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Abstract

Privacy concerns have led to a surge in the creation of synthetic datasets, with diffusion
models emerging as a promising avenue. Although prior studies have performed empirical
evaluations on these models, there has been a gap in providing a mathematical characteri-
zation of their privacy-preserving capabilities. To address this, we present the pioneering
theoretical exploration of the privacy preservation inherent in discrete diffusion models
(DDMs) for discrete dataset generation. Focusing on per-instance differential privacy (pDP),
our framework elucidates the potential privacy leakage for each data point in a given training
dataset, offering insights into how the privacy loss of each point correlates with the dataset’s
distribution. Our bounds also show that training with s-sized data points leads to a surge in
privacy leakage from (ϵ,O( 1

s2ϵ ))-pDP to (ϵ,O( 1
sϵ ))-pDP of the DDM during the transition

from the pure noise to the synthetic clean data phase, and a faster decay in diffusion coeffi-
cients amplifies the privacy guarantee. Finally, we empirically verify our theoretical findings
on both synthetic and real-world datasets.

1 Introduction

Discrete tabular or graph datasets with categorical attributes are prevalent in many privacy-sensitive
domains (Vatsalan et al., 2013; Pourhabibi et al., 2020; Li et al., 2021; Shwartz-Ziv & Armon, 2022; Borisov
et al., 2022), including finance (Clements et al., 2020; Wang et al., 2021; Potluru et al., 2024), e-commerce
(Ahmed et al., 2017; Zhang et al., 2019), and medicine (Duvenaud et al., 2015; Schork, 2015; Ulmer et al., 2020).
For instance, medical researchers often collect patient data, such as race, gender, and medical conditions,
in a discrete tabular form. However, using and sharing data in these domains carry the risk of revealing
personal information (Abay et al., 2019). Studies have shown that it is possible to re-identify individuals
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Figure 1: An Illustration of Discrete Diffusion Models (DDMs).

in supposedly de-identified healthcare data (McGuire & Gibbs, 2006; El Emam et al., 2011). To address
these types of concerns, publishing synthetic datasets with privacy guarantees has been proposed as a way to
protect sensitive information and to reduce the risk of privacy leakage (Choi et al., 2017; Patel et al., 2018;
Tucker et al., 2020; DuMont Schütte et al., 2021).

Previous research has explored discrete synthetic database releasing methods (Zhou et al., 2009b; Blum
et al., 2013; Li et al., 2023). Many of these methods employ data anonymization techniques (Sweeney, 2002;
Li et al., 2006; Liu & Terzi, 2008; Lu et al., 2012) or focus on private statistics/statistical models (Sala
et al., 2011; Jorgensen et al., 2016; Balog et al., 2018; Harder et al., 2021). In the former category, k-
anonymization (Sweeney, 2002) directly works on anonymizing categorical features but it can be vulnerable to
the attackers with background knowledge (Machanavajjhala et al., 2007). Alternatively, methods using private
statistics or models concentrate on sharing specific private statistics (Harder et al., 2021) or privatizing model
parameters (Hardt et al., 2012; Zhang et al., 2017). However, these techniques can sometimes misrepresent
the original distribution or reduce sample quality by adding noise directly to model parameters.

Neural network (NN)-based generative models have been leveraged in various domains on account of
their ability in learning underlying distributions (Austin et al., 2021). Recently, discrete diffusion models
(DDMs) (Hoogeboom et al., 2021; Austin et al., 2021; Campbell et al., 2022; Gu et al., 2022; Vignac et al., 2022),
as a typical representative of diffusion models (DMs), have emerged as a powerful class of generative models
for discrete data and demonstrate great potential to generate samples with striking performance (Haefeli et al.,
2022; Zheng et al., 2023). DDMs are latent variable generative models that employ both a forward and reverse
Markov process (See Fig. 1). In the forward diffusion process, each discrete sample is gradually corrupted
with dimension-wise independent noise. This is often implemented through the use of progressive transition
kernels, which yields not only high fidelity-diversity trade-offs but also robust training objectives (Dhariwal
& Nichol, 2021). On the other hand, the reverse process learns denoising neural networks that aim to predict
the noise and reconstruct the original sample. Despite the impressive performance of DDMs, it is still unclear
whether DDMs trained on sensitive datasets can be safely used to generate synthetic samples.

Efforts have empirically examined the privacy implications of DMs. While previous literature suggests that
DMs generate synthetic training data to address privacy concerns (Jahanian et al., 2021; Carr, 2022), recent
studies have shown that DMs may not be suitable for releasing private synthetic data. Specifically, Wu
et al. (2022); Hu & Pang (2023) conduct membership inference attacks on DMs for text-to-image tasks and
demonstrate that membership inference poses a severe threat in diffusion-based generation. Besides, studies
show that DMs can memorize training samples (Somepalli et al., 2022; Carlini et al., 2023). Although there
exist practical observations for privacy properties of DMs, there is limited research aimed at mathematically
characterizing the privacy guarantees of data generated by DMs. Moreover, understanding privacy guarantees
may guide practitioners to determine whether additional mechanisms, such as DP-SGD (Abadi et al., 2016),
PATE (Papernot et al., 2016), should be incorporated to meet practical privacy requirements.

Differential privacy (DP) (Dwork et al., 2006; 2014), the most commonly used algorithm-centric framework
to characterize the privacy guarantee of an algorithm, is derived from the worst-case dataset. However, in the
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context of synthetic data sharing, the characterization of privacy leakage is about the synthetic dataset (the
algorithm output) rather than the generative model (the algorithm itself), and the learned data distribution
to generate synthetic data strongly depends on the empirical distribution of the data points used for training.
Therefore, a privacy guarantee that may incorporate the distributional characteristics of data points in the
given training dataset may offer a far more accurate privacy characterization than the worst-case analysis.
Such data-dependent analysis may help practitioners learn which data points in the training dataset tend to
introduce privacy leakage concerns in the generation process and thus design the relevant protection strategy.

In this paper, we take the first step to analyze the privacy guarantees of DDMs for a fixed training dataset.
Specifically, we leverage the data-dependent privacy framework termed per-instance differential privacy (pDP),
which is defined upon an instance in a fixed training dataset as outlined by (Wang, 2019). The analysis
of pDP allows for a fine-grained characterization of the potential privacy leakage of each data point in the
training set. This offers data curators a better understanding of the sensitivity of training data.

Our analysis considers a DDM trained on s samples and generates m samples, and we keep track of the
privacy leakage in each generation step. We prove that as the data generation step transits from t = T
(noisy regime) to t = 0 (noise-free regime), the privacy leakage increases from (ϵ,O( m

s2ϵ(1−e−ϵ) ))-pDP to
(ϵ,O( m

sϵ(1−e−ϵ) ))-pDP where the data-dependent term is hidden in the big-O notation. Consequently, the
final few generation steps (αt → 1 in Fig. 1) dominate the main privacy leakage in DDMs. Further, our
analysis demonstrates that the privacy bound O(1/s) is tight when m = 1, emphasizing the inherent weak
privacy guarantee of DDMs. Moreover, faster decay in diffusion coefficients yields better privacy preservation.
Both synthetic and real dataset evaluations validate our theoretical findings.

For the data-dependent part, we develop a practical algorithm to estimate the privacy leakage of each data
point in real-world datasets according to our pDP bounds. We evaluate the data-dependent part by removing
the most sensitive data points (according to our data-dependent privacy parameters) from the dataset to train
a DDM, and then evaluating the ML models trained based on the synthetic dataset generated by the DDM.
Interestingly, we observe that the ML models obtained after a part of data removal can even outperform
others without such data removal. We attribute this to the fact that the removed data points are likely
outliers which may be actually not good for ML models to learn from. This illustrates another potentially
valuable usage of our data-dependent analysis.

To avoid any confusion, we provide several important explanations for considering pDP in our work. pDP,
tailored to the training set, offers data curators a more accurate and fine-grained estimation of the potential
privacy leakage of each data point, compared to DP which studies the worst case and keeps agnostic to the
dataset (Wang, 2019). However, it is crucial to understand that pDP is not a replacement for DP. Direct
application of data-dependent sensitivity for noise addition is not permissible for ensuring privacy, as the
added noise may leak private information due to its data dependency. Data-dependent methods such as
smooth sensitivity (Nissim et al., 2007) and propose-test-release (Dwork & Lei, 2009) may be employed,
while they are beyond the scope of this paper. Our analysis is to provide insights into the inherent privacy
afforded by DDMs, and to guide data curators in assessing the privacy risks associated with different parts
of the dataset. We are not to develop an algorithm to match a certain privacy budget as the goal. Given
this purpose, pDP is a more suitable metric than DP. In practice, the pDP assessment is expected to be
kept confidential and used by the data curators to understand the dataset and evaluate the potential privacy
leakage if one uses DDMs to generate synthetic datasets.

1.1 More Related Work

A significant amount of research has been conducted on the subject of publishing privacy sensitive data (Ji
et al., 2014; Baraheem & Yao, 2022). As of now, traditional non-deep learning techniques for preserving privacy
while generating discrete data can be broadly classified into two categories: (a) Data anonymization-based
approaches. These methods employ a variety of techniques to directly sanitize data to prevent easy re-
identification (Abay et al., 2019). One most popular framework is termed k-anonymity (Sweeney, 2002) that
requires each record is indistinguishable from at least k − 1 other records with respect to certain identifying
attributes. Several extensions of this framework have been proposed in (LeFevre et al., 2005; Aggarwal
et al., 2005; Machanavajjhala et al., 2007; Li et al., 2006; Truta & Vinay, 2006; Machanavajjhala et al., 2008;
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Liu & Terzi, 2008; Liang & Samavi, 2020). However, these methods are typically prone to various privacy
attacks (Machanavajjhala et al., 2007). (b) Methods based on statistical models or private statistics.
Barak et al. (2007) employed Fourier decomposition and prior knowledge to release low-dimensional data
projections. Zhou et al. (2009b) proposed a database compression procedure based on low-rank random affine
transformations and publish low-dimensional data. Other works along this line include (Liu et al., 2005; Zhou
et al., 2009a; Ding et al., 2011; Cormode et al., 2011; Kenthapadi et al., 2012; Cormode et al., 2012). Note
that these works can work for both discrete and continuous data. Furthermore, Balog et al. (2018) introduced
a framework employing kernel mean embeddings (Smola et al., 2007) in Reproducing Kernel Hilbert Space,
and ensuring privacy by using synthetic data approximations to enable safe data release. Nevertheless, these
methods usually suffer from poorly generated sample qualities. With regard to this, establishing NN-based
private models is a promising way to enhance sample qualities due to the great expressive power of deep
networks.

Hitherto, there are studies on NN-based private models but few analyze the inherent privacy of the model
itself. In (Lin et al., 2021), it was shown that a vanilla GAN trained on s samples inherently satisfies a
weak (ϵ,O(msϵ ))-DP guarantee when releasing m samples. In this work, our results demonstrate that DDMs
provide weak privacy guarantees in the same order as GANs. But note that Lin et al. (2021) did not provide
a data-dependent bound. Their bounds are in the order form and cannot be explicitly computed from data
curator’s side for a given training dataset. Because of such weak inherent privacy there were efforts to
bring additional privacy techniques into the model, such as DP-SGD (Abadi et al., 2016). Xie et al. (2018)
proposed DPGAN that integrates modified DP-SGD in WGAN to ensure privacy for GAN-generated samples.
Dockhorn et al. (2022) applied DP-SGD to privatize model parameters in continuous DMs for image data
without analyzing the inherent privacy of DMs. Recently, Ghalebikesabi et al. (2023) have showed that
fine-tuning a pre-trained diffusion model with DP-SGD can generate verifiable private synthetic data for the
dataset used for fine-tuning.

2 Preliminaries

We start by introducing notations and concepts for analysis. Let [n] = {1, 2, ..., n} and Xn represent an
n-dimensional discrete space with each dimension having k categories, i.e. Xn := X1 × · · · × Xn with
Xi = [k], i ∈ [n]. We assume that training datasets V reside in Xn, implying samples are vector-valued data
of n entries, each from one of the k categories. Although we assume consistent categories across columns, our
analysis can account for datasets with varied category counts using the maximum category count.

Per-instance Differential Privacy. DP (Dwork et al., 2006; 2014) is a de-facto standard to quantify
privacy leakage. We adapt DP definition for specific adjacent datasets, introducing per-instance DP:
Definition 1 ((ϵ, δ)-Per-instance Differential Privacy (pDP) (Wang, 2019)). Let V0 be a training dataset,
v∗ ∈ V0 be a fixed point andM be a randomized mechanism. Define adjacent dataset V1 = V0\{v∗}. We say
M satisfies (ϵ, δ)-pDP with respect to (V0,v∗) if for all measurable set O ⊂ range(M), {i, j} = {0, 1}:

P(M(Vi) ∈ O) ≤ eϵP(M(Vj) ∈ O) + δ. (1)

It is important to highlight that pDP is uniquely defined for a specific dataset-data point pair. This capability
is crucial for understanding the privacy leakage of the given dataset, as elaborated in Sec. 4. Additionally,
by taking the supremum over all conceivable datasets V0 and points v∗, we can obtain DP from pDP when
considering model releasing scenario (Theorem E.1). A more comprehensive discussion of the DP guarantees
associated with DDMs is provided in Appendix. E.

Discrete Diffusion Models. DDMs (Hoogeboom et al., 2021; Austin et al., 2021; Vignac et al., 2022;
Haefeli et al., 2022) are diffusion models that can generate categorical data. Let vt denote the data random
variable at time t. The forward process involves gradually corrupting data with the noising Markov chain
q, according to q(v1:T |v0) =

∏T
t=1 q(vt|vt−1), where v1:T = v1,v2, ...,vT . On the other hand, the reverse

process, pϕ(v0:T ) = p(vT )
∏T
t=1 pϕ(vt−1|vt), gradually reconstructs the datasets starting from a prior p(vT ).

The denoising neural network (NN) learns pϕ(vt−1|vt) by optimizing the ELBO, which comprises three loss
terms: the reconstruction term (Lr), the prior term (Lp), and the denoising term (Lt) , represented in the
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following equation (Ho et al., 2020):

Eq(v1|v0)[log pϕ(v0|v1)]︸ ︷︷ ︸
Reconstruction Term Lr

−DKL(q(vT |v0)∥pϕ(vT ))︸ ︷︷ ︸
Prior Term Lp

−
T∑
t=2

Eq(vt|v0)[DKL(q(vt−1|vt,v0)∥pϕ(vt−1|vt))]︸ ︷︷ ︸
Denoising Term Lt

. (2)

Specifically, the forward process can be described by a series of transition kernels {Qit}t∈[T ],i∈[n] where for
any entry vi, [Qit]lh = q(vit = h|vit−1 = l) represent the probability of a jump from category l to h on the
i-th entry at time t. Since for each entry i the number of categories is the same, we can rely on the same
transition kernels for all dimensions and use Qt instead of Qit. Let Qt = Q1Q2...Qt denote the accumulative
transition matrix from time 1 to time t. We use a uniform prior distribution p(vT ). The corresponding
doubly stochastic matrices is determined by a series of important parameters termed diffusion coefficients
({αt, t ∈ [T ]|αt ∈ (0, 1)}) which control the transition rate from original distribution to uniform measure.
Specifically, define Qt = αtI + (1 − αt)11

T

k and then Q̄t = ᾱtI + (1 − ᾱt)11
T

k where ᾱt =
∏t
i=1 αt. In

the reverse process, denoising networks are leveraged to predict pϕ(vt−1|vt) in hope of approximating
q(vt−1|vt,v0). In practice, instead of directly predicting pϕ(vt−1|vt) , denoising networks are learned to
predict a clean data v0 at time 0 with a noisy vt as input, i.e. pϕ(v0|vt). To train the denoising network,
one needs to sample noisy points from q(vt|v0), and feed them into the denoising network ϕt and obtain
pϕ(v0|vt). Specifically, we adopt

Ltrain = DKL(q(v0|vt)||pϕ(v0|vt)) = 1
|V|

∑
v0∈V

Evt∼q(vt|v0)

[
n∑
i=1

LCE(vi0, pϕ(vi0|vt))
]

(3)

This loss serves as the basis for our later sufficient training Assumption 1. In the generation process, we
need to bridge the connection of pϕ(vt−1|vt) and pϕ(v0|vt), which in practice depends on a dimension-wise
conditional independence condition (Vignac et al., 2022):

pϕ(vt−1|vt) =
∏
i∈[n]

pϕ(vit−1|vt) =
∏
i∈[n]

∑
l∈Xi

q(vit−1|vt,vi0 = l)pϕ(vi0 = l|vt). (4)

Other Notations. Given two samples v and ṽ, let ω̄(v, ṽ) represent the count of differing entries, i.e.,
ω̄(v, ṽ) = #{i|vi ̸= ṽi, i ∈ [n]}. For η ∈ [n] and v ∈ V1, define Nη(v) = |{v′ ∈ V1 : ω̄(v,v′) ≤ η}| and
Vi|l1 = {v ∈ V1|vi = l} the set of data points with a fixed-valued entry. We use DKL(·∥·) and ∥ · ∥TV
for KL-divergence and total variation. Let µ+

t = 1+(k−1)αt
k and µ−

t = 1−αt
k represent one-step transition

probabilities to the same and different states respectively at time t while µ̄+
t = 1+(k−1)αt

k and µ̄−
t = 1−αt

k are
the accumulated transition probabilities. Transition probability ratios are defined as Rt = µ+

t

µ−
t

and R̄t = µ̄+
t

µ̄−
t

.
A larger ratio indicates a higher likelihood of maintaining the same feature category in the diffusion process.
Moreover, define (·)+ = max{·, 0}.

3 Main Results

3.1 Inherent Privacy Guarantees of DDMs

First, we define the mechanism under analysis. Let Mt(V;m) represent the mechanism where, for an input
dataset V, it outputs m samples generated at time t using the DDM’s generation process. Specifically,
M0(V ;m) signifies the final generated dataset by DDM. In the paper, we focus on the behavior of Mt in the
generation process. Below, we outline the assumptions:
Assumption 1 (Sufficient training of ϕ). Given dataset V , let v0 denote the predicted random variables
at time 0. Let ϕ denote denoising NNs trained on dataset V. We say Assumption 1 is satisfied if there exist
small constants γt > 0 such that ∀vt ∈ Xn:

DKL(q(vi0|vt)∥pϕ(vi0|vt)) ≤ γt,∀i ∈ [n],∀t ∈ [T ]. (5)
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Assumption 2 (Gap between Forward and Backward Diffusion Paths). Given dataset V, let vt
denote the random variable sampled from intermediate distributions at time t in both the forward process
(following q(vt)) and backward process (following pϕ(vt)). We say the Assumption 2 is satisfied if there exists
small positive constant γ̃t ≪ 2 such that

∥q(vt)− pϕ(vt)∥TV ≤ γ̃t,∀t ∈ [T ]. (6)

Assumption 1 states that denoising networks, when trained using the loss function in Eq. (3), can effectively
infer clean data from intermediate noisy data distributions. Given a sufficiently expressive model, we expect
γt to be small. Assumption 2 asserts that diffusion and generation paths are close, which is a reasonable
assumption due to the recent analysis (Campbell et al., 2022). However, one cannot use Eq. (6) to derive
privacy bound directly as closeness in total variation does not imply DP in general though the reverse could
be true (Bassily et al., 2016).

With above assumptions, we investigate the flow of privacy leakage along generation process. Our analysis
centers around the inherent privacy guarantees of DDM-generated samples at specific release step, denoted as
Trl. Later, we will show that our privacy bound is tight when generating a single sample (m = 1).
Theorem 1 (Inherent pDP Guarantees for DDMs). Given a dataset V0 with size |V0| = s + 1 and
a data point v∗ ∈ V0 to be protected, denote V1 such that V1 = V0\{v∗}. Assume the denoising networks
trained on V0 and V1 satisfy Assumption 1 and Assumption 2. Given a specific time step Trl, the mechanism
MTrl(·;m) satisfies (ϵ, δ)-pDP with respect to (V0,v∗) such that given ϵ,

δ(V0,v∗) ≤ m
[ T∑
t=Trl

min
{4N(1+c∗

t )ηt(v∗)
s

, 1
}
· n
sψt

+
n(1− 1

R̄t−1
)

s2︸ ︷︷ ︸
Main Privacy Term

+O
(
√
γt + γ̃t

)
︸ ︷︷ ︸

Error Term

]
/(ϵ(1− e−ϵ)). (7)

where ψt, ηt, c∗
t are data-dependent quantities determined by v∗ and V1. Define a similarity measure

Sim(v∗,V) =
∑

v∈V R̄
−ω̄(v,v∗)
t . Then, ψt, ηt, c∗

t follow

n

sψt
= (αt−1 − αt)/(kµ̄+

t µ̄
−
t )

1 + Sim(v∗,V1) ·
n∑
i=1

log
(

1 +
R̄2
t−1 − 1

R̄2
t−1Sim(v∗,Vi|v

∗i

1 ) + Sim(v∗,V1) + 1

)
. (8)

And, ηt, c∗
t are the smallest ηt ∈ {1, 2, ..., n}, c∗

t ∈ {0, 1
ηt
, 2
ηt
, ..., n−ηt

ηt
} which satisfy

ηt ≥
log ϑ(ηt)

log 1
n(1−µ̄+

t )
+

 log
(
ϑ(ηt)αt−1−αt

kµ̄+
t µ̄

−
t

· sψt
)

2 log R̄t
− 2


+

, c∗
t ≥

1
ηt

log ϑ((1 + c∗
t )ηt) + 3

2

log 1
µ−
t

− 1
. (9)

where ϑ(η) = (s−Nη(v∗))/Nη(v∗) that represents the ratio between the numbers of points outside the η-ball
and inside it.

Theorem 1 quantifies the privacy leakage of a specific point v∗ in training set V0. The privacy bound comprises
a main privacy term that represents the inherent pDP guarantees for DDMs, highlighting the data-dependent
nature of our bound, and an error term stemming from denoising network training and path discrepancies.
Those data-dependent quantities are complex to maintain a tight measurement for a dataset-data point pair.
Next, we will further explain these quantities.

First, as the generation process forms a Markov chain where the transition probability pϕ(v(t−1)|v(t)) is
learned from training, each generation step will leak some information from the training dataset. It can be
shown that the majority of such leakage, represented in the pDP bound (in the appendix) follows

Ev∼pϕ(vt|0=v)d
(t)(v) (10)

where let vt|λ represents the random variable of the generated data at time t of the generation process when
the diffusion model gets trained over the dataset Vλ, λ ∈ {0, 1} and d(t)(v) =

∑
λ∈{0,1}DKL(pϕ(vt−1|λ|vt|λ =
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v)∥pϕ(vt−1|λ̄|vt|λ̄ = v)) with λ̄ = 1− λ, which characterizes a symmetric distance between two conditional
distributions characterized by the learned diffusion model. Essentially, the three data-dependent quantities
ψt, ηt, c

∗
t are to bound Eq. (10).

Quantity ψt: As shown in Fig. 2, n
sψt

quantifies maxv d
(t)(v) where the maximum is achieved at the removed

point v = v∗ (green in Fig. 2 ). A closer inspection reveals that ψt depends on the terms Sim(v∗,V1) and
Sim(v∗,Vi|v

∗i

1 ). By the definition of ω̄, these terms assess how v∗ aligns with the remaining points in V1.

Evolution of ψt. During the generation phase, as t progresses from T to 1, the values of 1
sψt

increase from
Os( 1

s2 ) to Os(1). This implies that the potential privacy risk escalates as the data generation process evolves
from a noisy regime to a noise-free regime.

True MeasureIntermediate
Generated Measure Delta Measure

Privacy Leakage
Eq.(9) Upper Bound

Figure 2: Illustration of Data-dependent Quantities.

Similarity

Per-instance Privacy Leakage

Figure 3: Illustration of the correlation between dataset
similarity (Sim(vi, V0\{vi}), ∀vi ∈ V0) and pDP Leak-
age.

Quantities ηt and c∗
t : It is evident that the intermediate generated measure pϕ(vt|0) (blue in Fig. 2)

diverges from the delta measure on the most sensitive point δv=v∗ (green). Therefore, the actual privacy
leakage characterized by d(t)(v) (yellow) averaged over the measure pϕ(vt|0) is much less than its maximum.
To provide a tight characterization of such, the two quantities ηt and c∗

t are introduced to define a local
region S = {v′ ∈ Xn : ω̄(v,v′) ≤ (1 + c∗

t )ηt} centered on vulnerable point v∗, within which the privacy
leakage can be bounded by the sum of (a) pϕ(vt|0 ∈ S) maxv∈S d

(t)(v) with a small pϕ(vt|0 ∈ S) and (b)
pϕ(vt|0 /∈ S) maxv/∈S d

(t)(v) with a small maxv/∈S d
(t)(v). (ηt, c∗

t ) shown in Eq. (9) are chosen to properly
balance these two parts. ηt and c∗

t always exist: Note that when ηt = n or c∗
t = n/ηt − 1, the right-hand side

of either inequality in Equation (9) approaches −∞ (log 0). In fact, both of the RHS’s of the two inequalities
decrease w.r.t. ηt and c∗

t . So, in practice, the smallest ηt and c∗
t can be found via binary search given the

dataset V0 and v∗.

