
Published as a workshop paper at ICLR 2024

THE PRIVACY POWER OF CORRELATED NOISE IN DE-
CENTRALIZED LEARNING

Youssef Allouah, Anastasia Koloskova, Aymane El Firdoussi, Martin Jaggi, Rachid Guerraoui
EPFL, Switzerland
{first.last}@epfl.ch

ABSTRACT

Decentralized learning is appealing as it enables the scalable usage of large amounts
of distributed data and resources (without resorting to any central entity), while
promoting privacy since every user minimizes the direct exposure of their data. Yet,
without additional precautions, curious users can still leverage models obtained
from their peers to violate privacy. In this paper, we propose DECOR, a variant of
decentralized SGD with differential privacy (DP) guarantees. In DECOR, users
securely exchange randomness seeds in one communication round to generate
pairwise-canceling correlated Gaussian noises, which are injected to protect local
models at every communication round. We theoretically and empirically show
that, for arbitrary connected graphs, DECOR matches the central DP optimal
privacy-utility trade-off. We do so under SecLDP, our new relaxation of local
DP, which protects all user communications against an external eavesdropper and
curious users, assuming that every pair of connected users shares a secret, i.e., an
information hidden to all others. The main theoretical challenge is to control the
accumulation of non-canceling correlated noise due to network sparsity. We also
propose a companion SecLDP privacy accountant for public use.

1 INTRODUCTION

In numerous machine learning scenarios, the training dataset is dispersed among diverse sources,
including individual users or distinct organizations responsible for generating each data segment. The
nature of such data often involves privacy concerns, especially in applications like healthcare (Sheller
et al., 2020), which can divulge sensitive information about an individual’s health. Privacy issues
make it either impractical or undesirable to transfer the data beyond their original sources, promoting
the emergence of federated and decentralized learning (McMahan et al., 2017; Lian et al., 2017),
where the training occurs directly on the data-holding entities. Decentralized learning additionally
removes the assumption of a central server, with only the model updates being transmitted directly
between users. A classical decentralized learning algorithm is decentralized stochastic gradient
descent (D-SGD) (Koloskova et al., 2020), where users alternate between performing local gradient
updates and averaging local models via gossiping.

When dealing with privacy-sensitive data, it is crucial not only to confine the sensitive information
locally with decentralization, but also to ensure that the algorithm avoids leaking any sensitive
information through its communicated updates or the final model. These can be observed by an
external eavesdropper or even an honest-but-curious user, who follows the algorithm but may attempt
to violate the privacy of other users. The notion of differential privacy (DP) (Dwork et al., 2014)
serves as a widely accepted theoretical framework for measuring formal privacy guarantees. This
notion has been extensively studied in centralized settings (Bassily et al., 2014; Abadi et al., 2016),
i.e., assuming a trusted data curator or server. Yet, much less attention has been given to adapting DP
to decentralized learning.

Several threat models have been considered in decentralized learning, with the strongest corresponding
to local differential privacy (LDP) (Kasiviswanathan et al., 2011). Under LDP, users do not trust any
other entity and obfuscate all their communications independently. In contrast, central differential
privacy (CDP) only protects the final model, exactly as if the learning was conducted on a single
machine. Importantly, there is a significant gap in performance between LDP and CDP algorithms.
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In a system of n users, the optimal privacy-utility trade-off under LDP can be n times worse than
CDP (Duchi et al., 2018). Indeed, the CDP baseline is the variant of D-SGD adding noise to protect
the average of user models only, which is much less noise than that needed under LDP, to protect
every local model before averaging. Some prior works aimed at reconciling this performance gap
by investigating other relaxations of LDP. For example, in federated learning with an untrusted
server, the shuffle model (Cheu et al., 2019) and distributed DP (Kairouz et al., 2021a) restrict the
view of the server using cryptographic primitives and match the CDP optimal privacy-utility trade-
off. However, these approaches are server-based and thus cannot be used in decentralized learning.
Network DP (Cyffers & Bellet, 2022) considers honest-but-curious users whose view is restricted to
their neighboring communications. As we discuss in Section A, the privacy-utility trade-offs under
Network DP match CDP only for well-connected graphs (Cyffers et al., 2022).

Contributions. We propose DECOR, a new algorithm for decentralized learning with differential
privacy. DECOR is a variant of D-SGD, which additionally injects two types of privacy noise to
protect local models: (i) uncorrelated Gaussian noise to protect the local model after gossip averaging,
and (ii) correlated Gaussian noise, as a sum of pairwise cancelling noise terms for each neighbor, to
protect local models before gossip averaging. In the presence of a server, after one round of DECOR,
averaging all local models would cancel out the correlated Gaussian noise terms, and leave the
uncorrelated Gaussian noise protecting the average of models, as was previously studied by Sabater
et al. (2022) (see Section A). However, on a sparse graph, the correlated noise terms do not all cancel
out in DECOR. To obtain our main result, we control the accumulation of correlated noise across
iterations in our convergence analysis, and show that its effect vanishes across iterations of DECOR.

We consider an external eavesdropper and honest-but-curious non-colluding users and show that
DECOR matches the optimal CDP privacy-utility trade-off under our new relaxation of LDP we
call secret-based local differential privacy (SecLDP). Our relaxation protects against an external
eavesdropper and curious users who can observe all communications, assuming that every pair of
connected users shares a secret, i.e., an information a priori hidden to all others, similar to secure
aggregation (Bonawitz et al., 2017). For example, we consider the secrets to be shared randomness
seeds exchangeable in one round of encrypted communications. Following the choice of the set of
secrets, our relaxation can capture several threat models, e.g., including collusion of several users; or
recovering LDP when no communications are secret. We also demonstrate the empirical superiority
of DECOR over the LDP baseline on simulated and real-world data and multiple network topologies,
and provide a practical SecLDP privacy accountant for DECOR.

2 PROBLEM STATEMENT

We consider a set of users [n] := {1, . . . , n} who want to collaboratively solve a common machine
learning task in a decentralized fashion. Each user i ∈ [n] holds a local dataset Di containing
m ∈ N elements {ξ1i , . . . , ξmi } from data space X .1 The goal is to minimize the following global
loss function:

min
x∈Rd

L(x) := 1

n

n∑
i=1

Li(x), (1)

where the local loss functions Li : Rd → R, i ∈ [n], are distributed among n users and are given in
empirical form:

Li(x) :=
1

|Di|
∑
ξ∈Di

ℓ(x, ξ), ∀x ∈ Rd, (2)

where ℓ(x, ξ) ∈ R is the loss of parameter x on sample ξ. We study the fully decentralized setting
where users are the nodes of an undirected communication graph G = ([n], E). Two nodes i, j ∈ [n]
can communicate directly if they are neighbors in G, i.e., {i, j} ∈ E .

Secret-based local DP. We aim to protect the privacy of user data against an adversary who can
eavesdrop on all communications, while every pair of connected users {i, j} ∈ E shares a sequence of

1All datasets have the same size for simplicity; our theory can be directly extended to cover local datasets
with different sizes.
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secrets Sij , which represent observations of random variables commonly known to the nodes sharing
the secrets only. In practice, these are locally generated via shared randomness seeds exchanged
after one round of encrypted communications Bonawitz et al. (2017), and conceptually one can
consider the secrets to be the shared randomness seeds only. We denote by Sall := {Sij : {i, j} ∈ E}
the set of all secrets. While local DP (LDP) Kasiviswanathan et al. (2011) protects the privacy of
all communications without assuming the existence of secrets, at the price of a poor privacy-utility
trade-off Duchi et al. (2013), we propose to relax LDP into secret-based local differential privacy
(SecLDP) as defined below.
Definition 1 (SecLDP). Let ε ≥ 0, δ ∈ [0, 1]. Consider a randomized decentralized algorithm
A : Xm×n → Y , which outputs the transcript of all communications. Algorithm A satisfies (ε, δ,S)-
SecLDP if it satisfies (ε, δ)-DP given that the set of secrets S is unknown to the adversary. That is,
for every adjacent datasets D,D′ ∈ Xm×n,

P [A(D) | S is hidden] ≤ eε · P [A(D′) | S is hidden] + δ,

where the event “S is hidden” conditions on the non-secret observations Sall \ S. We say that A
satisfies (ε, δ)-SecLDP if it satisfies (ε, δ,S)-SecLDP and S is clear from the context.

Our privacy definition can encode several levels of knowledge of the adversary, and the corresponding
threat models, through the choice of the secrets S . Essentially, the larger the set of secrets, the weaker
is the adversary. To see this, we denote by Si := {Sjk : {j, k} ∈ E and j, k ̸= i} the set of secrets
hidden from user i ∈ [n], and by SI := ∩i∈ISi the set of secrets hidden from the group of users
I ⊆ [n], so that SI ⊆ Si ⊆ Sall for every i ∈ I ⊆ [n]. We consider the following adversaries in
increasing strength:

I. External eavesdropper: the only adversary is not a user and ignores all the secrets Sall, but
can eavesdrop on all communications between users. This threat is covered by (ε, δ,Sall)-
SecLDP.

II. Honest-but-curious users without collusion: every user faithfully follows the protocol, but
may try to infer private information from other users by eavesdropping on all communica-
tions, while knowing the secrets it shares with other users only. This threat is covered by
having (ε, δ,Si)-SecLDP for every i ∈ [n].

III. Honest-but-curious users with partial collusion: every group of users of size q < n may
collude by disclosing the secrets they have access to. This threat is covered, at collusion
level q, by having (ε, δ,SI)-SecLDP for every I ⊆ [n], |I| = q.

IV. Full collusion: all users may collude against any other user in the system, as if the adversary
can observe all communications and no secrets are hidden from them. This threat is covered
by (ε, δ,∅)-SecLDP, which corresponds to LDP.

The adversaries above are in increasing strength in the sense that defending against adversary II
consequently defends against adversary I, and so on. In this work, we consider the secrets to be
shared randomness seeds, which allow every pair of users to keep the same observation of a random
variable and generate correlated noise. In practice, such secrets, i.e., randomness seeds, can be shared
securely and efficiently, as is common in secure aggregation for federated learning (Bonawitz et al.,
2017; Kairouz et al., 2021a). Moreover, for ease of exposition, we focus on the adversaries of type I
and II above and defer the extension of our results to types III and IV to the appendix.

Comparison with other relaxations. Recall from Section 1 that a common relaxation of LDP is
central differential privacy (CDP), where the adversary can only access the final training model.
In fact, CDP is recovered from SecLDP by considering the larger set of secrets consisting of all
user communications. From a privacy point of view, CDP is equivalent to DP in the trusted curator
model—the privacy model in the centralized setting—and thus allows achieving the best privacy-
utility trade-off. In contrast, the best achievable mean squared error under LDP is n times worse than
under CDP (Duchi et al., 2018; Allouah et al., 2023), for strongly convex optimization problems.
Indeed, the CDP baseline is D-SGD with additional Gaussian noise magnitude Θ( 1

nε2 ), while the
LDP baseline D-SGD with Gaussian noise magnitude Θ( 1

ε2 ). We refer to these approaches as the
CDP and LDP baselines, respectively.

However, CDP does not protect against honest-but-curious users, who can be expected in real-
world scenarios. This limitation motivated Network DP (Cyffers & Bellet, 2022), which guarantees
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Algorithm 1 DECOR: DECENTRALIZED SGD WITH CORRELATED NOISE

Input: for each user i ∈ [n] initialize x(0)
i ∈ Rd, stepsizes {ηt}T−1

t=0 , number of iterations T , clipping
threshold C, noise parameters σcor and σcdp.

