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Abstract

The phenomenon of double descent has challenged the traditional bias-variance trade-off
in supervised learning but remains unexplored in unsupervised learning, with some studies
arguing for its absence. In this study, we first demonstrate analytically that double descent
does not occur in linear unsupervised autoencoders (AEs). In contrast, we show for the first
time that both double and triple descent can be observed with nonlinear AEs across various
data models and architectural designs. We examine the effects of partial sample and feature
noise and highlight the importance of bottleneck size in influencing the double descent curve.
Through extensive experiments on both synthetic and real datasets, we uncover model-wise,
epoch-wise, and sample-wise double descent across several data types and architectures. Our
findings indicate that over-parameterized models not only improve reconstruction but also
enhance performance in downstream tasks such as anomaly detection and domain adaptation,
highlighting their practical value in complex real-world scenarios.

1 Introduction

In recent years, studies have shown that over-parameterized models outperform smaller models in generalization
(Krizhevsky et al., 2012; He et al., 2016), challenging the traditional bias-variance tradeoff (Hastie et al., 2009).
This is explained by the double descent phenomenon, extensively studied in supervised learning (Belkin
et al., 2019; Nakkiran et al., 2021; Dar et al., 2021). However, double descent has yet to be demonstrated
in a fully unsupervised setting, with one study arguing for the absence of the phenomenon in unsupervised
autoencoders (AEs) (Lupidi et al., 2023).

In this study, we use AEs to explore double descent and its impact on key unsupervised tasks like domain
adaptation, anomaly detection, and robustness to noisy data. AEs are widely used in unsupervised tasks such
as denoising (Vincent et al., 2008; 2010), manifold learning (Wang et al., 2014; Duque et al., 2020), clustering
(Song et al., 2013; Yang et al., 2019), anomaly detection (Sakurada & Yairi, 2014; Zhou & Paffenroth, 2017),
feature selection (Han et al., 2018; Gong et al., 2022), domain adaptation (Deng et al., 2014; Yang et al.,
2021), segmentation (Myronenko, 2019; Baur et al., 2021), and generative modeling (Kingma, 2013; Doersch,
2016), making them a prominent use case when studying double descent in unsupervised learning.

We start by analyzing linear AEs, whose lack of nonlinear activation functions allows for theoretical exploration.
We prove and empirically confirm that double descent does not occur in linear unsupervised AEs. We then
investigate nonlinear AEs and find that multiple descents emerge across different data models and architectures.

Figure 1: Demonstration of double descent phe-
nomenon with unsupervised AEs for the "sample noise"
scenario (Subsection 3.1). We present the test loss for
varying epochs and hidden layer sizes.
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We provide extensive evidence showing the phenomenon in unsupervised nonlinear AEs trained on contami-
nated data, with "memorization" causing overfitting and performance degradation. However, we find that
over-parameterized models can extract the true signal, leading to a second descent and improved performance.

Our experiments focus on synthetic and real-world datasets under various contamination scenarios, including
noise, domain shifts, and outliers. Additionally, we identify model, epoch, and sample-wise double descent,
highlighting the bottleneck size’s role in shaping the double descent curve.

These findings provide critical insights into the dynamics of unsupervised learning and the interplay between
model capacity, noise, and performance. The phenomenon is shown in Figure 1, illustrating the bias-variance
tradeoff, the critical regime, and the second descent induced by over-parametrization of unsupervised AEs.

Our findings have important implications for key tasks in unsupervised learning. Specifically, we show that
over-parameterized models adapt better to target domains when trained on source domains despite domain
shifts. We also reveal non-monotonic performance in anomaly detection as model complexity increases,
underscoring the practical relevance of our results, particularly when addressing outliers and domain shifts.

Our main contributions are summarized below:

(a) To the best of our knowledge, this is the first demonstration of model and epoch, and sample-wise double
descent in a fully unsupervised setting. We analyze and contrast the behavior of linear and nonlinear AEs
through analytical and empirical evaluations, highlighting their distinct dynamics.

(b) We analyze various factors influencing the presence of double descent, including sample and feature noise,
domain shifts, anomalies, and architecture design (bottleneck size).

(c) We show that double descent in reconstruction loss of AE causes non-monotonic performance in real-world,
downstream tasks like domain adaptation and anomaly detection.

2 Related Work

Most research on double descent has focused on supervised settings. Model-wise double descent was
demonstrated in (Spigler et al., 2018), while (Li et al., 2020; Bartlett et al., 2020; Nakkiran et al., 2021;
Gamba et al., 2022; Hastie et al., 2022) explore the impact of feature, label noise, and Signal-to-Noise ratio
(SNR) on the double descent curve. (Nakkiran et al., 2021; Dubova, 2022; Gamba et al., 2022; Kausik et al.,
2023; Sonthalia & Nadakuditi, 2023) demonstrated epoch-wise and sample-wise double descent, and multiple
descents were discussed in (Adlam & Pennington, 2020; Liang et al., 2020; Chen et al., 2021).

While double descent is well-studied in supervised settings, its presence in unsupervised tasks is less understood.
For example, (Lupidi et al., 2023) argued that model-wise double descent does not occur in unsupervised

(a) The FCN AE model structure.
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(b) Linear AE models.
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(c) Nonlinear AE models.

