offer a path forward, existing methods
typically suffer from partial reference information and inefficient identity losses.
This paper introduces a novel approach that directly solves both issues, involving
three key contributions: 1) Composite Context, a representation that fuses high- and
low-level facial information to provide comprehensive guidance than traditional
singular representations, 2) Hard Example Identity Loss, a novel loss function
that uses the reference face to address the identity learning inefficiencies of the
standard identity loss, 3) Training-free multi-reference inference, a new method
that leverages multiple references for restoration, despite being trained with only a
single reference. The proposed method demonstrably restores high-quality faces
and achieves state-of-the-art identity preserving restoration on benchmarks such as
FFHQ-Ref and CelebA-Ref-Test, consistently outperforming previous work.

1 INTRODUCTION

Recently, image restoration (Wang et al., 2018; 2024b; Yu et al., 2024; Lin et al., 2024; Wu et al., 2024;
Yang et al., 2023b) has seen significant improvements along with the rise of diffusion models (Ho
et al., 2020; Song et al., 2022), particularly in terms of generated image quality (Rombach et al., 2022;
Podell et al., 2023). However, the state-of-the-art restoration methods, including the face-specific
ones (Zhou et al., 2022; Lin et al., 2024; Hsiao et al., 2024; Ying et al., 2024), still suffer from
unsatisfactory identity preservation when processing facial imagery. This limitation can substantially
degrade the user experience, given the human perceptual acuity for subtle variations in facial features.

In some real-world applications, such as digital albums, when restoring a low-quality face image, it is
possible to leverage other high-quality images from the same person as references to better preserve
the identity and appearance. Consequently, many reference-based face restoration methods (Hsiao
et al., 2024; Ying et al., 2024; Zhang et al., 2024; Li et al., 2022) have been proposed. These efforts
involve designing novel architectures for reference face conditioning (Ying et al., 2024; Hsiao et al.,
2024), formulating loss functions for identity preservation and image quality (Hsiao et al., 2024;
Zhang et al., 2024), and curating specialized reference-based face restoration datasets (Hsiao et al.,
2024; Li et al., 2022). Nevertheless, the existing methods do not fully exploit the potential of reference
faces, and hence there is room for improvement in both identity preservation and image quality.

In this paper, to simplify architecture and more effectively utilize the reference face images and
further enhance the performance of reference-based face restoration, we propose two independent
modules that exploit the reference face in two different aspects: representation and supervision.

First, we propose Composite Context, a comprehensive representation for the reference face. It
consists of multiple pre-trained face representations that focus on different information in the reference
face from high-level to low-level. Specifically, it includes identity embedding (Deng et al., 2022) as
high-level identity information; and general face representation (Zheng et al., 2021) comprising both
high-level semantic information and low-level face information. In contrast, prior methods (Ying
et al., 2024; Wang et al., 2025; Hsiao et al., 2024) rely on a single feature type, creating an information
bottleneck that forces the model to restore a face with only partial guidance – either high-level identity
or low-level appearance, but never both. Our Composite Context is conceptually similar to multi-
modal approaches in generation (Podell et al., 2023; Mei et al., 2025) but is the first to combine
specialized face encoders in this manner for restoration, moving beyond the information bottleneck.
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Second, we propose Hard Example Identity Loss. It is a simple yet effective extension of the existing
identity loss (Hsiao et al., 2024), motivated by the empirical observation that traditional identity
loss suffers from learning inefficiencies – a well-known issue in metric learning (Schroff et al.,
2015; Musgrave et al., 2020; Roth et al., 2020). While hard example mining is a known technique
in metric learning, we are the first to identify and solve this specific learning inefficiency in face
restoration. Our Hard Example Identity Loss offers a novel and targeted improvement that resolves
this long-overlooked issue. In particular, the ground-truth faces are not hard enough (see “Triplet
Selection” in (Schroff et al., 2015) for the meaning of “hard example”), which makes the identity
loss magnitude very small after a short period of training. By simply incorporating a hard sample,
namely the reference face, into the identity loss, the learning inefficiency problem can be effectively
addressed, and hence leads to a significant performance improvement. In contrast, all previous
works (Wang et al., 2025; Hsiao et al., 2024; Zhang et al., 2024) overlooked this issue.

Apart from the representation and supervision aspects, while our method is designed to take a single
reference face image during training, it can support multiple reference face images through a simple
method based on classifier-free guidance (Ho & Salimans, 2022) at the inference stage, which requires
no extra training. Such design is more scalable due to multi-reference training data scarcity.

Our qualitative and quantitative results on the FFHQ-Ref (Hsiao et al., 2024) and CelebA-Ref-
Test (Hsiao et al., 2024) datasets demonstrate the effectiveness of our method. Though simple, our
method effectively and consistently outperforms the previous methods in face identity preservation.

Contributions. Our contributions are threefold regarding reference-based face image restoration:

• We introduce “Composite Context”, a comprehensive face representation that integrates multi-level
information from a reference face to enable more effective guided restoration.

• We propose “Hard Example Identity Loss”, a novel variant of the standard identity loss that
incorporates the reference face to improve learning efficiency and identity preservation.

• Our model can leverage multiple references for restoration, despite being trained with only a
single reference. This approach eliminates the need for multi-reference training datasets, which are
difficult and costly to curate at scale.

2 RELATED WORK

Image Restoration. As diffusion models (Ho et al., 2020; Rombach et al., 2022; Song et al., 2022;
2023; Dhariwal & Nichol, 2021; Song et al., 2021) gain popularity in image generation, LDM (Rom-
bach et al., 2022) has recently become a popular backbone for general image restoration (Wang
et al., 2024b; Lin et al., 2024; Yu et al., 2024; Yang et al., 2023b; Wu et al., 2024; Mei et al., 2025).
However, humans are perceptually highly sensitive to subtle differences in face images, general
image restoration techniques typically perform poorly, especially in terms of identity preservation
and maintaining face image realism. In this case, face-specific restoration models are preferred.

No-reference Face Restoration. When there is no reference face, generative models can be used to
hallucinate details while restoring a degraded facial image (Zhou et al., 2022; Lin et al., 2024; Wang
et al., 2025; Chen et al., 2017; Li et al., 2020b; Wang et al., 2021a; Yang et al., 2023a; Li et al., 2020a).
CodeFormer (Zhou et al., 2022) presents a Transformer (Vaswani et al., 2023) to model the global
composition and context of the low-quality faces for code prediction, enabling the generation of
natural faces that closely approximate the target faces. DiffBIR (Lin et al., 2024) presents a two-stage
pipeline for blind face restoration, involving the degradation removal and information regeneration.
OSDFace (Wang et al., 2025) proposes a visual representation embedder to capture information from
low-quality face and incorporate the face identity loss for identity preservation. A common challenge
in no-reference face restoration is identity preservation as no additional information is provided.

Reference-based Face Restoration. High-quality reference face images, when available, can
help identity preservation when restoring a low-quality face of the same person (Min et al., 2024;
Hsiao et al., 2024; Ying et al., 2024; Zhang et al., 2024; Li et al., 2022; Varanka et al., 2024).
DMDNet (Li et al., 2022) proposes a dual memory dictionary for both general and identity-specific
features for blind face restoration. RestorerID (Ying et al., 2024) presents a Face ID Adapter and
incorporates the identity embedding of the reference face as a tuning-free face restoration method.
InstantRestore (Zhang et al., 2024) leverages a one-step diffusion model, and proposes a landmark
attention loss to enhance identity preservation. RefLDM (Hsiao et al., 2024) incorporates the
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Figure 1: Overview of our method. The Composite Context and Hard Example Identity Loss are
designed for fully exploiting the reference face and hence better identity preservation. The zt is noisy
latent, xLQ is low-quality face image input (zLQ is its corresponding VAE latent), xREF is high-quality
reference face, xHQ is high-quality ground-truth face image, ẑ is the direct estimate of the denoised
result (i.e., Eq. (15) in DDPM (Ho et al., 2020)), and x̂ is the VAE decoded direct estimate. All
pre-trained modules are frozen. The UNet (Ronneberger et al., 2015) and projection matrices for
Composite Context are trained. The total loss includes MAE loss and Hard Example Identity Loss.