1: for t in 0 . . . T − 1, i in 1 . . . n, in parallel do
2: Sample ξ

(t)
i , compute g

(t)
i := Clip(∇ℓ(x

(t)
i ;C), ξ

(t)
i ), where Clip(g;C) := min

{
1, C

∥g∥

}
·

g

3: Sample for all j ∈ Ni, v
(t)
ij = −v

(t)
ji ∼ N (0, σ2

corId), and v
(t)
i ∼ N (0, σ2

cdpId)

4: g̃
(t)
i := g

(t)
i +

∑
j∈Ni

v
(t)
ij + v

(t)
i ▷ privacy noise

5: x
(t+ 1

2 )
i = x

(t)
i − ηtg̃

(t)
i ▷ stochastic gradient updates

6: x
(t+1)
i :=

∑n
j=1 Wijx

(t+ 1
2 )

j ▷ gossip averaging
7: end for

the privacy of all communications against honest-but-curious users whose view is restricted to
communications with their neighbors, with privacy-utility trade-offs sometimes matching those of
CDP (Cyffers et al., 2022). In general, SecLDP and Network DP are orthogonal, since the latter
restricts the communications known to users, while the former restricts part of these communications—
secrets—to an adversary observing all other communications. In the case of the aforementioned
adversary II, SecLDP is arguably stronger than Network DP because honest-but-curious users in
SecLDP have a larger view, i.e., all communications besides secrets outside their neighborhood.

3 DECOR: DECENTRALIZED SGD WITH CORRELATED NOISE

We now present our algorithm DECOR, summarized in Algorithm 1. Overall, DECOR is a variant of
D-SGD injecting the privacy noise each local model. This privacy noise consists of two parts: (i)
correlated noise to protect the local communications before gossip averaging, and (ii) uncorrelated
noise to protect the gossip average.

DECOR is an iterative decentralized algorithm proceeding in T iterations, whereby at each iteration
t ∈ [T ], each user i ∈ {1, . . . , n} first computes and clips a stochastic gradient at the current local
model x(t)

i (line 2 of Algorithm 1):

g
(t)
i := Clip(∇ℓ(x

(t)
i , ξ

(t)
i );C),

where ξ
(t)
i is a data point sampled at random from user i’s dataset Di, and clipping with threshold

C corresponds to Clip(g;C) := min
{
1, C

∥g∥

}
· g for any vector g ∈ Rd. The clipping operation

ensures that the sensitivity of the gradient, to a change in data, is bounded as required by DP. Then,
on line 4 of Algorithm 1, each user obfuscates the clipped gradient by adding privacy noise:

g̃
(t)
i := g

(t)
i +

∑
j∈Ni

v
(t)
ij + v

(t)
i , (3)

where is v
(t)
i ∼ N (0, σ2

cdpId) is independent Gaussian noise, Ni is the set of neighbors of i on

graph G, and {v(t)
ij }j∈Ni

are pairwise-cancelling correlated Gaussian noise terms; they satisfy

v
(t)
ij = −v

(t)
ji ∼ N (0, σ2

corId). Then, on line 5, each user makes a local update with the obfuscated
stochastic gradient to obtain:

x
(t+ 1

2 )
i = x

(t)
i − ηtg̃

(t)
i ,

where ηt is the iteration’s learning rate. Finally, on line 6, each user broadcasts the obtained local
model to its neighbors on graph G, and updates its local model by performing a weighted average of
the neighbors’ local models:

x
(t+1)
i :=

n∑
j=1

Wijx
(t+ 1

2 )
j , (4)
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Algorithm 2 SINGLE-STEP SECLDP ACCOUNTANT

Input: clipping threshold C, noise variances σcdp, σcor.
1: if external eavesdropper then
2: Get Laplacian matrix L of the full graph G
3: Compute Σ =

(
σ2
cdpIn + σ2

corL
)−1

4: return 2C2 maxi∈[n] Σii

5: end if
6: if honest-but-curious non-colluding users then
7: for i in 1 . . . n do
8: Get Laplacian matrix L of the subgraph of G obtained by deleting vertex i

9: Compute Σ =
(
σ2
cdpIn−1 + σ2

corL
)−1

10: εi = 2C2 maxj∈[n−1] Σjj

11: end for
12: return maxi∈[n] εi
13: end if

where the weights are zero for non-neighboring users and form the mixing matrix W =
[Wij ]i,j∈[n] ∈ Rn×n, which is symmetric and doubly stochastic (see Definition 4 below). The
motivation for injecting correlated noise in (3) is that the gossip averaging in (4) will cancel out part
or all correlated noise terms. For example, if G is the fully connected graph and W = 1

n11
⊤ is the

matrix of ones times 1
n , then (3) cancels out all correlated noise terms. Still, the uncorrelated noise

term v̄
(t)
i remains to protect the privacy of the gossip-averaged local model x(t+1)

i .

Privacy accountant. In addition to our theoretical privacy bounds (Theorem 4) which may be loose in
practice, we devise a privacy accounting method, described in Algorithm 2, which allows computing
tight privacy bounds for a single step of DECOR. The accounting procedure is simple, and mainly
involves computing the inverse of a “modified” graph Laplacian matrix, which can be conducted
efficiently for large sparse graphs (Vishnoi, 2012). It is straightforward to account the privacy for the
full DECOR procedure using the composition and DP conversion properties of RDP (Mironov, 2017)
in addition to Algorithm 2.

4 PRIVACY-UTILITY TRADE-OFF

We now state our main theoretical result, which combines our privacy and utility analyses, which are
deferred to the appendix due to space limitation. We recall that a graph is 2-connected if it remains
connected after removing any vertex, and that the algebraic connectivity a(G)—the second-smallest
eigenvalue of the Laplacian matrix—quantifies the level of connectivity of a graph (Fiedler, 1973).
We present the privacy-utility trade-off of DECOR in Theorem 1 below for smooth strongly convex
tasks, and under other standard optimization assumptions deferred to the appendix.

Theorem 1. Let Assumptions 1-5 hold. Let ε > 0, δ ∈ (0, 1) be such that ε ≤ log (1/δ). Algorithm 1
satisfies (ε, δ)-SecLDP (Definition 1) with expected error

O
(
C2d log (1/δ)

n2ε2

)
,

against the following adversaries:

• an external eavesdropper: if G is connected, σ2
cdp = 32C2T log (1/δ)

nε2 and σ2
cor =

32C2T log (1/δ)
a(G)ε2 ,

• honest-but-curious non-colluding users: if G is 2-connected, σ2
cdp = 32C2T log (1/δ)

(n−1)ε2 and

σ2
cor =

32C2T log (1/δ)
a1(G)ε2 , where a1(G) is the minimum algebraic connectivity across subgraphs

obtained by deleting a single vertex from G.
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Algorithm: CDP DECOR LDP Topology: Fully Connected Grid Ring
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Figure 1: Privacy-utility trade-offs for DECOR and the CDP and LDP baselines on least-squares
regression, logistic regression, and neural network training under (ε, 10−5)-SecLDP against an
external eavesdropper observing all communications. DECOR closely matches the performance of
CDP, and considerably surpasses LDP, across all considered tasks, privacy budgets, and topologies.

In the above, O omits absolute constants, vanishing terms in T , and privacy-independent multiplica-
tive constants.

Tightness. The lower bound on the privacy-utility trade-off under user-level CDP is Ω
(

d
n2ε2

)
(Bassily

et al., 2014).2 Under LDP, the lower bound on the privacy-utility trade-off is Ω
(

d
nε2

)
(Duchi et al.,

2018). Therefore, following the result of Theorem 1, DECOR matches the optimal CDP privacy-utility
trade-off, under SecLDP against both an external eavesdropper and non-colluding curious users. We
recall that this improves by factor n over the trade-off achieved by LDP algorithms (Bellet et al.,
2018; Cheng et al., 2019; Huang et al., 2019; Li & Chi, 2023). Besides, for comparison, Cyffers et al.
(2022) derive a privacy-utility trade-off in O

(
kmax√
pn2ε2

)
, where kmax is the maximum degree of the

graph, for a relaxation of Network DP (Cyffers & Bellet, 2022). Their trade-off matches CDP for
well-connected graphs such as expanders (Ying et al., 2021), but degrades with poorer connectivity,
e.g., O

(
1

nε2

)
for the ring graph. In contrast, our trade-off matches CDP for arbitrary connected

graphs, albeit the privacy definitions are orthogonal in general, as we discuss in Section 2. We also
extend Theorem 1 to colluding curious users (adversary III in Section 2) in the appendix and match
the optimal privacy-utility trade-off when there is a constant fraction of colluding users. Naturally, if
the group of colluding users is too large, the threat model of SecLDP approaches that of LDP, and
thus cannot match the privacy-utility trade-off of CDP in such cases.

5 EMPIRICAL EVALUATION

We empirically show that DECOR achieves a privacy-utility trade-off matching the CDP baseline, and
surpassing the LDP baseline. Recall that LDP is the strongest threat model in decentralized learning,
while CDP is the weakest, and thus they represent lower and upper bounds in terms of performance.

Setup. We consider n = 16 users on three usual network topologies in increasing connectivity: ring,
grid (2d torus), and fully-connected. We use the Metropolis-Hastings Boyd et al. (2006) mixing
matrix, i.e., Wij =

1j∈Ni

deg(i)+1 ,∀i, j ∈ [n], where deg(i) = |Ni| is the degree of user i in the graph.
We tune all hyperparameters for each algorithm individually, and run each experiment with four
seeds for reproducibility. We account for the privacy budget using our SecLDP privacy accountant
(Algorithm 2). We defer the full experimental setup to the appendix.

We compare these algorithms on three strongly convex and non-convex tasks with synthetic and
real-world datasets, across various user-level privacy budgets and network topologies. For simplicity,
we focus on adversary I of SecLDP, i.e., an external eavesdropper observing all user communications.
In Figure 1, we consistently observe that DECOR matches CDP, and surpasses LDP, on all considered
topologies, privacy budgets, and tasks. For example, on MNIST, the gap of CDP with LDP is almost

2We refer to the strongly convex lower bound of Bassily et al. (2014), which also applies to the (larger) PL
class of functions.
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10 accuracy points for the lowest privacy budget, as suggested by the theory, while the gap between
DECOR on the ring topology and the CDP baseline, or DECOR on the grid topology, is less than 1
accuracy point.
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APPENDIX

The appendix is organized as follows. Our full related work discussion is in Appendix A. The proofs
and extensions of our privacy analysis are in Appendix B. The assumptions, proofs, and extensions
of our convergence analysis are in Appendix C. The proofs and extensions of our privacy-utility
trade-off, including Theorem 1, are in Appendix D. Our detailed experimental setup is in Appendix E.

A RELATED WORK

Most works on DP optimization have focused on the centralized setting (Chaudhuri et al., 2011;
Bassily et al., 2014; Abadi et al., 2016), where a trusted curator collects user data. Also, several
recent works tackle privacy in federated learning, where an honest-but-curious server coordinates the
users. These works either use cryptographic primitives to only reveal the sum of updates (Jayaraman
et al., 2018; Kairouz et al., 2021a; Agarwal et al., 2021) or to anonymize user identities through
shuffling (Erlingsson et al., 2019; Cheu et al., 2019). Although these techniques provably achieve
the centralized optimal privacy-utility trade-off, they are incompatible with fully decentralized
settings, where only peer-to-peer communications are allowed, or induce large computational and
communication costs.