Evolution of (1 + c∗
t )ηt. For each time step t, the smallest value of (1 + c∗

t )ηt is chosen as the radius. As t
progresses from T to 1, the value of (1 + c∗

t )ηt monotonically decreases. When ᾱt approaches 1 for smaller t
values, (1 + c∗

t )ηt tends to zero, i.e., S only includes v∗. The reason is that, as smaller t values, different data
points are less mixed with others (because of less noise added in the forward process), the privacy leakage of
v∗ becomes more concentrated around the changes of the likelihoods of the generated data points that look
like v∗, thus calling for a decrease of the radius. To consider the impact on the bound in Eq. (7), the number
of data points in this region N(1+c∗

t )ηt(v∗) will decrease from s to 1 as t changes from T to 1.

Discussion on Theorem 1. Based on the previous discussion, as t decreases from T to 1, N(1+c∗)ηt(v∗)/s
changes from Os(1) to Os(1/s), and 1/sψt changes from Os( 1

s2 ) to Os(1). Consequently, the privacy leakage
for each-step DDM-generated samples gradually increases from Os(ms2 )/[ϵ(1− e−ϵ)] to Os(ms )/[ϵ(1− e−ϵ)].

This implies a natural utility-privacy tradeoff for the data generated by DDMs. In practice, to guarantee the
data quality, we often release the data in the noise-free side (t = 0), where only a weak privacy guarantee of
approximately (ϵ,Os(m/s)/[ϵ(1− e−ϵ)]) can be achieved. To enhance data privacy, we may expect to release
the data generated with a larger step t ≥ 1.
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Figure 4: pDP Leakage in Eq. (7): LEFT: Characterization of n

sψt
. MIDDLE: Characterization of (1 + c∗

t )ηt.
RIGHT: Characterization of Privacy Leakage (Main Privacy Term). Experimental Setup: Given specific DDM
design k = 5, n = 5, T = 20, ϵ = 10 trained on dataset with s = 1000 following the distribution in Sec. 3.3 with
parameter p. Fix v∗ where each column has a non-majority category. Results are based on 5 times independent tests.

This result also reveals that the inherent privacy guarantees of releasing data generated by DDMs is
weak (∝ O(m/s)), in the same order of guarantees for GAN-generated samples (Lin et al., 2021). This
characterization also matches many recent empirical studies that have shown concerns on privacy leakage
due to publishing data generated by DMs (Hu & Pang, 2023; Carlini et al., 2023; Dockhorn et al., 2022).
While privacy budgets for all data points maintain the same order in relation to the sample size, the contacts
can differ markedly across data points. Intuitively, a data point v∗ ∈ V0 with less similarity with the other
data points tends to have higher privacy leakage. This is indicated by Eq. (8), where a smaller similarity∑

v∈V0\{v∗} R̄
−ω(v∗,v)
t , leads to a larger pDP leakage (as illustrated in Fig. 3).

The upper bound for t = 1 with a dependence on the dataset size Os( 1
s ) demonstrates a weak privacy

guarantee given by DDMs, as this is on par with the privacy implication of the Strawman approach that
uniformly at random samples from the original dataset and publishes the samples. However, we emphasize
that this is not due to a loose analysis, as the following will provide a lower bound of such privacy leakage
due to DDM generation in the same order. Beyond this, our upper bound is valuable as it elucidates that
releasing a dataset at an earlier stage (with a larger t step) generated by DDMs could potentially strengthen
the privacy guarantee to Ωs( 1

s2 ). Moreover, our upper bound specifies the influence of diffusion coefficients
and dataset distributions on the privacy bounds, which the Strawman approach by publishing the samples
from the original dataset cannot tell. More details will be discussed in Sec. 3.2.

Tightness of Privacy Bound w.r.t Sample Size. In Theorem 1, the privacy parameter of δ scales as
Os( 1

s ) with sample size. Here we establish a lower bound for δ with respect to the sample size by evaluating
the worst-case scenario and show that O(1/s) is the optimal bound that DDM can achieve inherently for
m = 1. For illustrative purposes, consider the case where n = 2 with two distinct categories. Define adjacent
datasets: V0 = {[0, 0]T , ..., [0, 0]T︸ ︷︷ ︸

s−1

, [1, 1]T , [1, 1]T } and V1 = V0\{[1, 1]T }.

Theorem 2 (Lower Bound on Inherent pDP Guarantees for DDMs). Assume the denois-
ing networks are perfectly trained. Given a diffusion model architecture design (Sigmoid Schedule αt =
Sigmoid(3)−Sigmoid( 3t

T )
Sigmoid(3)−0.5 , T = 10), there exist an adjacent dataset V0,V1 = V0\{v∗} with feature dimension n = 2

such that the mechanism M0(·; 1) does not satisfies (0.04, δ)-pDP with respect to (V0,v∗) for any δ < 1
6s .

Regarding lower bounds on (ϵ, δ)-pDP under general model configurations, including diffusion schedules and
diffusion steps, please refer to Appendix D.

Discussion on the Inherent DP Guarantees for DDMs. As mentioned in Sec. 2, DP guarantees can
be obtained from taking all conceivable datasets V0 and points v∗. Therefore, by considering the worst case
adjacent dataset pair, we derive the DP privacy bound for DDMs:

Theorem 3 (Inherent DP Guarantee for DDMs (Informal)). Given any adjacent datasets V0,V1.
Assume the denoising networks trained on V0 and V1 satisfy Assumption 1 and Assumption 2. Given a specific

8
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time step Trl, the mechanism MTrl(·;m) satisfies (ϵ, δ)-differential privacy such that

δ ≤ m
[ T∑
t=Trl

min
{4N(1+c̃∗

t
)η̃t

s
, 1
}

· n

sΨt
+ nϱt

s2︸ ︷︷ ︸
Main Privacy Term

+ O
(

√
γt + γ̃t

)
︸ ︷︷ ︸

Error Term

]
/(ϵ(1− e−ϵ)) (11)

where Ψt, c̃
∗
t , η̃t, ϱt are quantities that only depend on the diffusion coefficients, and c̃∗

t , η̃t meet certain
radius selection criteria (refer to Eq. (50) and Eq. (49) in Appendix E). As t progresses from T to 1, the
value of 1

sΨt increases from Os
( 1
s2

)
to Os(1), while Nη′

t
/s monotonically decreases from Os(1) to Os

( 1
s

)
.

As indicated by Theorem 3, akin to findings from pDP, during the generation process, privacy leakage
intensifies from Os

(
m
s2

)
/[ϵ(1− e−ϵ)] to Os

(
m
s

)
/[ϵ(1− e−ϵ)]. The formal presentation and analysis of DP

guarantees for DDMs are detailed in Appendix E.

3.2 Impact of DDM Coefficients and Dataset Distributions on the Privacy Bound

Influence of Diffusion Coefficients. The privacy term is largely influenced by the proximity between v∗

and V1. As time t progresses, this similarity is governed by the transition ratio R̄t. A faster rate of diffusion
coefficients going to zero boosts this ratio, enhancing the privacy guarantee. Experiments in Sec. 4 validate
this observation.

Impact of Dataset Distribution. We find that ψt has a major effect on the privacy bound. ψt is influenced
by the similarity between the additional point v∗ and V0\{v∗}. If v∗ is far away from (close to) the rest
points in V0, then Sim(V0\{v∗},v∗, t) becomes small (large) and the corresponding term s−ψt become large
(small), which indicates weaker (stronger) protection of v∗. This indicates that points with notably low
Sim(V0\{v∗},v∗, t) are probably sensitive points in the dataset.

3.3 Characterizing Data-dependent Quantities under Simple Distributions

Here, we consider the training dataset sampled from some specific distributions to further illustrate the
data-dependent quantities.

Consider a distribution such that each column independently takes value l ∈ [k] with probability p (p ≥ 1
k )

and any other k − 1 categories with probability 1−p
k−1 . Let v∗ take non-majority category ((v∗)i ̸= l) along all

n columns (termed non-majority points, which thus tends to have higher privacy leakage) and the rest
points in V0\{v∗} are sampled from the distribution. We have the following characterization (For detailed
explanations and proofs, please refer to Appendix F).

• 1
sψt

. For a sufficiently large s (detailed in appendix), with high probability, 1
sψt−2 →

(αt−1−αt)/(kµ̄+
t µ̄

−
t )

R̄2
t−1·τ2n−1

t · 1−p
k−1 +τ2n

t

,

where τt := 1−p
k−1 + µ̄−

t

µ̄+
t

(1 − 1−p
k−1 ). In the noisy regime (a large t, µ̄−

t

µ̄+
t

→ 1), τt → 1, 1
sψt

= Os( 1
s2 ). For

distribution characterized by larger skewness, i.e., larger p, we have smaller τt result in larger 1
sψt

. Fig. 4
(LEFT) precisely matches the above conclusions.

• ηt, c∗
t . For a sufficiently large s (detailed in appendix), a sufficient condition for ηt and c∗

t to satisfy Eq. (9)
is

ηt ≥ n−
( n− log(s

√
αt−1−αt
kµ̄+
t µ̄

−
t

)/ log µ̄+
t

µ̄−
t

2 log k−1
1−p/ log(max{ 1

nµ̄−
t

, 1}) + 1

)
+
, c∗

t ≥
n−ηt
ηt

log k−1
1−p − log 1

2e

log k−1
1−p + log 1

eµ̄−
t

. (12)

In the noise free regime (αt → 1), ηt → 0, while in the noise full regime (αt → 0), ηt → n. From noise
free regime to noisy regime, µ̄t increases, c∗

t →
n−ηt
ηt

. Furthermore, as we rise in the skewness (p) of the
distribution, the R.H.S of Eq. 12 monotonically increases, and results in larger values for ηt and c∗

t . Fig. 4
(MIDDLE) matches the above conclusions.
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3.4 The Algorithm for Evaluating Privacy Bound in Eq. (7) on a given Dataset

In practical situations, when data curators release synthetic data, it is crucial to assess the privacy safeguards
of the mechanism trained on a specific dataset. This ensures the synthetic data upholds privacy and the
confidentiality of the training data’s sensitive information. To this end, we introduce Algorithm 1 (paired
with Algorithm 2), to compute the privacy bound, enabling direct per-instance privacy leakage calculation
for DDM-generated datasets given particular training sets. Specifically, for each v∗, we determine ψt, ηt,
and c∗

t to compute δ(v∗,V0) using Eq. (7). Using this algorithm, data curator can have better assessment
of the potential privacy leakage of each point in training set and may exclude sensitive points v∗ (outliers)
with high δ(v∗,V0) to enhance privacy protection. This approach’s efficacy is confirmed with real dataset
experiments in Sec. 4. The total time complexity of the algorithm is further analyzed in Appendix C.

Algorithm 1 Privacy Bound for Discrete Diffusion Models
1: Input: Dataset V0; Diffusion Step: T ; Diffusion Coefficients: {αt}t∈[T ] .
2: For each v,v′ ∈ V0, calculate and store ω̄(v,v′) in T1 and Nη(v) in T2 for η ∈ [n].
3: Use diffusion coefficients {αt}t∈[T ] to calculate {µ+

t , µ
−
t , µ̄

+
t , µ̄

−
t }t∈{1,2,...,T}.

4: Define empty array Privacy_Bound = [].
5: for For every v ∈ V0 do
6: Define empty array Arrayc∗

t
= [].

7: for t← 1 to T do
8: for ηt ← 1 to n do
9: Calculate c∗

t using Algc∗
t

(Algorithm 2) and determine {1/sψt} with T1 and {µ+
t , µ

−
t }.

10: If ηt meets the condition in Eq.(9) using Nηt(v) and N(1+c∗
t )ηt(v) from T2, then break.

11: end for
12: Arrayc∗

t
[t]←− (1 + c∗

t )ηt(v)
13: end for
14: Use Arrayc∗

t
to compute and append

Privacy_Bound(v)←− m
T∑

t=Trl

[
min

{4N(1+c∗
t )ηt(v)
s

, 1
}
· n
sψt

+
n(1− µ̄−

t−1
µ̄+
t−1

)

s2

]
/[ϵ(1− e−ϵ)]

15: end for
16: Output: Privacy_Bound

Algorithm 2 Algc∗
t
: Finding c∗

t

1: Input: ηt, αt, Nη,v∗.
2: for t = 1 : T do
3: if 1

ϑ(2ηt) > (2eµ̄−
t )ηt then

4: ① Select the smallest c∗
t ∈ {0, 1

ηt
, 2
ηt
, ..., ηt−1

ηt
} such that c∗

t ≥
1
ηt

logϑ((1+c∗
t )ηt)+1+log 2

log 1
µ

−
t

5: else if 1
ϑ(2ηt) ≤ (2eµ̄−

t )ηt then

6: ② Select the smallest c∗
t ∈ {1, ηt+1

ηt
, ηt+2

ηt
, ..., n−ηt

ηt
} such that c∗

t ≥
1
ηt

logϑ((1+c∗
t )ηt)

log 1
µ

−
t

−1

7: end if
8: end for
9: Output: c∗

t

4 Experiments

We validate our theoretical findings via computational simulations on synthetic and real-world datasets.
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4.1 Synthetic Experiments

We first study the asymptotic behavior of privacy leakage with respect to the training dataset size s. Given
a DDM with 100 diffusion steps and trained with a linear schedule αt = 1 − t

T , we fix v∗ and increase
the number of samples in the training set from 1e4 to 1e7, ensuring that the newly added samples satisfy
ω̄(v,v∗) = n, which makes v∗ with high privacy leakage risk. Results shown in Fig. 5 (LEFT, MIDDLE)
confirm our theoretical prediction that, in noise-free regime (t = 1, Fig. 5 (LEFT)), the main privacy term
in Theorem 1 is Os( 1

s ), which is almost a linear decay with a slope of −1 in the logarithmic scale (all lines in
the figure). On the other hand, in the noisy-regime (t = 50, Fig. 5 (MIDDLE)), the privacy leakage term
decays faster at the rate of Os( 1

s2 ), which is evident from the linear decay with a slope around −2. In the
second experiment, we examine how decay rate of diffusion coefficients affects the privacy bound. Given
specific v∗ (non-majority categories along all entries), we sample the training set from the distribution with
p = 0.5 in Sec. 3.3. We consider two noise schedules: linear schedule and sigmoid schedule. In Fig. 5 RIGHT,
the red line denotes the linear schedule with decay rate ∈ {0.1, 0.3, 0.5, 0.7, 0.9} and the blue line denotes the
Sigmoid schedule where decay rate increases from 2.5 to 5. δ decreases along both two lines as we increase
the decay rate of diffusion coefficients. This indicates that a faster decay rate in diffusion coefficients implies
better privacy.

More results discussing privacy leakage and the behaviors of data-dependent quantities under various DDM
configurations are given in Appendix I.
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Figure 5: LEFT: Privacy Leakage at t = 1 (Noise-free Regime). MIDDLE: Privacy Leakage at t = 50 (Noisy
Regime). Right: Privacy Leakage w.r.t Decay Rate under Linear (αt = 1 − decay rate ∗ t

T
) and Sigmoid (αt =

Sigmoid(3∗decay rate)−Sigmoid( 3t
T

∗decay rate)
Sigmoid(3∗decay rate)−0.5 ) Schedules. Results are based on 5 times independent tests.

4.2 Experiments on Real Datasets

4.2.1 Effectiveness of Privacy Bound Algorithm for Data Sensitivity Assessment

In this series of experiments, we aim to showcase our privacy algorithm’s effectiveness in assessing the
sensitivity of individual data points within real-world datasets and to delineate the relationship between
sample privacy leakage and dataset similarity (as illustrated in Fig. 3). Additionally, from a data curator’s
perspective, we explore the potential of our algorithm assisting in outlier removal, which may enhance privacy
protections while maintaining utility performance. It is important to note that the use of pDP assessment
itself is kept confidential to the data curator, safeguarding against any privacy concerns. We evaluate our
algorithm on three benchmark datasets: Adult (Kohavi et al., 1996), German Credit (Hofmann, 1994), and
Loan (ItsSuru) with (# training samples, # feature dimensions, # categories) of (30718, 9, 5), (1000, 10, 5),
and (480, 11, 4) (see Appendix H for details).

Experimental Settings. Our study, approaching from the perspective of a data curator who preprocesses
the dataset, investigates how varying the sensitive data removal ratio according to our per-instance privacy
bound assessment can potentially assist data curators in eliminating outliers to enhance privacy protection.
Specifically, we calculate the privacy budget for every point in the dataset according to Eq. (7) via Algorithm 1
and remove the most sensitive points according to the assessment in the dataset amounting to a specific
portion which is controlled by the removal ratio. The removal ratio ranges from 0.01 to 0.5 for the Adult and
German Credit datasets, and between 0.001 and 0.05 for the Loan dataset. It is important to underscore
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Figure 6: First Row: Privacy-utility trade-offs with respect to data removal ratio. LEFT: Adult, MIDDLE:
German Credit, RIGHT: Loan. Experimental Setup: DDM design: T = 10, Linear Schedule. Second Row:
Visualizing privacy budget in relation to average feature overlap. LEFT: Adult, MIDDLE: German Credit, RIGHT:
Loan.

that, after each data removal, we conduct privacy recalculation and report the mean privacy leakage (blue
line) and the most sensitive point privacy budget (yellow line) after each data removal process in Fig. 6 (First
Row). We measure utility performance with respect to downstream classification task by training a binary
classifier on DDM-generated samples and evaluate its performance (red line) on the original dataset. We
further illustrate the sensitive points—those removed from the dataset—by graphing their potential privacy
leakage alongside the average overlap with the entire dataset across all feature dimensions, denoted by ω̄.
The visualizations are presented in Figure 6 (Second Row).

Remove privacy sensitive points with comparable utility. As depicted in Fig. 6 (First Row),
eliminating a minor proportion of the most sensitive points from the dataset results in a decrease in privacy
leakage. Meanwhile, the classification accuracy (red line) only gets slightly decreased: 81%→ 78% for Adult,
73%→ 70% for German Credit, 81.1%→ 79.8% for Loan (note that for Loan we remove at most 5% data
points as its size is too small) More interestingly, by removing a certain number of those most sensitive
data points, the classification model trained over the pruned generated dataset may even achieve better
performance over the original dataset, say removing 3% in Adult and 1% in German Credit. We attribute
such gains to the fact that the most sensitive data points are often outliers in the dataset, which may be
actually not good for training an ML model. In data visualization (Fig. 6, Second Row), we note that the
data points prone to greater privacy leakage tend to have less feature overlap, indicating that these data
points have a lower similarity to others in the dataset. As pointed out in (Carlini et al., 2022), the mere
exclusion of the most sensitive data points from the dataset does not necessarily guarantee a reduction in
privacy risks as certain inliers may become outliers post-removal, a phenomenon termed "Onion Effect".
However, in our experiments, we did not observe the "Onion Effect" within the Adult dataset. Empirically, we
did find that as the data removal ratios increase to a certain extent, privacy leakage ceases to decrease and
may fluctuate. This can be attributed to the fact that an individual data point’s privacy risk is determined
by its similarity to the current dataset distribution. Simply removing certain data points does not necessarily
enhance this similarity, and thus privacy leakage may not decrease. Furthermore, a decrease in dataset size
also intensifies privacy leakage. Therefore, in practice, data curators should perform pDP recalculations on
modified datasets with varying data removal ratios to potentially achieve better privacy-utility trade-offs.

4.2.2 Evaluation of DDM Vulnerability to Black-box Membership Inference Attacks

In this subsection, we further investigate the privacy leakage of DDMs from membership inference attacks
perspective.
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Black-box Attacks with No Auxiliary Knowledge: In alignment with the experimental settings
delineated by (Hayes et al., 2017), this study considers black-box attacks where the attacker has no prior
knowledge or external information regarding the target model, i.e. DDM in our case, including model
parameters / hyper-parameters, model architecture, training data, or prediction scores. For evaluation, it is
hypothesized that the attacker possesses access to the whole dataset, denoted as X = Xtrain ∪Xnon-train.
Additionally, it is presumed that the adversary is aware of the size of the training set. The attack primarily
utilizes the target model’s generated samples to identify and exploit its vulnerabilities.

Experimental Settings: Our experiments utilize the Adult dataset. We partition this dataset by randomly
selecting 20% of the records as the training set, denoted as Xtrain, while the remainder is labeled as Xnon-train.
We train a DDM to learn the conditional distribution of Xtrain given their corresponding labels Ytrain.
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Figure 7: Black-box Attack with
no auxiliary knowledge over DDMs
under various designs. Results are
averaged over 3 independent tests.

Next, the adversary employs a discriminative model denoted as f(·; θ) :
feature space X 7→ label space Y (detailed in Appendix. H), which is

trained using two-class samples (Xgen, Ygen) generated by the DDM and
denote trained model weights as θgen. This trained discriminative model
f(·; θgen) is then used to make predictions across the entire dataset
Xtrain∪Xnon-train. We identify |Xtrain| samples with the highest confidence
values—those whose prediction scores are closest to the true labels—and
designate these as training members X̃train. The evaluation of the DDMs is
centered around varying the decay rate of diffusion coefficients, influencing
the degree of privacy leakage in the models. The outcomes of these eval-
uations, particularly the attack accuracy ( |X̃train∩Xtrain|

|Xtrain| ), are illustrated in
Fig. 7. More specifically, we examine DDMs with total diffusion steps T set
to either 20 or 30, and a linear schedule defined as αt = 1−decay rate× t

T .
Additionally, the decay rate is varied within the range {0.1, 0.3, 0.5, 0.8,
1.0} to adjust the privacy guarantees of the DDMs, with a faster decay rate typically providing better privacy
protection.

Increased Privacy Leakage Enhances Vulnerability of Models to Attacks: As illustrated in Fig. 7,
the blue and red lines represent DDMs with total diffusion steps of 30 and 20, respectively. A noteworthy
observation is that the DDM with T = 30 exhibits higher attack accuracy, suggesting a stronger capability
for memorizing training data in models with a greater number of diffusion steps. Furthermore, an increase in
the decay rate leads to improved privacy guarantees for the DDMs. This enhancement in privacy is evidenced
by a decrease in attack accuracy for both models (as represented by the blue and red lines), which diminishes
from 28% / 29% to approximately 22%. It is important to note that the performance of both lines surpasses
that of random guessing (indicated by the purple line), signifying that our target models retain training data
memorization across all evaluated settings.

5 Conclusion

In this work, we analyzed data-dependent privacy bound for the synthetic datasets generated by DDMs,
which revealed a weak privacy guarantee of DDMs. Thus, to meet practical needs, other privacy-preserving
techniques such as DP-SGD (Abadi et al., 2016) and PATE (Papernot et al., 2016) may have to be corporated.
Our findings well align with empirical observations over synthetic and real datasets.

6 Limitations and Future Work

• Our research currently targets discrete-time diffusion models for discrete data. An intriguing extension of
this work could explore continuous diffusion models applied to continuous data domains, such as images,
which present numerous practical applications. We believe the core logic of our proof concept is adaptable
to continuous diffusion models, albeit some of our current arguments, grounded in the characteristics of
discrete distributions, may not directly apply or might necessitate further examination.
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• Our findings are predicated on the assumptions concerning the denoising networks’ expressive power and
the total variation gap between forward and backward diffusion trajectories. Relaxing these assumptions
can be an interesting direction for future work.
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A Proof of Theorem 1

A.1 Notations

In this section, we introduce and recall important notations for the convenience of presenting proofs. Let
vt|λ, t ∈ [T ], λ ∈ {0, 1} denote the intermediate data distribution r.v.s at time t trained with dataset λ in the
forward q(·) and backward p(·) processes. Recall some notations µ+

t = (1+(k−1)αt)/k, µ−
t = (1−αt)/k, µ̄+

t =
(1+(k−1)αt)/k, µ̄−

t = (1−αt)/k,Rt = µ+
t /µ

−
t , R̄t = µ̄+

t /µ̄
−
t , and similarity Sim(V1,v∗, t) =

∑
v∈V1

R̄
−ω̄(v,v∗)
t .