CacheKV mechanism and a timestep-scaled identity loss into an LDM (Rombach et al., 2022)
to effectively utilize multiple reference faces. However, methods like RefLDM require multiple
reference images during training, which presents a data scalability challenge. We address this by
proposing a more practical paradigm of training with a single reference while effectively supporting
multiple references at inference time. Personalization methods (Varanka et al., 2024; Liu et al., 2025)
utilizes reference faces with the goal of customizing the model for individual users.

3 OUR APPROACH

Given a low-quality (LQ) face image xLQ, and a high-quality (HQ) reference face image xREF from
the same person, we aim to restore the LQ image while preserving the person identity by leveraging
the reference face. The resulting image should be close to the ground truth HQ image xHQ in terms
of both identity similarity and perceptual similarity.

To this end, we adopt a general LDM (Rombach et al., 2022) backbone pretrained for text-to-image
synthesis. Following the previous works (Rombach et al., 2022; Hsiao et al., 2024), we incorporate
the LQ input image xLQ by conditioning the diffusion model on its corresponding VAE latent zLQ
through concatenating it to the noise latent zt. In this way, the model ϵ(zt, zLQ, t) can serve as a
fundamental face image restoration model.

In order to comprehensively leverage the reference face for better identity preservation, we propose
two independent modules: Composite Context (CC) and Hard Example Identity Loss (HID), which
will be detailed in Section. 3.1 and Section. 3.2 below. In brief, the Composite Context is a compre-
hensive representation c from the reference face xREF. It is used as a condition for ϵ(zt, zLQ, c, t)
through cross-attention mechanism (Rombach et al., 2022). The Hard Example Identity Loss LHID
will take advantage of the reference to enhance identity preservation. See Figure 1 for the overview.

3.1 COMPOSITE CONTEXT FOR COMPREHENSIVE REFERENCE FACE REPRESENTATION

Different from no-reference face restoration methods, reference-based methods (Hsiao et al., 2024;
Ying et al., 2024; Zhang et al., 2024) assume that a high-quality reference face from the same person
is available. To thoroughly leverage this advantage, we propose Composite Context, a comprehensive
representation of the reference face image that covers multi-level information from the reference
face, including high-level semantic information (such as person identity) and low-level appearance
information (such as skin texture). Unlike previous works (Wang et al., 2025; Hsiao et al., 2024;
Ying et al., 2024; Zhang et al., 2024) that only leverage partial information from the reference face
through a single representation, Composite Context allows the model to comprehensively leverage
the reference face at different levels. Therefore, Composite Context may benefit identity preservation.

3
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Given a reference face image xREF which belongs to the same identity as xLQ, we can leverage a
collection of pre-trained face representation models for various purposes to extract the respective
representations, and combine them together as a vector sequence. In particular, Composite Context
consists of the following multi-level components:

• High-level features: ArcFace (Deng et al., 2022) embedding representing person identity. It is a
face recognition model which enforces an angular margin in its embedding space. We assume that
ϕH(·) is the pre-trained ArcFace model in the standard ResNet50 He et al. (2015) architecture, and
WH is a projection matrix from the dimensionality of face embedding to the dimension of UNet
cross-attention. The projected embedding WHϕH(xREF) is the first part of the Composite Context.

• General features: FaRL (Zheng et al., 2021) representation representing various high-level
semantic (e.g., face attributes) and low-level information (e.g., visual appearance) of the reference
face. FaRL is a general face representation model learned in a visual-linguistic manner, with
image-text contrastive learning and masked image modeling simultaneously (Zheng et al., 2021).
We assume that ϕG(·) is a pre-trained FaRL model (ViT-B (Dosovitskiy et al., 2021) architecture),
and WG is the projection matrix to the dimension of UNet cross-attention. We use the whole output
sequence (197 tokens) from FaRL to maximize reference face utility. The projected sequence
WGϕG(xREF) is the second part of the Composite Context.

After obtaining those representations from the reference face xREF, they are concatenated, and added
with the standard sinusoidal positional encoding (Vaswani et al., 2023) as the Composite Context:

c = Concat
[
WHϕH(xREF),WGϕG(xREF)

]
+ eposition, (1)

where eposition denotes sinusoidal positional encoding (Vaswani et al., 2023). Since all the Composite
Context components are from pre-trained models, the sequence length is fixed at 1 + 197 = 198
for any reference face. Finally, the Composite Context c is incorporated into the model through the
cross-attention conditioning mechanism (Rombach et al., 2022) as ε(zt, zLQ, c, t). See Figure 1 for
the overall diagram of the proposed method.

3.2 HARD EXAMPLE IDENTITY LOSS FOR IMPROVED LEARNING EFFICIENCY

One of the goals of face restoration is to preserve the identity, which means the restored face should
match the identity of the HQ image. To achieve this, many recent works (Hsiao et al., 2024; Wang
et al., 2025; Zhang et al., 2024) incorporate the identity loss, which is based on a pre-trained face
embedding model (Deng et al., 2022; Schroff et al., 2015) such as ArcFace (Deng et al., 2022). In
particular, RefLDM (Hsiao et al., 2024) presents a timestep-scaled identity loss LID as:

LID(xHQ, x̂) =
√
ᾱt ·

(
1− cos⟨ϕH(xHQ), ϕH(x̂)⟩

)
, (2)

where ϕH denotes the face embedding model Deng et al. (2022), the notation
√
ᾱt is inherited from

DDPM (Ho et al., 2020), and x̂ is the direct estimate of x0 at time step t, i.e., Eq. (15) in DDPM (Ho
et al., 2020). The time-step scaling factor

√
ᾱt mitigates the out-of-domain behavior of the identity

loss at a very noisy step t, and emphasizes identity preservation at less noisy steps. However, a
learning inefficiency issue is overlooked.
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Figure 2: Loss curves of LID
and LHID during the training
process. The curves are trun-
cated to the beginning part of
the training process.

During experiments, we observe that the identity loss in Eq. (2) de-
creases quickly and plateaus at a very small magnitude, as shown by
the blue curve in Figure 2. In the metric learning literature (Schroff
et al., 2015; Musgrave et al., 2020; Roth et al., 2020; Zhou & Patel,
2022; Zhou et al., 2024), there is a similar phenomenon where the
loss value is small when the training samples are not hard enough
(see “Triplet Selection” in (Schroff et al., 2015)), which usually leads
to poor generalization. Their countermeasure is to mine some hard
examples (Schroff et al., 2015) that can trigger a larger loss value
so the model performance can be drastically influenced (Roth et al.,
2020). Inspired by such solution to the learning inefficiency issue,
we propose to leverage the reference face xREF as a hard example in
addition to xHQ. Based on this, we design a simple extension to the
identity loss LID as the “Hard Example Identity Loss” incorporating
the hard example, namely the reference face.
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Figure 3: Qualitative comparison with other state-of-the-art face restoration methods on FFHQ-Ref
Moderate (Hsiao et al., 2024) test set. The “REF” column is the reference face. Zoom in for details.