Private decentralized learning. In decentralized settings, several distributed optimization algo-
rithms (Bellet et al., 2018; Cheng et al., 2019; Huang et al., 2019; Li & Chi, 2023) have been adapted,
by adding noise to gradient updates, to ensure LDP. However, these approaches yield a poor privacy-
utility trade-off, which is a fundamental drawback of LDP (Duchi et al., 2013). Cyffers & Bellet
(2022) consider a weaker privacy model than LDP where the threat comes from curious users solely,
who can observe information exchanged with their communication graph neighbors only. Under
this weaker privacy threat, it is possible to match the centralized privacy-utility trade-off for well-
connected graphs only (Cyffers et al., 2022). In general, SecLDP and Network DP are orthogonal,
since the latter restricts the view of users to local communications only, while the former hides part
of the global communications—secrets—to an adversary observing all other communications. Yet,
when considering honest-but-curious users, SecLDP is arguably stronger than Network DP as users
in SecLDP have a larger view, i.e., all communications besides secrets outside their neighborhood.
Also, the privacy-utility trade-off achieved under SecLDP is matches CDP for arbitrary connected
topologies, unlike Network DP.

Correlated noise. Our correlated noise technique has been studied in various forms within secure
multi-party computation, where the goal is to privately compute a function without a trusted central
entity. A first form, called secret sharing (Shamir, 1979), consists in adding uniformly random noise
terms which cancel out only if enough users collude. The same idea has also been analyzed for
decentralized averaging (Li et al., 2019). However, these works guarantee the perfect security of
the inputs, not the privacy of the average. Indeed, a curious adversary observing the average can
infer the presence of an input or reconstruct it (Melis et al., 2019). In this direction, Imtiaz et al.
(2019) proposed adding correlated Gaussian noise to the inputs, along with a smaller uncorrelated
Gaussian noise to protect the average only. The correlated Gaussian noise is generated by having
users sample Gaussian noise locally, and using secure aggregation (Bonawitz et al., 2017) to get the
average of the noise terms, which is subtracted by users. Thus, averaging privatized inputs cancels
out correlated noises and only leaves the smaller uncorrelated noise to protect the average. However,
the algorithm requires a central entity for secure aggregation, which is not possible in decentralized
learning and can be costly in communication. Sabater et al. (2022) further adapted the correlated
Gaussian noise technique to decentralized settings, without using secure aggregation, by having
connected users exchange pairwise cancelling Gaussian noise. However, their work only studies
decentralized averaging, and does not cover the more challenging decentralized learning scenario,
where the non-cancelled correlated noise accumulates across training iterations. Finally, we remark
that correlated noise has also been studied in centralized settings with a different meaning, e.g.,
correlation is across iterations (Kairouz et al., 2021b), which is orthogonal to our work where noise is
correlated across the users, but is uncorrelated across the iterations.
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Algorithm 3 GENERAL SECRDP ACCOUNTANT FOR DECOR

Input: clipping threshold C, noise variances σcdp, σcor, collusion level q.
1: for I ⊆ [n], |I| = q do
2: Get Laplacian matrix L of the subgraph of G after deleting vertices I
3: Compute Σ =

(
σ2
cdpIn−q + σ2

corL
)−1

4: εI = 2C2 maxi∈[n−q] Σii

5: end for
6: return maxI⊆[n],|I|=q εI

B PRIVACY ANALYSIS

In this section, we prove our main privacy result stated in Theorem 4 and extend it to the general
privacy adversaries discussed in Section 2. We first recall some useful facts around Rényi divergences
and linear algebra.
Definition 2 (α-Rényi divergence). Let α > 0, α ̸= 1. The α-Rényi divergence between two
probability distributions P and Q is defined as

Dα(P ∥ Q) :=
1

α− 1
logEX∼Q

(
P (X)

Q(X)

)α

.

Lemma 2 ((Gil et al., 2013)). Let α > 0, α ̸= 1, µ1, µ2 ∈ Rn, and Σ ∈ Rn×n. Assume that Σ is
positive definite. The α-Rényi divergence between the multivariate Gaussian distributions N (µ1,Σ)
and N (µ2,Σ) is

Dα(N (µ1,Σ) ∥ N (µ2,Σ)) =
α

2
(µ1 − µ2)

⊤Σ−1(µ1 − µ2).

We recall the folklore result below, which is a consequence of the Courant-Fischer min-max theo-
rem (De Abreu, 2007).
Lemma 3. Let M ∈ Rn×n be a real symmetric matrix and un ∈ Rn be an eigenvector associated
to the largest eigenvalue of M. The second-largest eigenvalue of M is

λn−1(M) = sup
u̸=0

⟨u,un⟩=0

u⊤Mu

∥u∥22
.

We now define secret-based local Rényi differential privacy (SecRDP), a strong variant of SecLDP
based on Rényi DP.
Definition 3 (SecRDP). Let ε ≥ 0, δ ∈ [0, 1], α > 1. Consider a randomized decentralized algorithm
A : Xm×n → Y , which outputs the transcript of all communications. Algorithm A is said to satisfy
(α, ε,S)-SecRDP if A satisfies (α, ε)-RDP given that S is unknown to the adversary. That is, for
every adjacent datasets D,D′ ∈ Xm×n, we have

Dα(A(D) | S is hidden ∥ A(D′) | S is hidden) ≤ ε,

where the left-hand side is the Rényi divergence (Definition 3) between the probability distributions
of A(D) and A(D′), conditional on the secrets S being hidden from the adversary. We simply say
that A satisfies (α, ε)-SecRDP if it satisfies (α, ε,S)-SecRDP for a certain S .

Both SecLDP and SecRDP preserve the properties of DP and RDP, respectively, since these relaxations
only condition the probability space of the considered distributions.

Extended privacy analysis. We now state and prove a general privacy analysis of DECOR to all
considered adversaries in Section 2, which includes collusion. We additionally provide a SecRDP
accountant in Algorithm 3, which generalizes Algorithm 2 to the aforementioned adversaries.
Theorem 4. Let α > 1 and q < n. Each iteration of Algorithm 1 satisfies (α, αε)-SecRDP
(Definition 3) against honest-but-curious users colluding at level q with

ε ≤ 2C2

(
1

(n− q)σ2
cdp

+
1− 1

n−q

σ2
cdp + aq(G)σ2

cor

)
, (5)
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where aq(G) is the minimum algebraic connectivity across subgraphs obtained by deleting q vertices
from G. Moreover, ε can be computed numerically using Algorithm 3.

Proof. Let α > 1, q > 1, and I ⊆ [n] be an arbitrary group of |I| = q users. Recall that we denote
by SI := {sjk : {j, k} ∈ E , j, k /∈ I} the set of secrets hidden from all users in I . We will prove that
Algorithm 1 satisfies (α, ε,SI)-SecRDP, which protects against honest-but-curious users colluding
at level q, as discussed in Section 2. For ease of exposition, we consider the one-dimensional case
d = 1. Extending the proof to the general case is straightforward.

Formally, at each iteration of Algorithm 1, users possess private inputs (gradients) in the form of
vector x ∈ [−C,C]n, given that gradients are clipped at threshold C. Each user i ∈ [n] shares the
following privatized quantity:

x̃i := xi +
∑
j∈Ni

vij + v̄i, (6)

where vij = −vji ∼ N (0, σ2
cor) for all j ∈ Ni, and v̄i ∼ N (0, σ2

cdp). Note that each neighborhood
Ni does not include i.

Denote by H := [n] \ I the set of the |H| = n − q honest (non-colluding) users. Our goal is
to show that the mechanism producing X̃H :=

[
x̃i

]
i∈H satisfies SecRDP when a single entry of

X :=
[
xi

]
i∈H is arbitrarily changed; i.e., one user’s input differs. To do so, we first rewrite (6) to

discard the noise terms known to the colluding curious users who can simply substract them to get
for every i ∈ H:

x̃i = xi +
∑

j∈Ni∩H
vij + v̄i, (7)

Denote by GH := (H, EH) the subgraph of G restricted to honest users. We now rewrite the above in
matrix form as:

X̃H = XH +KNE + N̄, (8)

where K ∈ R(n−q)×|EH| is the oriented incidence matrix of the graph GH and NEH =
[vij ]1≤i<j≤n−q ∈ R|EH| is the vector of pairwise noises. Now, consider two input vectors
XA,XB ∈ [−C,C]n−q which differ maximally in an arbitrary coordinate i ∈ [n − q] without
loss of generality:

XA −XB = 2Cei ∈ Rn−q, (9)
where ei is the vector of Rn−q where the only nonzero element is 1 in the i-th coordinate.

We will then show that the α-Rényi divergence between X̃A and X̃B , which are respectively produced
by input vectors XA and XB , is bounded. To do so, by looking at Equation (8), we can see that
X̃A, X̃B follow a multivariate Gaussian distribution of means XA,XB respectively and of variance

Σ := E(X̃A −XA)(X̃A −XA)
⊤ = E(X̃B −XB)(X̃B −XB)

⊤ = σ2
corL+ σ2

cdpIn−q ∈ R(n−q)×(n−q),

(10)

where L = KK⊤ ∈ R(n−q)×(n−q) is the Laplacian matrix of the graph GH (De Abreu, 2007). Note
that Σ is positive definite when σ2

cdp > 0 because L is positive semi-definite.

Therefore, following Lemma 2, the α-Rényi divergence between the distributions of X̃A and X̃B is

Dα(X̃A ∥ X̃B) =
α

2
(XA −XB)

⊤Σ−1(XA −XB). (11)

Now, recall that the spectrum of L is 0 = λ1(L) ≤ . . . ≤ λn−q(L) because it is the Laplacian matrix
of the graph GH. Moreover, the eigenvector corresponding to the zero eigenvalue is 1 ∈ Rn−q the
vector of ones. Thus, since Σ is a real symmetric (positive definite) matrix, the spectrum of Σ−1

in ascending order is
(

1
σ2
cdp+σ2

corλn−q−i+1(L)

)
i∈[n−q]

, and 1 the vector of ones is associated to its

largest eigenvalue:

Σ−11 =
1

σ2
cdp

1. (12)
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Define xi := ei − 1
n−q1 and observe that ⟨xi,1⟩ = 0. Therefore, we can decompose the vector

XA −XB from Equation (9) as a sum of orthogonal vectors as follows:

XA −XB = 2Cei = 2C

(
1

n− q
1+ xi

)
.

Going back to (11), we can write

Dα(X̃A ∥ X̃B) =
α

2
(XA −XB)

⊤Σ−1(XA −XB) =
4C2α

2
(

1

n− q
1+ xi)

⊤Σ−1(
1

n− q
1+ xi)

= 2αC2

(
1

(n− q)2
1⊤Σ−11+ x⊤

i Σ
−1xi

)
= 2αC2

(
1

(n− q)σ2
cdp

+ x⊤
i Σ

−1xi

)
,

(13)

where we have used that ⟨xi,1⟩ = 0, Equation (12) and ⟨1,1⟩ = n− q successively in the last two
steps. Now, using Lemma 3 and the facts that ⟨xi,1⟩ = 0 and ∥xi∥22 = 1− 1

n−q , we have that

x⊤
i Σ

−1xi ≤ sup
u̸=0

⟨u,1⟩=0

u⊤Σ−1u

∥u∥22
· ∥xi∥22 ≤ λn−q−1(Σ

−1) ∥xi∥22 = (1− 1

n− q
)λn−q−1(Σ

−1) =
1− 1

n−q

σ2
cdp + λ2(L)σ2

cor

.