Figure 2: (a): Illustration of our AE model. The embedding layer serves as a bottleneck when the hidden
layers are larger. (b), (c): Test losses of linear and nonlinear AEs for different hidden and embedding sizes.
Linear AEs do not exhibit double descent, whereas, in nonlinear AEs, we clearly see the phenomenon when
varying both the hidden layer and embedding layer size. Train losses are illustrated in Appendix D, Figure 18.
AEs were trained on the subspace data model (Subsection 3.1) with 90% sample noise and SNR = -15 dB.
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AEs, and (Gedon et al., 2022) found it absent in principal component analysis (PCA) (Shlens, 2014b). In
contrast, supervised PCA tasks like principal component regression (PCR) (Massy, 1965) show evidence
of the phenomenon (Xu & Hsu, 2019; Teresa et al., 2022), highlighting key differences and challenges in
observing double descent in unsupervised settings.

In this work, we study AEs’ unsupervised objective of minimizing reconstruction error, ∥Φ(x) − x∥2
2, where x

is the input and Φ(x) is the AE’s output. This learning framework, which has not previously shown double
descent, falls outside the settings explored in prior studies. We find that linear AEs lack double descent,
while nonlinear AEs show double and triple descent, underscoring the role of nonlinearity. Our analysis spans
model, epoch, and sample levels, exploring the impact of bottleneck size, hidden layers, noise magnitude, and
sample contamination. We also demonstrate double descent in real-world unsupervised scenarios like domain
shifts, anomalies, and additive noise, with implications beyond reconstruction tasks.

3 Data Model

This section details the training data, testing data, and contamination models used to study double descent.

3.1 Subspace Data Model

We revisited the model used in (Lupidi et al., 2023), which argued that “double descent does not occur in
self-supervised settings.” We sampled N i.i.d. Gaussian vectors of size d (zi ∼ N (0, Id)), representing latent
features and embedded them to a higher-dimensional space using H of size D × d, (D > d, Hij ∼ N (0, 1)).
Our dataset differs from (Lupidi et al., 2023), and we explore four scenarios in our study:

Sample Noise. We study how the proportion of noisy training samples (p), affects the test loss curve. Unlike
(Lupidi et al., 2023), which adds noise to all samples, we vary p and use different SNR values (Appendix A,
Table 1). This gives the following equation for the training samples:

xi =
{

βHzi + ϵi, with probability p,

βHzi, with probability 1 − p,
(1)

where ϵi ∼ N (0, ID) represents noise added to samples with probability p and β controls the SNR.

Feature Noise. We study the impact of noisy training features on the test loss curve by selecting the same
⌊D · p⌋ features to be noisy across all samples. This simulates ⌊D · p⌋ unreliable or noisy measuring tools.

When noise is added to the data, we quantify the ratio between signal and noise power using the SNR. A
high SNR indicates high-quality (clean) data, whereas a low SNR corresponds to lower-quality (noisy) data,
where the noise dominates. We report SNR values in decibels, defined as SNR [dB] = 20 · log10( E[∥βHz∥2]

E[∥ϵ∥2] ).
To ensure the training data is sufficiently noisy, we consider cases where SNR ≤ 0, meaning the noise power
exceeds that of the signal. The SNR calculations for both sample and feature noise scenarios are presented in
Appendix B, and a visualization of the data generation is illustrated in Appendix A, Figure 14.

Domain Shift. We analyze test loss behavior under domain shifts by projecting the test and train latent
features using H and H

′′ respectively, with a shift modeled as H
′′ = H + s · H

′ , where H
′

ij ∼ N (0, 1) adds
perturbations, and s > 0 controls the shift,

xi =
{

Hzi, if train,

H
′′
zi, if test.

This data model is illustrated in Appendix A, Figure 15.

Anomalies. We examine how train-set anomalies affect the test loss curve. Normal samples are {βHzi}N
i=1,

while anomalies follow N (0, ID). The Signal-to-Anomaly Ratio (SAR), controlled by β, sets their magnitude
ratio. We replace p · 100% of normal samples with anomalies. Illustration is shown in Appendix A, Figure 16.

We additionally provide results for a nonlinear subspace data model across all the aforementioned contamina-
tion scenarios (i.e., sample and feature noise, domain shift, and anomalies) in Appendix F.4.
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In the following subsections (i.e., 3.2, 3.3, 3.4), we present real-world, high-dimensional datasets from diverse
domains, trained on different architectures. This setup allows us to demonstrate the generalization of the
double descent phenomenon across both datasets and model types. Due to their high dimensionality, these
datasets are well-suited for dimensionality reduction via AEs, as also explored in prior work (Eraslan et al.,
2019), (Yan et al., 2016), (Wang et al., 2016), (Meng et al., 2017).

3.2 Single-Cell RNA Data

We used single-cell RNA data from (Tran et al., 2020) to demonstrate our findings in a challenging, high-
dimensional real-world setting. The dataset was chosen due to its inherent domain shifts, which include 5
distinct domains (biological batches) stemming from differences in laboratory conditions and measurement
technologies. This makes it particularly suitable for testing our claims about double descent under real-world
distribution shifts, which are common in biological and medical data (Haghverdi et al., 2018; Shaham et al.,
2017). Each batch represents 15 different cell types, where each cell (sample) in this dataset contains over
15,000 genes (features), making it a high-dimensional dataset. Due to the real-world nature, we cannot
control the shifts between the training (source) and test (target) datasets. This dataset is used for sample
and feature noise, as well as domain shift scenarios.