Let λ be a hyper-parameter for balancing the influence of xHQ and xREF during training. Formally,
the Hard Example Identity Loss LHID is also based on the direct estimate x̂, and is defined as:

LHID(xHQ,xREF, x̂) = (1− λ)LID(xHQ, x̂) + λLID(xREF, x̂). (3)
As shown by the orange curve in Figure 2, our Hard Example Identity Loss will no longer plateau at
a very small value because a “harder” example is introduced, and hence will alleviate the learning
inefficiency issue. While simple in its form, the introduction of the reference face is very effective and
can clearly improve the identity preservation. As a different interpretation of the introduction of the
reference face, it is noted that the input faces are noisy (as they are direct estimations during DDPM),
which inherently makes the face embedding and the identity loss noisy. In this case, introducing the
additional contrastiveness through the reference face can potentially lead to a regularization effect,
stabilizing the gradients from the identity loss. The total loss of our model is the L-1 diffusion loss
(aka. MAE) and the Hard Example Identity Loss with a balancing hyper-parameter wHID:

Ltotal = LMAE + wHID · LHID. (4)

3.3 TRAINING-FREE EXTENSION FOR MULTI-REFERENCE FACES

Classifier-free guidance (Ho & Salimans, 2022) is an effective technique for improving diffusion
model performance, which is also widely adopted in the image restoration literature (Lin et al., 2024;
Yu et al., 2024; Wang et al., 2024b). Since our model involves both the LQ condition zLQ and c, we
follow (Brooks et al., 2023) for their classifier-free guidance formulation:

ϵ̃(zt, zLQ, c, t) = (1− si)ϵ(zt,∅,∅, t) + (si − sc)ϵ(zt, zLQ,∅, t) + scϵ(zt, zLQ, c, t), (5)
where sc controls the guidance effect of the composite context c, and si controls the guidance effect
of the LQ latent zLQ. The two hyper-parameters si and sc can be adjusted at the inference stage.

While our method is designed to take only one reference face image, it can be extended to support
multiple reference faces through a simple ensemble. Let C = {ci}i=1,...,N be a set of composite
contexts obtained from N reference face images. The multi-reference inference is formulated as:

ϵ̃(zt, zLQ,C, t) = (1− si)ϵ(zt,∅,∅, t)+ (si − sc)ϵ(zt, zLQ,∅, t)+
sc
N

N∑
i=1

ϵ(zt, zLQ, ci, t). (6)

5
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Figure 4: Qualitative comparison with other state-of-the-art face restoration methods on FFHQ-Ref
Severe (Hsiao et al., 2024) test set. The “REF” column is the high-quality reference face image.

Inspired by (Hsiao et al., 2024), the identity is expected to be better preserved when more reference
faces are provided. Different from (Hsiao et al., 2024) which uses multiple reference faces for
training, our method only requires one reference face during training while being able to use multiple
reference faces during inference. Our method alleviates the data scarcity issue in the multi-reference
face scenario, where most training samples only have a single reference face (Hsiao et al., 2024).
Such paradigm could be quite scalable in terms of the amount of reference face training data.

4 EXPERIMENTS

Datasets. Our model is trained on the FFHQ-Ref (Hsiao et al., 2024) dataset, which is a subset of
FFHQ (Karras et al., 2019) by person identity clustering. It comprises 18816 images for training
and 857 images for testing. We follow (Wang et al., 2021b) for their second-order degradation
simulation pipeline during training. For training data augmentation, we use random horizontal
flipping with 0.5 probability, and random color jittering with 0.5 probability. For testing purposes,
we adopt the identical test data from (Hsiao et al., 2024), namely FFHQ-Ref Moderate, FFHQ-Ref
Severe, and CelebA-Ref-Test (Hsiao et al., 2024). In this paper, the face image resolution is always
512 × 512 following previous works (Zhou et al., 2022; Lin et al., 2024; Hsiao et al., 2024; Ying
et al., 2024). Note, while most previous works do not use identical training data and may potentially
suffer from test data leakage (Hsiao et al., 2024), our training and test images are completely identical
to RefLDM (Hsiao et al., 2024) (NeurIPS’24) for a fair comparison.

Implementation Details. We employ an LDM (Rombach et al., 2022) backbone with 865M
parameters pre-trained on the WebLI (Chen et al., 2023) dataset for text-to-image synthesis. We fine-
tuned the VAE following (Hsiao et al., 2024), using the 68411 remaining FFHQ (Karras et al., 2019)
images after excluding the FFHQ-Ref (Hsiao et al., 2024) validation and test images. Our model is
trained on the FFHQ-Ref training set for 100K steps, with batch size 256 and learning rate 8e-5.
The cross-attention dimension is 1024. To enable classifier-free guidance (Ho & Salimans, 2022;
Brooks et al., 2023), we randomly drop the LQ condition as well as the components in Composite
Context independently with a 0.1 probability. The Composite Context components are dropped
through attention masking. The classifier-guidance scales are selected as si = 1.2 and sc = 1.2 for
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Table 1: Comparison with state-of-the-art face restoration methods on FFHQ-Ref Moderate and
Severe (Hsiao et al., 2024). The “#REF” means the number of reference face used.

Method #REF FFHQ-Ref Moderate FFHQ-Ref Severe
IDS↑ FaceNet↑ IDS(REF)↑ LPIPS↓ MUSIQ↑ NIQE↓ FID↓ IDS↑ FaceNet↑ IDS(REF)↑ LPIPS↓ MUSIQ↑ NIQE↓ FID↓

CodeFormer (NeurIPS’22) 0 0.783 0.822 0.545 0.1839 75.88 4.38 31.7 0.370 0.677 0.265 0.3113 76.12 4.30 49.6
DiffBIR (ECCV’24) 0 0.831 0.842 0.575 0.2268 76.64 5.72 34.9 0.356 0.672 0.253 0.3606 75.71 6.24 55.3

RefLDM (NeurIPS’24) 1 0.826 0.837 0.624 0.2211 72.30 4.61 28.0 0.571 0.733 0.554 0.3366 74.32 4.52 36.0
RestorerID (arXiv) 1 0.804 0.832 0.591 0.2350 73.35 4.98 31.0 0.411 0.690 0.408 0.4130 74.49 4.71 52.7

Ours 1 0.843 0.850 0.732 0.2054 75.29 3.96 25.5 0.609 0.743 0.712 0.3647 75.22 3.84 38.3

Table 2: Multi-reference face inference results. The identity preservation improves when the number
of reference faces increases Hsiao et al. (2024). Note, the IDS(REF) is calculated using the first
reference face, and it may drop with more than one reference face, because the additional reference
faces can pull the model output slightly further from the first reference face in Eq. (6).

#REF FFHQ-Ref Moderate FFHQ-Ref Severe
IDS↑ FaceNet↑ IDS(REF)↑ LPIPS↓ MUSIQ↑ NIQE↓ FID↓ IDS↑ FaceNet↑ IDS(REF)↑ LPIPS↓ MUSIQ↑ NIQE↓ FID↓

1 0.843 0.850 0.732 0.2054 75.29 3.96 25.5 0.609 0.743 0.712 0.3647 75.22 3.84 38.3
2 0.857 0.856 0.693 0.2042 75.28 3.95 25.4 0.640 0.752 0.650 0.3625 75.20 3.82 38.2
3 0.861 0.859 0.683 0.2040 75.29 3.96 25.4 0.652 0.755 0.636 0.3619 75.19 3.82 38.4
4 0.863 0.859 0.680 0.2039 75.29 3.96 25.5 0.657 0.757 0.630 0.3617 75.20 3.82 38.3
5 0.863 0.859 0.678 0.2038 75.29 3.96 25.5 0.658 0.757 0.626 0.3615 75.20 3.83 38.2

inference. The Hard Example Identity Loss balancing parameter wHID is 0.1 following (Hsiao et al.,
2024), and λ is set as 0.6 by default. The AdaIN (Karras et al., 2019)-based color fix (Wang et al.,
2024b) is applied on the model output as a post-processing step.

Evaluation. Following the previous works (Hsiao et al., 2024; Ying et al., 2024; Zhang et al., 2024),
we use LPIPS (Zhang et al., 2018) for perceptual similarity, and IDS (i.e., the cosine similarity of
ArcFace (Deng et al., 2022) embedding) for person identity preservation. This “IDS” is calculated
between the restoration result and the HQ image. Since we optimize the identity loss using the
ArcFace (Deng et al., 2022) model during training, using IDS alone may not properly reflect gen-
eralization performance due to potential overfitting. Thus, we also evaluate the ArcFace IDS with
respect to the first reference face for each LQ test image (denoted as “IDS(REF)”), as well as the
FaceNet IDS with respect to HQ (denoted as “FaceNet”). We also use no-reference metrics including
MUSIQ (Ke et al., 2021), NIQE (Mittal et al., 2012), and FID (Heusel et al., 2018) for image quality.