Plugging the bound above back in (13), we obtain

Dα(X̃A ∥ X̃B) ≤ 2αC2

(
1

(n− q)σ2
cdp

+
1− 1

n−q

σ2
cdp + λ2(L)σ2

cor

)
.

Recall that λ2(L) is the algebraic connectivity of the graph GH, by definition. Moreover, since I and
thus H are taken arbitrarily, in the worst case λ2(L) is aq(G) the minimum algebraic connectivity
across subgraphs obtained by deleting q vertices from G. This concludes the proof of (5) the main
result.

Finally, it is easy to see from Equation (11) that the exact privacy bound ε can be computed numeri-
cally using Algorithm 2. Indeed, the maximal difference in inputs is XA −XB = 2Cei for some
i ∈ [n− q] as in (9), so the maximal privacy bound, given that I is the set of colluding users, is

εI = max
i∈[n−q]

1

2
(2Cei)

⊤Σ−1(2Cei) = 2C2 max
i∈[n−q]

e⊤i Σ
−1ei = 2C2 max

i∈[n−q]
Σ−1

ii ,

where Σ−1
ii is the i-th entry in the diagonal of the inverse of Σ = σ2

corL + σ2
cdpIn−q. Thus, to

get the maximal privacy loss across all possible colluding user groups of size q, we take ε =
maxI⊆[n],|I|=q εI . Observing that the latter is exactly the output of Algorithm 3 concludes the
proof.

C CONVERGENCE ANALYSIS

In this section, we prove our convergence analysis stated in Theorem 8 and extend it to the general
privacy adversaries discussed in Section 2. We introduce some useful notation in Section C.1,
overview the main elements of the proof in Section C.3, prove the main theorem in Section C.4, and
finally prove the intermediate lemmas in Section C.5.

C.1 NOTATION

We can rewrite the procedure of DECOR (Algorithm 1) using the following matrix notation, extending
the definition used in Section 3:

X(t) :=
[
x
(t)
1 , . . . ,x(t)

n

]
∈ Rd×n, X̄(t) :=

[
x̄(t), . . . , x̄(t)

]
∈ Rd×n,

∂ℓ(X(t), ξ(t)) :=
[
∇ℓ(x

(t)
1 , ξ

(t)
1 ), . . . ,∇ℓ(x(t)

n , ξ(t)n )
]
∈ Rd×n,

N(t) :=

∑
j∈N1

v
(t)
1j , . . . ,

∑
j∈Nn

v
(t)
nj

 ∈ Rd×n, N̄(t) :=
[
v̄
(t)
1 , . . . , v̄(t)

n

]
∈ Rd×n.

(14)
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We recall that under the bounded gradient assumption (Assumption 4), clipping leaves gradients
unaffected, and thus we discard the clipping operator in this section.

Algorithm 4 DECOR IN MATRIX NOTATION

Input: for each user i ∈ [n] initialize x(0)
i ∈ Rd, stepsizes {ηt}T−1

t=0 , number of iterations T , mixing
matrix W, noise parameters σcor and σcdp.

1: for t in 0 . . . T − 1 do
2: X(t+ 1

2 ) = X(t) − ηt

(
∂ℓ(X(t), ξ

(t)
i ) +N(t) + N̄(t)

)
▷ stochastic gradient updates

3: X(t+1) = X(t+ 1
2 ) ·W ▷ gossip averaging

4: end for

C.2 ASSUMPTIONS

For all our theoretical results, we assume that the local loss functions are smooth.

Assumption 1 (L-smoothness). Each function Li is differentiable and there exists a constant L ≥ 0
such that for each x,y ∈ Rd, i ∈ [n]:

∥∇Li(y)−∇Li(x)∥2 ≤ L ∥x− y∥2 . (15)

Additionally, some of our results require the Polyak-Łojasiewicz (PL) inequality (Karimi et al., 2016).
This condition does not require convexity, and is implied by strong convexity for example.

Assumption 2 (µ-PL). Function L satisfies the µ-Polyak-Łojasiewicz (PL) inequality. That is, for all
x ∈ Rd:

2µ(L(x)− L⋆) ≤ ∥∇L(x)∥22 , (16)

where L⋆ := infx∈Rd L(x) denotes the infimum of L.

We now formulate our conditions on the stochastic gradient noise and local loss functions heterogene-
ity.

Assumption 3 (Bounded noise and heterogeneity). We assume that there exist P , ζ⋆ such that for all
x ∈ Rd,

1
n

∑n
i=1 ∥∇Li(x)∥22 ≤ ζ2⋆ + P ∥∇L(x)∥22 , (17)

Also, we assume that there exist M , σ⋆ such that for all x1, . . .xn ∈ Rd,

Ψ(x1, . . . ,xn) ≤ σ2
⋆ +

M
n

∑n
i=1 ∥∇L(xi)∥22 , (18)

where we introduced Ψ(x1, . . . ,xn) :=
1
n

∑n
i=1 Eξi ∥∇ℓ(xi, ξi)−∇Li(xi)∥ 2

2.

Our noise assumption recovers the uniformly bounded noise assumption when M = 0 and n = 1,
which is common for the non-convex analysis of SGD (Bottou et al., 2018). Our gradient heterogeneity
assumption is one of the weakest in the literature (Karimireddy et al., 2020). For the smooth convex
(or PL) case, these assumptions hold with ζ2⋆ and σ2

⋆ being the gradient heterogeneity and noise,
respectively, at the minimum only (Vaswani et al., 2019).

We additionally assume that gradients are bounded. This is a common assumption in private
optimization to ignore the effect of clipping (Agarwal et al., 2018; Noble et al., 2022; Allouah
et al., 2023), which is not the focus of our work.

Assumption 4 (Bounded Gradients). We assume that there exists C ≥ 0 such that for each i ∈
[n],x ∈ Rd, ξ ∈ Di,

∥∇ℓ(x, ξ)∥ ≤ C. (19)

As is typical in decentralized optimization algorithms, we make use of a mixing matrix W, as defined
below.
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Definition 4 (Mixing matrix). A matrix W ∈ [0, 1]n×n is a mixing matrix if it is symmetric and
stochastic (W1 = 1).

Finally, we assume that the mixing matrix W brings any set of vectors closer to their average with
factor at least 1− p.

Assumption 5 (Consensus rate). We assume that there exists p ∈ (0, 1] such that for every matrix
X ∈ Rd×n, ∥∥XW − X̄

∥∥2
F
≤ (1− p)

∥∥X− X̄
∥∥2
F
, (20)

where we define the average X̄ := X11⊤

n .

This assumption holds with 1− p being the second-largest eigenvalue value of WW⊤ (Boyd et al.,
2006), e.g., p = 1 for the complete graph, p = Θ( 1

n2 ) for the ring graph.

C.3 PROOF OVERVIEW

Our convergence analysis relies upon three elements: descent bound, pairwise noise reduction, and
consensus distance recursion. We first state the corresponding lemmas, and defer their proofs to
Section C.5.

The first proof element is the descent bound of Lemma 5. It quantifies the progress made after each
DECOR step. In particular, compared to the error due to stochastic gradient variance σ2

⋆ as in vanilla
SGD (Bottou et al., 2018), there are two additional quantities involved: and (uncorrelated) privacy
noise variance σ2

cdp, and the consensus distance Ξt defined for every t ≥ 1 as

Ξt :=
1

n

n∑
i=1

E
∥∥∥x(t)

i − x̄(t)
∥∥∥2 =

1

n

∥∥∥X(t) − X̄(t)
∥∥∥2
F
. (21)

Lemma 5 (Descent bound). Under Assumptions 1, 3 and 5, the averages x̄(t) := 1
n

∑n
i=1 x

(t)
i of the

iterates of Algorithm 1 with ηt ≤ 1
2L min {1, n

2M } satisfy

E
[
L(x̄(t+1))− L(x̄(t))

]
≤ −ηt

4
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
+

3ηtL
2

4
Ξt +

Lη2t
2

σ2
⋆ + dσ2

cdp

n
. (22)

Interestingly, the descent bound does not involve the correlated noise variance σ2
cor. This is thanks

to the correlated noise terms cancelling out pairwise, so that the correlated noise disappears when
analyzing the average model x(t).

Next, in order to bound the consensus distance Ξt, we first quantify in Lemma 6 the effect of
correlated noise in a single step of DECOR on the consensus distance Ξt.

Lemma 6 (Correlated noise reduction). Consider Algorithm 1. For any undirected graph G =
({1, . . . , n}, E) and any matrix W ∈ Rn×n and at every iteration t, we have

E
∥∥∥N(t)W

∥∥∥2
F

= HG(W) · E
∥∥∥N(t)

∥∥∥2
F

= 2HG(W) |E| dσ2
cor, (23)

where we define HG(W) :=
∑n

i,k=1∥Wi−Wk∥21k∈Ni

2
∑n

i,k=1 1k∈Ni
, and 1k∈Ni

denotes {i, k} ∈ E , and |E| =
1
2

∑n
i,k=1 1k∈Ni

is the number of edges on the graph G. Moreover, if Wij =
1j∈Ni

deg(i)+1 ,∀i, j ∈ [n],
where deg(i) = |Ni| is the degree of user i in the graph, we have HG(W) ≤ 2

kmin
, where kmin ≥ 1

is the minimal degree of graph G.

The analysis of the error due to correlated noise in Lemma 6 is exact, in the sense that it is an equality.
Recall that HG(W) is graph- and mixing matrix-dependent. Broadly speaking, the average expected
error per edge (due to correlated noise) is dσ2

cor (the variance of one correlated noise term), reduced
by factor HG(W), which decreases with the connectivity with the graph. Using this lemma, we can
now prove a powerful recursion on the consensus distance in Lemma 7 below.
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Lemma 7 (Consensus distance recursion). Under Assumptions 1, 3, and 5, if in addition stepsizes
satisfy ηt ≤ p

L
√

6(1−p)(3+pM)
, then

Ξt+1 ≤ (1− p

2
)Ξt + 2η2t (1− p)(

3P

p
+M)E

∥∥∥∇L(x̄(t))
∥∥∥2
2

+ η2t

[
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W)|E|dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

]
,

where Ξt :=
1
n

∑n
i=1 E

∥∥∥x(t)
i − x̄(t)

∥∥∥2 is the consensus distance.

The effects of the privacy noises are apparent in the lemma above, and correspond mainly to the
quantity analyzed in Lemma 6, in addition to the effects of stochastic variance and heterogeneity,
which are similar to vanilla D-SGD (Koloskova et al., 2020). It is indeed intuitive that the non-
cancelled correlated noise should pull the local models away, and this worsens for poorly-connected
graphs.

C.4 MAIN PROOF

We now restate and prove Theorem 8 below, using the intermediate lemmas from the previous section.

Theorem 8. Let Assumptions 1, 3, 4, 5 hold. Consider Algorithm 1. Denote
x̄(t) = 1

n

∑n
i=1 x

(t)
i , L0 := L(x̄(0)) − L⋆, Ξ0 := 1

n

∑n
i=1 ∥x

(0)
i − x̄(0)∥22, and c :=

max {4
√
3(1− p)(3P + pM), µ

L , 2p,
4pM
n }. For T ≥ 1:

1. If L is µ-PL (Assumption 2) and ηt =
16

µ(t+c
L
µp )

, then

EL(x̄(T ))− L⋆ ≲
L(σ2

⋆ + dσ2
cdp)

µ2nT
+

c2L2L0

µ2p2T 2
+

cL3Ξ0

µ2p2T 2
+

L2 log T

µ3pT 2

(
(1− p)(

ζ2⋆
p

+ σ2
⋆)

+
HG(W) |E| dσ2

cor

n
+
∥∥∥W − 11⊤

n

∥∥∥2
F
dσ2

cdp

)
.