Let Nη(v∗) = |{v ∈ V1 s.t. ω̄(v,v∗) ≤ η}| and ∆Nη(v∗) = |{v ∈ V1 s.t. ω̄(v,v∗) = η}|. Let 1v ̸=v′ ,1v=v′

denote the characteristic function over v and v′. Given dataset V, define Vi|l1 = {v ∈ V1|vi = l}. Further,
(·)+ = max{·, 0}.

Note that in certain cases, when there is no potential for confusion, we employ a slight abuse of notation by
representing intermediate data distribution r.v.s vt|λ in its one-hot encoding form, and we use Mt(V) as
shorthand for Mt(V; 1).

A.2 Proof Sketch of Theorem 1

Characterizing Privacy Leakage with Expected Conditional KL Divergence. First, we leverage
coupled KL divergence to quantify the inherent privacy guarantees of the DDM-generated samples. Given
adjacent datasets V0,V1(V0\{v∗} = V1), the mechanismMt satisfies (ϵ, τ

ϵ(1−e−ϵ) )-pDP with respect to (V0,v∗)
if DKL(Mt(V0)∥Mt(V1)) +DKL(Mt(V1)∥Mt(V0)) ≤ τ . Note that the generation process vT |λ → vT−1|λ →
· · ·vt|λ forms a Markov chain, and in order to keep track of privacy leakage from each step, we upper bound
the coupled marginal KL divergence by summation over conditional KL divergences. By leveraging sufficient
training, backward path approximation (Assumption 1 and 2) with conditional independence properties, we
obtain

DKL(MTrl(V0)∥MTrl(V1)) +DKL(MTrl(V1)∥MTrl(V0)) ≤
T∑

t=Trl

(B1 + B2) +O(√γt + γ̃t) (13)

where

B1 = Evt∼q(vt|0)

n∑
i=1

[DKL(q(vit−1|0|vt|0)∥q(vit−1|1|vt|1)) +DKL(q(vit−1|1|vt|1)∥q(vit−1|0|vt|0))]

represents the expected coupled KL divergence for each feature, conditioned on the data at time t, and

B2 =
n∑
i=1

Evt∼(q(vt|1)−q(vt|0))[DKL(q(vit−1|1|vt|1)∥q(vit−1|0|vt|0))]

describes conditional KL averaged over measure gap and can be directly upper bounded by nϱt
s2 .

Measure Partition to Compute Expected Conditional KL Divergence in B1. When quantifying
B1, certain regions of the space Xn may have a large measure under q(vt|0), but a small DKL gap, while
other regions may exhibit the opposite behavior (illustrated in Fig 2). Thus, our objective is to partition
the probability measure into distinct sets, with the aim of achieving a balance between the expectations of
DKL in each set (can be interpreted as achieving balanced privacy leakage). Such balance can be achieved by
selecting two radius parameters ηt, η′

t ∈ {0, 1, ..., n} to partition the space according to the distances to v∗

and v0 ∈ V1. We partition the measure q(vt|0) into the following three parts under different conditions of ηt
and η′

t: (1) q(vt ∈ Sa) quantifies the q(vt|0) measure for points near v∗ (within ηt-ball) or those generated
from dataset points close to v∗. (2) q(vt ∈ Sb) signifies the q(vt|0) measure for points that diffused from
points in dataset V1 position distant from v∗ (beyond the ηt-ball) and are closer to some elements in V1 than
to v∗ by a margin of at least η′

t. (3) q(vt ∈ Sc) represents the q(vt|0) measure for points that diffused from
points in dataset V1 position distant from v∗ (beyond the ηt-ball), yet closer to any points in V1 than to
v∗ with no morn than η′

t. As adjacent datasets differ by an element v∗, the privacy leakage in Sa and Sc is
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notably higher than in Sb. However, for larger datasets, q(vt ∈ Sb) often constitutes a significant portion
of the original data measure q(vt|0). This is because the likelihood of finding points in the dataset close to
v∗ within a margin of η′

t is high, especially when η′
t is small. We show that B1 has general data-dependent

upper bound n/sψt . For v ∈ Sb, we can further improve the bound to n(αt−1 − αt)/[(kµ̄+
t µ̄

−
t )(R̄2

t−1R̄
2η′
t

t )].
Thus, we upper bound B1 as

B1 ≤ q(vt ∈ Sa) · n
sψt

+ q(vt ∈ Sb) ·
n(αt−1 − αt)/(kµ̄+

t µ̄
−
t )

R̄2
t−1 · R̄

2η′
t

t

+ q(vt ∈ Sc) ·
n

sψt
. (14)

Quantities ηt and η′
t can be adjusted to balance the three terms on the R.H.S of Eq. (14) such that

B1 ≤ 2q(vt ∈ Sa) · n
sψt

. Finally, the data-dependent quantity c∗
t is introduced to give a more accurate

characterization of q(v ∈ Sa). By selection c∗
t satisfies Eq. (9), we have q(v ∈ Sa) ≤

2N(1+c∗
t

)ηt
s . Hence, by

gluing the pieces together, we completes the proof.

A.3 Main Proof

In this subsection, we provide a rigorous proof of Theorem 1. The related lemma proofs are deferred to
Appendix J.

Step 1: Characterizing pDP with Marginal KL Divergence. First, we quantify the inherent DP
guarantees of the DDM-generated samples using Coupled KL divergence.
Lemma A.1 (Characterizing pDP with Coupled KL Divergence). Given two adjacent dataset
V0,V1(V0\{v∗} = V1) and a specific time step Trl, if the mechanism MTrl satisfies the condition:

DKL(MTrl(V0)∥MTrl(V1)) +DKL(MTrl(V1)∥MTrl(V0)) ≤ τ (15)

then the mechanism satisfies (ϵ, τ
ϵ(1−e−ϵ) )-pDP with respect to (V0,v∗).

From this lemma, we know that the pDP guarantees of mechanism MTrl can be characterized by coupled KL
divergence.

Step 2: Upper Bounding Marginal KL Divergence with Expected Conditional KL Divergence.
Note that the generation process vT |λ → vT−1|λ → · · ·vt|λ forms a Markov chain, and the coupled marginal
KL divergence can be bounded by summation over conditional KL divergences.
Lemma A.2. Given two adjacent datasets V0,V1(V0\{v∗} = V1) and a specific time step Trl, consider the
mechanism MTrl for generating m samples, we have

DKL(MTrl(V0)∥MTrl(V1)) +DKL(MTrl(V1)∥MTrl(V0))

≤m
T∑

t=Trl+1

∑
λ∈{0,1}

n∑
i=1

Evt∼pϕ(vt|λ)[DKL(pϕ(vit−1|λ|vt|λ)∥pϕ(vit−1|1−λ|vt|1−λ))] (16)

Step 3: Relating Backward Conditional KL Divergence with Forward Process.
Lemma A.3. Assume the denoising networks trained on V0 and V1 satisfy Assumption 1 and Assumption 2,
we have for any i ∈ {1, 2, ..., n}∑

λ∈{0,1}

Evt∼pϕ(vt|λ)[DKL(pϕ(vit−1|λ|vt|λ)∥pϕ(vit−1|1−λ|vt|1−λ))]

≤
∑

λ∈{0,1}

Evt∼q(vt|λ)[DKL(q(vit−1|λ|vt|λ)∥q(vit−1|1−λ|vt|1−λ))] + f1(γt) + f2(γ̃t) (17)

where f1(γt) = k·(µ+
t ·µ̄+

t−1)2

µ̄+
t ·µ−

t ·µ̄t−1
·
√

2γt, and f2(γ̃t) = 2 log
(
µ+
t ·µ̄+

t−1
µ−
t ·µ̄−

t−1

)
· γ̃t.
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Step 4: Estimating Expected Measure Gap via Measuring Partition As V0\{v∗} = V1, we consider
the following partition of original coupled conditional KL:

∑
λ∈{0,1}

n∑
i=1

Evt∼q(vt|λ)[DKL(q(vit−1|λ|vt|λ)∥q(vit−1|1−λ|vt|1−λ))] (18)

=Evt∼q(vt|0)

n∑
i=1

[DKL(q(vit−1|0|vt|0)∥q(vit−1|1|vt|1)) +DKL(q(vit−1|1|vt|1)∥q(vit−1|0|vt|0))]︸ ︷︷ ︸
B1

+
n∑
i=1

Evt∼(q(vt|1)−q(vt|0))[DKL(q(vit−1|1|vt|1)∥q(vit−1|0|vt|0))]︸ ︷︷ ︸
B2

(19)

For B1, we can upper bounded coupled KL terms
∑n
i=1DKL(q(vit−1|0|vt|0)∥q(vit−1|1|vt|1)) +

DKL(q(vit−1|1|vt|1)∥q(vit−1|0|vt|0)) as follows:

Lemma A.4 (Upper Bounding Coupled Conditional KL). Given adjacent datasets V0\{v∗} = V1 and a
specific DDM, we have

n∑
i=1

[DKL(q(vit−1|0|vt|0)∥q(vit−1|1|vt|1)) +DKL(q(vit−1|1|vt|1)∥q(vit−1|0|vt|0))] ≤ ∆t(vt) (20)

where ∆t(vt) is defined as

At
1 + ζ(V1,v∗,vt, t)

·
n∑
i=1

log(1 + Bt
(R̄2

t−1 + 1)ζ(Vi|v
∗i

1 ,v∗,vt, t) + R̄t−1/R̄t · ζ(V1,v∗,vt, t) + 1
)

such that ζ(V,v∗,vt, t) =
∑

v0∈V(R̄t)ω̄(v∗,vt)−ω̄(v0,vt), At = µ+
t · (µ̄+

t−1/µ̄
+
t − µ̄−

t−1/µ̄
−
t ), and Bt = R̄2

t−1 − 1.

Measure Partition. Now, we have demonstrated that the coupled conditional KL can be constrained by
∆t(vt). On the one hand, the magnitude of ∆t(vt) heavily relies on the disparity between the distances of
(vt,v∗) and (vt,V1). When vt exhibits greater similarity to points in V1 (i.e., Ev0∈V1 ω̄(vt,v0)≪ ω̄(vt,v0)),
the resulting privacy leakage is reduced. Otherwise, the privacy leakage will be significant. On the other
hand, if v∗ is an anomalous point compared to the points in V1, the probability measure q(vt|0) around v∗ is
relatively low, but the privacy leakage remains high. Therefore, in the subsequent analysis, we perform a
partition of the probability measure to strike a balance between probability measure and privacy leakage.

We partition probability measure q(vt|0) as follows:

• q(vt ∈ Sa) := q(vt : (1) vt is diffused from v0 ∈ V0 s.t. ω̄(v0,v∗) ≤ ηt or (2) ω̄(vt,v∗) ≤ ηt),

• q(vt ∈ Sb) := q(vt : (1) vt is diffused from v0 ∈ V0 s.t. ω̄(v0,v∗) > ηt and (2)∃v′
0 ∈

V0, s.t. ω̄(vt,v′
0) ≤ ω̄(vt,v∗)− η′

t),

• q(vt ∈ Sc) := q(vt : (1) vt is diffused from v0 ∈ V0 s.t. ω̄(v0,v∗) > ηt and (2)∀v′
0 ∈

V0 s.t. ω̄(vt,v′
0) > ω̄(vt,v∗)− η′

t).

In this case, q(vt ∈ Sa) and q(vt ∈ Sc) represent low-probability events that carry a higher risk of significant
privacy disclosure. On the other hand, q(vt ∈ Sb) corresponds to a significant portion of the probability
measure but exhibits minimal privacy leakage.

According to the above measure partition, we introduce the following lemma to further bound
Evt∼q(vt|0)[∆t(vt)].
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Lemma A.5. Given adjacent datasets V0,V1 and a specific DDM design, we have

Evt∼q(vt|0)[∆t(vt)] ≤ min
{4N(1+c∗

t )ηt(v∗)
s

, 1
}
· n
sψt

(21)

where n
sψt

= At

1+Sim(V1,v∗,t) ·
∑n
i=1 log(1 + Bt

R̄2
t−1·Sim(Vi|v∗i

1 ,v∗,t)+Sim(V1,v∗,t)+1
), At = µ+

t · (µ̄+
t−1/µ̄

+
t − µ̄−

t−1/µ̄
−
t )

and Bt = R̄2
t−1 − 1 and ηt ∈ {0, 1, ..., n} and c∗

t ∈ {0, 1
ηt
, 2
ηt
, ..., n−ηt

ηt
} satisfy:

ηt ≥
log s−Nηt (v∗)

N(1+c∗
t

)ηt (v∗)

log 1
n(1−µ̄+

t )
+
( log s−Nηt (v∗)

N(1+c∗
t

)ηt (v∗) + log(At · Bt · sψt/R̄2
t−1)

2 log R̄t

)
+
−2 (22)

and for a given ηt, the corresponding c∗
t is calculated in Algorithm 2.

As shown from the lemma that when (1 + c∗
t )ηt is small, we will have more accurate estimate of privacy

leakage. Thus, we select the smallest ηt that satisfy the above inequality which are monotone functions on
both sides and we select c∗

t according to Algorithm 2. Also, we observe that (n, 0) is a natural solution to the
above inequalities, therefore, the feasible set of above inequalities is not empty. Further, Eq. (22) is a weaker
condition compared with Eq. (9) in Main Theorem 1. We further relax this condition in Appendix B to
more precisely calculate the privacy bound.

Now that we have the upper bound estimation for B1, we consider B2 where the measure around point v∗

can be nearly zero when v∗ is a outlier point compared to V1.

For B2, differently from previous analysis, we can directly upper bounded expected KL term
Evt∼(q(vt|1)−q(vt|0))[DKL(q(vit−1|1|vt|1)∥q(vit−1|0|vt|0))] as follows:
Lemma A.6. Given adjacent datasets V0,V1 and a specific DDM design, we have

Evt∼(q(vt|1)−q(vt|0))[DKL(q(vit−1|1|vt|1)∥q(vit−1|0|vt|0))] (23)

≤
P(vt|0 ∈ Ω)
s(s+ 1) ·

[
(1−

µ+
t µ̄

+
t−1

µ̄+
t

) · (1− 1
R̄t−1

) +
µ+
t µ̄

+
t−1

µ̄+
t

· (1− R̄t

R̄t−1
)
]

(24)

≤ϱt
s2 · P(vt|0 ∈ Ω) ≤

n(1− 1
R̄t−1

)
s2 (25)

where Ω = {vt|ζ(V1,v∗,vt, t) > s} and ϱt =
[
(1− µ+

t µ̄
+
t−1

µ̄+
t

) · (1− 1
R̄t−1

) + µ+
t µ̄

+
t−1

µ̄+
t

· (1− R̄t
R̄t−1

)
]
.

Summarizing the above results, we reach the final result

δ(V0,v∗) ≤ m
[ T∑
t=Trl

min
{4N(1+c∗

t
)ηt(v

∗)
s

, 1
}

· n

sψt
+ ϱt

s2︸ ︷︷ ︸
Main Privacy Term

+ O
(

√
γt + γ̃t

)
︸ ︷︷ ︸

Error Term

]
/(ϵ(1− e−ϵ)) (26)

B Relaxed Conditions on ηt and c∗
t

In this section, we further elaborate data-dependent quantities c∗
t and ηt and present a weaker conditions

that are less restrictive than Eq. 9.

B.1 Relaxed Condition on ηt

As described in proof sketch that we partition the measure q(vt|0) into three sets Sa, Sb and Sc where
we introduced ηt and η′

t that define the points that are close to v∗
t within ηt-ball and the positive margin

that whether a specific point are more close to v∗ than points in V1 by this margin. By balancing the
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privacy leakage on the these three sets w.r.t their measure, we obtain the relaxed condition for ηt. Define
ϑ′(ηt, η′

t) = (s−Nηt(v∗))/(Nη′
t
(v∗)) and recall that φt = At · Bt · sψt , we have

ηt ≥ κ∗ +
(

log ϑ′(ηt, (1 + c∗
t )ηt)) + logφt

2 log µ+
t

µ−
t

)
+
−2 (27)

where κ∗ = argminκ∈{0,1,...,n}{P(ω̄(vt,v0) ≥ κ) ≤
N(1+c∗

t
)ηt (v∗)

s−Nηt (v∗) } = argminκ∈{0,1,...,n}{
∑n
j=κ

(
n
j

)
(1 −

µ̄+
t )j(µ̄+

t )n−j ≤
N(1+c∗

t
)ηt (v∗)

s−Nηt (v∗) }. For technical details, we refer readers to the proof of Lemma A.5.

B.2 Relaxed condition for c∗
t

We introduce the data-dependent quantity c∗
t to characterize q(vt ∈ Sa), which subsequently aids in the

privacy balancing process. Based on the definition of Sa, we further examine the measure on vt stemming
from points both within the ηt-ball and those external to it. Specifically,

q(vt ∈ Sa) =q(vt : (1) vt is diffused from v0 ∈ V0 s.t. ω̄(v0,v∗) ≤ ηt or (2) ω̄(vt,v∗) ≤ ηt) (28)
≤q(vt; vt is diffused from v0 ∈ V0 s.t. ω̄(v0,v∗) ≤ ηt)
+q(vt; vt is diffused from v0 ∈ V0 s.t. ω̄(v0,v∗) ∈ [ηt + 1, (1 + c∗

t )ηt], ω̄(vt,v∗) ≤ ηt)
+q(vt; vt is diffused from v0 ∈ V0 s.t. ω̄(v0,v∗) ≥ (1 + c∗

t )ηt + 1, ω̄(vt,v∗) ≤ ηt) (29)

To this end, we improve the algorithm (Algc∗
t
) with weaker condition than Eq. (9) (RIGHT) to directly

calculate parameter c∗
t given specific ηt and particular model design. Recall that ϑ(ηt) = (s−Nηt(v∗))/Nηt(v∗).

B.3 Comparison of Original and Enhanced Conditions for Data-Dependent Quantities
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Figure 8: Comparison between two algorithms in each diffusion step (Linear Schedule): LEFT: Characterization of
Privacy Leakage (Main Privacy Term). Right: Characterization of (1 + c∗

t )ηt. Experimental Setup: Given specific
DDM design k = 5, n = 5, T = 20, ϵ = 1 trained on dataset with s = 30000 following skewed distribution with
various skewness parameter. We consider a fixed v∗ where each column has a non-majority category. Data-dependent
quantities are computed at each generation step based on 5 times independent tests.

In this section, we compare original conditions (Eq. (9)) and improved conditions (Eq. (27)). We detail
the selection of (1 + c∗

t )ηt alongside the privacy leakage observed at each diffusion step for various skewed
distributions, as depicted in Fig. 8. Evident from the figure, the lines of a lighter shade, denoting the
enhanced conditions, are notably lower than their darker-shaded counterparts. This underscores the enhanced
algorithm’s marked advantage over the original.
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C Time Complexity of The Privacy Bound Algorithm for DDMs

In this section, further analyze the total time complexity of our privacy bound algorithm for DDMs. The
total time complexity is O(s× T × n logn), where s represents the number of samples for which we aim to
assess privacy, T denotes the total diffusion steps, and n is the feature dimension. The most time-intensive
part of our algorithm involves selecting the radius (lines 9 in Algorithm 1), where determining the radius
coefficient for each sample at each diffusion step for a given η requires O(logn) time through binary search.

D Lower Bound on pDP

In this section, we delve into the lower bound of pDP. Specifically, we examine datasets with one or two
dimensions (n = 1, 2), and our findings illustrate the tightness of privacy bound in relation to dataset size
s, exhibiting an order of Os( 1

s ). Our discussion will mainly focus on two-dimensional case as we only have
exchange of dimensional features in the generation process (due to conditional independence property) for
n ≥ 2.

First, we introduce several diffusion-coefficient based quantities:

C1,t =
µ+
t · µ̄+

t−1

µ̄+
t

, C2,t =
µ−
t · µ̄−

t−1

µ̄+
t

, C̃1,t =
µ+
t · µ̄−

t−1

µ̄−
t

, C̃2,t =
µ−
t · µ̄+

t−1

µ̄−
t

. (30)

These quantities represent the values of q(vit−1|vit,vi0) for any i ∈ [n] across various combinations of vit−1, vit,
and vi0.
Theorem D.1 (Lower Bound on Inherent pDP Guarantees for DDMs for n = 2). Assume the denoising
networks are perfectly trained (γt is negligible). Given a diffusion model architecture design ({αt}t∈[T ]),
there exist adjacent datasets V0,V1 = V0\{v∗} with feature dimension n = 2. For a sufficiently large s, the
mechanism M0(·; 1) will not satisfies (ϵ, δ)-pDP with respect to (V0,v∗) for

ϵ = log
(

1 + G̃1 + F̃1G̃2 + . . . F̃1F̃2 . . . F̃T−2G̃T−1

2 · (1 + R̄2
1 ·∆)

)
(31)

and for any

δ <
G̃1 + F̃1G̃2 + . . . F̃1F̃2 . . . F̃T−2G̃T−1

s
. (32)

where G̃1 = R̄2
1
s , G̃t = 2(C̃2,t−C2,t)

R̄2
t

, F̃t = C1,t · (C1,t − C̃1,t) and ∆̃ = mint C2,t+C̃1,t+2C̃1,t·C2,t
4 .

Proof Sketch of Theorem D.1. Consider a worst case adjacent datasets with two categories V0 =
[
0
0

]
,

[
0
0

]
, . . . ,

[
0
0

]
︸ ︷︷ ︸

s−1

,

[
1
1

]
,

[
1
1

] ,V1 =


[
0
0

]
,

[
0
0

]
, . . . ,

[
0
0

]
︸ ︷︷ ︸

s−1

,

[
1
1

]. In this case, π∗
0 , π

∗
1 can be regarded as

a probability vector over four points (
[
0
0

]
,

[
1
0

]
,

[
0
1

]
,

[
1
1

]
), i.e. π∗

0 , π
∗
1 ∈ R4. i-th dimension denote the

probability of generating i-th point respectively.

Lemma D.1. Given the same assumption and diffusion model design, Let ej , j ∈ {1, 2, 3, 4} denote the
vector with a 1 in the j-th position and 0s elsewhere where the 1 appears in the j-th row, we have

(π∗
1 − π∗

0)T e4 ≥G1 + F1G2 + . . .+ F1F2 . . . FT−2GT−1 (33)

=Θs(
1
s

). (34)
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where Ft and Gt are positive diffusion-coefficient based constants

Ft = 4(µ̄+
t )4A+ 4(s− 1)(µ̄+

t )2(µ̄−
t )2B + (s− 1)2(µ̄−

t )4C

(s+ 1)2[2(µ̄+
t )2 + (s− 1)(µ̄−

t )2]2
, t ∈ [T ], (35)

G1 = R̄2
1(s− 1)

(1 + (s− 1)R̄2
1)(2 + (s− 1)R̄2

1)
, (36)

Gt = [(s− 1)(C̃2,t − C2,t)(µ̄+
t )2(µ̄−

t )2][4C̃2,t(µ̄−
t )4 + 3(s− 1)(C2,t + C̃2,t)(µ̄+

t )2(µ̄−
t )2 + 2(s− 1)2C2,t(µ̄+

t )4]
[(s− 1)(µ̄+

t )2 + 2(µ̄−
t )2]2[(s− 1)(µ̄+

t )2 + (µ̄−
t )2]2

, t ∈ {2, ..., T}.

(37)

and

A = (s+ 1)2C2
1,t − [(s− 1)C̃1,t + 2C1,t][(s− 1)C1,t + 2C̃2,t], (38)

B = (s+ 1)2C̃1,t · C1,t − [(s− 1)C̃1,t + 2C1,t][(s− 1)C1,t + 2C̃2,t], (39)
C = (s+ 1)2C̃2

1,t − [(s− 1)C̃1,t + 2C1,t][(s− 1)C1,t + 2C̃2,t]. (40)

Lemma D.1 demonstrates that when datasets V0 and V1 differ by a single sample relative to a dataset size of
s, the output measure of the diffusion model will exhibit a difference of at least Ωs( 1

s ) in its predictions.

Lemma D.2. Given the same assumption and diffusion model design, we have

π∗T
0 e4 ≤

1
s

+ R2
1

(R2
1 + s) ·∆ = Θs(

1
s

) (41)

where we have

∆ = min
t

1
4 [C2,t · s · R̄2

t

s · R̄2
t + 1

+ C̃2,t

sR̄2
t + 1

+ C̃1,t · s
s+ R̄2

t

+ C1,t · R̄2
t

s+ R̄2
t

+ 2( C̃1,t · (s− 1)
s

+ C1,t·
s

)(C2,t · (s− 1)
s

+ C̃2,t

s
)].

(42)

Lemma D.2 suggests that if a specific category constitutes approximately 1
s of the original dataset, then, the

diffusion model will produce data from this category at a proportion of Θs( 1
s ).