4.1 EXPERIMENTAL RESULTS AND COMPARISON WITH SOTA

To validate the effectiveness of our proposed method, we evaluate our method on the FFHQ-Ref test
datasets with Moderate and Severe degradations, and CelebA-Ref-Test following (Hsiao et al., 2024).
We compare our method with some state-of-the-art no-reference face restoration methods, namely
CodeFormer (Zhou et al., 2022) and DiffBIR (Lin et al., 2024), as well as the latest reference-based
face restoration methods, namely RefLDM (Hsiao et al., 2024) and RestorerID (Ying et al., 2024).
The quantitative results on FFHQ-Ref test datasets can be found in Table 1. The multi-reference
results are in Table 2. The quantitative results on CelebA-Ref-Test can be found in Table 3. The
visualization for FFHQ-Ref test sets can be found in Figure 3 and Figure 4. All results of the related
works are reproduced using their official code and checkpoints. At the time of writing, some other
related works such as OSDFace (Wang et al., 2025) and InstantRestore (Zhang et al., 2024) have not
yet published their code and checkpoints. Hence they are not included for comparison.

As shown in Table 1, the IDS and FaceNet are computed between the output and HQ ground-
truth, whereas IDS(REF) is computed between the output and the first reference face. The overall
trend is that no-reference methods like CodeFormer (Zhou et al., 2022) and DiffBIR (Lin et al.,
2024) tend to achieve good perceptual similarity (LPIPS) and image quality (MUSIQ), but worse
identity preservation compared to reference-based methods like RefLDM (Hsiao et al., 2024) and
RestorerID (Ying et al., 2024). And notably, our model consistently achieves the best identity
preservation (which is the top-priority in the reference-based face restoration task) across all test
datasets, while still achieving competitive image quality.
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Table 4: Ablation study on the Composite Context (CC) and Hard Example Identity Loss (HID).
Modules FFHQ-Ref Moderate FFHQ-Ref Severe
CC HID IDS↑ FaceNet↑ IDS(REF)↑ LPIPS↓ MUSIQ↑ NIQE↓ FID↓ IDS↑ FaceNet↑ IDS(REF)↑ LPIPS↓ MUSIQ↑ NIQE↓ FID↓

- - 0.811 0.841 0.565 0.2104 76.02 3.85 26.0 0.231 0.637 0.168 0.3896 73.85 3.67 43.4
✓ - 0.822 0.847 0.584 0.2074 75.66 3.89 25.9 0.345 0.675 0.288 0.3694 75.46 3.83 38.0
✓ ✓ 0.843 0.850 0.732 0.2054 75.29 3.96 25.5 0.609 0.743 0.712 0.3647 75.22 3.84 38.3

Table 5: Ablation study on individual components of Composite Context. The evaluation of different
combinations is carried out by using different attention masks with the same model checkpoint.
Composite Context FFHQ-Ref Moderate FFHQ-Ref Severe
High-Level General IDS↑ FaceNet↑ IDS(REF)↑ LPIPS↓ MUSIQ↑ NIQE↓ FID↓ IDS↑ FaceNet↑ IDS(REF)↑ LPIPS↓ MUSIQ↑ NIQE↓ FID↓

- - 0.738 0.805 0.516 0.2196 74.43 3.99 27.9 0.186 0.616 0.137 0.3875 73.03 3.92 47.4
- ✓ 0.770 0.821 0.567 0.2087 75.01 3.94 25.7 0.348 0.666 0.320 0.3713 74.51 3.83 40.1
✓ - 0.835 0.846 0.707 0.2094 75.20 3.98 25.9 0.535 0.717 0.625 0.3800 74.95 3.85 40.2
✓ ✓ 0.843 0.850 0.732 0.2054 75.29 3.96 25.5 0.609 0.743 0.712 0.3647 75.22 3.84 38.3

As shown in Table 2, the identity preservation will improve as we introduce more reference faces.
The effect saturates at roughly five images, which is similar to the observation in (Hsiao et al., 2024).
Note, the IDS(REF) is calculated using the first available reference face. That means the additional
reference faces could pull the model output slightly further from the first reference through Eq. (6).
Thus, IDS(REF) may drop with additional reference faces. Nevertheless, our worst IDS(REF) is still
higher than previous methods in Table 1.

As shown in Figure 3 for FFHQ-Ref Moderate, when the input LQ image contains a moderate
degradation, the IDS performance gap among the models is not very large in Table 1, hence it is
highly recommended to zoom-in to visually distinguish the differences in restored face details. For
instance, the black moles are well preserved on the sixth row in Figure 3. While other methods tends
to excessively smooth the skin texture, our model generates more realistic textures.

As shown in Figure 4 for FFHQ-Ref Severe, when the LQ face is almost unrecognizable, our method
can still sufficiently leverage the reference face and generate a face that is very close to the ground
truth, preserving identity. In contrast, almost every other method generates a visually different person
in most cases, which justifies the consistent improvements on the identity metrics of our method.

Table 3: Comparison with previous reference-based
methods on CelebA-Ref-Test (Hsiao et al., 2024).

Method #REF CelebA-Ref-Test
IDS↑ FaceNet↑ IDS(REF)↑ LPIPS↓ MUSIQ↑ NIQE↓

RefLDM 1 0.768 0.821 0.564 0.2453 72.11 4.75
RestorerID 1 0.756 0.820 0.527 0.2690 74.86 5.22

Ours 1 0.779 0.827 0.691 0.2310 75.64 3.98

As demonstrated in Table 3 for CelebA-
Ref-Test, our model still achieves the best
identity preservation compared to other
reference-based methods. All the above
experimental results demonstrate the effec-
tiveness of our method, especially in terms
of identity preservation.

4.2 ABLATION STUDY AND DISCUSSIONS

We conduct the ablation study in a hierarchical way, firstly, coarse-grained based on the two Composite
Context and Hard Example Identity Loss modules. Then we conduct the fine-grained ablation study
for each component in these modules.

Module-wise Ablation. Since the two modules are independent of each other, we conduct the
ablation study by removing some of them, and then retrain the model. As shown in Table 4, both
the context and loss contribute significantly to the final performance, because the removal of any
of them will lead to a major performance drop. Removing both makes the model degenerate into a
no-reference face restoration model, which lags behind our model too much in identity preservation.
This means both Composite Context and Hard Example Identity Loss are effective. Next, we conduct
an ablation study on the individual components of these modules.

Composite Context Ablation. As shown in Table 5, we study the contribution of individual
components in the Composite Context by applying attention masks during inference. It can be
seen in the table that all the multi-level components, including high-level and general components
clearly contribute significantly to the final performance, as the removal of any of them will lead to a
performance drop, especially on the FFHQ-Ref Severe test dataset.
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Table 6: Ablation Study on Individual Components of the Hard Identity Loss.