2. If ηt = min { p
2cL , 2

√
L0n

LT (σ2
⋆+dσ2

cdp)
} , then

1

T

T−1∑
t=0

E ∥∇L(x̄(t))∥22 ≲

√
LL0(σ2

⋆ + dσ2
cdp)

nT
+

cLL0

pT
+

L2Ξ0

pT
+

LL0n

pT (σ2
⋆ + dσ2

cdp)

(
(1− p)(

ζ2⋆
p

+ σ2
⋆)

+
HG(W) |E| dσ2

cor

n
+
∥∥∥W − 11⊤

n

∥∥∥2
F
dσ2

cdp

)
.

In the above, ≲ denotes inequality up to absolute constants.

C.4.1 PL CASE

Proof. Let assumptions 1-5 hold. Consider Algorithm 1 with the stepsize sequence defined for every
t ≥ 0 as:

ηt :=
16

µ(t+ c L
µp )

, (24)

where c := max {4
√
3(1− p)(3P + pM), µ

L , 2p,
4pM
n }. Clearly, this sequence is decreasing and

we have for every t ≥ 0:

ηt ≤ η0 = min { p

4L
√

3(1− p)(3P + pM)
,
p

µ
,
1

2L
min {1, n

2M
}}.

This ensures that the conditions of lemmas 5 and 7 are verified.
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Consider the sequence defined for every t ≥ 0 as:

Vt := E
[
L(x̄(t))− L⋆

]
+

3L2ηt
p

Ξt, (25)

where L⋆ := infx∈Rd L(x) denotes the infimum of L. Clearly, since Ξt is also non-negative as a
sum of squared distances, we have Vt ≥ 0 for every t ≥ 0. We also define the following auxiliary
sequence for every t ≥ 0:

Wt :=
1

η2t
Vt. (26)

Fix t ≥ 0. First, to analyze Wt, we write

Wt+1 −Wt =
1

η2t+1

Vt+1 −
1

η2t
Vt =

1

η2t+1

(Vt+1 −
η2t+1

η2t
Vt).

Moreover, denoting t̂ := t+ τ , we have η2
t+1

η2
t

= t̂2

(t̂+1)2
= 1− 1+2t̂

(t̂+1)2
. Thus, we have

Wt+1 −Wt =
1

η2t+1

(Vt+1 − (1− 1 + 2t̂

(t̂+ 1)2
)Vt). (27)

On the other hand, to analyze Vt, we use the fact that stepsizes are non-increasing and satisfy the
conditions of lemmas 5 and 7:

Vt+1 − Vt = E
[
L(x̄(t+1))− L(x̄(t))

]
+

3L2

p
(ηt+1Ξt+1 − ηtΞt)

≤ E
[
L(x̄(t+1))− L(x̄(t))

]
+

3L2ηt
p

(Ξt+1 − Ξt)

≤
(
−ηt

4
+

6L2η3t
p

(1− p)(
3P

p
+M)

)
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
+ (

3ηtL
2

4
− 3L2ηt

2
)Ξt + η2tA+ η3tB,

where we introduced A := L
2

σ2
⋆+dσ2

cdp

n and B := 3L2

p

(
6(1− p)

ζ2
⋆

p + (1− p)σ2
⋆ +

2HG(W)|E|dσ2
cor

n +
∥∥∥W − 11⊤

n

∥∥∥2
F
dσ2

cdp

)
for simplicity. Recall that we have ηt ≤ η0 ≤ p

4L
√

3(1−p)(3P+pM)
, so that 6L2

p η2t (1−p)( 3Pp +M) ≤
1
8 . Consequently, we have

Vt+1 − Vt ≤ −ηt
8
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
− 3L2ηt

4
Ξt + η2tA+ η3tB. (28)

Now, recall that
∥∥∇L(x̄(t))

∥∥2
2
≥ 2µ(L(x̄(t))−L⋆) following Assumption 2, so that the bound above

becomes

Vt+1 − Vt ≤ −µηt
4

(EL(x̄(t))− L⋆)−
3L2ηt
4

Ξt + η2tA+ η3tB

= −µηt
4

(
EL(x̄(t))− L⋆ +

3L2

µ
Ξt

)
+ η2tA+ η3tB.

Recall also that ηt ≤ η0 ≤ p
µ . Therefore, we have

Vt+1 − Vt ≤ −µηt
4

(
EL(x̄(t))− L⋆ +

3L2ηt
p

Ξt

)
+ η2tA+ η3tB = −µηt

4
Vt + η2tA+ η3tB.

Plugging the above bound back in (27) and then substituting ηt =
16
µt̂

, we get

Wt+1 −Wt =
1

η2t+1

(Vt+1 − (1− 1 + 2t̂

t̂2
)Vt) ≤

1

η2t+1

(
−µηt

4
Vt + η2tA+ η3tB +

1 + 2t̂

t̂2
Vt

)
= −µ2(t̂+ 1)2

(
4

t̂
− 1 + 2t̂

t̂2

)
Vt +

(t̂+ 1)2

t̂2
A+

16(t̂+ 1)2

µt̂3
B.
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Observe that t̂ = t + c L
µp ≥ c L

µp , so that 4
t̂
− 1+2t̂

t̂2
= 2

t̂
− 1

t̂2
≤ 1

t̂
and (t̂+1)2

t̂2
= 1 + 1+2t̂

t̂2
≤ 4.

Therefore, the bound above becomes

Wt+1 −Wt ≤ −µ2 (t̂+ 1)2

t̂
Vt + 4A+

64

µt̂
B ≤ 4A+

64

µt̂
B.

By summing over t ∈ {0, . . . , T − 1} and substituting A and B, we get

WT −W0 ≤ 2LT
σ2
⋆ + dσ2

cdp

n
+

(
T−1∑
t=0

t̂

)
192L2

µp

(
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W) |E| dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

)
.

We now substitute WT and W0 to obtain WT − W0 = 1
η2
T
VT − 1

η2
0
V0 = µ2

256 ((T + c L
µp )

2VT −(
cL
µp

)2
V0). Also, as c L

µp ≥ 2L
µ ≥ 2, we have

∑T−1
t=0

1
t̂
=
∑T−1

t=0
1

t+c
L
µp

≤ ln(T + 1). Thus, after

rearranging terms, the inequality above becomes

(T + c L
µp )

2VT −
(

cL
µp

)2
V0 ≤ 512LT

µ2

σ2
⋆ + dσ2

cdp

n

+ ln(T + 1)
49152L2

µ3p

(
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W) |E| dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

)
.

Upon dividing both sides by (T + c L
µp )

2, rearranging terms and recalling that c L
µp ≥ 1, we obtain

VT ≤

(
cL
µp

)2
(T + c L

µp )
2
V0 +

512LT

(T + c L
µp )

2µ2

σ2
⋆ + dσ2

cdp

n

+
ln(T + 1)

(T + c L
µp )

2

49152L2

µ3p

(
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W) |E| dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

)

≤ c2L2

µ2p2T 2
V0 +

512L

µ2T

σ2
⋆ + dσ2

cdp

n

+
ln(T + 1)

T 2

49152L2

µ3p

(
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W) |E| dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

)
.

Finally, we obtain the final result by substituting VT , V0 and ηT , η0 and rearranging terms:

EL(x̄(T ))− L⋆ +
48L2

µp(T + c L
µp )

ΞT ≤ 512L

µ2T

σ2
⋆ + dσ2

cdp

n

+
ln(T + 1)

T 2

49152L2

µ3p

(
(1− p)(6

ζ2⋆
p

+ σ2
⋆) +

2HG(W) |E| dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

)

+
c2L2(L(x̄(0))− L⋆)

µ2p2T 2
+

48cL3

µ2p2T 2
Ξ0.

C.4.2 NON-CONVEX CASE

Proof. Let assumptions 1, 3, 4, and 5 hold. Consider Algorithm 1 with the constant stepsize sequence
defined for every t ≥ 0 as:

ηt = η := min { p

2cL
, 2

√
(L(x̄(0))− L⋆)n

LT (σ2
⋆ + dσ2

cdp)
}, (29)

where c := max {4
√
3(1− p)(3P + pM), µ

L , 2p,
4pM
n }. This ensures that the conditions of lem-

mas 5 and 7 are verified.
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Consider the sequence defined for every t ≥ 0 as:

Vt := E
[
L(x̄(t))− L⋆

]
+

3L2η

p
Ξt, (30)

where L⋆ := infx∈Rd L(x) denotes the infimum of L. Clearly, since Ξt is also non-negative as a sum
of squared distances, we have Vt ≥ 0 for every t ≥ 0.

Denote A := L
2

σ2
⋆+dσ2

cdp

n and B := 3L2

p

(
6(1− p)

ζ2
⋆

p + (1− p)σ2
⋆ +

2HG(W)|E|dσ2
cor

n +
∥∥∥W − 11⊤

n

∥∥∥2
F
dσ2

cdp

)
.

Following the same steps of the PL case until (28), we have

Vt+1 − Vt ≤ −η

8
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
− 3L2η

4
Ξt + η2A+ η3B ≤ −η

8
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
+ η2A+ η3B.

By averaging over t ∈ {0, . . . , T − 1}, multiplying by 8
η and rearranging terms we obtain

1

T

T−1∑
t=0

E
∥∥∥∇L(x̄(t))

∥∥∥2
2
≤ 8(V0 − VT )

ηT
+ 8ηA+ 8η2B.

By recalling that VT ≥ 0 and substituting the values of V0 and A, we get

1

T

T−1∑
t=0

E
∥∥∥∇L(x̄(t))

∥∥∥2
2
≤

8(L(x̄(0))− L⋆ +
3L2η
p Ξ0)

ηT
+ 4ηL

σ2
⋆ + dσ2

cdp

n
+ 8η2B

=
8(L(x̄(0))− L⋆)

ηT
+ 4ηL

σ2
⋆ + dσ2

cdp

n
+ 8η2B +

24L2

pT
Ξ0.

Now, recalling the value of η, and that 1
η = max { 2cL

p , 1
2

√
TL(σ2

⋆+dσ2
cdp)

(L(x̄(0))−L⋆)n
} ≤ 2cL

p +

1
2

√
TL(σ2

⋆+dσ2
cdp)

(L(x̄(0))−L⋆)n
. Therefore, the bound above becomes

1

T

T−1∑
t=0

E
∥∥∥∇L(x̄(t))

∥∥∥2
2
≤ 16cL(L(x̄(0))− L⋆)

pT
+ 4

√
L(L(x̄(0))− L⋆)(σ2

⋆ + dσ2
cdp)

nT

+ 8

√
L(L(x̄(0))− L⋆)(σ2

⋆ + dσ2
cdp)

nT
+

32(L(x̄(0))− L⋆)n

LT (σ2
⋆ + dσ2

cdp)
B +

24L2

pT
Ξ0.

By rearranging terms and substituting B, we obtain

1

T

T−1∑
t=0

E
∥∥∥∇L(x̄(t))

∥∥∥2
2
≤ 12

√
L(L(x̄(0))− L⋆)(σ2

⋆ + dσ2
cdp)

nT
+

16cL(L(x̄(0))− L⋆)

pT
+

24L2

pT
Ξ0

+
96L(L(x̄(0))− L⋆)n

pT (σ2
⋆ + dσ2

cdp)

(
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W) |E| dσ2
cor

n
+
∥∥∥W − 11⊤

n

∥∥∥2
F
dσ2

cdp

)
.