Therefore, consider the measurable set B = {[1, 1]T }, from Lemma D.1 and Lemma D.2, for sufficient large s,
for any c ∈ N+, select

ϵ0 = log
(

1 + G̃1 + F̃1G̃2 + . . . F̃1F̃2 . . . F̃T−2G̃T−1

c · (1 + R̄2
1 · ∆̃)

)
(43)

such that

δ ≥P(M0(V0; 1) ∈ B)− eϵ0P(M0(V1; 1) ∈ B) (44)
=(P(M0(V0; 1) ∈ B)− P(M0(V1; 1) ∈ B))− (eϵ0 − 1)P(M0(V1; 1) ∈ B) (45)

≥c− 1
c
· G̃1 + F̃1G̃2 + . . . F̃1F̃2 . . . F̃T−2G̃T−1

s
= Os(

1
s

) (46)

where G̃1 = R̄2
1
s , G̃t = 2(C̃2,t−C2,t)

R̄2
t

, F̃t = C1,t · (C1,t − C̃1,t) and ∆̃ = mint C2,t+C̃1,t+2C̃1,t·C2,t
4 . Let c = 2, we

obtain the results.

E DP Guarantees of DDMs from pDP

In Sec. 2, we highlight the distinction between pDP and DP. The former prioritizes protecting the privacy of a
specific point with respect to a (large) dataset prior to training, proving beneficial for preprocessing datasets
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with privacy assurances. The latter, however, addresses the privacy implications of publishing a model. In
this section, we will discuss how to derive a general DP guarantee for a DDM from pDP by examining the
worst-case adjacent datasets (V0\{v∗} = V1). As mentioned in Sec. 3, the key for bounding the coupled KL
divergence can be further focusing on balancing the privacy budget over three measure partitioned sets Sa,Sb
and Sc i.e.

q(vt ∈ Sa) · n
sψt

+ q(vt ∈ Sb) ·
n · At · Bt
R̄2
t−1 · R̄

2η′
t

t

+ q(vt ∈ Sc) ·
n

sψt
. (47)

We first consider the worst case for data-dependent quantity ψt.

n

sψt
= At

1 + Sim(V1,v∗, t) ·
n∑
i=1

log(1 + Bt
R̄2
t−1 · Sim(Vi|v

∗i

1 ,v∗, t) + Sim(V1,v∗, t) + 1
) (48)

where At = µ+
t · (µ̄+

t−1/µ̄
+
t − µ̄−

t−1/µ̄
−
t ), and Bt = R̄2

t−1 − 1.

From the definition of similarity (Sim), we observe that the worst scenario arises when v∗
t is an outlier

within the dataset where, for each feature dimension, only one point in V1 shares the same overlap on that
particular dimension (i.e. |Vi|v

∗i

1 | = 1). From this, we can further prove that the similarity Sim(V1,v∗, t) ≥
(R̄t)−n(s− n) + (R̄t)−(n−1),Sim(Vi|v

∗i

1 ,v∗, t) ≥ (R̄t)−(n−1). Therefore, 1
sψt

is upper bounded by
1
sψt
≤ At

1 + (R̄t)−n(s− n) + (R̄t)1−n
· log(1 + Bt

R̄2
t−1 · (R̄t)1−n + (R̄t)−n(s− n) + (R̄t)1−n + 1

)︸ ︷︷ ︸
denote as 1

sΨt

(49)

where the R.H.S 1
sΨt is independent from dataset properties.

Discussion on Dataset Independent Quantity Ψt. In the generation process, as we progressively transit
from noisy regime (relatively large t) to noise-free regime (relatively small t), we have R̄t monotonically
increases from 1 to 1+(k−1)α1

1−α1
and Ψt evolves from Os( 1

s2 ) to Os(1). This aligns with the behavior of
data-dependent quantity ψt.

Next, we consider the privacy balancing radius ηt and c∗
t . Similar to the discussion in ψt, we consider the

worst case when v∗
t stands as an anomaly in the dataset such that for every feature dimension, there is a

single point in V1 that coincides on that specific dimension. Under this case, the conditions for ηt and c∗
t will

be

ηt ≥ κ∗ +
(

log h(ηt) + log(At · Bt ·Ψt)
2 log µ+

t

µ−
t

)
+
−2, c∗

t ≥
1
ηt

log h((1 + c∗
t )ηt) + 3

2

log 1
µ−
t

− 1
. (50)

where κ∗ = argminκ∈{0,1,...,n}{P(ω̄(vt,v0) ≥ κ) ≤
N(1+c∗

t
)ηt (v∗)

s−Nηt (v∗) } = argminκ∈{0,1,...,n}{
∑n
j=κ

(
n
j

)
(1 −

µ̄+
t )j(µ̄+

t )n−j ≤
N(1+c∗

t
)ηt (v∗)

s−Nηt (v∗) } and generalized h(η) = s · 1{η<n+1} + s
n · 1{η=n−1} + (−∞) · 1{η=n}.

Discussion on Dataset Independent Quantity ηt, c∗
t . As depicted in Eq. (50), the conditions for ηt and

c∗
t are data-independent. As t diminishes from T (with ᾱt → 0 representing the noisy regime) to 1 (where
ᾱt → 1 indicates the noise-free regime), the value of (1 + c∗

t )ηt transitions from n to 0, consistent with those
observed under data-dependent conditions.

Synthesizing the aforementioned results, we put forth the theorem detailing the inherent differential
privacy guarantees of DDMs.
Theorem E.1 (Inherent DP Guarantee for DDMs). Given any adjacent datasets V0,V1. Assume the
denoising networks trained on V0 and V1 satisfy Assumption 1 and Assumption 2. Given a specific time step
Trl, the mechanism MTrl(·;m) satisfies (ϵ, δ)-differential privacy such that

δ(V0,v∗) ≤ m
[ T∑
t=Trl

min
{4N(1+c̃∗

t
)η̃t(v

∗)
s

, 1
}

· n

sΨt
+ nϱt

s2︸ ︷︷ ︸
Main Privacy Term

+ O
(

√
γt + γ̃t

)
︸ ︷︷ ︸

Error Term

]
/(ϵ(1− e−ϵ)) (51)
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where Ψt, η̃t, c̃
∗
t , ϱt are diffusion coefficients-based quantities such that (η̃t, c̃∗

t ) satisfy Eq. (50), Ψt

satisfies Eq. (49) and ϱt = (1− µ+
t µ̄

+
t−1/µ̄

+
t ) · (1− 1/R̄t−1) + µ+

t µ̄
+
t−1/µ̄

+
t · (1− R̄t/R̄t−1).

F Details on Examples

In this section, we provide detailed analysis on the examples presented in Sec. 3.

F.1 Analysis on 1
sψt

.

Proposition F.1. Given a skewed distribution with parameter p. Let v∗ be a non-majority point and V0\{v∗}
sampled from the distribution. Define τt = 1−p

k−1 + µ̄−
t

µ̄+
t

(1 − 1−p
k−1 ). When s = ωn( logn

τ2n
t

), we have with high
probability

1
sψt−2 →

(αt−1 − αt)/(kµ̄+
t µ̄

−
t )

R̄2
t−1 · τ

2n−1
t · 1−p

k−1 + τ2n
t

(52)

Proof of Proposition F.1. Recall the definition of 1
sψt

,

1
sψt

= 1
n
· At

1 + Sim(V1,v∗, t) ·
n∑
i=1

log
(

1 + Bt
R̄2
t−1 · Sim(Vi|v

∗i

1 ,v∗, t) + Sim(V1,v∗, t) + 1

)
. (53)

where At = µ+
t · (µ̄+

t−1/µ̄
+
t − µ̄−

t−1/µ̄
−
t ) and Bt = R̄2

t−1 − 1.

Given v∗ ∈ V as an non-majority point, we sample v ∈ V1 from skewed distribution with parameter
p. Thus, we have ω̄(v∗,v) follows binomial B(n, 1 − 1−p

k−1 ) distribution. Therefore, E
(

(µ
+
t

µ−
t

)−ω̄(v∗,v)
)

=∑n
i=0 (µ

+
t

µ−
t

)−i(n
i

)
( 1−p
k−1 )n−i(1− ( 1−p

k−1 ))i = ( 1−p
k−1 + µ−

t

µ+
t

(1 − 1−p
k−1 ))n, and thus E(Sim(V1, ṽ, t)) = |V1| ·

E(
∑

v∈V1
(µ

+
t

µ−
t

)−ω̄(v,ṽ)) = |V1| · ( 1−p
k−1 + µ−

t

µ+
t

(1 − 1−p
k−1 ))n = |V1| · ( 1−αt

1+(k−1)αt (1 −
1−p
k−1 ) + 1−p

k−1 )n. Let Et :=

( 1−p
k−1 + µ−

t

µ+
t

(1− 1−p
k−1 ))n = ( 1−αt

1+(k−1)αt (1−
1−p
k−1 ) + 1−p

k−1 )n.

Since max(µ
+
t

µ−
t

)−ω̄(v∗,v)−min(µ
+
t

µ−
t

)−ω̄(v∗,v) ≤ 1, from concentration inequality, we have for any small ϵ(ϵ≪ Et),

P(|1
s
· Sim(V1,v∗, t)− 1

s
· ESim(V1,v∗, t)| ≥ ϵ) ≤ 2 exp(−2ϵ2s) (54)

Let ϵ = ϵ′ ∗ Et. Thus, with high probability at least 1− 2 exp(−2(ϵ′)2E2
t s), we have

1
s
· Sim(V1,v∗, t) ∈ [Et − ϵ, Et + ϵ] = [Et(1− ϵ′), Et(1 + ϵ′)] (55)

Now, we consider Sim(Vi|v
∗i

1 ,v∗, t), let Xi
1, X

i
2, ..., X

i
s be Bernoulli random variables such that

Xi
j =

{
1, if j-th sample v(j) ∈ V1 such that (v(j))i = v∗i.

0, otherwise.
(56)

From Hoeffding inequality, we obtain

P(|1
s

s∑
j=1

Xi
j −

1
s
E[

s∑
j=1

Xi
j ]| ≥ ϵi1) ≤ 2 exp(−2(ϵi1)2s) (57)

where E[ 1
s

∑s
j=1 X

i
j ] = 1−p

k−1 . Let ϵi1 := 1−p
k−1 · ϵ̃

i
1. Therefore, we have with high probability 1− 2 exp(−2( 1−p

k−1 )2 ·
(ϵ̃i1)2 · s)

s∑
j=1

Xi
j ∈ [ 1− p

k − 1(1− ϵ̃i1)s, 1− p
k − 1(1 + ϵ̃i1)s] (58)
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Let Ni = |Vi|v
∗i

1 |. Let Y i1 , Y i2 , ..., Y iNi denote the features of points in Vi|v
∗i

1 on dimensions other than i-th
dimension, which can be viewed as random variables sampling from categorical distributions with n − 1
dimensions. Recall that ω̄−i(v,v′) = ω̄(v,v′)− 1vi ̸=v∗i . Hence

Sim(Vi|v
∗i

1 ,v∗, t) =
Ni∑
j=1

(µ
+
t

µ−
t

)−ω̄−i(Y ij ,v
∗) (59)

Similar to the derivation of Sim(V1,v∗, t), we have

E
(

(µ
+
t

µ−
t

)−ω̄−i(Y ij ,v
∗)
)

=
n−1∑
i=0

(µ
+
t

µ−
t

)−i
(
n− 1
i

)
( 1− p
k − 1)n−1−i(1− ( 1− p

k − 1))i (60)

=( 1− p
k − 1 + µ−

t

µ+
t

(1− 1− p
k − 1))n−1 =: Eit (61)

Applying Hoeffding inequality, we have

P(| 1
Ni

Sim(Vi|v
∗i

1 ,v∗, t)− ( 1− p
k − 1 + µ−

t

µ+
t

(1− 1− p
k − 1))n−1| ≥ ϵi2)

(i)
≤ 2 exp(−2(ϵi2)2 · ( 1− p

k − 1 − ϵ
i
2)s) (62)

where (i) is because max(µ
+
t

µ−
t

)−ω̄−i(Y ij ,v
∗) − (µ

+
t

µ−
t

)−ω̄−i(Y ij ,v
∗) ≤ 1 and the concentration property of Ni. Let

ϵi2 := ( 1−p
k−1 + µ−

t

µ+
t

(1− 1−p
k−1 ))n−1 · ϵ̃i2. Summarizing the above, with high probability (1− 2 exp(−2(Eit)2 · (ϵ̃i2)2 ·

s))(1− 2 exp(−2( 1−p
k−1 )2 · (ϵ̃i1)2 · s)),

1
s
· Sim(Vi|v

∗i

1 ,v∗, t) ∈
[
Eit ·

1− p
k − 1 · (1− ϵ̃

i
2)(1− ϵ̃i1), Eit ·

1− p
k − 1 · (1 + ϵ̃i2)(1 + ϵ̃i1)

]
(63)

Therefore, in order to let Sim(Vi|v
∗i

1 ,v∗, t), i ∈ [n] and Sim(V1,v∗, t) to concentrate, we require as ϵ̃i1, ϵ̃i2, ϵ′ → 0,

ρ := (1− 2 exp(−2(ϵ′)2E2
t s))

n∏
i=1

[(1− 2 exp(−2(Eit)2(ϵ̃i2)2s))(1− 2 exp(−2( 1− p
k − 1)2(ϵ̃i1)2s))]→ 1. (64)

Thus, exp(−2(Eit)2(ϵ̃i2)2s) = os( 1
n ), i ∈ [n] and exp(−2(ϵ′)2E2

t s) = os(1). Define τt := 1−p
k−1 + µ−

t

µ+
t

(1 − 1−p
k−1 ).

From above, we obtain the condition s = ωn( logn
τ2n
t

). Here, we list a sufficient condition for n to satisfy the
constraint: n can be chosen as n = 1−a

2 ·
log s

log 1
τt

for any positive a < 1.

For 1
sψt

= 1
n

∑n
i=1

At

1+Sim(V1,v∗,t) · log
(

1 + Bt
R̄2
t−1·Sim(Vi|v∗i

1 ,v∗,t)+Sim(V1,v∗,t)+1

)
, when s = ωn( logn

τ2n
t

), with high

probability ρ, we have
1

sψt−2 →
At · Bt

R̄2
t−1 · (

µ̄−
t

µ̄+
t

(1− 1−p
k−1 ) + 1−p

k−1 )2n−1 · 1−p
k−1 + ( µ̄

−
t

µ̄+
t

(1− 1−p
k−1 ) + 1−p

k−1 )2n
(65)

From the analysis above, we note that as the skewness of the distribution intensifies, the above term exhibits
a monotonic increase with respect to p. This implies that the average distance between points in V1 and v∗

grows, leading to a heightened sensitivity at point v∗. Consequently, the privacy bound increases.

Note: From the aforementioned derivation, taking the logarithm of both sides implies that, since s = ωn( logn
τ2n
t

),
with high probability,

ψt − 2→ logs
( R̄2

t−1 · (
µ̄−
t

µ̄+
t

(1− 1−p
k−1 ) + 1−p

k−1 )2n−1 · 1−p
k−1 + ( µ̄

−
t

µ̄+
t

(1− 1−p
k−1 ) + 1−p

k−1 )2n

At · Bt

)
→ 0. (66)

Thus, ψt → 2 as s→∞.
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F.2 Analysis on ηt, c
∗
t .

Proposition F.2. Given a skewed distribution with parameter p. Let v∗ be a non-majority point
and V0\{v∗} sampled from the distribution. Define τt = 1−p

k−1 + µ̄−
t

µ̄+
t

(1 − 1−p
k−1 ). When s = ωn([ 1

c (1 −
1−p
k−1 )]−2cn( 1−p

k−1 )−2(1−c)n, logn
τ2n
t

) for some c ∈ ( 1−p
k−2−p , 1), we have with high probability,

ηt = argmin
η∈{⌈cn⌉,...,n}

{
η|η −

log( 1
pin(η) − 1)

log 1
n(1−µ̄+

t )
+ max

{ log( 1
pin(η) − 1)

2 log R̄t
+ Ct, 0

}
−2 ≥ 0

}
(67)

c∗
t = argmin

c∗
t∈{0, 1

ηt
,...,

n−ηt
ηt

}

{
c|c−

1
ηt

log( 1
pin((1+c)ηt )− 1) + log 2e

log 1
µ−
t

− 1
≥ 0
}

(68)

where pin(·) is the CDF of Binomial distribution with parameter 1 − 1−p
k−1 and Ct = log(At·Bt)

2 log R̄t
+ log s

log R̄t
,

At = µ+
t · (µ̄+

t−1/µ̄
+
t − µ̄−

t−1/µ̄
−
t ) and Bt = R̄2

t−1 − 1.

Proof of Proposition F.2. Given v∗ ∈ V as an non-majority point, and v ∈ V1 are sampled from skewed
distribution with parameter p. Consider specific ηt, c∗

t , the probability of failing into the ηt-ball of v∗ is
P(v; ω̄(v,v∗) ≤ ηt) =

∑ηt
i=0
(
n
i

)
( 1−p
k−1 )n−i(1− 1−p

k−1 )i ≤ min{( 1−p
k−1 )n−ηt(en)ηt , 1}.

Now consider the following inequality:

ηt ≥
log ϑ(ηt)

log 1
n(1−µ̄+

t )
+ max

 log ϑ(ηt) + logφt
2 log µ̄+

t

µ̄−
t

− 2,−2

 , c∗
t ≥

1
ηt

log ϑ((1 + c∗
t )ηt) + log 2e

log 1
µ−
t

− 1
. (69)

where ϑ(ηt) = (s−Nηt(v∗))/Nηt(v∗), φt = At · Bt · sψt .

To begin with, first consider ϑ(ηt) = 1
Nηt (v∗)

s

− 1. Let X1,ηt , X2,ηt , ..., Xs,ηt be the indicator random variables
of whether the point in V1 fall in the ηt-ball of v∗, i.e.

Xi,ηt =
{

1, with P(v; ω̄(v follow skewed distribution; ω̄(v,v∗) ≤ ηt))
0, with 1− P(v; ω̄(v follow skewed distribution; ω̄(v,v∗) ≤ ηt))

(70)

Define pin(ηt) := P(v; ω̄(v follow skewed distribution; ω̄(v,v∗) ≤ ηt)). Since Xi,ηt are Bernoulli random
variables, from concentration inequality, with high probability 1− 2 exp(−2(ϵ′)2pin(ηt)2s),

1
s
Nηt(v∗) ∈ [pin(ηt)(1− ϵ′), pin(ηt)(1 + ϵ′)] (71)

Let ϵ = ϵ′ · pin(ηt). Since ϵ
pin(ηt)−ϵ > ϵ

pin(ηt)+ϵ , define ϵ1 = ϵ
pin(ηt)−ϵ , we have with high probability

1− 2 exp(−2(ϵ′)2pin(ηt)2s)

ϑ(ηt) ∈
[

1
pin(ηt)

− 1− ϵ1,
1

pin(ηt)
− 1 + ϵ1

]
(72)

Similarly, define ϵ2 = ϵ1
1

pin(ηt) −1−ϵ1
, with same high probability,

log ϑ(ηt) ∈
[
log
(

1
pin(ηt)

− 1
)
−ϵ2,

(
1

pin(ηt)
− 1
)

+ϵ2
]

(73)

From the analysis on 1
sψt

, define σ(p, t) = At·Bt
E2
t+R̄2

t−1·E
2− 1

n
t

. There exist ϵ3 such that ϵ3 → 0 as ϵ′ → 0. Further

define ϵ4 = ϵ3
1−(1+ 1

σ(p,t) )ϵ3
, we have

ψt log s ∈
[
2 log s− ϵ4, 2 log s+ ϵ4

]
(74)
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Let ϵ′′ = ϵ2
log 1

n(1−µ̄+
t

)
+ ϵ2

2 log R̄t
+ ϵ4. Then, from above, we have with high probability [1 −

2 exp(−2(ϵ′)2pin(ηt)2s)]2 · ρ,

ft(ηt) ≥
log( 1

pin(ηt) − 1)
log 1

n(1−µ̄+
t )

+ max
{ log( 1

pin(ηt) − 1)
2 log R̄t

+ Ct, 0
}
−2− ϵ′′ (75)

ft(ηt) ≤
log( 1

pin(ηt) − 1)
log 1

n(1−µ̄+
t )

+ max
{ log( 1

pin(ηt) − 1)
2 log R̄t

+ Ct, 0
}
−2 + ϵ′′ (76)

where Ct := log(At·Bt)
2 log R̄t

+ log s
log R̄t

.

In the proof of Lemma A.5, we already show the existence of ηt that satisfy the condition ηt ≥ f(ηt).
When pin(ηt) = ωs( 1√

s
) and s = ωn( logn

τ2n
t

), we have the concentration properties. Since pin(ηt) is strictly
monotonically increasing with ηt and ηt ≥ cn, thus, we need pin(⌈cn⌉) = ωs( 1√

s
). Thus, we require

s = ωn

(
[ 1
c

(1− 1− p
k − 1)]−2cn( 1− p

k − 1)−2(1−c)n
)
. (77)

Therefore, when the above condition is satisfied, we only require

ηt ≥
log( 1

pin(ηt) − 1)
log 1

n(1−µ̄+
t )

+ max
{ log( 1

pin(ηt) − 1)
2 log R̄t

+ Ct, 0
}
−2︸ ︷︷ ︸

(f∗
t ◦ 1−pin

pin
)(ηt)

, ηt ∈ {⌈cn⌉, ..., n}. (78)

where pin(ηt) =
∑ηt
j=0

(
n
j

)
( 1−p
k−1 )n−j(1− 1−p

k−1 )j .

One direct observation from above is that

• In noise free regime (t is close to 0, i.e. αt → 1), we have log 1
n(1−α+

t ) , log R̄t → ∞ and Ct → 0.
Therefore, ηt → 0.

• In noisy regime (t is close to T, i.e. αt → 0), similarly, we have log 1
n(1−α+

t ) → log 1
n , log R̄t → 0, and

Ct →∞. Therefore, ηt → n.

Now, we consider how skewness parameter p influence the selection of ηt. Given fixed diffusion coefficients
{αt}t∈[T ] with ᾱt monotonically decreases from 1 to 0 as t goes from 1 to T . Given relatively large s
(neglect the influence of concentration error ϵ′′), and corresponding n that satisfies s = ωn(max{logn ·
( 1

1−p
k−1 +

µ̄
−
t

µ̄
+
t

(1− 1−p
k−1 )

)2n, [ 1
c (1− 1−p

k−1 )]−2cn( 1−p
k−1 )−2(1−c)n}). We have the following observation: When we increase

the skewness of the distribution, f∗
t ◦

1−pin
pin

(ηt) will increase monotonically with p, such that ηt will increase
to n faster. In other words, given two skewness parameter p, p′ with p > p′, we have ηpt ≥ η

p′

t where ηpt , η
p′

t

denote the minimal η that satisfy the constraint under two skewness parameters. Similar derivation can be
applied to g∗

t ◦
1−pin
pin

and we obtain the results for c∗
t .

Proposition F.3 (Sufficient Condition). Given a skewed distribution with parameter p. Let v∗ be a
non-majority point and V0\{v∗} sampled from the distribution. Define τt = 1−p

k−1 + µ̄−
t

µ̄+
t

(1 − 1−p
k−1 ). When

s = ωn([ 1
c (1− 1−p

k−1 )]−2cn( 1−p
k−1 )−2(1−c)n, logn

τ2n
t

) for some c ∈ ( 1−p
k−2−p , 1), the sufficient conditions of ηt, c∗

t that
satisfy Eq. 9 are

ηt ≥ n−
( n− log(s

√
αt−1−αt
kµ̄+
t µ̄

−
t

)/ log R̄t
2 log k−1

1−p/ log(max{ 1
nµ̄−

t

, 1}) + 1

)
+
, (79)

32



Published in Transactions on Machine Learning Research (06/2024)

c∗
t ≥

n− ηt
ηt

−
log
(

1
2e · (

1
eµ̄−
t

)
n−ηt
ηt

)
log k−1

1−p + log 1
eµ̄−
t

. (80)

Proof of Proposition F.3. From Proposition F.2, when s = ωn([ 1
c (1− 1−p

k−1 )]−2cn( 1−p
k−1 )−2(1−c)n), we have

ηt, c
∗
t from Eq. (68). Further since

pin(ηt) ≥
ηt∑
i=0

(n
i

)i( 1− p
k − 1)n−i(1− 1− p

k − 1)i ≥ ( n
ηt

)ηt( 1− p
k − 1)n−ηt(1− 1− p

k − 1)ηt (81)

From c ≥ 1−p
k−2−p , we have

log( 1
pin(ηt)

− 1) ≤n log(k − 1
1− p ) + ηt(log n

ηt
− log k − 1

1− p + log 1
1− 1−p

k−1
) (82)

≤(n− ηt) log(k − 1
1− p ) (83)

Therefore, the sufficient conditions of ηt and c∗
t will be

ηt ≥
(n− ηt) log(k−1

1−p )
log 1

n(1−µ̄+
t )

+ max
{ (n− ηt) log(k−1

1−p )
2 log R̄t

+ Ct, 0
}
−2, (84)

c∗
t ≥

n
ηt

log(k−1
1−p )− (1 + c∗

t ) log(k−1
1−p ) + log 2e

log 1
µ̄−
t

− 1
. (85)

Further simplify the above terms, we get

ηt ≥ n−
( n− log(s

√
αt−1−αt
kµ̄+
t µ̄

−
t

)/ log R̄t
2 log k−1

1−p/ log(max{ 1
nµ̄−

t

, 1}) + 1

)
+
, (86)

c∗
t ≥

n− ηt
ηt

−
log
(

1
2e · (

1
eµ̄−
t

)
n−ηt
ηt

)
log k−1

1−p + log 1
eµ̄−
t

. (87)

G Experimental Settings

G.1 Datasets

In this section, we briefly introduce the real dataset included in the paper.