λ
FFHQ-Ref Moderate FFHQ-Ref Severe

IDS↑ FaceNet↑ IDS(REF)↑ LPIPS↓ MUSIQ↑ NIQE↓ FID↓ IDS↑ FaceNet↑ IDS(REF)↑ LPIPS↓ MUSIQ↑ NIQE↓ FID↓
0 0.844 0.855 0.621 0.2039 75.36 3.97 25.5 0.485 0.712 0.465 0.3664 75.22 3.85 38.5
0.6 0.843 0.850 0.732 0.2054 75.29 3.96 25.5 0.609 0.743 0.712 0.3647 75.22 3.84 38.3
1 0.779 0.821 0.794 0.2076 75.43 3.95 25.6 0.605 0.742 0.768 0.3666 75.29 3.90 38.8

Hard Example Identity Loss Ablation. As shown in Table 6, we conduct an ablation study on the
individual components in the Hard Example Identity Loss, by adjusting the balancing parameter λ
between the HQ image and the reference image in Eq. (3). According to the results, when we only
use the ID loss with the HQ image (λ = 0), the IDS(REF) is much lower, so is IDS on FFHQ-Ref
Severe. When we only use the ID loss with the REF image (λ = 1), the IDS will be traded off with
IDS(REF). Hence, we empirically set the λ parameter as 0.6 by default, by considering all the three
identity preservation metrics. The case where the Hard Identity Loss is removed (wHID = 0) is at the
second row of Table 4, and that leads to a much lower performance regardless of the λ parameter.

LQ REF Result HQ

Figure 5: Demonstration of the impact of ref-
erence face image, by deliberately supplying
the model with a reference face of a wrong
identity. The first row is from FFHQ-Ref
Moderate, and the second row is from FFHQ-
Ref Severe.

Influence of Reference Face. The above ablation
study supports the effectiveness of our method when
using a correct reference face. While the problem of
reference-based face restoration assumes a reference
face with correct identity is provided, it is difficult to
guarantee in real-world applications. To demonstrate
the influence of the reference face, we deliberately
use a wrong reference face, as shown in Figure 5.
According to our observation, when the input LQ
image has moderate information loss with the person
identity roughly recognizable, our model will largely
follow the LQ, and add slight identity-related details
to the result, as shown in the first row in the figure.
When the input LQ has severe information loss with
the person identity almost unrecognizable, the REF
face image becomes dominant and show stronger
impact in the resulting image.

This phenomenon, on the one hand, further demonstrates the effectiveness of our method through
the influence of the reference face. On the other hand, it also implies the importance of ensuring the
correct identity in real-world applications for reference-based face restoration.

Limitations and Future Work. (1) The training data is from simulated degradation pipelines (Wang
et al., 2021b), which means the model may underperform on in-the-wild face images with unknown
degradations. (2) While this reference-based task assume high-quality reference images are available,
in practical scenarios the reference image quality may vary. Figuring out which reference face among
an album is most helpful could be a direction for future exploration. (3) A large-scale high-quality
dataset for this reference-based task is still missing, and the FFHQ-Ref (Hsiao et al., 2024) training
set only contains 18816 images. Potential approaches for more data could be filtering face recognition
datasets (Zhu et al., 2021) or video frames. We leave these directions for future study.

5 CONCLUSION

We present a reference-based face restoration method, highlighting two key modules: Composite
Context and Hard Example Identity Loss that focus on identity preservation. The two key modules
are designed to better exploit reference face images, while all the existing works leverage it to a lesser
extent. Meanwhile, the proposed method can be extended for the multi-reference case in a training-
free manner. Experimental results on the FFHQ-Ref and CelebA-Ref-Test datasets demonstrate
the effectiveness of our proposed method. Ablation studies on the Composite Context and Hard
Example Identity Loss suggest that all the proposed modules in our method, including the individual
components in the modules, are effective and make a considerable impact on identity preservation.
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A APPENDIX: ADDITIONAL EXPERIMENTAL RESULTS AND DISCUSSIONS

A.1 LLM USAGE

LLM is used to fix typo as well as grammar error, and polish language for this manuscript.

A.2 ETHICS STATEMENT AND BROADER IMPACT

Our method aims at restoring low-quality face images, with the goal of contributing positively
to society. However, being a diffusion-based face generative model, it might be abused to forge
DeepFake (Pei et al., 2024) images. We suggest real-world face restoration service providers apply
invisible watermarks (Fernandez et al., 2024) to the generated result to mitigate potential risks and
negative societal impact.

A.3 KEY DIFFERENCES COMPARED TO THE MOST RELEVANT WORKS

In this paper, we present a simple yet effective reference-based face image restoration method. While
seemingly straightforward, the proposed method is not merely an adaptation of previous works; it
is underpinned by strong motivations. The insights provided by this method are novel and have the
potential to inspire future research in this field.

This paper focuses on reference-based face restoration. The most related works to this paper are
RefLDM (Hsiao et al., 2024), RestorerID (Ying et al., 2024), and InstantRestore (Zhang et al., 2024).
The key differences between our method and the previous methods are:

• Comprehensive instead of partial information through face feature. The previous
methods only use a single representation for the reference face, which only covers partial
information of the reference and does not maximize the utilization of the reference. In
contrast, our Composite Context combines multi-level face-specific representations to
comprehensively exploit the information in the reference face. The Composite Context
conceptually resembles (Mei et al., 2025; Wang et al., 2024a) which employ multiple
modalities to aid image restoration, and (Podell et al., 2023) which concatenates two
text representations for text-to-image synthesis. Our ablation studies suggest significant
contribution from every single component in the proposed composite context.

• Addressing the overlooked learning inefficiency issue in identity loss. While many
related works (Hsiao et al., 2024; Wang et al., 2025; Zhang et al., 2024) incorporate the
identity loss, a notable learning inefficiency issue where the loss value plateaus at a tiny
value (indicates learning inefficiency in the context of metric learning (Musgrave et al.,
2020; Roth et al., 2020; Schroff et al., 2015)) has been overlooked. Hard example mining is
a known technique in metric learning. However, we uniquely apply it to enhance identity
preservation in reference-based face restoration, offering a novel and targeted improvement
over the standard identity loss functions typically employed. This resolves a long-overlooked
learning inefficiency issue. The ablation studies in the paper show a significant performance
gain compared to the original version of identity loss.

• Alleviating reliance on multi-ref training data. Some existing methods support only one
reference face (Ying et al., 2024). Some others support multiple (Hsiao et al., 2024), but also
require multiple reference face images during training. It is noted that requiring more than
one reference face makes training data collection difficult. In contrast, even if our method
only uses one reference face during training, our model can be adapted to effectively support
multiple reference faces during inference in a training-free manner. Thus, we demonstrate
that the paradigm of "training with a single reference, inference with multiple references"
offers a more scalable approach, considering the practical challenges in dataset collection
and model training for reference-based face restoration.

A.4 DETAILED QUANTITATIVE RESULTS AND MORE VISUALIZATIONS

The detailed results and comparison with state-of-the-art methods on FFHQ-Ref Moderate, FFHQ-Ref
Severe, and CelebA-Ref-Test can be found in Table 7, Table 8, and Table 9, respectively. Additional
visualizations are provided in Figure 7, Figure 8, and Figure 9 for those three test sets.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The detailed multi-reference face restoration results and comparison with state-of-the-art methods can
be found in Table 10, Table 11, and Table 12, respectively for the three test sets. Some visualizations
are provided in Figure 12 to demonstrate the effect of using more than one reference faces.

A.5 QUALITATIVE ABLATION OF EACH MODULE

According to our visualizations on the FFHQ-Ref Severe test dataset, each component also makes a
qualitative difference beyond the quantitative improvements presented in the paper. We observed that:

• Composite Context: As indicated in our quantitative ablation studies, further removing
the composite context introduces even more artifacts, along with distortions to facial parts
and shape in the resulting image. We also observe skin texture artifacts, incorrect eye
colors, and occasionally, an incomplete facial structure. Overall, this significantly reduces
the resemblance to the HQ/REF face. These visual degradations are consistent with the
quantitative results. Some examples of qualitative ablation can be found in Figure 10.

• Hard Example Identity Loss: According to our ablation studies, removing this loss
sometimes introduces artifacts around the eyes and lips in the resulting face image, or
causes face shape distortions and uneven eye sizes. Overall, the resulting face appears less
similar to the HQ/REF image. Given that ArcFace embeddings are sensitive to these key
facial features, these visual observations are consistent with the quantitative results. Some
examples of qualitative ablation can be found in Figure 11.