3.3 CelebA Data

The CelebA dataset (Liu et al., 2015) was selected to evaluate the impact of model complexity on unsupervised
anomaly detection performance (Han et al., 2022). CelebA provides a rich, real-world setting with data
attributes, making it particularly suitable for testing whether model complexity translates into non-monotonic
trends in downstream tasks such as anomaly detection.

3.4 MNIST and CIFAR-10

We employed the MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky et al., 2009) datasets to evaluate
our findings on standard image benchmarks, demonstrating double descent under sample noise, feature noise,
and domain shift scenarios. These datasets also support reproducibility across different model architectures
and data domains.

For more information about the nonlinear data model, single-cell RNA, celebA, MNIST, and CIFAR-10
datasets, refer to Appendix A.

4 Model Architecture

This section details the model architectures used to study double descent.

4.1 Fully-connected Neural Network (FCN)

We used FCNs (see architecture in Figure 2(a)) to study double and triple descent across all mentioned data
models. FCNs are widely used with tabular data and have recently demonstrated state-of-the-art results in
various tasks (Gorishniy et al., 2024a;b; Shenkar & Wolf, 2022; Rauf et al., 2024; Svirsky & Lindenbaum).

4.2 Convolutional Neural Network (CNN)

To illustrate the generality of our findings, we additionally present double descent phenomena using CNNs
(architecture provided in Appendix A, Figure 17) trained on image datasets. A subset of the results is
included in Subsection 6.1, while the majority, along with further experimental details, can be found in
Appendix F.3. The results in the main paper for this architecture also include the training loss, whereas all
other figures in the main paper, based on FCNs, show only test losses, with corresponding training losses
provided in the Appendix. Across all experiments involving CNNs, the training loss consistently shows a
monotonic decrease, similar to the other settings with FCNs.

4



Under review as submission to TMLR

5 No Double Descent in Linear AEs

This section presents theoretical analysis and empirical evidence showing that linear AEs do not display the
double descent phenomenon. These results, along with our subsequent empirical findings regarding multiple
descents in nonlinear AEs, highlight the crucial role of nonlinearity in shaping the test loss curve.

Notation and setup. Consider a general linear AE, Φ(·; θ) : RD → RD, which consists of L ≥ 2 layers and
is parameterized by θ ≜

{
W d1×D

1 , . . . , W
dL−1×dL−2
L−1 , W

D×dL−1
L

}
. Here, Wi represents the weights parameters

associated with the i-th layer, for i ∈ [L]. For simplicity, we denote D = {di | i ∈ [L]} (including dL = d0 = D).
Accordingly, we let m = mini∈[L] di to be the bottleneck of the autoencoder, namely, ∀i ∈ [L], m ≤ di, and
m ≤ D. Formally, the model Φ is given by, Φ(x; θ) = WLWL−1 · · · W2W1x.

Training the AE is based on empirical risk minimization:

1
N

min
θ

N∑
i=1

L(θ; xi) = min
θ

1
N

N∑
i=1

∥Φ(xi; θ) − xi∥2
2 .

According to the formulation of noisy training samples in (1), let Px denote the distribution from which
the xi’s are drawn, i.e., xi ∼ Px. Similarly, let Px̃ represent the distribution from which the non-noisy
evaluation samples x̃i’s are drawn (see the bottom part of (1)). Then, for the trained Φ(x; θopt), where
θopt = argminθ

1
N

∑N

i=1 L(θ; xi), we formalize the generalization error (G) on the distribution of the clean data
as:

G(D; θopt, Px̃) = EPx̃

[
∥Φ(x̃; θopt) − x̃∥2

2
]

.

Note that the error depends on the AE architecture, which is characterized by the set of dimensions D.

Theoretical results. The following theorem shows that double descent does not occur in linear AEs. We
use the above notations, where a subscript (a or b) distinguishes between different AEs.
Assumption 5.1. Let X = (x1, x2, . . . , xN ) ∈ RD×N be the training set, i.i.d. sampled as (1). Assume
that the number of samples N is large enough such that rank(X) = D almost surely.
Theorem 5.2. Let Φa(·; θ), Φb(·; θ) : RD → RD be two linear AEs, each with L ≥ 2 layers and architectures
defined by Da and Db, with bottleneck sizes ma and mb, where ma < mb ≤ D. Let θopt

a and θopt
b be the

optimal parameters under assumption 5.1. Let d denote the dimension of the support of Px̃ (the dimension of
the span of the samples x̃ ∼ Px̃). Then, the following holds,

G
(

Db; θopt
b , Px̃

)
≤ G

(
Da; θopt

a , Px̃

)
,

with equality if: (1) ma = mb, even if Da ̸= Db, or (2) ma, mb ≥ D.