Adult (Kohavi et al., 1996). The Adult dataset, also known as the Census Income dataset, contains
information collected from the 1994 US Census Bureau database. It serves the purpose of predicting an
individual’s income category (above or below $50,000 per year) based on demographic attributes such as
age, education, occupation, and more. With around 32,000 records and 14 features, it is widely used for
classification tasks.

German Credit (Hofmann, 1994). The German Credit dataset, curated by Prof. Hofmann, encompasses
data from 1000 individuals seeking bank credit. Each entry is characterized by 20 categorical / numerical
attributes, with labels as either good or bad credit risk based on these features.

Loan (ItsSuru). The Loan Status dataset consists of 500 unique entries, each with 11 features. These
records capture customer interactions with a bullet loan product. Labels within the dataset indicate whether
a loan was approved or not, making it suitable for classification tasks.
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G.2 Environment

Experiments were performed on a server with four Intel 24-Core Gold 6248R CPUs, 1TB DRAM, and eight
NVIDIA QUADRO RTX 6000 (24GB) GPUs.

H Additional Setup Configurations for Experiments on Real Datasets

In this section, we provide additional details regarding the experiments on real dataset in Section 4.2.

H.1 Dataset Preprocessing

Adult. The original Adult dataset consists of 14 continuous or discrete features. In our setting, we
have selected the main 9 features, namely: age, workclass, education, marital-status, occupation,
relationship, race, gender, hours-per-week. We have performed interval partitioning on the continuous
features and merged some multi-category features (e.g., education) into a single category for discrete features.
As a result, the number of categories for each feature does not exceed 5.

German Credit. The German Credit dataset is comprised of 20 features, both categorical and numerical.
For our study, we focused on 10 primary features: status of existing checking account, duration in
month, credit history, purpose, credit amount, savings account / bonds, employment, personal
status and sex, age in years, job. We categorized numerical features, ensuring no category contained
more than 5 subdivisions.

Loan. The Loan dataset encompasses 11 features, both numerical and categorical. In our study, we
incorporated all these categories and further segmented the numerical features into categories, each containing
a maximum of four subdivisions. The specific features are: Gender, Married, Dependents, Education,
Self Employed, Applicant Income, Coapplicant Income, Loan Amount, Loan Amount Term,
Credit History, Property Area.

H.2 Experiments on Testing Effectiveness of Privacy Bound Algorithm in Sec. 4.2.1

H.2.1 Denoising Network Architecture and Training Procedure

We designed a four-layer MLP equipped with 256 hidden neurons. Throughout the architecture, batch
normalization was integrated, and the leakyReLU served as the activation function. For consistency during
training, we anchored the random seed at 123. The denoising network underwent training via the Adam
optimizer, set with a learning rate of 1e-3 and a weight decay of 5e-4. Our approach involved uniformly
sampling the diffusion step and drawing batches of 30 samples each. The training spanned 100 epochs,
focusing on minimizing the binary cross-entropy loss.

H.2.2 Evaluation via DownStream Tasks

To evaluate the efficacy of DDMs, we divided the original dataset into three segments: training, validation,
and testing, adhering to an 8:1:1 ratio. Leveraging the trained denoising network, we generated a synthetic
dataset, ensuring the number of instances for each class mirrored that of the original dataset. We then
engaged in a downstream binary classification to measure the utility of the DDMs. In this context, we
trained an independent MLP classifier using the synthetic dataset and subsequently evaluate its classification
performance on the test set (original dataset).

H.3 Experiments on Membership Inference Attack in Sec. 4.2.2

H.3.1 Discriminative Model Architecture and Training Procedure

The discriminative model is designed to overfit the data released by the target model, which is indicative of
the training data. We implemented a MLP for classification, featuring a three-layer architecture with each
layer containing 256 neurons. The model leverages the ReLU activation function across its structure. The
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network’s training process is guided by the Adam optimizer and the learning rate is adaptively adjusted,
starting at 0.01, to optimize performance during training. The model iterates up to 1000 times or until the
tolerance level of 1e-6 is reached.
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Figure 9: All based on single step-t term in Eq.main (Sigmoid Schedule): LEFT: Characterization of 1
sψt

. MIDDLE:
Characterization of (1 + c∗

t )ηt. RIGHT: Characterization of Privacy Leakage (Main Privacy Term). Experimental
Setup: Given specific DDM design k = 5, n = 5, T = 20, ϵ = 10 trained on dataset with s = 1000 following skewed
distribution with parameter p. We consider a fixed v∗ where each column has a non-majority category.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Each Diffusion Step (t)

10
10

10
8

10
6

10
4

10
2

10
0

n s
t

Data-dependent Quantity n
s t

p = 0.2
p = 0.4
p = 0.7
p = 0.9

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Each Diffusion Step (t)

0
1

2
3

4
5

(1
+

c
* )

t

Data-dependent Quantity (1 + c * ) t

p = 0.2
p = 0.4
p = 0.7
p = 0.9

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Each Diffusion Step (t)

10
8

10
6

10
4

10
2

10
0

Fa
ilu

re
 P

ro
ba

bi
lit

y 
(

)

Privacy Leakage in Generation Process

p = 0.2
p = 0.4
p = 0.7
p = 0.9

Figure 10: All based on single step-t term in Eq.main (Cosine Schedule): LEFT: Characterization of 1
sψt

. MIDDLE:
Characterization of (1 + c∗

t )ηt. RIGHT: Characterization of Privacy Leakage (Main Privacy Term). Experimental
Setup: Given specific DDM design k = 5, n = 5, T = 20, ϵ = 10 trained on dataset with s = 1000 following skewed
distribution with parameter p. We consider a fixed v∗ where each column has a non-majority category.

I Additional Experimental Results

In this section, we present additional experiments to backup our main results in Sec. 4.

I.1 Privacy Leakage and Behavior of Data-dependent Quantities under Various Noise Schedules

In our experiments, we assess the privacy leakage and the behavior of data-dependent quantities ψt, ηt,
and c∗

t across different DDM model configurations. In particular, we explore two additional noise schedules:
sigmoid and cosine (defined as αt = f(t)

f(0) , where f(t) = cos
(
t/T+s

1+s ·
π
2

)2
). The outcomes, depicted in Fig. 9

and Fig.10, resonate with our theoretical findings. It is observed that under all noise schedules, the privacy
leakage intensifies for distributions that are more skewed.

I.2 Most Private and Most Sensitive Points under Skewed Distribution

Next, we delineate the evolving trends of the most private and most sensitive samples as the skewness
parameter shifts, providing insights into its impact on privacy leakage. We specifically focus on three DDM
configurations: n = 5, k = 5, T = 20, n = 10, k = 5, T = 20, and n = 20, k = 5, T = 100. For each
setup, we adjust the skewness parameters p and curate the dataset V0 in accordance with the respective
distributions. The most private and sensitive data points, based on the privacy budget, are illustrated in Fig. 11.
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Figure 11: Privacy budget trends
across DDM configurations with
varying skewness.

As evident in the figure, escalating the distribution’s skewness boosts the
privacy budget for the most sensitive points (represented by dark-colored
lines). Conversely, the privacy budget for the most private points (depicted
by light-colored lines) diminishes. This observation is consistent with our
theoretical analyses: for highly skewed distributions, points distant from
the main cluster exhibit reduced similarity, leading to augmented privacy
leakage. Meanwhile, predominant points benefit from enhanced similarity,
resulting in diminished privacy concerns.

J Main Lemmas and Corresponding Proofs

J.1 Proof of Lemma A.1

Proof. To prove the pDP guarantee of DDMs, we seek to a stronger notion termed probabilistically differential
privacy. First, we present the definition of (ϵ, δ)-probabilistically differential privacy (PDP).

Definition J.1 ((ϵ, δ)-Probabilistically Differential Privacy (Meiser, 2018)). A randomized mechanism
M : D → R satisfies (ϵ, δ)-probabilistically differential private if for any adjacent datasets V0,V1 ∈ D and
there exists sets O0 ⊆ range(M) where P(M(V0) ⊆ O0) ≤ δ, such that ∀O ⊆ range(M), we have

P(M(V0) ∈ O\O0) ≤ eϵP(M(V1) ∈ O\O0) (88)

The following lemma connects the relationship between PDP and DP.

Lemma J.1 ((ϵ, δ)-PDP to (ϵ, δ)-pDP (Meiser, 2018)). If a randomized mechanism M satisfies (ϵ, δ)-PDP,
it also satisfies (ϵ, δ)-pDP with respect to (V0,v∗).

The following lemma further characterizes PDP with KL divergence.

Lemma J.2 (Characterization of (ϵ, δ)-PDP with Kl Divergence (Lin et al., 2021)). Given two adjacent tabular
datasets V0,V1, consider a mechanism M, let π∗

0 and π∗
1 denote the probability measure of M(V0),M(V1)

respectively. If there exist a constant τ such that

DKL(π∗
0∥π∗

1) +DKL(π∗
1∥π∗

0) ≤ τ (89)

the mechanism M satisfies (ϵ, τ
ϵ(1−e−ϵ) )-probabilistic differential privacy for all ϵ > 0.

J.2 Proof of Lemma A.2

Proof. First consider generating a single sample. In the generation process, vT |λ → vT−1|λ → · · · → vt|λ →
· · · → vTrl|λ forms a Markov chain. First we consider DKL(pϕ(vTrl|0)∥pϕ(vTrl|1)):

DKL(pϕ(vTrl|0)∥pϕ(vTrl|1)) (90)
(i)
≤DKL(pϕ(vTrl|0,vTrl+1|0, ...,vT |0)∥pϕ(vTrl|1,vTrl+1|1, ...,vT |1)) (91)

(ii)= Epϕ(vTrl|0,vTrl+1|0,...,vT |0)

[
pϕ(vT |0)
pϕ(vT |1) +

T∑
t=Trl+1

log
pϕ(vt−1|0|vt|0)
pϕ(vt−1|1|vt|1)

]
(92)

=
∑

vTrl ,...,vT

pϕ(vT |0)pϕ(vT−1|0|vT |0) · · · pϕ(vTrl|0|vTrl+1|0)
[
pϕ(vT |0)
pϕ(vT |1) +

T∑
t=Trl+1

log
pϕ(vt−1|0|vt|0)
pϕ(vt−1|1|vt|1)

]
(93)

(iii)= DKL(pϕ(vT |0)∥pϕ(vT |1)) +
T∑

t=Trl+1

∑
(vt−1,vt)

pϕ(vt|0)
n∏
i=1

pϕ(vit−1|0|vt|0)
(∑

i

log
pϕ(vit−1|0|vt|0)
pϕ(vit−1|1|vt|1)

)
(94)
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=DKL(pϕ(vT |0)∥pϕ(vT |1)) +
T∑

t=Trl+1

∑
i

Ev∼pϕ(vt|0)[DKL(pϕ(vit−1|0|vt|0 = v)∥pϕ(vit−1|1|vt|1 = v))] (95)

where (i) follows from Lemma K.1, (ii) leverages Markov property and (iii) is due to conditional independence.
When generating m independent samples, consider the coupled sum and we prove that

DKL(MTrl(V0)∥MTrl(V1)) +DKL(MTrl(V1)∥MTrl(V0)) (96)

≤m
T∑

t=Trl+1

∑
λ∈{0,1}

n∑
i=1

Evt|λ∼pϕ(vt|λ)[DKL(pϕ(vit−1|λ|vt|λ)∥pϕ(vit−1|1−λ|vt|1−λ))] (97)

J.3 Proof of Lemma A.3

Proof. According to the generation process, from Lemma K.2, we know that for any λ ∈ {0, 1}

pϕ(vit−1|λ|vt|λ) =
∑
v0|λ

pϕ(vi−1|λ|v0|λ,vt|λ)pϕ(v0|λ|vt|λ) ∈
[
µ−
t · µ̄−

t−1

µ̄+
t

,
µ+
t · µ̄+

t−1

µ̄+
t

]
. (98)

Define f1(γt) = k·(µ+
t ·µ̄+

t−1)2

µ̄+
t ·µ−

t ·µ̄t−1
·
√

2γt, f2(γ̃t) = 2 log
(
µ+
t ·µ̄+

t−1
µ−
t ·µ̄−

t−1

)
· γ̃t. We have∑

λ∈{0,1}

Evt∼pϕ(vt|λ)[DKL(pϕ(vit−1|λ|vt|λ)∥pϕ(vit−1|1−λ|vt|1−λ))]

(i)
≤

∑
λ∈{0,1}

Evt∼q(vt|λ)[DKL(pϕ(vit−1|λ|vt|λ)∥pϕ(vit−1|1−λ|vt|1−λ))] + f2(γ̃t) (99)

(ii)
≤

∑
λ∈{0,1}

Evt∼q(vt|λ)[DKL(q(vit−1|λ|vt|λ)∥q(vit−1|1−λ|vt|1−λ))] + f1(γt) + f2(γ̃t) (100)

where (i) is from Assumption 2 while (ii) is owing to Assumption 1 and Lemma K.3.

J.4 Proof of Lemma A.4

Proof. To begin with, we first calculate q(vit−1|λ = vit−1,vt|λ = vt) and q(vt|λ = vt), λ ∈ {0, 1}.

q(vit−1|λ = vit−1,vt|λ = vt) (101)

= 1
|Vλ|

∑
v0∈V0

q(vit−1|λ = vit−1,vt|λ = vt|v0|λ = v0) (102)

= 1
|Vλ|

∑
v0∈V0

q(vt|λ = vit|vit−1|λ = vit−1)
q(vt−1|λ = vit−1|vi0|λ = vi0)
q(vt|λ = vit|vi0|λ = vi0)

∏
j

q(vt|λ = vjt |v
j
0|λ = vjt−1) (103)

= 1
|Vλ|

∑
v0∈V0

(µ+
t )

1vi
t

=vi
t−1 (µ−

t )
1vi
t

̸=vi
t−1 (µ̄+

t−1)
1vi
t−1=vi0 (µ̄−

t−1)
1vi
t−1 ̸=vi0

(µ̄+
t )1vi

t
=vi0 (µ̄−

t )1vi
t

̸=vi0

∏
j

q(vt|λ = vjt |v
j
0|λ = vjt−1) (104)

= 1
|Vλ|

∑
v0∈Vλ

[(µ+
t )

1−1vi
t

̸=vi
t−1 (µ−

t )
1vi
t

̸=vi
t−1 ] · [(µ̄+

t−1)
1−1vi

t−1 ̸=vi0 (µ̄−
t−1)

1vi
t−1 ̸=vi0 ]

(µ̄+
t )1−1vi

t
̸=vi0 (µ̄−

t )1vi
t

̸=vi0︸ ︷︷ ︸
denote as τ(vi0,v

i
t−1,v

i
t)

· (µ̄
+
t )n−ω̄(v0,vt)

(µ̄−
t )−ω̄(v0,vt)

(105)

Similar derivation for q(vt|λ = vt), we obtain

q(vt|λ = vt) = 1
|Vλ|

∑
v0∈Vλ

(µ̄+
t )n−ω̄(v0,vt)(µ̄−

t )ω̄(v0,vt) (106)
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Now, we consider the coupled KL divergence:

DKL(q(vit−1|0|vt|0)∥q(vit−1|1|vt|1)) +DKL(q(vit−1|1|vt|1)∥q(vit−1|0|vt|0)) (107)

=
∑
vi
t−1

(q(vit−1|0 = vit−1|vt|0)− q(vit−1|1 = vit−1|vt|1)) log
q(vit−1|0 = vit−1|vt|0)
q(vit−1|1 = vit−1|vt|1) (108)

=
∑
vi
t−1

(q(vit−1|0 = vit−1|vt|0)− q(vit−1|1 = vit−1|vt|1))
[

log
q(vit−1|0 = vit−1,vt|0)
q(vit−1|1 = vit−1,vt|1) + log

q(vt|1)
q(vt|0)

]
(109)

(i)=
∑
vi
t−1

(q(vit−1|0 = vit−1|vt|0)− q(vit−1|1 = vit−1|vt|1)) log
q(vit−1|0 = vit−1,vt|0)
q(vit−1|1 = vit−1,vt|1) (110)

(ii)
≤ 1

2∥q(v
i
t−1|0 = vit−1|vt|0)− q(vit−1|1 = vit−1|vt|1)∥l1

[
max
vi
t−1

log
(s+ 1) · q(vit−1|0 = vit−1,vt|0)
s · q(vit−1|1 = vit−1,vt|1)

−min
vi
t−1

log
(s+ 1) · q(vit−1|0 = vit−1,vt|0)
s · q(vit−1|1 = vit−1,vt|1)

]
(111)

where (i) is due to the fact that log q(vt|1)
q(vt|0) is independent of vit−1|λ, λ ∈ {0, 1} and (ii) is from Lemma K.4.

Before we dive into specific terms, we define two terms for simplicity: κ(v∗i,vi0,vit−1,vit) =
τ(vi0,v

i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

and κ̄(v∗i,vi0,vit−1,vit) = τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)
· ( µ̄

+
t

µ̄−
t

)1
v∗̸=vi

t
−1vi0 ̸=vi

t . Discussion on specific values of
κ(vi0,vit−1,vit), κ(v∗i,vi0,vit−1,vit) and κ̄(v∗i,vi0,vit−1,vit) are presented in Appendix L.

Now, we consider the term log (s+1)·q(vit−1|0=vit−1,vt|0)
s·q(vi

t−1|1=vi
t−1,vt|1) . For any vt ∈ Xn,

log
(s+ 1) · q(vit−1|0 = vit−1,vt|0 = vt)
s · q(vit−1|1 = vit−1,vt|1 = vt)

(112)

= log
(

1 + 1∑
v0∈V1

τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

(µ̄+
t )ω̄(v∗,vt)−ω̄(v0,vt)(µ̄−

t )ω̄(v0,vt)−ω̄(v∗,vt)

)
(113)

= log
(

1 + 1∑
v0∈V1

τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

)
(114)

Denote Zit(v0; v∗,vt) = (R̄t)−(ω̄−i(v0,vt)−ω̄−i(v∗,vt)) where ω̄−i(v, ṽ) =
∑n
j=1,j ̸=i 1vj ̸=ṽj = ω̄(v, ṽ) − 1vi ̸=vi .

Zit(v0; v∗,vt) = (R̄t)−(ω̄(v0,vt)−ω̄(v∗,vt)) · R̄
−1v∗i ̸=vi

t
+1(v0)i ̸=vi

t
t . For simplicity, we shorthand Zit(v0; v∗,vt) as

Zit(v0). We have

log
(s+ 1) · q(vit−1|0 = vit−1,vt|0 = vt)
s · q(vit−1|1 = vit−1,vt|1 = vt)

(115)

= log
(

1 +
(s+ 1) · q(vit−1|0 = vit−1,vt|0 = vt)− s · q(vit−1|1 = vit−1,vt|1 = vt)

s · q(vit−1|1 = vit−1,vt|1 = vt)

)
(116)

= log
(

1 + 1∑
v0∈V1

κ̄(v∗i,vi0,vit−1,vit)Zit(v0)

)
(117)

= log
(

1 + 1∑
v0∈V1,vi0=vi

t−1
κ̄(v∗i,vi0,vit−1,vit)Zit(v0) +

∑
v0∈V1,vi0 ̸=vi

t−1
κ̄(v∗i,vi0,vit−1,vit)Zit(v0)

)
(118)
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Observed that if vit−1 = v∗i, κ̄(v∗i,vi0,vit−1,vit) = 1 or R̄−1
t−1. If vit−1 ̸= v∗, κ̄(v∗i,vi0,vit−1,vit) = 1

or R̄t−1. According to Appendix L, we have the following qualities for the maximum and minimum of
log (s+1)·q(vit−1|0=vit−1,vt|0=vt)

s·q(vi
t−1|1=vi

t−1,vt|1=vt)
.

max
vi
t−1∈[k]

log
(s+ 1) · q(vit−1|0 = vit−1,vt|0 = vt)
s · q(vit−1|1 = vit−1,vt|1 = vt)

= log
(s+ 1) · q(vit−1|0 = v∗i,vt|0 = vt)
s · q(vit−1|1 = v∗i,vt|1 = vt)

(119)

= log
(

1 + 1∑
v0∈V1,vi0=v∗i Zit(v0) + R̄−1

t−1
∑

v0∈V1,vi0 ̸=v∗i Zit(v0)

)
(120)

min
vi
t−1∈[k]

log
(s+ 1) · q(vit−1|0 = vit−1,vt|0 = vt)
s · q(vit−1|1 = vit−1,vt|1 = vt)

= log
(s+ 1) · q(vit−1|0 = vi∗t−1,vt|0 = vt)
s · q(vit−1|1 = vi∗t−1,vt|1 = vt)

(121)

= log
(

1 + 1
R̄t−1

∑
v0∈V1,vi0=vi∗

t−1
Zit(v0) +

∑
v0∈V1,vi0 ̸=vi∗

t−1
Zit(v0)

)
(122)

where vi∗t−1 = argmaxvi
t−1∈[k]\{v∗i}

∑
v0∈V1,vi0=vi∗

t−1
Zit(v0).

Now, we consider maxvi
t−1

log (s+1)·q(vit−1|0=vit−1,vt|0)
s·q(vi

t−1|1=vi
t−1,vt|1) −minvi

t−1
log (s+1)·q(vit−1|0=vit−1,vt|0)

s·q(vi
t−1|1=vi

t−1,vt|1) :

max
vi
t−1

log
(s+ 1) · q(vit−1|0 = vit−1,vt|0)
s · q(vit−1|1 = vit−1,vt|1) −min

vi
t−1

log
(s+ 1) · q(vit−1|0 = vit−1,vt|0)
s · q(vit−1|1 = vit−1,vt|1) (123)

= log
(

1 + 1∑
v0∈V1,vi0=v∗i Zit(v0) + R̄−1

t−1
∑

v0∈V1,vi0 ̸=v∗i Zit(v0)

)
− log

(
1 + 1

R̄t−1
∑

v0∈V1,vi0=vi∗
t−1

Zit(v0) +
∑

v0∈V1,vi0 ̸=vi∗
t−1

Zit(v0)

)
(124)

= log
( 1 + 1∑

v0∈V1,vi0=v∗i Z
i
t(v0)+R̄−1

t−1

∑
v0∈V1,vi0 ̸=v∗i Z

i
t(v0)

1 + 1
R̄t−1

∑
v0∈V1,vi0=vi∗

t−1
Zit(v0)+

∑
v0∈V1,vi0 ̸=vi∗

t−1
Zit(v0)

)
(125)

(i)= log
(

1 +
R̄t−1

∑
vi0=vi∗

t−1
Zit(v0) +

∑
vi0 ̸=vi∗

t−1
Zit(v0)−

∑
vi0=v∗i Zit(v0)− R̄−1

t−1
∑

vi0 ̸=v∗i Zit(v0)

(
∑

vi0=v∗i Zit(v0) + R̄−1
t−1
∑

vi0 ̸=v∗i Zit(v0))(1 + R̄t−1
∑

vi0=vi∗
t−1

Zit(v0) +
∑

vi0 ̸=vi∗
t−1

Zit(v0))

)
(126)

where in (i), we have omitted the summation constraint v0 ∈ V1 for brevity.