• Multi-reference Inference: Visualizations employing multiple reference faces are provided
in the previous subsection. Overall, utilizing more reference faces leads to more effective
identity preservation.

These observations demonstrate that all components in our proposed method yield qualitative benefits,
not just quantitative gains.

A.6 ADDITIONAL VISUALIZATIONS FOR WRONG-REFERENCE ABLATION

Additional visualizations with wrong reference face (as discussed in Section 4.2) can be found in
Figure 13, Figure 14, and Figure 15.

A.7 ROBUSTNESS AGAINST POSE DIFFERENCE BETWEEN LQ AND REF

We acknowledge that face pose, angle, lighting, and expression are open challenges in reference-
based face restoration, as also mentioned by InstantRestore (Zhang et al., 2024) in their Figure 9
on limitations. Nevertheless, existing reference-based face restoration benchmark datasets are not
specifically designed to reflect challenges such as large pose variations, since most faces in these
datasets are near-frontal. In this paper, we adopt the same problem setting, datasets, and evaluation
protocol as RefLDM (NeurIPS 2024).

To validate our method’s robustness against pose differences between the LQ and REF images, we
grouped the FFHQ-Ref Severe test dataset into several ranges based on the absolute difference in yaw
angle between the original high-quality (HQ) and reference (REF) images. This difference, measured
in degrees, is calculated as “abs(yaw(HQ)-yaw(REF))”. We then re-calculated the quantitative metrics
for each group.

From the above results in Table 13, our proposed method demonstrates greater robustness than the
previous state-of-the-art, RefLDM (NeurIPS 2024), against the face pose challenge.

A.8 ROBUSTNESS AGAINST REF IMAGE QUALITY CHANGES

To evaluate our method’s robustness to degraded reference images, we used the FFHQ-Ref Severe
test dataset. For this dataset, reference images were deterministically degraded using Gaussian blur
with fixed kernel sizes (for a better controlled experiment). The results, including a comparison with
RefLDM, are presented in Table 14.

In the table, “IDS” and “FaceNet” denote the ArcFace and FaceNet cosine similarities, respectively,
between the high-quality (HQ) image and the restoration result. “IDS(REF)” represents the ArcFace
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cosine similarity between the first reference face and the result. The results indicate that although
performance naturally degrades with lower-quality reference images, our model exhibits much greater
robustness compared to the prior state-of-the-art method, RefLDM.

A.9 EVALUATION ON REAL-WORLD LQ FACE IMAGES

Non-synthetic degradation: We collected a small test set of 65 images from 21 different individuals
using a Google Pixel mobile phone. The low-quality (LQ) images in this set exhibit real-world
degradations, including blur and noise resulting from motion, defocus, or low-light conditions.
Notably, the corresponding reference images are also not of perfect quality, and ground truth high-
quality (HQ) images are unavailable for this set. The quantitative experimental results are presented in
Table 15 (note: some metrics cannot be computed due to the absence of ground truth). These results,
in fact, show that our method is state-of-the-art, even for very challenging real-world degradations.

Since the volunteers for photo donation involve the authors of this manuscript, we are unable to show
the visualization for keeping this manuscript anonymous.

A.10 HUMAN SUBJECT EVALUATION

While our method already significantly outperforms the state-of-the-art RefLDM on synthetic bench-
marks and real-world data (the 65 test images in the previous subsection), a subjective human
evaluation would further strengthen the effectiveness of our method. To that end, we performed two
blind (with model names hidden), side-by-side user studies between RefLDM and our method.

First, six participants evaluated our method against RefLDM on 65 real-world test images (with real
Pixel phone camera degradations; see the previous subsection). Based on identity preservation, our
method was preferred in 63.5% of evaluations (248/390), RefLDM was preferred in 11.0% (43/390),
and the results were a tie in 25.3% (99/390).

Second, the same six participants evaluated 50 random samples each from the FFHQ-Ref Severe
dataset. In this test, our method was rated higher for identity preservation in 47.6% of cases (143/300),
while RefLDM was rated higher in 29.0% (87/300), with 23.3% of results being a tie (70/300).

These human evaluations confirm that our method outperforms RefLDM in preserving identity across
both real-world and synthetically degraded images.

A.11 COMPARISON WITH INSTANTRESTORE

InstantRestore (Zhang et al., 2024) utilizes the CelebRef-HQ dataset for training and evaluation.
In our work, we employ a similar benchmark, CelebA-Ref-Test, which was curated by RefLDM
(NeurIPS 2024) from the CelebA-HQ dataset.

InstantRestore also created an additional non-celebrity test set, although it remains unpublished at the
time of writing. However, we were able to extract some low-quality/reference (LQ/REF) pairs from
InstantRestore’s "additional test images" by examining their publicly available arXiv LaTeX source
code (specifically, from the "images/common_people_results" directory). This process
yielded a subset of 9 test images, each associated with two reference faces.

The quantitative results for this subset are provided in Table 16. And the visualization of all images
are available in Figure 6. Note that some metrics are unavailable due to the absence of ground truth
HQ images. Despite the small size of this subset, our method clearly outperforms InstantRestore.

A.12 COMPARISON WITH OTHER NON-REFERENCE FACE RESTORATION METHODS

InterLCM: It is important to note that InterLCM (Li et al., 2025) is a no-reference method; it does not
use any reference face images for restoration and thus operates under a different problem setting than
our reference-based approach. Despite this fundamental difference, we compared our method with
InterLCM on the FFHQ-Ref Severe test dataset to provide a performance benchmark. The results are
presented in Table 17. The degradations in the FFHQ-Ref Severe dataset proved too challenging for
the officially pre-trained InterLCM model. Regarding computational cost, using an Nvidia A5000
GPU, InterLCM takes 0.106 seconds per image for inference and consumes 9.7GB of CUDA memory.
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The computational cost of our proposed method is detailed in our response to the previous question.
We will incorporate these InterLCM cost details into the manuscript in the next revision.

Other related restoration works include VQFR, DAEFR, and DMDNet (Li et al., 2022). Since these
methods were already compared and significantly outperformed in the RefLDM paper, we omitted
them from our comparisons for brevity.

A.13 EXPERIMENTS ON DIFFERENT CLASSIFIER-FREE GUIDANCE SCALE PARAMETER

A minor ablation study on the classifier-free guidance scale parameter can be found in Table 18.

A.14 ARCHITECTURE AND IMPLEMENTATION DETAILS

Our model architecture closely follows Stable Diffusion v1.5, an 865M-parameter Latent Diffusion
Model (LDM), with two modifications: (1) the VAE latent size is (64, 64, 8), as indicated in the
overview diagram, and (2) the UNet’s cross-attention dimension is 1024. Training details (including
dataset, batch size, learning rate, loss weights, and total training iterations) are provided in the
"Implementation Details" part of Section 4. This section also covers key inference details, such as
classifier-free guidance parameters. Additionally, we use DDIM with 50 steps for sampling.

A.15 SCARCITY OF MULTI-REFERENCE TRAINING DATA

Supporting multiple reference faces fundamentally through network architecture presents data scala-
bility issues. Since collecting a high-quality reference-based face restoration dataset is challenging,
almost half of the samples in the FFHQ-Ref dataset have only a single reference face. In particular,
in the FFHQ-Ref training dataset, 8351 out of 18816 samples (44.3%) have only a single reference
face; 3670 samples (19.5%) have two; and 1749 samples (9.3%) have three. This means roughly
73.2% of the training data have only three or fewer reference faces. Given this challenge in dataset
collection, we propose that “training with a single reference face, while supporting multiple reference
faces during inference” is a more scalable design.

A.16 IDENTITY LOSS’S INFLUENCE TO IMAGE QUALITY

The identity loss has a minor impact on no-reference image quality metrics, an issue also noted in
Section 3.2 of RefLDM (Hsiao et al., 2024). We therefore use 0.1 as the hard example identity loss
balancing parameter wHID following RefLDM’s choice for their original identity loss. Furthermore,
the influence of the identity loss on image quality is less than the standard deviation of the image
quality metrics themselves, as detailed in Tables 7 and 8 in this supplementary material.