The above concludes the proof.

C.5 PROOF OF LEMMAS

We now restate and prove the intermediate lemmas from the previous sections.

Lemma 5 (Descent bound). Under Assumptions 1, 3 and 5, the averages x̄(t) := 1
n

∑n
i=1 x

(t)
i of the

iterates of Algorithm 1 with ηt ≤ 1
2L min {1, n

2M } satisfy

E
[
L(x̄(t+1))− L(x̄(t))

]
≤ −ηt

4
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
+

3ηtL
2

4
Ξt +

Lη2t
2

σ2
⋆ + dσ2

cdp

n
. (22)
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Proof. Let assumptions 1, 3, and 5 hold. Because mixing matrices preserve the average, as a direct
consequence of Definition 4, we have

x̄(t+1) = x̄(t) − ηt
n

n∑
i=1

g̃
(t)
i = x̄(t) − ηt

n

n∑
i=1

∇ℓ(x
(t)
i , ξ

(t)
i ) +

∑
j∈Ni

v
(t)
i,j + v

(t)
i


= x̄(t) − ηt

n

n∑
i=1

∇ℓ(x
(t)
i , ξ

(t)
i )− ηt

n

n∑
i=1

∑
j∈Ni

v
(t)
i,j −

ηt
n

n∑
i=1

v
(t)
i .

Recall that for all i ∈ [n], j ∈ Ni, we have v
(t)
i,j = −v

(t)
j,i , so that

∑n
i=1

∑
j∈Ni

v
(t)
i,j = 0. Reporting

this in the equation above yields:

x̄(t+1) = x̄(t) − ηt
n

n∑
i=1

∇ℓ(x
(t)
i , ξ

(t)
i )− ηt

n

n∑
i=1

v
(t)
i . (31)

Also, since function L is L-smooth as the average of smooth functions (Assumption 1), by taking
conditional expectation Et on all randomness up to iteration t, we have (see (Bottou et al., 2018))

Et L(x̄(t+1)) ≤ L(x̄(t)) + Et

〈
∇L(x̄(t)), x̄(t+1) − x̄(t)

〉
︸ ︷︷ ︸

=:A

+
L

2
η2t Et

∥∥∥x̄(t+1) − x̄(t)
∥∥∥2
2︸ ︷︷ ︸

=:B

. (32)

We start by bounding A, by using (31) and the smoothness of Li, as follows:

A = −ηt

〈
∇L(x̄(t)),E

[
1

n

n∑
i=1

∇ℓ(x
(t)
i , ξ

(t)
i ) +

1

n

n∑
i=1

v
(t)
i

]〉
= −ηt

〈
∇L(x̄(t)),

1

n

n∑
i=1

∇Li(x
(t)
i )

〉

=
ηt
2

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )−∇L(x̄(t))

∥∥∥∥∥
2

2

−
∥∥∥∇L(x̄(t))

∥∥∥2
2
−

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2


≤ ηt

2

 1

n

n∑
i=1

∥∥∥∇Li(x
(t)
i )−∇Li(x̄

(t))
∥∥∥2
2
−
∥∥∥∇L(x̄(t))

∥∥∥2
2
−

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2


≤ −ηt

2

∥∥∥∇L(x̄(t))
∥∥∥2
2
− ηt

2

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
ηtL

2

2

1

n

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2
2
.

For the last term B, using (31) and Assumption 3, we obtain

B = Et

∥∥∥∥∥ 1n
n∑

i=1

∇ℓ(x
(t)
i , ξ

(t)
i ) +

1

n

n∑
i=1

v
(t)
i

∥∥∥∥∥
2

2

= E

∥∥∥∥∥ 1n
n∑

i=1

∇ℓ(x
(t)
i , ξ

(t)
i )

∥∥∥∥∥
2

2

+ E

∥∥∥∥∥ 1n
n∑

i=1

v
(t)
i

∥∥∥∥∥
2

2

= E

∥∥∥∥∥∥ 1n
n∑

j=1

(
∇ℓ(x

(t)
i , ξ

(t)
i )−∇Li(x

(t)
i )
)∥∥∥∥∥∥

2

2

+

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
dσ2

cdp

n

≤ σ2
⋆

n
+

M

n2

n∑
i=1

∥∥∥∇L(x(t)
i )
∥∥∥2
2
+

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
dσ2

cdp

n

≤ σ2
⋆

n
+

2M

n2

n∑
i=1

∥∥∥∇L(x(t)
i )−∇L(x̄(t))

∥∥∥2
2
+

2M

n

∥∥∥∇L(x̄(t))
∥∥∥2
2
+

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
dσ2

cdp

n

≤ σ2
⋆

n
+

2ML2

n2

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2
2
+

2M

n

∥∥∥∇L(x̄(t))
∥∥∥2
2
+

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
dσ2

cdp

n
.
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Combining the bounds on A and B in (32), we obtain

Et L(x̄(t+1)) ≤ L(x̄(t))− ηt
2

∥∥∥∇L(x̄(t))
∥∥∥2
2
− ηt

2

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
ηtL

2

2

1

n

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2
2

+
L

2
η2t

σ2
⋆

n
+

2ML2

n2

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2
2
+

2M

n

∥∥∥∇L(x̄(t))
∥∥∥2
2
+

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
dσ2

cdp

n


≤ L(x̄(t))− ηt

2
(1− 2ML

n
ηt)
∥∥∥∇L(x̄(t))

∥∥∥2
2
− ηt

2
(1− Lηt)

∥∥∥∥∥ 1n
n∑

i=1

∇Li(x
(t)
i )

∥∥∥∥∥
2

2

+
ηtL

2

2
(1 +

2ML

n
ηt)

1

n

n∑
i=1

∥∥∥x(t)
i − x̄(t)

∥∥∥2
2
+

Lη2t
2

σ2
⋆ + dσ2

cdp

n
.

By using ηt ≤ 1
2L min {1, n

2M } and taking total expectations, we conclude:

E
[
L(x̄(t+1))− L(x̄(t))

]
≤ −ηt

4
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
+

3ηtL
2

4

1

n

n∑
i=1

E
∥∥∥x(t)

i − x̄(t)
∥∥∥2
2
+

Lη2t
2

σ2
⋆ + dσ2

cdp

n

= −ηt
4
E
∥∥∥∇L(x̄(t))

∥∥∥2
2
+

3ηtL
2

4
Ξt +

Lη2t
2

σ2
⋆ + dσ2

cdp

n
.

Lemma 6 (Correlated noise reduction). Consider Algorithm 1. For any undirected graph G =
({1, . . . , n}, E) and any matrix W ∈ Rn×n and at every iteration t, we have

E
∥∥∥N(t)W

∥∥∥2
F

= HG(W) · E
∥∥∥N(t)

∥∥∥2
F

= 2HG(W) |E| dσ2
cor, (23)

where we define HG(W) :=
∑n

i,k=1∥Wi−Wk∥21k∈Ni

2
∑n

i,k=1 1k∈Ni
, and 1k∈Ni denotes {i, k} ∈ E , and |E| =

1
2

∑n
i,k=1 1k∈Ni

is the number of edges on the graph G. Moreover, if Wij =
1j∈Ni

deg(i)+1 ,∀i, j ∈ [n],
where deg(i) = |Ni| is the degree of user i in the graph, we have HG(W) ≤ 2

kmin
, where kmin ≥ 1

is the minimal degree of graph G.

Proof. Let G = ([n], E) be an arbitrary undirected graph, and W ∈ Rn×n be an arbitrary matrix (not
necessarily a mixing matrix nor dependent upon G). First, we prove that for every j ∈ [n], we have

N(t)Wj =
1

2

n∑
i,k=1

(Wij −Wkj)1k∈Niv
(t)
ik , (33)

where Wj ∈ Rn denotes the j-th column of W. Indeed, we have

N(t)Wj =

n∑
i=1

WijN
(t)
i =

n∑
i=1

∑
k∈Ni

Wijv
(t)
ik =

n∑
i,k=1

Wij1k∈Niv
(t)
ik (34)

=

n∑
i,k=1

Wij1i∈Nk
v
(t)
ik = −

n∑
i,k=1

Wij1i∈Nk
v
(t)
ki = −

n∑
i,k=1

Wkj1k∈Ni
v
(t)
ik , (35)

where the last three equalities were successively obtained by using the facts that G is undirected
so 1i∈Nk

= 1k∈Ni
, that v(t)

ik = −v
(t)
ik ,∀i, k ∈ [n], and exchanging symbols i, k in the double

summation. Thus, averaging equalities (34) and (35) proves Equation (33).
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Now, using Equation (33), we can write

E
∥∥∥N(t)W

∥∥∥2
F

=

n∑
j=1

E
∥∥∥N(t)Wj

∥∥∥2 =
1

4

n∑
j=1

E

∥∥∥∥∥∥
n∑

i,k=1

(Wij −Wkj)1k∈Ni
v
(t)
ik

∥∥∥∥∥∥
2

=
1

4

n∑
j=1

E

∥∥∥∥∥∥∥
n∑

i,k=1
i<k

[
(Wij −Wkj)1k∈Ni

v
(t)
ik + (Wkj −Wij)1i∈Nk

v
(t)
ki

]∥∥∥∥∥∥∥
2

=
1

4

n∑
j=1

E

∥∥∥∥∥∥∥2
n∑

i,k=1
i<k

(Wij −Wkj)1k∈Ni
v
(t)
ik

∥∥∥∥∥∥∥
2

=

n∑
j=1

n∑
i,k=1
i<k

(Wij −Wkj)
21k∈Ni

E
∥∥∥v(t)

ik

∥∥∥2

=

n∑
j=1

n∑
i,k=1
i<k

(Wij −Wkj)
21k∈Ni

dσ2
cor =

1

2

n∑
i,j,k=1

(Wij −Wkj)
21k∈Ni

dσ2
cor

=
1

2

n∑
i,k=1

∥Wi −Wk∥2 1k∈Ni
dσ2

cor,

where in the fourth equality we used that v(t)
ki = −v

(t)
ik and that 1i∈Nk

= 1k∈Ni
, on the fifth equality

we used that v(t)
ik are independent for i < k, and on the sixth equality that E

∥∥∥v(t)
il

∥∥∥2 = dσ2
cor.

Also, taking W = In in the equation above (which holds for arbitrary W), we have ∥Wi −Wk∥2 =
2 · 1k ̸=i, and thus

E
∥∥∥N(t)

∥∥∥2
F

=

n∑
i,k=1

1k∈Ni
dσ2

cor = 2 |E| dσ2
cor.

The last two equations directly lead to the main result of the lemma.

Now, denote by kmin ≥ 1 the minimal degree of G and assume that Wij =
1j∈Ni

deg(i)+1 ,∀i, j ∈ [n],

where deg(i) = |Ni| is the degree of user i in the graph. Thus, we have ∥Wi∥2 = deg(i)
(deg(i)+1)2 . Using

Jensen’s inequality, we have
n∑

i,k=1

∥Wi −Wk∥2 1k∈Ni
≤ 2

n∑
i,k=1

(
∥Wi∥+ ∥Wk∥2

)
1k∈Ni

= 4

n∑
i,k=1

∥Wi∥2 1k∈Ni

= 4

n∑
i,k=1

deg(i)

(deg(i) + 1)2
1k∈Ni

= 4

n∑
i=1

deg(i)2

(deg(i) + 1)2
.