Further, we split
∑

vi0 ̸=vi∗
t−1

Zit(v0),
∑

vi0 ̸=v∗i Zit(v0) two terms as follows:∑
vi0 ̸=vi∗

t−1

Zit(v0) =
∑

vi0=v∗i

Zit(v0) +
∑

vi0 ̸=vi∗
t−1,v∗i

Zit(v0) (127)

∑
vi0 ̸=v∗i

Zit(v0) =
∑

vi0=vi∗
t−1

Zit(v0) +
∑

vi0 ̸=vi∗
t−1,v∗i

Zit(v0) (128)

Plugging back the split terms into Eq. (126), we get

max
vi
t−1

log
(s+ 1) · q(vit−1|0 = vit−1,vt|0)
s · q(vit−1|1 = vit−1,vt|1) −min

vi
t−1

log
(s+ 1) · q(vit−1|0 = vit−1,vt|0)
s · q(vit−1|1 = vit−1,vt|1) (129)

= log
(

1 + (a− 1)[(a+ 1)y + z]
(ax+ y + z)(ay + x+ z + 1)

)
(130)
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(i)
≤ log

(
1 + (a− 1)(a+ 1)

(a2 + 1)x+ ay + az + 1

)
(131)

= log(1 + (R̄t−1 − 1)(R̄t−1 + 1)
(R̄2

t−1 + 1)
∑

vi0=v∗i Zit(v0) + R̄t−1
∑

vi0=vi∗
t−1

Zit(v0) + R̄t−1
∑

vi0 ̸=vi∗
t−1,v∗i Zit(v0) + 1

) (132)

(ii)
≤ log(1 + (R̄t−1 − 1)(R̄t−1 + 1)

(R̄2
t−1 + 1) · ζ(Vi|v

∗i

1 ,v∗,vt, t) + R̄t−1/R̄t · ζ(V1\Vi|v
∗i

1 ,v∗,vt, t) + 1
) (133)

≤ log(1 + (R̄t−1 − 1)(R̄t−1 + 1)
(R̄2

t−1 + 1) · ζ(Vi|v
∗i

1 ,v∗,vt, t) + R̄t−1/R̄t · ζ(V1,v∗,vt, t) + 1
) (134)

where we define a = R̄t−1, x =
∑

v0∈V1,vi0=v∗i Zit(v0), y =
∑

v0∈V1,vi0=vi∗
t−1

Zit(v0), z =∑
v0∈V1,vi0 ̸=v∗i,vi∗

t−1
Zit(v0), and (i) is from Lemma K.5, (ii) is from the definition of Zit(v0).

Further, we consider ∥q(vit−1|0|vt|0 = vt)− q(vit−1|1|vt|1 = vt)∥l1

∥q(vit−1|0|vt|0 = vt)− q(vit−1|1|vt|1 = vt)∥l1 (135)

=
k∑

vi
t−1=1

∣∣∣∣ (τ(v∗i,vit−1,vit)(R̄t)−ω̄(v∗,vt))(
∑

v0∈V1
(R̄t)−ω̄(v0,vt))

(
∑

v0∈V1
(R̄t)−ω̄(v0,vt)))(

∑
v0∈V0

(R̄t)−ω̄(v0,vt)))

−
((R̄t)−ω̄(v∗,vt))(

∑
v0∈V1

τ(vi0,vit−1,vit)(R̄t)−ω̄(v0,vt))
(
∑

v0∈V1
(R̄t)−ω̄(v0,vt))(

∑
v0∈V0

(R̄t)−ω̄(v0,vt))

∣∣∣∣ (136)

=
k∑

vi
t−1=1

∣∣∣∣
∑

v0∈V1
τ(v∗i,vit−1,vit) · (1−

τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

)(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

(
∑

v0∈V1
(R̄t)ω̄(v∗,vt)−ω̄(v0,vt))(1 +

∑
v0∈V1

(R̄t)ω̄(v∗,vt)−ω̄(v0,vt))

∣∣∣∣ (137)

(i)
≤µ+

t · (
µ̄+
t−1

µ̄+
t

−
µ̄−
t−1

µ̄−
t

) · 1
1 +

∑
v0∈V1

(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)
(138)

where (i) is from Lemma K.6.

Therefore, summarizing the above, we obtain
DKL(q(vit−1|0|vt|0)∥q(vit−1|1|vt|1)) +DKL(q(vit−1|1|vt|1)∥q(vit−1|0|vt|0)) (139)

≤1
2∥q(v

i
t−1|0 = vit−1|vt|0)− q(vit−1|1 = vit−1|vt|1)∥l1

[
max
vi
t−1

log
q(vit−1|0 = vit−1,vt|0)
q(vit−1|1 = vit−1,vt|1)

−min
vi
t−1

log
q(vit−1|0 = vit−1,vt|0)
q(vit−1|1 = vit−1,vt|1)

]
(140)

≤
µ+
t · (

µ̄+
t−1
µ̄+
t

− µ̄−
t−1
µ̄−
t

)
1 + ζ(V1,v∗,vt, t)

· log
(

1 + (R̄t−1 − 1)(R̄t−1 + 1)
(R̄2

t−1 + 1) · ζ(Vi|v
∗i

1 ,v∗,vt, t) + R̄t−1/R̄t · ζ(V1,v∗,vt, t) + 1

)
(141)

Define ∆i
t(·) as:

∆i
t(vt) =

µ+
t · (

µ̄+
t−1
µ̄+
t

− µ̄−
t−1
µ̄−
t

)
1 + ζ(V1,v∗,vt, t)

· log
(

1 + (R̄t−1 − 1)(R̄t−1 + 1)
(R̄2

t−1 + 1) · ζ(Vi|v
∗i

1 ,v∗,vt, t) + R̄t−1/R̄t · ζ(V1,v∗,vt, t) + 1

)
(142)

We consider a upper bound on
∑n
i=1 ∆i

t. Let Ct =
µ+
t ·(

µ̄
+
t−1
µ̄

+
t

−
µ̄

−
t−1
µ̄

−
t

)

1+ζ(V1,v∗,vt,t) , we have
n∑
i=1

∆i
t = Ct

n∑
i=1

log
(

1 + (R̄t−1 − 1)(R̄t−1 + 1)
(R̄2

t−1 + 1) · ζ(Vi|v
∗i

1 ,v∗,vt, t) + R̄t−1/R̄t · ζ(V1,v∗,vt, t) + 1

)
(143)
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=: ∆t (144)

From above, we have,
n∑
i=1
DKL(q(vit−1|0|vt|0)∥q(vit−1|1|vt|1)) +DKL(q(vit−1|1|vt|1)∥q(vit−1|0|vt|0)) ≤ ∆t(vt) (145)

J.5 Proof of Lemma A.5

According to measure partition, we have split measure q(vt|0) into q(vt ∈ Sa), q(vt ∈ Sb) and q(vt ∈ Sc).
Therefore,

Evt∼q(vt|0)[∆t(vt)] = q(vt ∈ Sa) ·∆t(vt) + q(vt ∈ Sb) ·∆t(vt) + q(vt ∈ Sc) ·∆t(vt) (146)

Now, we consider the behavior of ∆t(·) with respect to vt for each measure. For measure q(vt ∈ Sa) and
q(vt ∈ Sc), since ζ(V1,v∗,vt, t) ≥ Sim(V1,v∗, t), we have

∆t(vt) ≤
µ+
t (µ̄+

t−1/µ̄
+
t − µ̄−

t−1/µ̄
−
t )

1 + Sim(V1,v∗, t) ·
n∑
i=1

log(1 +
R̄2
t−1 − 1

R̄2
t−1 · Sim(Vi|v

∗i

1 ,v∗, t) + Sim(V1,v∗, t) + 1
) (147)

def=: n
sψt

(148)

where At = µ+
t · (µ̄+

t−1/µ̄
+
t − µ̄−

t−1/µ̄
−
t ) and Bt = R̄2

t−1 − 1. Here, we use notation 1
sψt

instead of a single
symbol is to clearly show how the order of privacy leakage varies with respect to t in generation process.
For measure q(vt ∈ Sb), we have much smaller privacy leakage than q(vt ∈ Sa) and q(vt ∈ Sc). When the
supp(V0) = supp(V1), Vi|v

∗i

1 ̸= ∅, we have

∆t(vt) ≤
At

1 + R̄
η′
t
t

·
n∑
i=1

log
(

1 + Bt
1 + R̄2

t−1 · R̄
η′
t
t

)
(149)

≤ n · At · Bt
(1 + R̄

η′
t
t )(1 + R̄t−1 · R̄

η′
t
t )
≤ n · At · Bt
R̄2
t−1 · R̄

2η′
t

t

(150)

Therefore,

Evt [∆t(vt)] ≤ q(vt ∈ Sa) · n
sψt

+ q(vt ∈ Sb) ·
n · At · Bt
R̄2
t−1 · R̄

2η′
t

t

+ q(vt ∈ Sc) ·
n

sψt
(151)

Now, based on the above partition, we further estimate the measure of q(vt ∈ Sa), q(vt ∈ Sb) and q(vt ∈ Sc).
Recall that Nηt(v∗) = |{v ∈ V1 s.t. ω̄(v,v∗) ≤ ηt}|. We have the following:

q(vt ∈ Sb) ≤q(vt; (1)vt is diffused from v0 ∈ V0 s.t. ω̄(v′,v∗) > ηt) (152)

≤s−Nηt(v
∗)

s
(153)

q(vt ∈ Sc) ≤q(vt; (1)vt is diffused from v0 ∈ V0 s.t ω̄(v0,v∗) ≥ ηt + 1 and
(2)∀v′

0 ∈ V0, ω̄(vt,v′
0) ≥ ηt − η′

t + 2) (154)
≤q(vt; vt is diffused from v0 ∈ V0 s.t. ω̄(v0,v∗) ≥ ηt + 1, ω̄(vt,v0) ≥ ηt − η′

t + 2) (155)

≤s−Nηt(v
∗)

s
·min{(n(1− µ̄+

t ))ηt−η
′
t+2, 1} (156)

As for q(vt ∈ Sa), we need further characterization. Let c∗
t be a tunable positive constant and we have the

following:

q(vt ∈ Sa) ≤q(vt; vt is diffused from v0 ∈ V0 s.t. ω̄(v0,v∗) ≤ ηt)
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+q(vt; vt is diffused from v0 ∈ V0 s.t. ω̄(v0,v∗) ∈ [ηt + 1, (1 + c∗
t )ηt], ω̄(vt,v∗) ≤ ηt)

+q(vt; vt is diffused from v0 ∈ V0 s.t. ω̄(v0,v∗) ≥ (1 + c∗
t )ηt + 1, ω̄(vt,v∗) ≤ ηt) (157)

≤ Nηt(v∗)
s

+
(1+c∗

t )ηt∑
η=ηt+1

∆Nη(v∗)
s

(
n

η−ηt

)
(µ̄−
t )η−ηt

︸ ︷︷ ︸
merge together

+
s−N(1+c∗

t )ηt(v∗)
s

max
k;k≥ηt

(
k

k−ηt

)
(µ̄−
t )k−ηt (158)

≤
N(1+c∗

t )ηt(v∗)
s

+
s−N(1+c∗

t )ηt(v∗)
s

max
h;h≥(1+c∗

t )ηt

(
h

h−ηt

)
(µ̄−
t )h−ηt (159)

(i)
≤
N(1+c∗

t )ηt(v∗)
s

+
s−N(1+c∗

t )ηt(v∗)
s

min max
h;h≥(1+c∗

t )ηt

{[
heqt
h− ηt

]h−ηt
,

[
he

ηt

]ηt
qh−ηt
t

}
(160)

(ii)
≤
N(1+c∗

t )ηt(v∗)
s

+
s−N(1+c∗

t )ηt(v∗)
s

[
((1 + c∗

t )e)ηt(µ̄−
t )c

∗
t ηt1c∗

t<1 + ((1 + c∗
t )e

c∗
t

)c
∗
t ηt(µ̄−

t )c
∗
t ηt1c∗

t≥1

]
(161)

(i) is from
(
n
k

)
≤ ( enk )k and (ii) is from Corollary K.1 where we need eµ̄−

t < 4
5 (i.e. k ≥ 3).

Now, we want further balance the two terms
N(1+c∗

t
)ηt (v∗)
s and

s−N(1+c∗
t

)ηt (v∗)
s

[
((1 + c∗

t )e)ηt(µ̄−
t )c∗

t ηt1c∗
t<1 +

( (1+c∗
t )e

c∗
t

)c∗
t ηt(µ̄−

t )c∗
t ηt1c∗

t≥1

]
, i.e. balancing

N(1+c∗
t

)ηt (v∗)
s−N(1+c∗

t
)ηt (v∗) and

[
((1 + c∗

t )e)
η
t (µ̄−

t )c∗
t ηt1c∗

t<1 +

( (1+c∗
t )e

c∗
t

)c∗
t ηt(µ̄−

t )c∗
t ηt1c∗

t≥1

]
. First, compare N2ηt (v∗)

s−N2ηt (v∗) and (2eµ̄−
t )ηt .

(1) If N2ηt (v∗)
s−N2ηt (v∗) > (2eµ̄−

t )ηt , we can find a smaller c∗
t to make the bound Eq. (161) tight. Instead of working

directly on ((1 + c∗
t )e)ηt(µ̄−

t )c∗
t ηt ≤

N(1+c∗
t

)ηt (v∗)
s−N(1+c∗

t
)ηt (v∗) , we consider a sufficient condition: found smallest c∗

t such
that

(2e)ηt(µ̄−
t )c

∗
t ηt ≤

N(1+c∗
t )ηt(v∗)

s−N(1+c∗
t )ηt(v∗) (162)

i.e.

c∗
t ≥

1
ηt

log
(
s−N(1+c∗

t
)ηt (v∗)

N(1+c∗
t

)ηt (v∗)

)
+1 + log 2

log 1
µ̄−
t

(163)

Select the smallest c∗
t that satisfies Eq. (163). Since (1 + c∗

t )ηt ∈ {0, 1, 2, ..., n}. Let η∗
t = ⌈(1 + c∗)ηt⌉.

(2) If N2ηt (v∗)
s−N2ηt (v∗) ≤ (2eµ−

t )ηt , we want to find the smallest c such that ( (1+c∗
t )e

c∗
t

)c∗
t ηt(µ−

t )c∗
t ηt ≤

N(1+c∗
t

)ηt (v∗)
s−N(1+c∗

t
)ηt (v∗) .

Similar, since ( 1+c∗
t

c∗
t

)c∗
t ≤ e, we also consider a sufficient condition: found smallest c∗

t such that

eηt(eµ−
t )c

∗
t ηt ≤

N(1+c∗
t )ηt(v∗)

s−N(1+c∗
t )ηt(v∗) (164)

i.e.

c∗
t ≥

1
ηt

log
(
s−N(1+c∗

t
)ηt (v∗)

N(1+c∗
t

)ηt (v∗)

)
log 1

µ̄−
t

− 1
(165)

Select the smallest c∗
t that satisfies Eq. (165).
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The above procedure for finding (1 + c∗
t )ηt can be described in Algorithm ??. After finding the most suitable

(1 + c∗
t )ηt, q(vt ∈ Sa) can be upper bounded by

q(vt ∈ Sa) ≤
2N(1+c∗

t )ηt(v∗)
s

(166)

Now, we examine the selection of η′
t. Our aim is to let q(vt ∈ Sb) · n·At·Bt

R̄2
t−1·R̄

2η′
t

t

be dominated by
N(1+c∗

t
)ηt (v∗)
s · n

sψt
.

Consider the following sufficient condition:

N(1+c∗
t )ηt(v∗)
s

· n
sψt
≥ s−Nηt(v∗)

s
· n · At · Bt
R̄2
t−1 · R̄

2η′
t

t

(167)

i.e.

η′
t ≥ max


log s−Nηt (v∗)

N(1+c∗
t

)ηt (v∗) + log(At · Ct · sψt)

2 log R̄t
, 0

 (168)

where Ct = Bt/R̄2
t−1 = 1− 1/R̄2

t−1.

Note that the r.h.s is monotonically decreasing w.r.t ηt. However, since η′
t ∈ {0, 1, 2, ..., n}, we have to make

sure the r.h.s is dominated by n. In fact, this constraint is naturally satisfied as log( s−Nηt (v∗)
N(1+c∗

t
)ηt (v∗)+1 ) goes to

−∞ when ηt → n.

Finally, we control the third term, s−Nηt (v∗)
s min{(n(1− µ̄+

t ))ηt−η′
t+2, 1} · n

sψt
1 to be dominated be the first

term
N(1+c∗

t
)ηt (v∗)
s · n

sψt
. That is

N(1+c∗
t )ηt(v∗)
s

≥ s−Nηt(v∗)
s

min{(n(1− µ̄+
t ))ηt−η

′
t+2, 1} (169)

i.e.
N(1+c∗

t )ηt(v∗)
s

≥ s−Nηt(v∗)
s

(min{n(1− µ̄+
t ), 1})ηt−η

′
t+2 (170)

ηt − η′
t + 2 ≥

log s−Nηt (v∗)
N(1+c∗

t
)ηt (v∗)

log 1
min{n(1−µ̄+

t ),1}
(171)

Similarly, log( s−Nηt (v∗)
Nη∗

t
(v∗)+1 ) can goes to −∞ when ηt → n and the above inequality naturally holds. Thus, we

combine the above results, we have when ηt ∈ [n] satisfies:

ηt ≥
log s−Nηt (v∗)

N(1+c∗
t

)ηt (v∗)

log 1
n(1−µ̄+

t )
+ max


log s−Nηt (v∗)

N(1+c∗
t

)ηt (v∗) + log(At · Ct · sψt)

2 log R̄t
, 0

− 2 (172)

Summarizing the above results, we obtain that

Evt∼q(vt|0)[∆t(vt)] ≤q(vt ∈ Sa) · n
sψt

+ q(vt ∈ Sb) ·
n · At · Bt
R̄2
t−1 · R̄

2η′
t

t

+ q(vt ∈ Sc) ·
n

sψt
(173)

1Instead of using Eq. 156, a better bound to estimate the third term is s−Nηt (v∗)
s

· P(ω̄(vt, v0) ≥ ηt − η′
t + 2) and

trade-off with first term, we get the smallest ηt − η′
t + 2 such that P(ω̄(vt, v0) ≥ ηt − η′

t + 2) ≤
N(1+c∗

t
)ηt (v∗)

s−Nηt (v∗) where

P(ω̄(vt, v0) ≥ ηt − η′
t + 2) =

∑n

j=ηt−η′
t
+2

(
n
j

)
(1 − µ̄+

t )j(µ̄+
t )n−j .
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≤min
{4N(1+c∗

t )ηt(v∗)
s

, 1
}
· n
sψt

(174)

Summarizing the above results, we calculate the privacy bound of discrete diffusion model by following
Algorithm ??.

J.6 Proof of Lemma A.6

Proof. To begin with,

Evt∼(q(vt|1)−q(vt|0))[DKL(q(vit−1|1|vt|1 = vt)∥q(vit−1|0|vt|0 = vt))] (175)

=Evt∼q(vt|0)

[(
1−

q(vt|0 = vt)
q(vt|1 = vt)

)
q(vt|1 = vt)
q(vt|0 = vt)

DKL(q(vit−1|1|vt|1 = vt)∥q(vit−1|0|vt|0 = vt))
]

(176)

Now consider 1− q(vt|0=vt)
q(vt|1=vt) :

1−
q(vt|0 = vt)
q(vt|1 = vt)

= 1
s+ 1 · (1−

s

ζ(V1,v∗,vt, t)
) ≤ 1

s+ 1 · 1vt∈Ω (177)

where Ω = {vt|ζ(V1,v∗,vt, t) > s}. Therefore,

Evt∼(q(vt|1)−q(vt|0))[DKL(q(vit−1|1|vt|1 = vt)∥q(vit−1|0|vt|0 = vt))] (178)

≤Evt∼q(vt|0),vt∈Ω

[
1

1 + s

k∑
vi
t−1=1

q(vit−1|1 = vit−1,vt|1 = vt)
q(vt|0 = vt)

log
q(vit−1|1 = vit−1|vt|1 = vt)
q(vit−1|0 = vit−1|vt|0 = vt)

]
(179)

=Evt∼q(vt|0),vt∈Ω

[
1
s
·
∑

v0∈V1
τ(vi0,vit−1,vit) · (R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

1 + ζ(V1,v∗,vt, t)
log

q(vit−1|1 = vit−1|vt|1 = vt)
q(vit−1|0 = vit−1|vt|0 = vt)

]
(180)

Now consider log q(vit−1|1=vit−1|vt|1=vt)
q(vi

t−1|0=vi
t−1|vt|0=vt)

:

log
q(vit−1|1 = vit−1|vt|1 = vt)
q(vit−1|0 = vit−1|vt|0 = vt)

= log
q(vit−1|1 = vit−1,vt|1 = vt)q(vt|0 = vt)
q(vit−1|0 = vit−1,vt|0 = vt)q(vt|1 = vt)

(181)

= log(1− 1

1 +
∑

v0∈V1

τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)
)(1 + 1

ζ(V1,v∗,vt, t)
) (182)

= log
[
(1 +

∑
v0∈V1

( τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)
− 1)(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

(1 +
∑

v0∈V1

τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)) · ζ(V1,v∗,vt, t)
)
]

(183)

≤
maxvi0

τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)
− 1

maxvi0
τ(vi0,v

i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)
· ζ(V1,v∗,vt, t) + 1

(184)

1. When vit = v∗i, we further compare vit−1,vit: (1) If vit−1 = vit, we have τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)
≤ 1. (2) If vit−1 ≠ vit,

we get τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)
≤ R̄tR̄t−1. Hence,

Evt∼(q(vt|1)−q(vt|0))[DKL(q(vit−1|1|vt|1 = vt)∥q(vit−1|0|vt|0 = vt))] (185)

≤Evt∼q(vt|0),vt∈Ω

[
1
s

∑
v0∈V1

τ(vi0,vit−1,vit) · (R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

1 + ζ(V1,v∗,vt, t)
log

q(vit−1|1 = vit−1|vt|1 = vt)
q(vit−1|0 = vit−1|vt|0 = vt)

]
(186)

44



Published in Transactions on Machine Learning Research (06/2024)

≤Evt∼q(vt|0),vt∈Ω

[
1
s

∑
v0∈V1

∑
vi
t−1 ̸=vit

τ(vi0,vit−1,vit) · (R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

1 + ζ(V1,v∗,vt, t)
· R̄tR̄t−1 − 1
R̄tR̄t−1ζ(V1,v∗,vt, t)

]
(187)

=Evt∼q(vt|0),vt∈Ω

[
1
s

∑
v0∈V1

(1− τ(vi0,vit,vit)) · (R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

1 + ζ(V1,v∗,vt, t)
· R̄tR̄t−1 − 1
R̄tR̄t−1ζ(V1,v∗,vt, t)

]
(188)

≤Evt∼q(vt|0),vt∈Ω

[ (1− µ+
t µ̄

+
t−1

µ̄+
t

) · (R̄tR̄t−1 − 1)

R̄tR̄t−1 · s(1 + s)

]
(189)

= 1
s(s+ 1) · (1−

µ+
t µ̄

+
t−1

µ̄+
t

) · (1− 1
R̄tR̄t−1

) · P(vt|0 ∈ Ω) (190)

2. When vit ̸= v∗i, similarly, (1) If vit−1 = vit, we have τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)
≤ R̄t−1/R̄t. (2) If vit−1 ̸= vit, we have

τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)
≤ R̄t−1. Therefore

Evt∼(q(vt|1)−q(vt|0))[DKL(q(vit−1|1|vt|1 = vt)∥q(vit−1|0|vt|0 = vt))] (191)

≤Evt∼q(vt|0),vt∈Ω

[
1
s

∑
v0∈V1

τ(vi0,vit−1,vit) · (R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

1 + ζ(V1,v∗,vt, t)
log

q(vit−1|1 = vit−1|vt|1 = vt)
q(vit−1|0 = vit−1|vt|0 = vt)

]
(192)

≤Evt∼q(vt|0),vt∈Ω

[
1
s

∑
v0∈V1

∑
vi
t−1=vit

τ(vi0,vit−1,vit) · (R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

1 + ζ(V1,v∗,vt, t)
R̄t−1/R̄t − 1

R̄t−1/R̄tζ(V1,v∗,vt, t)
(193)

+1
s
·

∑
v0∈V1

∑
vi
t−1 ̸=vit

τ(vi0,vit−1,vit) · (R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

1 + ζ(V1,v∗,vt, t)
R̄t−1 − 1

R̄t−1ζ(V1,v∗,vt, t)

]
(194)

=Evt∼q(vt|0),vt∈Ω

[
1
s

∑
v0∈V1

(R̄t−1 − 1− (R̄t − 1)τ(vi0,vit,vit)) · (R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

(1 + ζ(V1,v∗,vt, t))R̄t−1ζ(V1,v∗,vt, t)

]
(195)

≤Evt∼q(vt|0),vt∈Ω

[ ((R̄t−1 − 1)− µ+
t µ̄

+
t−1

µ̄+
t

(R̄t − 1))

R̄t−1s(1 + s)

]
(196)

= 1
s(s+ 1) ·

[
(1−

µ+
t µ̄

+
t−1

µ̄+
t

) · (1− 1
R̄t−1

) +
µ+
t µ̄

+
t−1

µ̄+
t

· (1− R̄t

R̄t−1
)
]
·P(vt|0 ∈ Ω) (197)

Compare two bounds Eq. (190) and Eq. (197), since we have

(1−
µ+
t µ̄

+
t−1

µ̄+
t

)(1− 1
R̄t−1

) +
µ+
t µ̄

+
t−1

µ̄+
t

(1− R̄t

R̄t−1
) > (1−

µ+
t µ̄

+
t−1

µ̄+
t

)(1− 1
R̄tR̄t−1

) (198)

We derive the following bound:

Evt∼(q(vt|1)−q(vt|0))[DKL(q(vit−1|1|vt|1 = vt)∥q(vit−1|0|vt|0 = vt))] (199)

≤ 1
s(s+ 1) ·

[
(1−

µ+
t µ̄

+
t−1

µ̄+
t

) · (1− 1
R̄t−1

) +
µ+
t µ̄

+
t−1

µ̄+
t

· (1− R̄t

R̄t−1
)
]
·P(vt|0 ∈ Ω) (200)

J.7 Proof of Lemma D.1

Proof. Given adjacent datasets V0,V1 and diffusion coefficients {αt}t∈[T ], we consider the probability transi-
tions in the generation process.

pϕ(vt−1|j |vt|j) =pϕ(v1
t−1|j |vt|j) · pϕ(v2

t−1|j |vt|j) (201)
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=
2∏
i=1

[
1∑

vi0|j=0

q(vit−1|j ,vi0|j |vit|j)pϕ(vi0|j |vt|j)] (202)

where j ∈ {0, 1} denote the dataset index.