The proof of Theorem 5.2 can be found in Appendix C. This result shows that the G (test loss) decreases
as the bottleneck size m increases. Interestingly, it implies that the G remains unchanged if the bottleneck
dimension is preserved, even if the size of other layers increases. Since the proof does not depend on the
similarity between Px and Px̃, the theorem holds for scenarios where Px ̸= Px̃, including the cases of domain
shifts and anomalies discussed in Subsection 3.1.

Empirical results. To validate our theory, we used the data model in Subsection 3.1 and an FCN AE
without nonlinear activations (Figure 2(a)). Training linear AEs of varying sizes (Figure 2(b)) shows that
test loss decreases as bottleneck size increases and is unaffected by non-bottleneck layer size. These results
align with our theorem, explaining the absence of double descent in linear AEs.

6 Double Descent in Nonlinear AEs

We demonstrate the double descent phenomenon using FCN undercomplete AEs (Figure 2(a)), minimizing
mean squared error (MSE) between inputs and outputs. Results are based on 5 to 15 random seeds, with
implementation details in Appendix A. We trained models on contaminated datasets and tested on clean
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(a) Subspace model. SNR = -15 dB.
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(b) Single-cell RNA. SNR = -17 dB.
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(c) MNIST. SNR = -17 dB.

Figure 3: Model-wise double and triple descents for varying sample noise. Train losses are depicted in
Appendix D, Figure 19.

data, showing noise memorization (high test loss) versus signal learning (low test loss) and observed model,
epoch, and sample-wise multiple descents. Train loss results of the FCNs are detailed in Appendix D, with
additional findings on nonlinear synthetic datasets in Appendix F.4. We also present double descent results
for CNN AE models (Appendix A, Figure 17) in Subsection 6.1, Figures 3(c), 4(c), 5(b) and in Appendix F.3.

6.1 Model-Wise Double Descent

This section analyzes test loss with increasing model sizes, breaking down the double descent phenomenon
into hidden-wise and bottleneck-wise variations and showing their impact on test loss. We find that various
contaminations (Section 3) manipulate the interpolation threshold location and value. Double descent is more
common with severe contaminations, as models in the critical regime interpolate noise instead of learning the
signal, leading to higher test loss.

Figure 2(c) illustrates double descent in nonlinear AEs, concluding that nonlinear activations cause this
phenomenon in unsupervised AEs. We define bottleneck-wise and hidden-wise double descent to distinguish
between various model sizes and highlight the significance of our architectural choices. FCN undercomplete
AEs (m < D = 50) have a bottleneck set by the smallest layer, with the critical regime and second descent
(improving reconstruction) occurring when hidden layers exceed this size (above the white dashed line).
Increase in bottleneck shifts the critical regime. Hidden layers above the dashed line set the embedding layer
as the bottleneck, while smaller hidden layers become the bottleneck (Figure 2(a)). FCN overcomplete AEs
(m ≥ D) trivially learn the identity function and excluded from this study (see Appendix F.2, Figure 34).

Sample and feature noise. Figure 3(a) (FCN) shows that increasing sample noise raises test loss, as
higher noise levels dominate training and degrade performance. Higher noise levels also shape the double
descent curve by shifting the critical regime to larger models, which are needed to memorize more noise.
At low noise levels such as 0–20% sample noise, double descent is absent due to insufficient noise in the
training data, making models in the critical regime learn the signal and preventing a test loss increase. This
underscores noise as a key factor in the phenomenon. Figure 3(b) (FCN) demonstrates triple descent in
single-cell RNA data, with similar test loss behavior across both interpolation phases. Appendices E, F.3, F.4
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Figure 4: The effect of SNR (sample noise case) on the test loss curve. Train losses are illustrated in
Appendix D, Figure 20.
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Figure 5: Model-wise non-monotonic behavior and double descent for varying domain shifts. Appendix D,
Figure 21 shows the train loss behavior.

provide additional evidence of double descent with feature noise. Figure 3(c) presents double descent results
for CNNs trained on the MNIST dataset. Additional results of CNNs trained on MNIST and CIFAR-10
datasets and further details regarding these experiments are presented in Appendix F.3.

We also observed final ascent, where test loss increases after double descent, mirroring patterns seen in
supervised learning (Xue et al., 2022). This is demonstrated for single-cell RNA data with 0–20% sample
noise (Appendix F.5, Figure 56(b)). To demonstrate the generality of the phenomenon, we also report double
and triple descent under Laplacian noise and in sparse AEs (Appendix F.6).

SNR. Figure 4 shows that SNR plays a key role in shaping test loss and revealing double descent. Negative
SNR lets noise dominate the training set, causing memorization in the critical regime and exposing double
descent. As SNR increases, noise influence diminishes, allowing better signal learning and lowering test loss.
At SNR = 0 dB (Figures 4(a), 4(c)), double descent is absent or barely recognizable because noise is not
dominant enough to trigger memorization.

Domain shift. Our experiments reveal non-monotonic behavior in test loss under domain shifts for the
subspace data model using FCNs (Figure 5(a)). As the shift increases, test loss rises, but low shifts (0.1, 0.5)
show no non-monotonicity due to strong source-target alignment, allowing interpolating models to perform
well. Over-parameterized models further improve target reconstruction by reducing test loss. We also present
double descent behavior when CNNs are trained on MNIST and tested on the MNIST-M dataset in Figure
5(b). Subsection 7.1, Figure 12, demonstrates double and triple descent in single-cell RNA data under real
domain shift, reinforcing the phenomenon’s presence with real-world evidence.