On the other hand, we have 2
∑n

i,k=1 1k∈Ni = 2
∑n

i=1 deg(i), so that

HG(W) =

∑n
i,k=1 ∥Wi −Wk∥2 1k∈Ni

2
∑n

i,k=1 1k∈Ni

≤ 2

∑n
i=1

deg(i)2

(deg(i)+1)2∑n
i=1 deg(i)

≤ 2max
i∈[n]

deg(i)

(deg(i) + 1)2
≤ 2kmin

(kmin + 1)2
≤ 2

kmin
.

This concludes the second statement of the lemma.

Lemma 7 (Consensus distance recursion). Under Assumptions 1, 3, and 5, if in addition stepsizes
satisfy ηt ≤ p

L
√

6(1−p)(3+pM)
, then

Ξt+1 ≤ (1− p

2
)Ξt + 2η2t (1− p)(

3P

p
+M)E

∥∥∥∇L(x̄(t))
∥∥∥2
2

+ η2t

[
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W)|E|dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

]
,

where Ξt :=
1
n

∑n
i=1 E

∥∥∥x(t)
i − x̄(t)

∥∥∥2 is the consensus distance.
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Proof. Let assumptions 1, 3, and 5 hold. Also, assume that stepsizes verify ηt ≤ p

96
√
6τL

for each
iteration t. Denote

∂ℓ(X(t)) :=
[
∇L1(x

(t)
1 ), . . . ,∇Ln(x

(t)
n )
]
∈ Rd×n.

We first write

X(t+1) − X̄(t+1) = X(t+
1
2 )W −X(t+

1
2 )

11⊤

n
= X(t+

1
2 )(W − 11⊤

n
)

=
[
X(t) − ηt

(
∂ℓ(X(t), ξ(t)) +N(t) + N̄(t)

)]
(W − 11⊤

n
)

= X(t)(W − 11⊤

n
)− ηt

(
∂ℓ(X(t), ξ(t)) +N(t) + N̄(t)

)
(W − 11⊤

n
)

= (X(t) − ηt∂ℓ(X
(t)))(W − 11⊤

n
)

− ηt

(
∂ℓ(X(t), ξ(t))− ∂ℓ(X(t)) +N(t) + N̄(t)

)
(W − 11⊤

n
).

By independence, taking squared Frobenius norms and total expectations yields

nΞt+1 = E
∥∥∥X(t+1) − X̄(t+1)

∥∥∥2
F
= E

∥∥∥∥(X(t) − ηt∂ℓ(X
(t)))(W − 11⊤

n
)

∥∥∥∥2
F

+ η2t E
∥∥∥∥(∂ℓ(X(t), ξ(t))− ∂ℓ(X(t)) +N(t) + N̄(t)

)
(W − 11⊤

n
)

∥∥∥∥2
F

.

(36)

The first term on the RHS of (36) can be bounded, by first using Assumption 5 and then Young’s
inequality, as follows:

E
∥∥∥∥(X(t) − ηt∂ℓ(X

(t)))(W − 11⊤

n
)

∥∥∥∥2
F

≤ (1− p)E
∥∥∥∥X(t) − ηt∂ℓ(X

(t))− X̄(t) + ηt∂ℓ(X
(t))

11⊤

n

∥∥∥∥2
F

= (1− p)E
∥∥∥∥X(t) − X̄(t) − ηt(∂ℓ(X

(t))− ∂ℓ(X(t))
11⊤

n
)

∥∥∥∥2
F

≤ (1− p)(1 +
p

3(1− p)
)E
∥∥∥X(t) − X̄(t)

∥∥∥2
F
+ (1− p)(1 +

3(1− p)

p
)η2t E

∥∥∥∥∂ℓ(X(t))− ∂ℓ(X(t))
11⊤

n

∥∥∥∥2
F

= (1− 2p

3
)nΞt +

(1− p)(3− 2p)

p
η2t E

∥∥∥∥∂ℓ(X(t))− ∂ℓ(X(t))
11⊤

n

∥∥∥∥2
F

≤ (1− 2p

3
)nΞt +

3(1− p)

p
η2t E

∥∥∥∂ℓ(X(t))
∥∥∥2
F
,

where the last inequality is due to p ≥ 0 and also that for any A ∈ Rd×n, B ∈ Rn×n, we have
∥AB∥F ≤ ∥A∥F ∥B∥2, along with the fact that

∥∥∥In − 11⊤

n

∥∥∥
2
= 1.

The second term on the RHS of (36) can be bounded, using independence, as follows:

E
∥∥∥∥(∂ℓ(X(t), ξ(t))− ∂ℓ(X(t)) +N(t) + N̄(t)

)
(W − 11⊤

n
)

∥∥∥∥2
F

=

E
∥∥∥∥(∂ℓ(X(t), ξ(t))− ∂ℓ(X(t))

)
(W − 11⊤

n
)

∥∥∥∥2
F

+ E
∥∥∥∥N(t)(W − 11⊤

n
)

∥∥∥∥2
F

+ E
∥∥∥∥N̄(t)(W − 11⊤

n
)

∥∥∥∥2
F

.

We note that since N̄(t) is a matrix of d × n i.i.d. Gaussian variables of variance σ2
cdp, we have

E
∥∥∥N̄(t)(W − 11⊤

n )
∥∥∥2
F

=
∥∥∥W − 11⊤

n

∥∥∥2
F
dnσ2

cdp. Moreover, using the fact that the sum of corre-

lated noise terms is zero and then Lemma 6, we have E
∥∥∥N(t)(W − 11⊤

n )
∥∥∥2
F
= E

∥∥N(t)W
∥∥2
F
=
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2HG(W)|E|dσ2
cor. Plugging these last two results above, and then using Assumption 5, yields:

E
∥∥∥∥(∂ℓ(X(t), ξ(t))− ∂ℓ(X(t)) +N(t) + N̄(t)

)
(W − 11⊤

n
)

∥∥∥∥2
F

=

E
∥∥∥∥(∂ℓ(X(t), ξ(t))− ∂ℓ(X(t))

)
(W − 11⊤

n
)

∥∥∥∥2
F

+ 2HG(W)|E|dσ2
cor +

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dnσ2
cdp

≤ (1− p)E
∥∥∥∂ℓ(X(t), ξ(t))− ∂ℓ(X(t))−∇L(X(t), ξ(t)) +∇L(X(t))

∥∥∥2
F
+ 2HG(W)|E|dσ2

cor +

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dnσ2
cdp

≤ (1− p)E
∥∥∥∂ℓ(X(t), ξ(t))− ∂ℓ(X(t))

∥∥∥2
F
+ 2HG(W)|E|dσ2

cor +

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dnσ2
cdp.

Reporting the previous bounds back in (36) gives

nΞt+1 ≤ (1− 2p

3
)nΞt +

3(1− p)

p
η2t E

∥∥∥∂ℓ(X(t))
∥∥∥2
F
+ η2t

(
(1− p)E

∥∥∥∂ℓ(X(t), ξ(t))− ∂ℓ(X(t))
∥∥∥2
F

+ 2HG(W)|E|dσ2
cor +

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dnσ2
cdp

)
.

Rearranging and dividing by n yields

Ξt+1 ≤ (1− 2p

3
)Ξt +

η2t
n

[3(1− p)

p
E
∥∥∥∂ℓ(X(t))

∥∥∥2
F
+ (1− p)E

∥∥∥∂ℓ(X(t), ξ(t))− ∂ℓ(X(t))
∥∥∥2
F

+
2HG(W)|E|dσ2

cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

]
. (37)

On the one hand, by using assumptions 1 and 3 and Jensen’s inequality, we have

E
∥∥∥∂ℓ(X(t))

∥∥∥2
F
=

n∑
i=1

E
∥∥∥∇Li(x

(t)
i )
∥∥∥2
2
≤ 2

n∑
i=1

E
∥∥∥∇Li(x

(t)
i )−∇Li(x̄

(t))
∥∥∥2
2
+ 2

n∑
i=1

E
∥∥∥∇Li(x̄

(t))
∥∥∥2
2

≤ 2L2
n∑

i=1

E
∥∥∥x(t)

i − x̄(t)
∥∥∥2
2
+ 2nζ2⋆ + 2nP E

∥∥∥∇L(x̄(t))
∥∥∥2

= 2L2nΞt + 2nζ2⋆ + 2nP E
∥∥∥∇L(x̄(t))

∥∥∥2 .
On the other hand, by using assumptions 3 and 1 and Jensen’s inequality, we obtain that

E
∥∥∥∂ℓ(X(t), ξ(t))− ∂ℓ(X(t))

∥∥∥2
F
=

n∑
i=1

E
∥∥∥∇ℓ(x

(t)
i , ξ(t))−∇Li(x

(t)
i )
∥∥∥2
2
≤ nσ2

⋆ +M

n∑
i=1

E
∥∥∥∇L(x(t)

i )
∥∥∥2
2

≤ nσ2
⋆ + 2M

n∑
i=1

E
∥∥∥∇L(x(t)

i )−∇L(x̄(t))
∥∥∥2
2
+ 2MnE

∥∥∥∇L(x̄(t))
∥∥∥2
2

≤ nσ2
⋆ + 2ML2

n∑
i=1

E
∥∥∥x(t)

i − x̄(t)
∥∥∥2
2
+ 2MnE

∥∥∥∇L(x̄(t))
∥∥∥2
2

= nσ2
⋆ + 2ML2nΞt + 2MnE

∥∥∥∇L(x̄(t))
∥∥∥2
2
.
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By reporting the two bounds above back into (37) and rearranging terms, and using ηt ≤
p

L
√

6(1−p)(3+pM)
we obtain

Ξt+1 ≤
[
1− 2p

3
+ 2(1− p)L2η2t (

3

p
+M)

]
Ξt + 2η2t (1− p)(

3P

p
+M)

∥∥∥∇L(x̄(t))
∥∥∥2
2

+ η2t

[
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W)|E|dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

]

≤ (1− p

2
)Ξt + 2η2t (1− p)(

3P

p
+M)

∥∥∥∇L(x̄(t))
∥∥∥2
2

+ η2t

[
6(1− p)

ζ2⋆
p

+ (1− p)σ2
⋆ +

2HG(W)|E|dσ2
cor

n
+

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dσ2
cdp

]
.

The above concludes the proof.

D PRIVACY-UTILITY TRADE-OFF

In this section, we prove our main privacy result stated in Corollary 1 and extend it to the general
privacy adversaries discussed in Section 2. We first recall some useful facts around Rényi differential
privacy (RDP) (Mironov, 2017).

Lemma 9 (RDP Composition, (Mironov, 2017)). If a privacy mechanism M1 that takes the dataset
as input is (α, ε1)-RDP, and a privacy mechanism M2 that takes the dataset and the output of M1

as input is (α, ε2)-RDP, then their composition M2 ◦M1 is (α, ε1 + ε2)-RDP.

Lemma 10 (RDP to DP conversion, (Mironov, 2017)). If a privacy mechanism M is (α, ε)-RDP,
then M is (ε+ log (1/δ)

α−1 , δ)-DP for all δ ∈ (0, 1).

Proof of Corollary 1. For convenience, we restate Corollary 1 below, whose proof is a special case
of the extended privacy-utility trade-off result given next.