In some real-world applications, identity preservation can be more important than perceptual quality.
For instance, when restoring the face in a user’s selfie, it would be worse if the restoration model
turned the person into someone else. In such cases, preserving identity at a subtle cost to image
quality is a worthy trade-off.

A.17 ATTEMPT ON OTHER FACE REPRESENTATIONS

Face representation is a crucial component, and indeed, existing methods in this area are quite mature.
During our explorations, we experimented with using local patches cropped around facial landmarks
from the reference image, processed by small neural networks, to form a low-level representation.
However, our experimental results indicated that the FaRL representation is sufficient on its own,
likely because it also effectively encodes low-level information, rendering the explicit patch-based
features redundant.

A.18 INFERENCE TIME COST

Our diffusion model backbone is an 865M-parameter LDM, almost identical to Stable Diffusion
v1.5. On an Nvidia A5000 GPU, the inference time per image is 7.18 seconds, with CUDA memory
usage at 8.7GB. The feature extraction components contribute minimally to this total time: ViT-B/16
(FaRL) takes 0.008 seconds, and ArcFace (ResNet-50) takes 0.010 seconds.
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Table 7: Detailed Quantitative Results on FFHQ-Ref Moderate test set.

Method #REF FFHQ-Ref Moderate

IDS FaceNet IDS(REF) LPIPS MUSIQ NIQE FID

CodeFormer 0 0.783± 0.082 0.822± 0.047 0.545± 0.106 0.1839± 0.0471 75.88± 2.01 4.38± 0.69 31.7
DiffBIR 0 0.831± 0.095 0.842± 0.056 0.575± 0.108 0.2268± 0.0633 76.64± 1.64 5.72± 1.23 34.9

RefLDM 1 0.826± 0.077 0.837± 0.048 0.624± 0.096 0.2210± 0.0583 72.30± 4.89 4.61± 0.64 28.0
RestorerID 1 0.804± 0.099 0.832± 0.054 0.591± 0.096 0.2350± 0.0688 73.35± 5.12 4.98± 0.81 31.0

Ours 1 0.843± 0.076 0.850± 0.051 0.732± 0.069 0.2054± 0.0606 75.29± 2.77 3.96± 0.71 25.5

Table 8: Detailed Quantitative Results on FFHQ-Ref Severe test set.

Method #REF FFHQ-Ref Severe

IDS FaceNet IDS(REF) LPIPS MUSIQ NIQE FID

CodeFormer 0 0.370± 0.150 0.677± 0.061 0.265± 0.132 0.3113± 0.0801 76.12± 1.94 4.30± 0.70 49.6
DiffBIR 0 0.356± 0.144 0.672± 0.058 0.253± 0.124 0.3606± 0.0879 75.71± 2.81 6.24± 1.22 55.3

RefLDM 1 0.571± 0.110 0.733± 0.052 0.554± 0.112 0.3366± 0.0756 74.32± 3.36 4.52± 0.62 36.0
RestorerID 1 0.411± 0.110 0.690± 0.052 0.408± 0.103 0.4130± 0.0741 74.49± 3.41 4.71± 0.65 52.7

Ours 1 0.609± 0.089 0.743± 0.048 0.712± 0.068 0.3647± 0.0722 75.22± 2.46 3.84± 0.64 38.3

Table 9: Detailed Quantitative Results on CelebA-Ref-Test test set.

Method #REF CelebA-Ref-Test

IDS FaceNet IDS(REF) LPIPS MUSIQ NIQE FID

RefLDM 1 0.768± 0.085 0.821± 0.046 0.564± 0.096 0.2453± 0.0550 72.11± 4.59 4.75± 0.55 19.4
RestorerID 1 0.756± 0.098 0.820± 0.049 0.527± 0.090 0.2690± 0.0629 74.86± 3.82 5.22± 0.76 25.4

Ours 1 0.779± 0.086 0.827± 0.048 0.691± 0.064 0.2310± 0.0540 75.64± 2.44 3.98± 0.53 18.4

Table 10: Detailed Quantitative Results on FFHQ-Ref Moderate test set. Note, our multi-reference
face support is training-free, while RefLDM’s is not.

Method #REF FFHQ-Ref Moderate

IDS FaceNet IDS(REF) LPIPS MUSIQ NIQE FID

RefLDM 1 0.826± 0.077 0.837± 0.048 0.624± 0.096 0.2210± 0.0583 72.30± 4.89 4.61± 0.64 28.0
Ours 1 0.843± 0.076 0.850± 0.051 0.732± 0.069 0.2054± 0.0606 75.29± 2.77 3.96± 0.71 25.5

RefLDM 2 0.839± 0.067 0.844± 0.045 0.630± 0.094 0.2150± 0.0577 73.25± 4.34 4.57± 0.62 27.6
Ours 2 0.857± 0.069 0.856± 0.049 0.693± 0.075 0.2042± 0.0603 75.28± 2.75 3.95± 0.71 25.4

RefLDM 3 0.845± 0.063 0.847± 0.045 0.635± 0.092 0.2117± 0.0574 73.87± 3.92 4.53± 0.63 27.2
Ours 3 0.861± 0.067 0.859± 0.049 0.683± 0.077 0.2040± 0.0602 75.29± 2.75 3.96± 0.71 25.5

RefLDM 4 0.848± 0.061 0.848± 0.044 0.639± 0.090 0.2101± 0.0573 74.26± 3.66 4.50± 0.63 27.2
Ours 4 0.863± 0.066 0.859± 0.049 0.680± 0.078 0.2039± 0.0602 75.29± 2.75 3.96± 0.71 25.5

RefLDM 5 0.848± 0.060 0.848± 0.043 0.641± 0.090 0.2097± 0.0574 74.51± 3.52 4.48± 0.64 27.1
Ours 5 0.863± 0.066 0.859± 0.048 0.678± 0.079 0.2038± 0.0601 75.29± 2.75 3.96± 0.71 25.5

Table 11: Detailed Quantitative Results on FFHQ-Ref Severe test set. Note, our multi-reference face
support is training-free, while RefLDM’s is not.

Method #REF FFHQ-Ref Severe

IDS FaceNet IDS(REF) LPIPS MUSIQ NIQE FID

RefLDM 1 0.571± 0.110 0.733± 0.052 0.554± 0.112 0.3366± 0.0756 74.32± 3.36 4.52± 0.62 36.0
Ours 1 0.609± 0.089 0.743± 0.048 0.712± 0.068 0.3647± 0.0722 75.22± 2.46 3.84± 0.64 38.3

RefLDM 2 0.631± 0.091 0.754± 0.049 0.576± 0.100 0.3271± 0.0745 74.82± 3.20 4.51± 0.62 35.4
Ours 2 0.640± 0.078 0.752± 0.047 0.650± 0.073 0.3625± 0.0717 75.20± 2.42 3.82± 0.63 38.2

RefLDM 3 0.662± 0.084 0.764± 0.047 0.594± 0.095 0.3228± 0.0740 75.22± 2.90 4.49± 0.64 35.1
Ours 3 0.652± 0.075 0.755± 0.047 0.636± 0.074 0.3619± 0.0715 75.19± 2.46 3.82± 0.63 38.4

RefLDM 4 0.677± 0.080 0.769± 0.047 0.604± 0.093 0.3203± 0.0731 75.46± 2.73 4.46± 0.64 34.7
Ours 4 0.657± 0.074 0.757± 0.048 0.630± 0.075 0.3617± 0.0715 75.20± 2.42 3.82± 0.63 38.3

RefLDM 5 0.685± 0.078 0.772± 0.048 0.611± 0.091 0.3201± 0.0733 75.62± 2.68 4.46± 0.66 34.7
Ours 5 0.658± 0.074 0.757± 0.049 0.626± 0.077 0.3615± 0.0714 75.20± 2.42 3.83± 0.63 38.2
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Table 12: Detailed Quantitative Results on CelebA-Ref-Test test set. Note, our multi-reference face
support is training-free, while RefLDM’s is not.