Anomalies. For the first time, we show that anomalies can cause double descent in test loss and non-
monotonicity in anomaly detection (Cheng et al., 2021). Using data from 3.1, we analyze test loss and
detection quality via ROC-AUC (Hanley & McNeil, 1982; Fawcett, 2006), which distinguishes clean (low
reconstruction error) from anomalous samples (high error) (Malhotra et al., 2016; Borghesi et al., 2019;
Lindenbaum et al., 2024). In the critical regime (Figure 6(a)), anomaly memorization increases test loss for
clean samples and reduces ROC-AUC. Larger models exhibit secondary descent, especially with low SAR and
many anomalies, improving anomaly detection to match under-parameterized models while lowering test loss
(Lerman & Maunu, 2018b;a; Han et al., 2022; Lindenbaum et al., 2024). Figure 6(b) shows no double descent
at high SAR, similar to previous results where contamination is not significant, yet critical regime models
still perform the worst. Additional real-world insights are in Subsection 7.2.

In conclusion, factors such as model nonlinearity, bottleneck size, and severe contaminations, like high noise
levels, large domain shifts, many anomalies, and low SNR, affect double descent and increase test loss,
occasionally shifting the critical regime.

6.2 Epoch-Wise Double Descent

Inspired by the surprising results in (Nakkiran et al., 2021), which demonstrate epoch-wise double descent in
a supervised setting, we study the existence of this phenomenon in our unsupervised framework. Figures 7
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(a) Synthetic anomaly data with SAR = -15 dB.

(b) Synthetic anomaly data with SAR = 0 dB.

Figure 6: Left column: test loss of the clean (normal) samples. A double descent pattern emerges for
low SARs and high anomaly presence in the training data. Middle column: test loss computed only over
the anomalous samples. Right column: Non-monotonic behavior of the ROC-AUC. The level of SAR, as
illustrated in (a) and (b), influences the occurrence of double descent in the test curve.

and 29 (Appendix E) show how noisy samples (and features) affect the test loss, respectively. Higher noise or
lower SNR increases test loss, as shown in Figure 8 and Appendix E, Figure 30. The phenomenon also occurs
with domain shifts (Figure 9), where stronger shifts lead to higher test loss, shown in Figure 9(a).

6.3 Sample-Wise Double Descent

This section examines how the number of training samples affects the test loss. Model complexity and sample
size determine whether a model is over- or under-parameterized, shifting the interpolation threshold, as shown
in Figure 10. This shift can sometimes make larger training sets lead to worse performance than smaller ones,
a phenomenon also observed in supervised settings by (Nakkiran et al., 2021).

We analyze the effect of increasing training samples while keeping model size fixed and observe non-monotonic
trends in the test loss curve (Figures 11(b), 11(c), and Appendix E Figure 31). In some cases, this leads to
double descent, as shown in Figure 11(a). Appendix D and Figure 26 present the training losses, along with
additional results using more complex data models found in Appendices F.3 and F.4. These results confirm
the effects of noise, SNR, and domain shift, which are consistent with the findings in Subsections 6.1 and 6.2.
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Figure 7: Epoch-wise double descent for different number of noisy samples. Train losses are depicted in
Appendix D, Figure 22.
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Figure 8: Epoch-wise double descent (sample noise) influenced by the SNR. Train losses are exhibited in
Appendix D, Figure 23.

7 Real World Applications

This section highlights the application of our findings to critical tasks in unsupervised learning, such as
domain adaptation and anomaly detection, focusing on the importance of model size selection in AEs rather
than competing with state-of-the-art methods for these tasks.

7.1 Domain Adaptation

Domain shifts are common in machine learning, where differences between training and testing distributions
can degrade performance on unseen data. Various domain adaptation methods (Peng et al., 2019; Chang
et al., 2019; Zhou et al., 2022; Rozner et al., 2023; Yampolsky et al., 2023) aim to minimize this shift. In
biology, this challenge, known as the "batch effect," arises when integrating datasets collected under different
conditions (Tran et al., 2020).

This section explores the relationship between model size and its ability to address distribution shifts in
real-world single-cell RNA data (Subsection 3.2). We demonstrate the benefits of over-parameterized models
in unsupervised tasks under real domain shifts, revealing multiple descents. Related findings in supervised
learning were shown by (Tripuraneni et al., 2021) and (Kausik et al., 2023) under different assumptions.
Appendix F.1, Figure 32(b) visualizes source and target datasets using UMAP embeddings (McInnes et al.,
2018). Figures 12(a), 12(b) show test and train losses for models trained on source and tested on target
datasets, where testing on the ’Wang’ dataset revealed triple descent.
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(a) Subspace data model with 5% noisy samples and
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Figure 9: Epoch-wise double descent influenced by the domain shift. In (a) we introduce some noise to
emphasize the double descent curve. Train losses shown in Appendix D, Figure 24.
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Figure 10: In the yellow interval, more data hurts
performance as using 10000 samples worsens test loss
compared to 5000. We used the subspace data model
with sample noise of 70% and SNR of -15 dB. Train
loss results are detailed in Figure 25, Appendix D.