Theorem 1. Let Assumptions 1-5 hold. Let ε > 0, δ ∈ (0, 1) be such that ε ≤ log (1/δ). Algorithm 1
satisfies (ε, δ)-SecLDP (Definition 1) with expected error

O
(
C2d log (1/δ)

n2ε2

)
,

against the following adversaries:

• an external eavesdropper: if G is connected, σ2
cdp = 32C2T log (1/δ)

nε2 and σ2
cor =

32C2T log (1/δ)
a(G)ε2 ,

• honest-but-curious non-colluding users: if G is 2-connected, σ2
cdp = 32C2T log (1/δ)

(n−1)ε2 and

σ2
cor =

32C2T log (1/δ)
a1(G)ε2 , where a1(G) is the minimum algebraic connectivity across subgraphs

obtained by deleting a single vertex from G.

In the above, O omits absolute constants, vanishing terms in T , and privacy-independent multiplica-
tive constants.

Proof. This result is a special case of Corollary 11, by taking q = 0 for the external eavesdropper
and q = 1 for the honest-but-curious non-colluding users in the PL case, and omitting vanishing
terms in T .

Extended privacy-utility trade-off. We now state and prove a general privacy-utility trade-off
analysis of DECOR to all considered adversaries in Section 2, which includes collusion, as well as the
non-convex case.
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Corollary 11. Let the assumptions of theorems 4 and 8 hold and assume that G is (q + 1)-connected.
Let ε > 0, δ ∈ (0, 1) be such that ε ≤ log (1/δ). Consider Algorithm 1 with σ2

cdp = 32C2T log (1/δ)
(n−q)ε2

and σ2
cor =

32C2T log (1/δ)
aq(G)ε2 . Denote L0 := L(x̄(0))− L⋆. Then, Algorithm 1 satisfies (ε, δ)-SecLDP

and the following holds:

1. Assume that L is µ-PL:

EL(x̄(T ))− L⋆ = Õ

(
LC2d log (1/δ)

µ2n(n− q)ε2
+

L

µ2nT

[
σ2
⋆ +

LC2d log (1/δ)

µpε2

(HG(W) |E|
a(GH)

+
n

(n− q)

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

)])
.

2. In the general non-convex case:

1

T

T−1∑
t=0

E
∥∥∥∇L(x̄(t))

∥∥∥2
2
= O

(
C
√
d log (1/δ)√
n(n− q)ε

+

√
LL0σ2

⋆

nT

)
.

Proof. Let the assumptions of theorems 4 and 8 hold. Let ε > 0, δ ∈ (0, 1) be such that ε ≤ log (1/δ)

and assume that G is (q + 1)-connected. Consider Algorithm 1 with σ2
cdp = 32C2T log (1/δ)

(n−q)ε2 and

σ2
cor =

32C2T log (1/δ)
aq(G)ε2 . The latter quantity is well-defined as G is (q + 1)-connected and thus has

positive algebraic connectivity after deleting any set of q vertices (De Abreu, 2007).

Privacy. We first show the privacy claim. Recall from Theorem 4 that each iteration of Algorithm 1
satisfies (α, αεstep)-SecRDP against collusion at level q for every α > 1 where

εstep ≤ 2C2

(
1

(n− q)σ2
cdp

+
1

aq(G)σ2
cor

)
. (38)

Thus, following the composition property of RDP from Lemma 10, the full Algorithm 1 satisfies
(α, Tαεstep)-SecRDP for any α > 1. From Lemma 10, we deduce that Algorithm 1 satisfies
(ε′(α), δ)-SecLDP for any δ ∈ (0, 1) and any α > 1, where

ε′(α) = Tαεstep +
log(1/δ)

α− 1
≤ 2αC2T

(
1

(n− q)σ2
cdp

+
1

aq(G)σ2
cor

)
+

log(1/δ)

α− 1
.

Optimizing the above bound over α > 1 yields the solution α⋆ = 1 +

√
log(1/δ)

C

√
2T

(
1

(n−q)σ2
cdp

+
1

aq(G)σ2
cor

)
which gives the bound

ε⋆ = ε′(α⋆) ≤ 2C2T

(
1

(n− q)σ2
cdp

+
1

aq(G)σ2
cor

)
+ 2C

√√√√2T log (1/δ)

(
1

(n− q)σ2
cdp

+
1

aq(G)σ2
cor

)
.

Now, recall that the choice of σ2
cdp, σ

2
cor implies that

1

(n− q)σ2
cdp

+
1

aq(G)σ2
cor

=
ε2

16C2T log (1/δ)
.

Therefore, using the assumption ε ≤ log (1/δ), Algorithm 1 satisfies (ε⋆, δ)-DP where

ε⋆ ≤ ε2

8 log (1/δ)
+

ε√
2
≤ ε.

This concludes the proof of the privacy claim.
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Upper bound—PL case. Plugging the expressions of σ2
cdp and σ2

cor in the PL bound of Theorem 8
and rearranging terms yields

EL(x̄(T ))− L⋆ = O

(
L

µ2T

σ2
⋆ + dC2T log (1/δ)

(n−q)ε2

n
+

c2L2(L(x̄(0))− L⋆)

µ2p2T 2
+

cL3

µ2p2T 2
Ξ0

+
lnT

T 2

L2

µ3p

[
(1− p)(

ζ2⋆
p

+ σ2
⋆) +

HG(W) |E| d
n

C2T log (1/δ)
a(GH)ε2 +

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

dC2T log (1/δ)
(n−q)ε2

])

= Õ

(
LC2d log (1/δ)

µ2n(n− q)ε2
+

L

µ2nT

[
σ2
⋆ +

LC2d log (1/δ)

µpε2

(
HG(W) |E|

a(GH)
+

n

n− q

∥∥∥∥W − 11⊤

n

∥∥∥∥2
F

)]

+
L2

µ3p2T 2

[
(1− p)(ζ2⋆ + pσ2

⋆) + c2µ(L(x̄(0))− L⋆) + cµLΞ0

])
.

Upper bound—Non-convex case. Plugging the expressions of σ2
cdp and σ2

cor in the non-convex
bound of Theorem 8 and rearranging terms yields

1

T

T−1∑
t=0

E
∥∥∥∇L(x̄(t))

∥∥∥2
2
= O

(√
L(L(x̄(0))− L⋆)(σ2

⋆ + dσ2
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nT
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pT
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pT
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+
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= O
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⋆ + dC2T log (1/δ)

(n−q)ε2 )

(1− p)(
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p

+ σ2
⋆) +

HG(W) |E| dC2T log (1/δ)
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n
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= O

(
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d log (1/δ)√
n(n− q)ε
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√
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⋆

nT
+

cL(L(x̄(0))− L⋆)
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pT
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.

We conclude by ignoring higher-order terms in T : in 1
T 2 for the PL case and 1

T for the non-convex
case.

In the PL case, observe that our privacy-utility trade-off matches CDP whenever there is at most a
constant fraction of colluding user, i.e., the level of collusion is q = O(n). In the extreme scenario
where almost all users are colluding, i.e., n− q = O(1), then the trade-off matches LDP only, which
cannot be improved in general when q = n− 1 (Duchi et al., 2018). In the non-convex case, while
it is not possible to discuss the tightness of our privacy-utility trade-off because lower bounds on
the CDP trade-off are unknown, the error O

(√
d

nε

)
matches the CDP baseline error without variance

reduction (Arora et al., 2022).

E DETAILED EXPERIMENTAL SETUP

In this section, we provide the full experimental setup of our empirical evaluation in Section 5.

Datasets. We conduct our evaluation on three datasets: synthetic data for least-squares regression,
a9a LibSVM (Chang & Lin, 2011) and MNIST (LeCun & Cortes, 2010), that we distribute among
n = 16 users, as explained in Section 5.
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Privacy parameters. We consider user-level privacy for the first two tasks, and example-level privacy
for the last task. For all our experiments, we set the privacy parameter δ to 10−5, this ensures that
δ ≪ 1

nm ≤ 1
n .

E.1 PRIVACY NOISE PARAMETERS SEARCH FOR DECOR

For a pre-specified SecLDP privacy budget ε, we would like to find a corresponding couple of
privacy noises (σcdp, σcor) to be used in DECOR. However, Algorithm 2 does the reverse process,
i.e., it computes the per-step SecRDP budget, denoted εRDP

iter here, given the privacy noise couple
(σcdp, σcor). Moreover, it is straightforward to obtain the desired per-step RDP budget εRDP

iter given
the full DP budget ε using composition and conversion properties of RDP (Mironov, 2017). Hence,
we only need to search for (σcdp, σcor), given a pre-specified εRDP

iter . To do so, we fix σcdp, and we
look for the other parameter σcor, using binary search, since the function εRDP

iter (σcor) is monotonous
(non-increasing), as shown in Figure 2. Specifically, we use the following steps in our search:

1. Given the global (user-level) SecLDP privacy budget ε, we determine the per-step SecRDP
privacy budget εRDP

iter using the RDP composition and conversion properties

2. We know that the uncorrelated noise variance σcdp is bounded between the privacy noise
variance used for the baseline CDP algorithm C

√
2√

nεRDP
iter

, and the one used for the LDP

baseline, that is C
√
2√

εRDP
iter

. So we start by fixing σcdp in the interval [ C
√
2√

nεRDP
iter

, C
√
2√

εRDP
iter

]

3. For every fixed σcdp, we search for the corresponding σcor in a sufficiently large interval
([1, 103] in our experiments) using binary search on the outputs of our SecRDP accountant
(Algorithm 2).
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Figure 2: User-level SecLDP privacy budget ε, using Algorithm 2, as a function of σcor given a
fixed σcdp in the center of the search interval, a total number of iterations T = 1000 and a clipping
threshold C = 1.

Example-level privacy. The procedure to get the privacy noise parameters is slightly different for
example-level privacy. Indeed, we use RDP privacy amplification by subsampling (Wang et al., 2019)
after using Algorithm 2. However, the RDP privacy amplification by subsampling does not have
a closed-form expression, so we cannot directly get the desired per-step SecRDP budget from the
full DP budget ε. Therefore, we again fix σcdp in a grid, this time in [ C

1000 ,
C
20 ], and we look for the

other parameter σcor (this time in [ C
2000 ,

C
10 ]) using binary search, since the function εRDP

iter (σcor) is
monotonous (non-increasing), as shown in Figure 3.
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Figure 3: Example-level SecLDP privacy budget ε, using Algorithm 2 and RDP amplification by
subsampling (Wang et al., 2019), as function of σcor given a fixed σcdp = 5C

1000 , a total number of
iterations T = 1000, clipping threshold C = 1 and batch size 64.

E.2 HYPERPARAMETER TUNING

For all considered tasks, we tune the hyperparameters of each algorithm individually, following the
same steps, to obtain: the learning rate η, the clipping threshold C and the noise parameters σcdp and
σcor. It is important to note that the couple of privacy noise parameters (σcdp, σcor) is not unique:
we can find many couples that yield the same SecRDP budget, which is also visible in the theoretical
bound from Theorem 4. However, in the CDP and LDP baselines (D-SGD with uncorrelated privacy
noise), they are determined uniquely by the RDP guarantee for the Gaussian mechanism (Mironov,
2017).

For our tuning, we choose a grid of learning rates and clipping thresholds. First, we simply evaluate
the CDP and LDP baselines with the desired topology on all the learning rate and clipping couples
(η, C), and then we pick the best hyperparameter couple at the end. For DECOR, we do the same
procedure for (η, C). However, there are many possible noise couples (σcdp, σcor) following the
privacy noise search in the previous section, we choose three among them that yield the same privacy
budget: the one with the lowest σcdp (first couple found by binary search), the largest σcdp (last
couple) and the one in the middle. After evaluating these noises with every couple (η, C), we choose
at the end the best quadruplet of hyperparameters.
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