For q(vit−1,vi0|vit), from Lemma K.2, we obtain

q(vit−1|vit,vi0) =



When vi0 = vit


If vi0 = vit = vit−1,

µ+
t · µ̄+

t−1

µ̄+
t

=: C1,t

If vi0 = vit ̸= vit−1,
µ−
t · µ̄−

t−1

µ̄+
t

=: C2,t

When vi0 ̸= vit


If vi0 ̸= vit = vit−1,

µ+
t · µ̄−

t−1

µ̄−
t

=: C̃1,t

If vit ̸= vi0 = vit−1,
µ−
t · µ̄+

t−1

µ̄−
t

=: C̃2,t

(203)

where we have C1,t + C2,t = C̃1,t + C̃2,t and C1,t > C̃1,t, C2,t < C̃2,t.

Now, consider q(vt|1) and q(vt|0). From the forward diffusion process, we have

q(vt|1 =
[
1
1

]
) = (µ̄+

t )2 + (s− 1) · (µ̄−
t )2

s
, q(vt|1 =

[
0
0

]
) = (µ̄−

t )2 + (s− 1) · (µ̄+
t )2

s
, (204)

q(vt|1 =
[
1
0

]
) = q(vt|1 =

[
0
1

]
) = µ̄+

t · µ̄−
t . (205)

and

q(vt|0 =
[
1
1

]
) = 2 · (µ̄+

t )2 + (s− 1) · (µ̄−
t )2

s+ 1 , q(vt|0 =
[
0
0

]
) = 2 · (µ̄−

t )2 + (s− 1) · (µ̄+
t )2

s+ 1 , (206)

q(vt|0 =
[
1
0

]
) = q(vt|1 =

[
0
1

]
) = µ̄+

t · µ̄−
t . (207)

Further, we consider the prediction probability pϕ(vi0|j |vt|j), which is determined by the training of denoising
networks. In the training procedure, we are optimizing the following objective function

minimize DKL(q(v0|j)∥
2∏
i=1

∑
vt|1

pϕ(vi0|1|vt|1)q(vt|1)) (208)

From Lemma K.8, we obtain the optimal solution is when pϕ(vi0|1|vt|1) = q(vi0|1|vt|1).

Therefore, pϕ(vt−1|j |vt|j) =
∏2
i=1[

∑1
vi0|j=0 q(vit−1|j ,vi0|j |vit|j)q(vi0|j |vt|j)]. For q(vi0|j |vt|j)], we have the

following calculation: for dataset V1,

q(vi0|1 = 0|vt|1 =
[
0
0

]
) = (s− 1) · (µ̄+

t )2

(s− 1) · (µ̄+
t )2 + (µ̄−

t )2 , q(v
i
0|1 = 1|vt|1 =

[
0
0

]
) = (µ̄−

t )2

(s− 1) · (µ̄+
t )2 + (µ̄−

t )2 ,

q(vi0|1 = 0|vt|1 =
[
1
1

]
) = (s− 1) · (µ̄−

t )2

(s− 1) · (µ̄−
t )2 + (µ̄+

t )2 , q(v
i
0|1 = 1|vt|1 =

[
1
1

]
) = (µ̄+

t )2

(s− 1) · (µ̄−
t )2 + (µ̄+

t )2 ,

q(vi0|1 = 0|vt|1 =
[
1
0

]
) = s− 1

s
, q(vi0|1 = 1|vt|1 =

[
0
1

]
) = 1

s
.

and for dataset V0

q(vi0|0 = 0|vt|0 =
[
0
0

]
) = (s− 1) · (µ̄+

t )2

(s− 1) · (µ̄+
t )2 + 2 · (µ̄−

t )2 , q(v
i
0|0 = 1|vt|0 =

[
0
0

]
) = 2 · (µ̄−

t )2

(s− 1) · (µ̄+
t )2 + 2 · (µ̄−

t )2 ,
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q(vi0|0 = 0|vt|0 =
[
1
1

]
) = (s− 1) · (µ̄−

t )2

(s− 1) · (µ̄−
t )2 + 2 · (µ̄+

t )2 , q(v
i
0|0 = 1|vt|0 =

[
1
1

]
) = 2 · (µ̄+

t )2

(s− 1) · (µ̄−
t )2 + 2 · (µ̄+

t )2 ,

q(vi0|0 = 0|vt|0 =
[
1
0

]
) = s− 1

s+ 1 , q(v
i
0|0 = 1|vt|0 =

[
0
1

]
) = 2

s+ 1 .

For the convenience of further derivation, we introduce the notation qj(x1|x2, x3) := q(vi0|j = x1|vt|j =
[
x1
x2

]
)]

for simplicity. Therefore,

pϕ(vt−1|j =
[
0
0

]
|vt|j =

[
0
0

]
) = (C1,t · qj(0|0, 0) + C̃1,t · qj(1|0, 0))2

pϕ(vt−1|j =
[
1
1

]
|vt|j =

[
0
0

]
) = (C2,t · qj(0|0, 0) + C̃2,t · qj(1|0, 0))2

pϕ(vt−1|j =
[
1
0

]
|vt|j =

[
0
0

]
) = (C2,t · qj(0|0, 0) + C̃2,t · qj(1|0, 0))(C1,t · qj(0|0, 0) + C̃1,t · qj(1|0, 0))

pϕ(vt−1|j =
[
0
1

]
|vt|j =

[
0
0

]
) = (C2,t · qj(0|0, 0) + C̃2,t · qj(1|0, 0))(C1,t · qj(0|0, 0) + C̃1,t · qj(1|0, 0))

pϕ(vt−1|j =
[
0
0

]
|vt|j =

[
1
1

]
) = (C̃2,t · qj(0|1, 1) + C2,t · qj(1|1, 1))2

pϕ(vt−1|j =
[
1
1

]
|vt|j =

[
1
1

]
) = (C̃1,t · qj(0|1, 1) + C1,t · qj(1|1, 1))2

pϕ(vt−1|j =
[
0
1

]
|vt|j =

[
1
1

]
) = (C̃1,t · qj(0|1, 1) + C1,t · qj(1|1, 1))(C̃2,t · qj(0|1, 1) + C2,t · qj(1|1, 1))

pϕ(vt−1|j =
[
1
0

]
|vt|j =

[
1
1

]
) = (C̃1,t · qj(0|1, 1) + C1,t · qj(1|1, 1))(C̃2,t · qj(0|1, 1) + C2,t · qj(1|1, 1))

pϕ(vt−1|j =
[
0
0

]
|vt|j =

[
1
0

]
) = (C̃1,t · qj(1|1, 0) + C1,t · qj(0|1, 0))(C̃2,t · qj(0|1, 0) + C2,t · qj(1|1, 0))

pϕ(vt−1|j =
[
1
1

]
|vt|j =

[
1
0

]
) = (C̃1,t · qj(0|1, 0) + C1,t · qj(1|1, 0))(C̃2,t · qj(1|1, 0) + C2,t · qj(0|1, 0))

pϕ(vt−1|j =
[
1
0

]
|vt|j =

[
1
0

]
) = (C̃1,t · qj(0|1, 0) + C1,t · qj(1|1, 0))(C̃1,t · qj(1|1, 0) + C1,t · qj(0|1, 0))

pϕ(vt−1|j =
[
0
1

]
|vt|j =

[
1
0

]
) = (C̃2,t · qj(0|1, 0) + C2,t · qj(1|1, 0))(C̃2,t · qj(1|1, 0) + C2,t · qj(0|1, 0))

pϕ(vt−1|j =
[
0
0

]
|vt|j =

[
0
1

]
) = (C̃1,t · qj(1|1, 0) + C1,t · qj(0|1, 0))(C̃2,t · qj(0|1, 0) + C2,t · qj(1|1, 0))

pϕ(vt−1|j =
[
1
1

]
|vt|j =

[
0
1

]
) = (C̃1,t · qj(0|1, 0) + C1,t · qj(1|1, 0))(C̃2,t · qj(1|1, 0) + C2,t · qj(0|1, 0))

pϕ(vt−1|j =
[
1
0

]
|vt|j =

[
0
1

]
) = (C̃2,t · qj(0|1, 0) + C2,t · qj(1|1, 0))(C̃2,t · qj(1|1, 0) + C2,t · qj(0|1, 0))

pϕ(vt−1|j =
[
0
1

]
|vt|j =

[
0
1

]
) = (C̃1,t · qj(0|1, 0) + C1,t · qj(1|1, 0))(C̃1,t · qj(1|1, 0) + C1,t · qj(0|1, 0))

With above the circumstances discussed above, we define Ht−1 = pϕ(vt−1|0 =
[
1
1

]
)− pϕ(vt−1|1 =

[
1
1

]
), we

have

Ht−1 =pϕ(vt−1|0 =
[
1
1

]
|vt|0 =

[
1
1

]
)pϕ(vt|0 =

[
1
1

]
) + pϕ(vt−1|0 =

[
1
1

]
|vt|0 =

[
0
0

]
)pϕ(vt|0 =

[
0
0

]
)

+ pϕ(vt−1|0 =
[
1
1

]
|vt|0 =

[
1
0

]
)pϕ(vt|0 =

[
1
0

]
) + pϕ(vt−1|0 =

[
1
1

]
|vt|0 =

[
0
1

]
)pϕ(vt|0 =

[
0
1

]
)
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− pϕ(vt−1|1 =
[
1
1

]
|vt|1 =

[
1
1

]
)pϕ(vt|1 =

[
1
1

]
) + pϕ(vt−1|1 =

[
1
1

]
|vt|1 =

[
0
0

]
)pϕ(vt|1 =

[
0
0

]
)

− pϕ(vt−1|1 =
[
1
1

]
|vt|1 =

[
1
0

]
)pϕ(vt|1 =

[
1
0

]
) + pϕ(vt−1|1 =

[
1
1

]
|vt|1 =

[
0
1

]
)pϕ(vt|1 =

[
0
1

]
) (209)

=pϕ(vt−1|0 =
[
1
1

]
|vt|0 =

[
1
1

]
)(pϕ(vt|0 =

[
1
1

]
)− pϕ(vt|1 =

[
1
1

]
))

+ pϕ(vt|1 =
[
1
1

]
)(pϕ(vt−1|0 =

[
1
1

]
|vt|0 =

[
1
1

]
)− pϕ(vt−1|1 =

[
1
1

]
|vt|1 =

[
1
1

]
))

+ pϕ(vt−1|0 =
[
1
1

]
|vt|0 =

[
0
0

]
)(pϕ(vt|0 =

[
0
0

]
)− pϕ(vt|1 =

[
0
0

]
))

+ pϕ(vt|1 =
[
0
0

]
)(pϕ(vt−1|0 =

[
1
1

]
|vt|0 =

[
0
0

]
)− pϕ(vt−1|1 =

[
1
1

]
|vt|1 =

[
0
0

]
))

+ pϕ(vt−1|0 =
[
1
1

]
|vt|0 =

[
1
0

]
)(pϕ(vt|0 =

[
1
0

]
)− pϕ(vt|1 =

[
1
0

]
))

+ pϕ(vt|1 =
[
1
0

]
)(pϕ(vt−1|0 =

[
1
1

]
|vt|0 =

[
1
0

]
)− pϕ(vt−1|1 =

[
1
1

]
|vt|1 =

[
1
0

]
))

+ pϕ(vt−1|0 =
[
1
1

]
|vt|0 =

[
0
1

]
)(pϕ(vt|0 =

[
0
1

]
)− pϕ(vt|1 =

[
0
1

]
))

+ pϕ(vt|1 =
[
0
1

]
)(pϕ(vt−1|0 =

[
1
1

]
|vt|0 =

[
0
1

]
)− pϕ(vt−1|1 =

[
1
1

]
|vt|1 =

[
0
1

]
))

(210)

Since pϕ(vt|0 =
[
1
1

]
)− pϕ(vt|1 =

[
1
1

]
) = −

∑
vt ̸=[1,1]T (pϕ(vt|0 = vt)− pϕ(vt|1 = vt)) and max

{
pϕ(vt−1|0 =[

1
1

]
|vt|0 =

[
0
0

]
), pϕ(vt−1|0 =

[
1
1

]
|vt|0 =

[
1
0

]
), pϕ(vt−1|0 =

[
1
1

]
|vt|0 =

[
0
1

]
)
}

= pϕ(vt−1|0 =
[
1
1

]
|vt|0 =[

1
0

]
) = pϕ(vt−1|0 =

[
1
1

]
|vt|0 =

[
0
1

]
), we have

Ht−1 ≥
[
pϕ(vt−1|0 =

[
1
1

]
|vt|0 =

[
1
1

]
)− pϕ(vt−1|0 =

[
1
1

]
|vt|0 =

[
1
0

]
)
]
·Ht

+ min
vt

[
pϕ(vt−1|0 =

[
1
1

]
|vt|0 = vt)− pϕ(vt−1|1 =

[
1
1

]
|vt|1 = vt)

]
(211)

For minvt

[
pϕ(vt−1|0 =

[
1
1

]
|vt|0 = vt)− pϕ(vt−1|1 =

[
1
1

]
|vt|1 = vt)

]
, we have

pϕ(vt−1|0 =
[
1
1

]
|vt|0 =

[
0
0

]
)− pϕ(vt−1|1 =

[
1
1

]
|vt|1 =

[
0
0

]
) (212)

=[(s− 1)(C̃2,t − C2,t)(µ̄+
t )2(µ̄−

t )2][2(s− 1)2C2,t(µ̄+
t )4 + 3(s− 1)(C2,t + C̃2,t)(µ̄+

t )2(µ̄−
t )2 + 4C̃2,t(µ̄−

t )4]
[(s− 1)(µ̄+

t )2 + 2(µ̄−
t )]2[(s− 1)(µ̄+

t )2 + (µ̄−
t )2]2

(213)

pϕ(vt−1|0 =
[
1
1

]
|vt|0 =

[
1
1

]
)− pϕ(vt−1|1 =

[
1
1

]
|vt|1 =

[
1
1

]
) (214)

=[(s− 1)(C1,t − C̃1,t)(µ̄+
t )2(µ̄−

t )2][2(s− 1)2C1,t(µ̄+
t )4 + 3(s− 1)(C1,t + C̃1,t)(µ̄+

t )2(µ̄−
t )2 + 4C̃1,t(µ̄+

t )4]
[(s− 1)(µ̄−

t )2 + 2(µ̄+
t )]2[(s− 1)(µ̄−

t )2 + (µ̄+
t )2]2

(215)

pϕ(vt−1|0 =
[
1
1

]
|vt|0 =

[
1
1

]
)− pϕ(vt−1|0 =

[
1
1

]
|vt|1 =

[
1
0

]
) (216)
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=(s− 1){(s2 − 2s− 1)[(C1,t · C2,t − C̃1,t · C2,t) + (C̃1,t · C̃2,t − C̃1,t · C2,t)] + (3s+ 1)(C1,t · C̃2,t − C̃1,t · C̃2,t)}
s2(s+ 1)2

(217)

From detailed calculation, we can show that

min
vt

[
pϕ(vt−1|0 =

[
1
1

]
|vt|0 = vt)− pϕ(vt−1|1 =

[
1
1

]
|vt|1 = vt)

]
(218)

=[(s− 1)(C̃2,t − C2,t)(µ̄+
t )2(µ̄−

t )2][2(s− 1)2C2,t(µ̄+
t )4 + 3(s− 1)(C2,t + C̃2,t)(µ̄+

t )2(µ̄−
t )2 + 4C̃2,t(µ̄−

t )4]
[(s− 1)(µ̄+

t )2 + 2(µ̄−
t )]2[(s− 1)(µ̄+

t )2 + (µ̄−
t )2]2

(219)
:=Gt (220)

For t = 0, we have

pϕ(v1|1 =
[
1
1

]
)(pϕ(v0|0 =

[
1
1

]
|v1|0 =

[
1
1

]
)− pϕ(v0|1 =

[
1
1

]
|v1|1 =

[
1
1

]
))

+ pϕ(v1|1 =
[
0
0

]
)(pϕ(v0|0 =

[
1
1

]
|v1|0 =

[
0
0

]
)− pϕ(v0|1 =

[
1
1

]
|v1|1 =

[
0
0

]
))

+ pϕ(v1|1 =
[
1
0

]
)(pϕ(v0|0 =

[
1
1

]
|v1|0 =

[
1
0

]
)− pϕ(v0|1 =

[
1
1

]
|v1|1 =

[
1
0

]
))

+ pϕ(v1|1 =
[
0
1

]
)(pϕ(v0|0 =

[
1
1

]
|v1|0 =

[
0
1

]
)− pϕ(v0|1 =

[
1
1

]
|v1|1 =

[
0
1

]
)) (221)

=pϕ(v1|1 =
[
0
0

]
) · 1
sR̄2

1
+ pϕ(v1|1 =

[
0
0

]
) · 2
s

+ pϕ(v1|1 =
[
1
1

]
) · R̄

2
1
s

(222)

≥ 1
sR̄2

1
=: G0 (223)

Let Ft := pϕ(vt−1|0 =
[
1
1

]
|vt|0 =

[
1
1

]
)− pϕ(vt−1|0 =

[
1
1

]
|vt|0 =

[
1
0

]
), we have

Ft = 4(µ̄+
t )4A+ 4(s− 1)(µ̄+

t )2(µ̄−
t )2B + (s− 1)2(µ̄−

t )4C

(s+ 1)2[2(µ̄+
t )2 + (s− 1)(µ̄−

t )2]2
(224)

where

A = (s+ 1)2C2
1,t − [(s− 1)C̃1,t + 2C1,t][(s− 1)C1,t + 2C̃2,t], (225)

B = (s+ 1)2C̃1,t · C1,t − [(s− 1)C̃1,t + 2C1,t][(s− 1)C1,t + 2C̃2,t], (226)
C = (s+ 1)2C̃2

1,t − [(s− 1)C̃1,t + 2C1,t][(s− 1)C1,t + 2C̃2,t] (227)

Given that HT = 0, and by iteratively applying the inequality Ht−1 ≥ Gt + FtHt, we arrive at the desired
conclusion.

J.8 Proof of Lemma D.2

Proof. Since q(vT |1 =
[
0
0

]
) = q(vT |1 =

[
1
1

]
) = q(vT |1 =

[
1
0

]
) = q(vT |1 =

[
0
1

]
) = 1

4 . From induction and
symmetric properties, we obtain that for any t, we have

q(vt|1 =
[
0
0

]
) ≥ q(vt|1 =

[
1
0

]
) = q(vt|1 =

[
0
1

]
) ≥ q(vt|1 =

[
1
1

]
) (228)

On the other hand,

pϕ(vt−1|1 =
[
1
1

]
|vt|1 =

[
0
0

]
) <pϕ(vt−1|1 =

[
1
1

]
|vt|1 =

[
1
0

]
) = pϕ(vt−1|1 =

[
1
1

]
|vt|1 =

[
0
1

]
)
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<pϕ(vt−1|1 =
[
1
1

]
|vt|1 =

[
1
1

]
) (229)

Thus, using Chebyshev’s inequality,

pϕ(v0|1 =
[
1
1

]
) =

∑
v1

pϕ(v0|1 =
[
1
1

]
|v1|1 = v1)pϕ(v1|1 = v1) (230)

≤pϕ(v0|1 =
[
1
1

]
|v1|1 =

[
1
0

]
) + pϕ(v0|1 =

[
1
1

]
|v1|1 =

[
1
1

]
)pϕ(v1|1 =

[
1
1

]
) (231)

≤1
s

+ R̄2
1

R̄2
1 + s

· (1
4 min

t
{(
∑
v1

pϕ(vt−1|1 =
[
1
1

]
|vt|1 = v1))})︸ ︷︷ ︸

∆

(232)

=Θs(
1
s

) (233)

where from proof of Lemma D.1, we have

∆ = min
t

1
4 [C2,t · s · R̄2

t

s · R̄2
t + 1

+ C̃2,t

sR̄2
t + 1

+ C̃1,t · s
s+ R̄2

t

+ C1,t · R̄2
t

s+ R̄2
t

+ 2( C̃1,t · (s− 1)
s

+ C1,t·
s

)(C2,t · (s− 1)
s

+ C̃2,t

s
)].

(234)

K Additional Lemmas and Proofs

Lemma K.1 (Monotonicity of KL Divergence). Let PX1,X2,...,XT , QX1,X2,...,XT be probability measures
over random variables X1, X2, . . . , XT , where PX1 , QX1 are the marginal measures of PX1,X2,...,XT and
QX1,X2,...,XT , respectively. Then, by the monotonicity property of KL divergence, we have:

DKL(PX1∥QX1) ≤ DKL(PX1,X2,X3,...,XT ∥QX1,X2,...,XT ) (235)

Proof of Lemma K.1. The proof refer to (Polyanskiy, 2020).

Lemma K.2 (Boundedness of Posterior Distribution). The posterior distribution in discrete diffusion process
is given as q(vt−1|vt,v0) = Cat(vt−1; vtQTt ⊙ v0Qt−1/v0QtvTt ) such that

max
v0,vt−1,vt

q(vt−1|vt,v0) =
µ+
t · µ̄+

t−1

µ̄+
t

, min
v0,vt−1,vt

q(vt−1|vt,v0) =
µ−
t · µ̄−

t−1

µ̄+
t

. (236)

Proof of Lemma K.2. Since Qt = αtI + (1− αt)11
T

k , from definition, given l, j ∈ {1, 2, ..., k}

q(vt−1|vt = l,v0 = j) =
[αtI + (1− αt)11

T

k ]l,· ⊙ [αt−1I + (1− αt−1)11Tk ]j,·
[αtI + (1− αt)11

T

k ]j,l
(237)

[αtI + (1− αt)
11

T

k
]l,· = [µ−

t , µ
−
t , ..., µ

−
t , µ

+
t , µ

−
t , ..., µ

−
t ] (238)

[αt−1I + (1− αt−1)11
T

k
]l,· = [µ̄−

t−1, µ̄
−
t−1, ..., µ̄

−
t−1, µ̄

+
t−1, µ̄

−
t−1, ..., µ̄

−
t−1] (239)

1. When l = j, we have

[αtI + (1− αt)
11

T

k
]l,· ⊙ [αt−1I + (1− αt−1)11

T

k
]j,·
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= [µ−
t · µ̄−

t−1, ..., µ
−
t · µ̄−

t−1︸ ︷︷ ︸
l−1 terms

, µ+
t · µ̄+

t−1, µ
−
t · µ̄−

t−1, ...] (240)

Besides,

[αtI + (1− αt)
11

T

k
]l,j = µ̄+

t (241)

Therefore, we have the explicit form for q(vt−1|v = l,v0 = j)

q(vt−1|vt = l,v0 = j) = [
µ−
t · µ̄−

t−1

µ̄+
t

, ...,
µ−
t · µ̄−

t−1

µ̄+
t

,
µ+
t · µ̄+

t−1

µ̄+
t

,
µ−
t · µ̄−

t−1

µ̄+
t

, ...,
µ−
t · µ̄−

t−1

µ̄+
t

] (242)

2. When l ̸= j, we have

[αtI + (1− αt)
11

T

k
]l,· ⊙ [αt−1I + (1− αt−1)11

T

k
]j,·

= [µ−
t · µ̄−

t−1, ..., µ
−
t · µ̄−

t−1︸ ︷︷ ︸
l−1 terms

, µ+
t · µ̄−

t , ..., µ
−
t · µ̄−

t−1, ...︸ ︷︷ ︸
j−l−1 terms

, µ−
t · µ̄+

t−1, ..., µ
−
t · µ̄−

t−1] (243)

[αtI + (1− αt)
11

T

k
]l,j = µ̄−

t (244)

The explicit form of q(vt−1|vt = l,v0 = j) is given as:

q(vt−1|vt = l,v0 = j) = [
µ−
t · µ̄−

t−1

µ̄−
t

, ...,
µ+
t · µ̄−

t−1

µ̄−
t

, ...,
µ−
t · µ̄+

t−1

µ̄−
t

, ...] (245)

From above derivation, we can show that

max
v0,vt−1,vt

q(vt−1|vt,v0) =
µ+
t · µ̄+

t−1

µ̄+
t

, min
v0,vt−1,vt

q(vt−1|vt,v0) =
µ−
t · µ̄−

t−1

µ̄+
t

. (246)

Lemma K.3. Given a positive bounded trivariate kernel K(x, x̃, z) such that K(x, x̃, z) ∈ [c1, c2] and the
conditional probabilities q̃i(x̃|z) and p̃i(x̃|z) satisfy

DKL(q̃i(x̃|z)∥p̃i(x̃|z)) ≤ γ, i ∈ {0, 1},∀z.