Method #REF CelebA-Ref-Test

IDS FaceNet IDS(REF) LPIPS MUSIQ NIQE FID

RefLDM 1 0.768± 0.085 0.821± 0.046 0.564± 0.096 0.2453± 0.0550 72.11± 4.59 4.75± 0.55 19.4
Ours 1 0.779± 0.086 0.827± 0.048 0.691± 0.064 0.2310± 0.0540 75.64± 2.44 3.98± 0.53 18.4

RefLDM 2 0.775± 0.081 0.824± 0.045 0.580± 0.095 0.2428± 0.0545 73.01± 4.18 4.69± 0.57 18.8
Ours 2 0.787± 0.084 0.831± 0.047 0.675± 0.071 0.2305± 0.0540 75.65± 2.43 3.98± 0.53 18.4

RefLDM 3 0.774± 0.080 0.824± 0.044 0.587± 0.095 0.2426± 0.0542 73.46± 4.02 4.63± 0.56 18.4
Ours 3 0.787± 0.084 0.831± 0.047 0.668± 0.076 0.2305± 0.0540 75.65± 2.43 3.98± 0.53 18.4

RefLDM 4 0.771± 0.080 0.824± 0.044 0.591± 0.095 0.2434± 0.0542 73.73± 3.93 4.59± 0.57 18.1
Ours 4 0.786± 0.084 0.831± 0.047 0.664± 0.080 0.2305± 0.0540 75.65± 2.43 3.98± 0.53 18.4

RefLDM 5 0.767± 0.081 0.822± 0.045 0.594± 0.096 0.2445± 0.0542 73.93± 3.88 4.56± 0.57 18.0
Ours 5 0.785± 0.085 0.830± 0.046 0.661± 0.082 0.2306± 0.0540 75.65± 2.43 3.98± 0.53 18.4

Table 13: Robustness against the face pose (yaw angle) difference between LQ face and REF face.
Our method is more robust against the face pose difference than RefLDM.
Method Yaw angle diff (deg) Number of test samples (out of 857) IDS FaceNet IDS(REF) LPIPS↓ MUSIQ NIQE↓
RefLDM [0, 15) 530 (61.8%) 0.584 0.736 0.571 0.3373 74.55 4.51
Ours [0, 15) 530 (61.8%) 0.619 0.745 0.724 0.3653 75.32 3.85
RefLDM [15, 30) 231 (26.9%) 0.562 0.731 0.540 0.3349 74.02 4.53
Ours [15, 30) 231 (26.9%) 0.604 0.744 0.706 0.3607 74.90 3.85
RefLDM [30, 90) 96 (11.2%) 0.512 0.717 0.493 0.3369 73.77 4.56
Ours [30, 90) 96 (11.2%) 0.564 0.729 0.661 0.3711 75.43 3.71

Table 14: Robustness against the REF face image quality change.

Method Gaussian
kernel size IDS FaceNet IDS(REF) LPIPS↓ MUSIQ NIQE↓ FID↓

RefLDM 0 0.571 0.733 0.554 0.3366 74.32 4.52 36.0
Ours 0 0.609 0.743 0.712 0.3647 75.22 3.84 38.3

RefLDM 2 0.556 0.728 0.539 0.3505 67.84 4.82 37.5
Ours 2 0.606 0.742 0.703 0.3682 74.84 3.95 41.0

RefLDM 4 0.509 0.712 0.485 0.3651 64.50 5.01 40.6
Ours 4 0.587 0.735 0.677 0.3705 74.56 4.01 41.7

RefLDM 6 0.461 0.696 0.429 0.3724 64.25 5.08 42.6
Ours 6 0.555 0.726 0.631 0.3726 74.44 4.04 42.1

RefLDM 8 0.405 0.679 0.363 0.3759 63.52 5.09 44.3
Ours 8 0.512 0.715 0.569 0.3744 74.34 4.05 42.8

Table 15: Evaluation on Real-World LQ Face Images Captured using Google Pixel Phone.
Method IDS(REF) FaceNet(REF) MUSIQ NIQE ↓
RefLDM 0.447 0.741 56.10 4.21
Ours 0.501 0.762 62.38 4.08

Table 16: Comparison against InstantRestore on a small set of images.
Method IDS(REF) FaceNet(REF) MUSIQ NIQE ↓
InstantRestore 0.563 0.711 62.70 4.85
Ours 0.601 0.732 72.32 3.64

Table 17: Comparison with InterLCM (Li et al., 2025) on FFHQ-Ref Severe.
Method #REF IDS FaceNet IDS(REF) LPIPS↓ MUSIQ NIQE↓ FID↓
InterLCM N/A 0.266 0.643 0.190 0.3998 75.62 3.80 55.1
Ours 1 0.609 0.743 0.712 0.3647 75.22 3.84 38.3
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Figure 6: Comparison with InstantRestore on a small set of images from their arXiv preprint source.
Our results have better image quality. Zoom in for details.
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Table 18: Ablation study on the classifier-free guidance scale parameters with FFHQ-Ref Severe.

si sc
FFHQ-Ref Severe

IDS FaceNet IDS(REF) LPIPS MUSIQ NIQE FID

1.0 1.0 0.599± 0.089 0.738± 0.049 0.694± 0.070 0.3645± 0.0723 74.73± 2.73 3.97± 0.61 39.1
1.0 1.2 0.608± 0.088 0.742± 0.048 0.719± 0.065 0.3678± 0.0723 75.13± 2.57 3.94± 0.63 38.8
1.2 1.0 0.598± 0.091 0.738± 0.050 0.685± 0.073 0.3642± 0.0724 74.84± 2.65 3.85± 0.63 38.8
1.2 1.2 0.609± 0.089 0.743± 0.048 0.712± 0.068 0.3647± 0.0722 75.22± 2.46 3.84± 0.64 38.3
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Figure 7: Additional qualitative comparison with other state-of-the-art face restoration methods on
FFHQ-Ref Moderate test set. The “REF” column is the high-quality reference face image.
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Figure 8: Additional qualitative comparison with other state-of-the-art face restoration methods on
FFHQ-Ref Severe test set. The “REF” column is the high-quality reference face image.
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Figure 9: Additional qualitative comparison with other state-of-the-art face restoration methods on
CelebA-Ref-Test test set. The “REF” column is the high-quality reference face image.
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Figure 10: Qualitative ablation on the individual components in our proposed “Composite Context”
module. To ease the comparison, we use the same samples shown in the manuscript.
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LQ REF wHID = 0 λ = 0 λ = 1 Ours HQ

Figure 11: Qualitative ablation on the individual components in our proposed “Hard Example Identity
Loss” module. To ease the comparison, we use the same samples shown in the manuscript. The case
where wHID = 0 means the whole hard example identity loss has been removed. When λ = 0, the
loss fully relies on the HQ image. When λ = 1, the loss fully relies on the reference face image.
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Figure 12: Visualization of multi-reference face restoration on FFHQ-Ref Severe.
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Figure 13: Additional visualizations with wrong reference face. This table is a continuation of the
Figure 5 in the manuscript. As discussed in the manuscript, a wrong reference face will leads to some
“identity blending” effect depending on how much information is lost from the low-quality input face.
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Figure 14: Additional visualizations with wrong reference face. This table is a continuation of the
Figure 5 in the manuscript. As discussed in the manuscript, a wrong reference face will leads to some
“identity blending” effect depending on how much information is lost from the low-quality input face.
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Figure 15: Additional visualizations with wrong reference face. This table is a continuation of the
Figure 5 in the manuscript. As discussed in the manuscript, a wrong reference face will leads to some
“identity blending” effect depending on how much information is lost from the low-quality input face.
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