We used KL-divergence (KLD) (Shlens, 2014a) to quantify the distribution shift between the source and
target datasets, as shown in the test loss legend in Figure 12(a). Higher KLD values correspond to larger
shifts and increased test loss, consistent with the simulated results in Figure 5(a).

To assess domain adaptation, we analyzed the AEs embeddings learned in the bottleneck layer using a k = 10
nearest neighbors domain adaptation test (KNN-DAT) (Schilling, 1986), Section 3, measuring domain mixing.
KNN-DAT of 1 indicates complete separation and lower values signify better mixing. Improved mixing reflects
embeddings where target samples are more aligned with source samples.

Figures 12(c), 12(d), 12(e) show UMAP representations based on AE embeddings. Under-parameterized
models achieve better KNN-DAT than critical-regime models but at the cost of poor source data learning
(high train loss). Critical-regime models focus on domain-specific features, leading to higher KNN-DAT.
Over-parameterized models perform best, achieving a KNN-DAT of 0.75, reduced test loss, and improved
target data reconstruction. This highlights their effectiveness, as over-parameterized models facilitate the
transition between source and target datasets, serving as a viable domain adaptation strategy. Additional
results for the subspace data model are in Appendix F.1.

7.2 Anomaly Detection

Unsupervised anomaly detection is vital in machine learning, with applications across various fields. AEs are
widely used for this task (Chandola et al., 2009; Chen et al., 2018; Rozner et al., 2024; Lindenbaum et al.,
2024). We trained AEs on both normal and anomaly data, detecting anomalies via reconstruction loss as
detailed in Subsection 6.1.

We examined how model size impacts anomaly detection using the CelebA dataset (Subsection 3.3). As
shown in (Han et al., 2022), small models outperform larger ones, achieving the highest ROC-AUC (Figure
13). With uncontrolled positive SAR, we observed no double descent in test loss but identified non-monotonic
ROC-AUC behavior. Thus, intermediate models should be avoided, as their anomaly detection performance
lags behind under and over-parameterized models.

8 Discussion

In this section, we identify and highlight several fundamental distinctions between double descent behavior in
supervised learning and the unsupervised setting explored in this work.
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Figure 11: Sample-wise non-monotonicity and double descent for the subspace data model. Feature noise
scenario results are presented in Appendix E, Figure 31 and the training losses in Appendix D, Figure 26.

10



Under review as submission to TMLR

50 450 2000
Hidden Layer Size

2

4

6

8

10

Te
st

 L
os

s

target = Wang, KLD = 0.246
target = Mutaro, KLD = 0.149
target = Xin, KLD = 0.14
target = Segerstolpe, KLD = 0.138

(a) Test losses of different targets.

50 450 2000
Hidden Layer Size

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

n 
Lo

ss

source = Baron

(b) Train loss of source data.

KNN-DAT = 0.9

source (Baron)
target (Mutaro)
target (Segerstolpe)
target (Wang)
target (Xin)

(c) Hidden layer size = 50.

KNN-DAT = 0.93

source (Baron)
target (Mutaro)
target (Segerstolpe)
target (Wang)
target (Xin)

(d) Hidden layer size = 450.

KNN-DAT = 0.75 (best results)

source (Baron)
target (Mutaro)
target (Segerstolpe)
target (Wang)
target (Xin)

(e) Hidden layer size = 2000.

Figure 12: Double descent in real-world domain shift. (a), (b): Test and train losses utilizing the single-cell
RNA dataset. Models are trained on source data and evaluated on target data. (c), (d), (e): UMAP of
vectors extracted from the encoder’s output and KNN-DAT results for different model sizes. As can be seen,
Over-parameterized models ease adaptation between source and target datasets.

Noise structure and data model. In supervised learning, the input x is typically clean, while noise is
introduced in the labels y. In contrast, our AEs operate under an unsupervised reconstruction objective
where the input serves as both source and target. Consequently, any corruption affects both sides of the
learning signal (see last part of Section 2 and Section 3), inducing distinct generalization dynamics not
observed in supervised settings.

Presence of double descent in linear models. Double descent has been extensively observed in supervised
linear models such as linear regression (Belkin et al., 2019; Bartlett et al., 2020). However, our theoretical and
empirical results demonstrate that linear unsupervised AEs do not exhibit double descent. This highlights a
structural divergence between supervised and unsupervised learning, where nonlinearity becomes essential for
the emergence of multiple descent phases.
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Figure 13: Left, middle: test loss of clean and anomaly data. Right: non-monotonic behavior of the
ROC-AUC for the celebA dataset.
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Training objective vs. learning dynamics. While both supervised models and AEs often minimize the
MSE, the training dynamics differ significantly. In supervised learning, the test distribution generally matches
the training distribution. In contrast, our approach involves training on noisy inputs and evaluating on clean
data, creating a distribution shift and affecting how generalization and overfitting emerge during training.

Interpretation of over-parameterization. In supervised tasks, interpolation is typically tied to the
total number of parameters. Over-parameterization can be achieved by redistributing capacity across layers
without necessarily increasing model size. However, in our setup, achieving interpolation requires joint scaling
of the hidden and bottleneck layers (see Figure 2(c) and Subsection 6.1).