Define qi(x|z) and pi(x|z) as

qi(x|z) =
∫
x̃

K(x, x̃, z)q̃i(x̃|z)dx̃, pi(x|z) =
∫
x̃

K(x, x̃, z)p̃i(x̃|z)dx̃, i ∈ {0, 1}. (247)

we have

Ez [DKL(p0(x|z)∥p1(x|z))] ≤ Ez [DKL(q0(x|z)∥q1(x|z))] + c2
2 · k
c1

√
γ

2 (248)

Proof of Lemma K.3. From Pinsker’s inequality, we have∫
x̃

|q̃i(x̃|z)− p̃i(x̃|z)|dx̃ ≤
√
DKL(q̃i(x̃|z)∥p̃i(x̃|z))

2 ≤
√
γ

2 , i ∈ {0, 1} (249)

Since positive kernel K(x, x̃, z) ∈ [c1, c2], we have

|qi(x|z)− pi(x|z)| =
∫
x̃

K(x, x̃, z)(q̃i(x̃|z)− p̃i(x̃|z)) ≤ c2

√
γ

2
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Thus, ∥qi(x|z) − pi(x|z)∥TV ≤ c2k
√

γ
2 . Now, for any given z, we consider

∫
x
p0(x|z) log p0(x|z)

p1(x|z) −∫
x
q0(x|z) log q0(x|z)

q1(x|z) :∫
x

p0(x|z) log p0(x|z)
p1(x|z) −

∫
x

q0(x|z) log q0(x|z)
q1(x|z)

≤
∫ (p0(x|z)− q0(x|z))(p0(x|z)− p1(x|z))

p1(x|z) +
∫
q0(x|z)(log p0(x|z)

q0(x|z) + log q1(x|z)
p1(x|z) )

≤c2 − c1

c1

∫
|p0(x|z)− q0(x|z)|+

∫
|p0(x|z)− q0(x|z)|+ c2

c1

∫
|q1(x|z)− p1(x|z)|

=c2

c1
(
∫
|p0(x|z)− q0(x|z)|+

∫
|p1(x|z)− q1(x|z)|)

≤c
2
2 · k
c1

√
γ

2

We take expectation on both sides and we obtain the result.

Lemma K.4. If
∑
i bi =

∑
i ai, we have∑

i

(bi − ai)ci ≤
1
2∥b− a∥ℓ1(max ci −min ci)

Proof of Lemma K.4. First, WLOG we can assume b1 − a1 ≥ b2 − a2 ≥ ... ≥ br − ar ≥ 0 ≥ br+1 − ar+1 ≥
... ≥ bn − an. Since

∑
i bi =

∑
i ai, we have

∑r
j=1(bj − aj) = −

∑n
s=r+1(bj − aj) = 1

2∥b− a∥l1 . Further, we
have

∑
i

(bi − ai) · ci =
r∑
j=1

(bj − aj) · cj +
n∑

s=r+1
(bj − aj) · cs (250)

=
r∑
j=1

(bj − aj) · cj +
n∑

s=r+1
(−(bj − aj)) · (−cs) (251)

≤max ci ·
1
2∥b− a∥l1 + (−min ci) ·

1
2∥b− a∥l1 (252)

=1
2∥b− a∥l1(max ci −min ci) (253)

Lemma K.5. For x, y, z ≥ 0,

(a+ 1)y + z

(ax+ y + z)(ay + x+ z + 1) ≤
a+ 1

(a2 + 1)x+ ay + az + 1 (254)

Proof of Lemma K.5. We reformulate the above inequality into a polynomial division problem. Define a
multivariate linear function f(x, y, z) = M1x+M2y +M3z +M4 such that

[(a+ 1)y + z] · f(x, y, z) ≤ (ax+ y + z) · (ay + x+ z + 1) (255)

We expand the terms on both sides, we have

R.H.S− L.H.S (256)
=[a2 −M1(a+ 1)]xy + [a−M2(a+ 1)]y2 + ((a+ 1)−M2 −M3(a+ 1))yz

+ ax2 + xy + (a+ 1−M1)xz + (1−M3)z2 + ax+ [1−M4(a+ 1)]y + (1−M4)z (257)
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Let M1 = a2+1
a=1 ,M2 = a

a+1 ,M3 = a
a+1 and M4 = 1

a+1 , we further have

R.H.S− L.H.S = 1
a+ 1yz + ax2 + 2a

a+ 1xy + 1
a+ 1z

2 + ax+ a

a+ 1 ≥ 0 (258)

Thus, we prove the inequality.

Lemma K.6. We upper bound the total variation of conditional probability gap as follows:

• If vit = v∗i, we have

∥q(vit−1|0|vt|0 = vt)− q(vit−1|1|vt|1 = vt)∥l1 ≤
µ+
t ·

µ̄+
t−1
µ̄+
t

· (1− R̄t
R̄t−1

)
1 + ζ(V1,v∗,vt, t)

(259)

• If vit ̸= v∗i, we have

∥q(vit−1|0|vt|0 = vt)− q(vit−1|1|vt|1 = vt)∥l1 ≤
µ+
t ·

µ̄−
t−1
µ̄−
t

· ( R̄t−1
R̄t
− 1)

1 + ζ(V1,v∗,vt, t)
(260)

Proof of Lemma K.6. 1. When vit = v∗i, we have

1
2∥q(v

i
t−1|0|vt|0 = vt)− q(vit−1|1|vt|1 = vt)∥l1 (261)

=
∑
vi
t−1

(q(vit−1|0|vt|0 = vt)− q(vit−1|1|vt|1 = vt))+ (262)

=
k∑

vi
t−1=1

∑
v0∈V1

τ(v∗i,vit−1,vit) · (1−
τ(vi0,v

i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

)+(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

(
∑

v0∈V1
(R̄t)ω̄(v∗,vt)−ω̄(v0,vt))(1 +

∑
v0∈V1

(R̄t)ω̄(v∗,vt)−ω̄(v0,vt))
(263)

(i)=τ(v∗i,v∗i,vit) ·
∑

v0∈V1
(1− τ(vi0,v

∗i,vit)
τ(v∗i,v∗i,vit)

)(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

(
∑

v0∈V1
(R̄t)ω̄(v∗,vt)−ω̄(v0,vt))(1 +

∑
v0∈V1

(R̄t)ω̄(v∗,vt)−ω̄(v0,vt))
(264)

=
µ+
t ·

µ̄+
t−1
µ̄+
t

· (1− R̄t
R̄t−1

) ·
∑

v0∈V1,vi0 ̸=v∗i(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

(
∑

v0∈V1
(R̄t)ω̄(v∗,vt)−ω̄(v0,vt))(1 +

∑
v0∈V1

(R̄t)ω̄(v∗,vt)−ω̄(v0,vt))
(265)

≤µ+
t ·

µ̄+
t−1

µ̄+
t

· (1− R̄t

R̄t−1
) · 1

1 + ζ(V1,v∗,vt, t)
(266)

where (i) is from that τ(vi0,vit−1,vit)/τ(v∗i,vit−1,vit) < 1 if and only if vit−1 = v∗i.

2. When vit ̸= v∗i, to simplify the notation, we abbreviate the terms as:

∑
vi
t−1

|
∑

v0∈V1

| :=
k∑

vi
t−1=1

∣∣∣∣ ∑
v0∈V1

τ(v∗i,vit−1,vit) · (1−
τ(vi0,v

i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

)(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

ζ(V1,v∗,vt, t)(1 + ζ(V1,v∗,vt, t))

∣∣∣∣
∑

vi
t−1=v∗i

|
∑

v0∈V1

| :=
∑

vi
t−1=v∗i

∣∣∣∣ ∑
v0∈V1

τ(v∗i,vit−1,vit) · (1−
τ(vi0,v

i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

)(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

ζ(V1,v∗,vt, t)(1 + ζ(V1,v∗,vt, t))

∣∣∣∣
∑

vi
t−1 ̸=v∗i,vit

|
∑

v0∈V1

| :=
∑

vi
t−1 ̸=v∗i,vit

∣∣∣∣ ∑
v0∈V1

τ(v∗i,vit−1,vit) · (1−
τ(vi0,v

i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

)(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

ζ(V1,v∗,vt, t)(1 + ζ(V1,v∗,vt, t))

∣∣∣∣
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∑
vi
t−1

|
∑

v0=vit

| :=
k∑

vi
t−1=1

∣∣∣∣∑
v0vit

τ(v∗i,vit−1,vit) · (1−
τ(vi0,v

i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

)(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

ζ(V1,v∗,vt, t)(1 + ζ(V1,v∗,vt, t))

∣∣∣∣

We have

∥q(vit−1|0|vt|0 = vt)− q(vit−1|1|vt|1 = vt)∥ =
∑
vi
t−1

|
∑

v0∈V1

| (267)

≤
∑

vi
t−1=v∗i

|
∑

v0∈V1

|+
∑

vi
t−1 ̸=v∗i,vit

|
∑

v0 ̸=vi
t−1

|+
∑

vi
t−1 ̸=v∗i,vit

|
∑

v0=vi
t−1

|+
∑

vi
t−1=vit

|
∑

v0∈V1

| (268)

=
∑

vi
t−1=v∗i

∑
v0∈V1

+
∑

vi
t−1 ̸=v∗i,vit

∑
v0 ̸=vi

t−1

−
∑

vi
t−1 ̸=v∗i,vit

∑
v0=vi

t−1

−
∑

vi
t−1=vit

∑
v0∈V1

(269)

=
∑

vi
t−1=v∗i

∑
v0∈V1

+
∑

vi
t−1 ̸=v∗i,vit

∑
v0 ̸=vi

t−1

+
∑

vi
t−1 ̸=v∗i,vit

∑
v0=vi

t−1

− (2
∑

vi
t−1 ̸=v∗i,vit

∑
v0=vi

t−1

+
∑

vi
t−1=vit

∑
v0∈V1

) (270)

=
∑

vi
t−1 ̸=vit

∑
v0∈V1

−2
∑

vi
t−1 ̸=v∗i,vit

∑
v0=vi

t−1

−
∑

vi
t−1=vit

∑
v0∈V1

(271)

=− 2
∑

vi
t−1=v∗i

∑
v0∈V1

−2
∑

vi
t−1=vit

∑
v0=vit

(272)

Therefore, from above we have

1
2∥q(v

i
t−1|0|vt|0 = vt)− q(vit−1|1|vt|1 = vt)∥l1 (273)

≤− τ(v∗i,vit,vit)
∑

v0∈V1
(1− τ(vi0,v

i
t,v

i
t)

τ(v∗i,vit,vit)
)(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

(ζ(V1,v∗,vt, t))(1 + ζ(V1,v∗,vt, t))

−
∑

vi
t−1 ̸=v∗i,vit

τ(v∗i,vit−1,vit)

∑
v0∈V1,v0=vi

t−1
(1− τ(vi0,v

i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

)(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

(ζ(V1,v∗,vt, t))(1 + ζ(V1,v∗,vt, t))
(274)

=µ+
t

µ̄−
t−1

µ̄−
t

( R̄t−1

R̄t
− 1)

∑
v0∈V1,vi0=vit

(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

(ζ(V1,v∗,vt, t))(1 + ζ(V1,v∗,vt, t))
(275)

+
µ−
t µ̄

−
t−1

µ̄−
t

(R̄t − 1)
∑

v0∈V1,v0 ̸=vit,v∗i(R̄t)ω̄(v∗,vt)−ω̄(v0,vt)

(ζ(V1,v∗,vt, t))(1 + ζ(V1,v∗,vt, t))
(276)

(i)
≤µ+

t ·
µ̄−
t−1

µ̄−
t

· ( R̄t−1

R̄t
− 1) · 1

1 + ζ(V1,v∗,vt, t)
(277)

(i) is from the fact that

µ+
t ·

µ̄−
t−1

µ̄−
t

· ( R̄t−1

R̄t
− 1)

/
µ−
t · µ̄−

t−1

µ̄−
t

· (R̄t − 1) (278)

=µ+
t

µ−
t

( R̄t−1

R̄t
− 1) 1

R̄t − 1
= 1 + (k − 1)αt

1 + (k − 1)ᾱt
1− ᾱt

1− ᾱt−1

1
αt

> 1 (279)
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Lemma K.7. Given η ∈ [n], when ep ≤ 4
5 , we have the following results

η + 1 = argmax
h;h∈{η+1,...,n}

(
eh

η

)η
qh−η and

(
eh

η

)η
qh−η is monotonically decreasing, (280)

2η = argmax
h;h∈{2η,2η+1,...,n}

(
eqh

h− η

)h−η

and
(
eqh

h− η

)h−η

is monotonically decreasing. (281)

In the second equation, we assume η ≤ ⌊n2 ⌋.

Proof of Lemma K.7. We first show η + 1 = argmaxh;h∈{η+1,...,n}

(
eh
η

)η
qh−η:

Let x = η + h, and f(x) = ((1 + x
η )e)x. Easy to show that f(x) =

(
eh
η

)η
qh−η. Now consider f(x)/f(x+ 1):

f(x)
f(x+ 1) =

((1 + x
η )e)ηqx

((1 + x+1
η )e)ηqx+1 = ( η + x

(η + x+ 1)q
1
η

)η (282)

Now compare (η + x) and (η + x+ 1)q
1
η , since

( η + x

η + x+ 1)η ≥ ( η

η + 1)η ≥ 1
e
> q (283)

Thus, when eq ≤ 4
5 , f(x) is monotonically decreasing. Therefore,

1 = argmax
x;x∈{1,2,...,n−η}

f(x)⇔ η + 1 = argmax
h;h∈{η+1,...,n}

(
eh

η

)η
qk−η (284)

We now show 2η = argmaxh;h∈{2η,2η+1,...,n}

(
eqh
h−η

)h−η

:

Let x = η + h, x ≥ η, x ≤ n− η, and f(x) = (eq(1 + η
x ))x. Consider the monotonicity of f(x).

f ′(x) = (eq(1 + η

x
))x ·

[
log(eq(1 + η

x
))− η

x+ η

]
(285)

Further consider log(eq(1 + η
x ))− η

x+η . Let ξ = x
η , ξ ≥ 1, ξ ≤ n

η − 1, φ(ξ) = log(eq(1 + 1
ξ ))− 1

1+ξ .

φ(ξ) = − ξ

(1 + ξ)2 < 0 (286)

Hence, φ is monotonically decreasing. When eq ≤ 4
5 , φ(1) = log(2) + log(eq)− 1

2 < 0. Thus, f ′(x) < 0 for
x ∈ {η, η + 1, ..., n− η}. f(x) therefore is monotonically decreasing.

η = argmax
x;x∈{η,η+1,...,n−η}

f(x)⇔ 2η = argmax
h;h∈{2η,2η+1,...,n}

(
eqh

h− η

)h−η

(287)

Corollary K.1. Given η ∈ [n], when ep ≤ 4
5 . Define

f(h) = min
{(

eh

η

)η
qh−η,

(
eqh

h− η

)h−η}
(288)

We have

f(h) =


When h ∈ {η + 1, η + 2, ...,min{2η − 1, n}}, f(h) =

(
eh

η

)η
qh−η

When η ≤ ⌊n2 ⌋ and h ∈ {2η, ..., n}, f(h) =
(
eqh

h− η

)h−η (289)
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Lemma K.8 (Optimality of pϕ(vi0|vt)). Let q(·) and pϕ denote the probability measure in the forward
diffusion and backward denoising process respectively. In the training procedure, we are actually solving the
following optimization problem:

minimize DKL

(
q(v0)∥

n∏
i=1

∑
vt

pϕ(vi0|vt) · q(vt)
)

(290)

and the optimal solution is obtained when pϕ(vi0|vt) = q(vi0|vt).

Proof of Lemma K.8. Reformulate the KL divergence as follows:

minimize DKL

(
q(v0)∥

n∏
i=1

∑
vt

pϕ(vi0|vt) · q(vt)
)

(291)

⇔maximize
∑
v0

q(v0) log
n∏
i=1

∑
vt

pϕ(vi0|vt) · q(vt) (292)

Let pi(vi0) :=
∑

vt pϕ(vi0|vt) · q(vt). The above objective is
∑

v0
q(v0) log pi(vi0). Further define qi(vi0) :=∑

vt q(v
i
0|vt) · q(vt).

∑
v0

q(v0) log
n∏
i=1

∑
vt

q(vi0|vt) · q(vt)−
∑
v0

q(v0) log
n∏
i=1

∑
vt

pϕ(vi0|vt) · q(vt) (293)

=
∑
v0

q(v0) log
n∏
i=1

qi(vi0)−
∑
v0

q(v0) log
n∏
i=1

pi(vi0) (294)

=
∑
v0

q(v1
0,v2

0, ...,vn0 )
n∑
i=1

log qi(v
i
0)

pi(vi0) (295)

=
n∑
i=1
DKL(qi(vi0)∥pi(vi0)) ≥ 0 (296)

Therefore, the equality hold when pϕ(vi0|vt) = q(vi0|vt).

L Specific Discussion on τ(vi
0, vi

t−1, vi
t)

Recall that

τ(vi0,vit−1,vit) =
[(µ+

t )
1−1vi

t
̸=vi
t−1 (µ−

t )
1vi
t

̸=vi
t−1 ] · [(µ̄+

t−1)
1−1vi

t−1 ̸=vi0 (µ̄−
t−1)

1vi
t−1 ̸=vi0 ]

(µ̄+
t )1−1vi

t
̸=vi0 (µ̄−

t )1vi
t

̸=vi0

(297)

There are in total five possible conditions:

• If vit−1 = vit and vi0 = vit, τ(vi0,vit−1,vit) = µ+
t µ̄

+
t−1

µ̄+
t

.

• If vit−1 = vit and vi0 ̸= vit, τ(vi0,vit−1,vit) = µ+
t µ̄

−
t−1

µ̄−
t

.

• If vit−1 ̸= vit and vi0 = vit, τ(vi0,vit−1,vit) = µ−
t µ̄

−
t−1

µ̄+
t

.

• If vit−1 ̸= vit and vi0 = vit−1, τ(vi0,vit−1,vit) = µ−
t µ̄

+
t−1

µ̄−
t

.

• If vit−1 ̸= vit and vi0 ̸= vit and vi0 ̸= vit−1, τ(vi0,vit−1,vit) = µ−
t µ̄

−
t−1

µ̄−
t

.
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Since in the derivation, we encounter the ratio τ(vi0,vit−1,vit)/τ(v∗i,vit−1,vit). Therefore, we discuss the ratio
in detail here. Define κ(v∗i,vi0,vit−1,vit) = τ(vi0,v

i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)

= q(vit−1|0=vit−1|vi0|0=vi0)
q(vi

t|0=vit|vi0|0=vi0)
q(vit|0=vit|v

i
0|0=v∗i)

q(vi
t−1|0=vi

t−1|vi0|0=v∗i) . In the
following, we will denote it simply as κ.

• When vit = v∗i

– If vit−1 = vit and vi0 = vit, κ = 1

– If vit−1 = vit and vi0 ̸= vit, κ = µ̄+
t µ̄

−
t−1

µ̄−
t µ̄

+
t−1

= R̄t/R̄t−1 < 1

– If vit−1 ̸= vit and vi0 = vit, κ = 1

– If vit−1 ̸= vit and vi0 ̸= vit and vi0 = vit−1, κ = µ̄+
t µ̄

+
t−1

µ̄−
t µ̄

−
t−1

= R̄tR̄t−1 > 1

– If vit−1 ̸= vit and vi0 ̸= vit and vi0 ̸= vit−1, κ = µ̄+
t

µ̄−
t

= R̄t > 1

• When vit ̸= v∗i

– If vit−1 = vit and vi0 = vit, κ = µ̄+
t−1µ̄

−
t

µ̄−
t−1µ̄

+
t

= R̄t−1/R̄t > 1

– If vit−1 = vit and vi0 ̸= vit, κ = 1

– If (vit−1 ̸= vit and vit−1 = v∗i) and vi0 = vit, κ = µ̄−
t µ̄

−
t−1

µ̄+
t µ̄

+
t−1

= 1/(R̄t−1R̄t) < 1

– If (vit−1 ̸= vit and vit−1 ̸= v∗i) and vi0 = vit, κ = µ̄−
t

µ̄+
t

= 1/R̄t < 1

– If (vit−1 ̸= vit and vit−1 = v∗i) and vi0 ̸= vit and vi0 = vit−1, κ = 1

– If (vit−1 ̸= vit and vit−1 ̸= v∗i) and vi0 ̸= vit and vi0 = vit−1, κ = µ̄+
t−1
µ̄−
t−1

= R̄t−1 > 1

– If (vit−1 ̸= vit and vit−1 = v∗i) and vi0 ̸= vit and vi0 ̸= vit−1, κ = µ̄−
t−1
µ̄+
t−1

= 1/R̄t−1 < 1

– If (vit−1 ̸= vit and vit−1 ̸= v∗i) and vi0 ̸= vit and vi0 ̸= vit−1, κ = 1

Further, we define κ̄(v∗i,vi0,vit−1,vit) = τ(vi0,v
i
t−1,v

i
t)

τ(v∗i,vi
t−1,v

i
t)
· ( µ̄

+
t

µ̄−
t

)1
v∗̸=vi

t
−1vi0 ̸=vi

t .

• When vit = v∗i

– If vit−1 = vit and vi0 = vit, κ̄ = 1

– If vit−1 = vit and vi0 ̸= vit, κ̄ = µ̄−
t−1
µ̄+
t−1

= 1/R̄t−1 < 1

– If vit−1 ̸= vit and vi0 = vit, κ̄ = 1

– If vit−1 ̸= vit and vi0 = vit−1, κ̄ = µ̄+
t−1
µ̄−
t−1

= R̄t−1 > 1

– If vit−1 ̸= vit and vi0 ̸= vit and vi0 ̸= vit−1, κ̄ = 1

• When vit ̸= v∗i

– If vit−1 = vit and vi0 = vit, κ̄ = µ̄+
t−1
µ̄−
t−1

= R̄t−1 > 1

– If vit−1 = vit and vi0 ̸= vit, κ̄ = 1

– If (vit−1 ̸= vit and vit−1 = v∗i) and vi0 = vit, κ̄ = µ̄−
t−1
µ̄+
t−1

= 1/R̄t−1 < 1

– If (vit−1 ̸= vit and vit−1 ̸= v∗i) and vi0 = vit, κ̄ = 1
– If (vit−1 ̸= vit and vit−1 = v∗i) and vi0 ̸= vit and vi0 = vit−1, κ̄ = 1
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– If (vit−1 ̸= vit and vit−1 ̸= v∗i) and vi0 ̸= vit and vi0 = vit−1, κ̄ = µ̄+
t−1
µ̄−
t−1

= R̄t−1 > 1

– If (vit−1 ̸= vit and vit−1 = v∗i) and vi0 ̸= vit and vi0 ̸= vit−1, κ̄ = µ̄−
t−1
µ̄+
t−1

= 1/R̄t−1 < 1

– If (vit−1 ̸= vit and vit−1 ̸= v∗i) and vi0 ̸= vit and vi0 ̸= vit−1, κ̄ = 1
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