9 Conclusions

Our study comprehensively studied double descent in unsupervised learning using AEs. Analytically and
empirically, we showed that linear AEs lack double descent. In contrast, nonlinear AEs exhibit multiple
descents and non-monotonic behaviors across model-wise, epoch-wise, and sample-wise levels for various data
models and architectural designs. We analyzed the effects of sample and feature noise and emphasized the
importance of bottleneck size in shaping double descent. Our findings also show that over-parameterized
models enhance both reconstruction and downstream tasks like anomaly detection and domain adaptation,
underscoring their real-world relevance. Although our experiments were conducted on datasets of moderate
size due to computational constraints, we believe the scope and depth of the evaluation offer a strong and
conclusive foundation. This work raises broader implications for the use of model capacity in unsupervised
settings. It suggests that double descent is not unique to supervised learning and must be considered when
designing autoencoders for real-world applications. Several open research questions emerge from our study,
including the need for a deeper theoretical understanding of double descent in unsupervised models, how
different levels of nonlinearity influence the phenomenon, and the role of architecture-specific factors in
shaping generalization behavior. We hope these findings contribute to the growing understanding of learning
dynamics in unsupervised models and inspire future research into both theoretical and practical aspects of
model generalization in unsupervised learning frameworks.
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A Implementation Details

This section provides complete implementation details for all experiments conducted in the paper. Illustrations
of the subspace data model generation introduced in Subsection 3.1 for the scenarios of sample and feature
noise, domain shift, and anomalies are displayed in Figures 14, 15, and 16 respectively.

Figure 14: Train samples generation for the scenarios of sample and feature noise with p = 0.5. The first
(leftmost) matrix depicts the latent vectors Z. The second matrix illustrates the latent vectors being projected
into a higher dimensional space, and the rightmost matrices contain clean (blue) and noisy (red) samples /
features respectively. The test samples remain clean.

Figure 15: Train and test samples generation for the scenario of domain shift. The matrix on the left depicts
the latent vectors Z and the two middle matrices represent the separation to source (Ztrain) and target
(Ztest). The two rightmost matrices illustrate the latent vectors of the train and test data being projected
into a higher dimensional space with different matrices (H, H

′′), resulting in a domain shift.

Figure 16: Train samples generation for the case of anomalies and p = 0.5. The matrix on the left depicts the
clean data, the middle matrix represents the anomaly samples, and the rightmost matrix contains both clean
(blue) and outlier (red) samples. Test samples remain clean.

Parameters. Table 1 details the hyper-parameters and other variables for the training process with the
subspace data model, nonlinear subspace model, (Appendix F.4), single-cell RNA, CelebA, MNIST, and
CIFAR-10 (Appendix F.3) datasets. The training optimizer utilized was Adam (Kingma & Ba, 2014), and
the loss function for reconstruction is the mean squared error, which is mentioned in this Section.
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Table 1: Parameters and hyper-parameters

PARAMETERS LINEAR/ NONLINEAR SUBSPACE RNA CELEBA MNIST/ CIFAR-10

Model FCN FCN FCN CNN
Learning rate 0.001 0.001 0.001 0.001
Optimizer Adam Adam Adam Adam
Epochs 200 1000 200 1000
Batch size 10 128 10 128
Data’s latent features size (d) 20 - - -
Number of features (D) 50 1000 40 784/ 3072
Train dataset size 5000 5000 3000 5000
SNR/ SAR [dB] -20, -18, -17, -15, -10, -7, -5, -2, 0, 2
Contamination percentage (p) 0, 0.1, 0.2,...,1
Domain shift scale (s) 1, 2, 3, 4 - - -
Embedding layer size 25, 30, 45 20, 100, 300 25 10, 30, 50, 500
Hidden layer size 4 - 500 10 - 3000 4-400 -
Channels - - - 1-64

Data. For the subspace data model, nonlinear subspace data model, MNIST, and CIFAR-10
datasets, we generate 5000 samples for training and 10000 for testing across all scenarios (sample noise,
feature noise, domain shift, and anomaly detection). Regarding the single-cell RNA data, we have focused
on dataset number 4 from (Tran et al., 2020), which includes 5 distinct domains (biological batches) named
’Baron’, ’Mutaro,’ ’Segerstolpe,’ ’Wang,’ and ’Xin’, each representing 15 different cell types. Each cell (sample)
in this dataset contains over 15000 genes (features). To facilitate the training of deep models while preserving
the domain shift, we have retained the top 1000 prominent features. We utilize the ’Baron’ biological batch as
our source data for the scenario of domain shift, comprising 5000 training samples, while the target batches
are ’Mutaro’ (2122 samples), ’Segerstople’ (2127 samples), ’Wang’ (457 samples), and ’Xin’ (1492 samples).
As for the sample and feature noise scenarios, we use the ’Baron’ domain for both sample and feature noise
scenarios due to its largest sample size (8569). We allocate 5000 samples for training and introduce noise to
specific samples and features, as described in subsection 3.1. The calculations of the SNR for both sample
and feature noise cases are provided in Section B. The reserved 3569 samples are for testing. Please be aware
that all the domains in this dataset are inherently noisy, reflecting their real-world nature. Therefore, even
when no additional noise is applied (p = 0), the data remains noisy. This may account for why the test
loss does not decrease monotonically as the model size increases for cases with low noise levels, as shown in
Appendix F.5, Figure 56(b).

For the celebA dataset, including over 200K samples and 4547 anomalies, each characterized by 40 binary
attributes, we sub-sample 3000 clean samples and replace ⌊3000 · p⌋ of them with anomalies. This ensures
that ∼ p · 100% of the data is contaminated with anomalies. Due to the limited availability of anomaly data
(4547 samples), the test set includes ⌊(1 − p) · 4547⌋ anomalies along with an equal number of clean samples.

Models. All experiments, including the subspace data model, nonlinear subspace data model, single-cell
RNA, and celebA datasets are conducted using the same FCN AE architecture. To facilitate the exploration
of double descent in both embedding layer size and hidden layer size, we employ a simplified model mentioned
in (Lupidi et al., 2023) consisting of a single hidden layer for both the encoder and decoder, as depicted in
Figure 2(a). We also utilize a CNN AE architecture consisting of three convolution layers in the encoder
part, followed by a bottleneck layer, and then a decoder part consisting of three deconvolution layers trained
on the MNIST and CIFAR-10 datasets as illustrated in Figure 17 (results for the CNN AE are reported in
Appendix F.3).

We work with undercomplete AEs to encourage the acquisition of a meaningful embedding in the latent space
and prevent the model from learning the identity function. The size of these models is determined by the
sizes of the hidden layers (for FCN), the number of channels (for CNN), and the bottleneck layer, while the
width of these models remains constant.
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Figure 17: Demonstration of CNN AE model structure. n, c represent the width, height and number of
channels of each dataset. For MNIST, n = 28, c = 1 and for CIFAR-10, n = 32, c = 3. Channels represent
the number of channels in each layer of the CNN AE.

Loss function. All AEs are trained with the mean squared error (MSE) loss function:

MSE = 1
N

N∑
i=1

∥yi − ŷi∥2
2.

Where N is the number of training data samples, yi is the true vector, and ŷi is the predicted vector. Due to
contamination in the training dataset, the norm of train samples tends to be higher than that of the clean
test samples. As the MSE loss is not scale-invariant, we opt to normalize both train and test losses only after
the training process is complete, using 1

N

∑N
i=1 ∥yi − ȳ∥2

2, Where ȳ is the mean of {yi}N
i=1. This strategy

enables us to continue utilizing the MSE loss function while facilitating a fair and meaningful comparison
between train and test losses.

Results. Ensuring the robustness of the findings across various model initializations and enhancing their
reliability, all figures combine several results of different random seeds. The bolded curves in each figure
represent the average across these results, and the transparent curve around each bolded curve represents the
±1 standard error from the mean.

Environments and Computational Time. All experiments were conducted on NVIDIA RTX 6000 Ada
Generation with 47988 MiB, NVIDIA GeForce RTX 3080 with 10000 MiB, Tesla V100-SXM2-32GB with
34400 MiB, and NVIDIA GeForce GTX 1080 Ti with 11000 MiB.
Each result in Figure 3 represents an average over 10 seeds. The hidden layer sizes for the subspace data
model range from 4 to 500 with a step size of 4, and for the single-cell RNA data, they range from 10 to 500
with a step size of 10, and from 500 to 3000 with a step size of 50. This results in 125 and 110 models trained
for each dataset, respectively. Figure 3(a) illustrates 10 different sample noise levels, requiring the training of
125 × 10 × 10 = 12, 500 models. Similarly, Figure 3(b) depicts 4 different sample noise levels, corresponding
to 110 × 10 × 4 = 4, 400 trained models. In total, 16,900 models, each with up to 8 million parameters trained
on 5,000 data points were needed to obtain the results. In Appendix F.3, Figure 35, we present results for
CNNs including between 1 to 64 channels trained on 5,000 images from the MNIST dataset including 5
levels of sample noise and 6 levels of feature noise for 10 different seeds. These experiments require training
64 × 11 × 10 = 7, 040 models with up to 13 million parameters. Each evaluation of a specific experiment
takes several days if trained on the NVIDIA RTX 6000 and weeks if trained on the other mentioned GPUs to
obtain the results.

B SNR Calculations

In this section, we will outline our approach for calculating the signal-to-noise ratio (SNR) for all experiments
involving the addition of noise. Initially, we convert the SNR from decibels to linear SNR using the formula:

SNR = 10
(

SNR[dB]
20

)
. (2)

We have a closed-form equation for the subspace data model to determine the scalar β required to multiply
the train samples and achieve the desired linear SNR value. We use the fact that both train and noise are
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sampled from an i.i.d. normal distribution and calculate β for the sample noise, feature noise, domain shift,
and anomalies.

Notations:
z − d × 1 vector. Represents a vector in a latent space of size d.
H − D × d matrix. Represents a random matrix to project z from a d dimensional space into a
higher-dimensional space (D > d).
ϵ − D × 1 vector. Represents the noise added to a vector with D dimensions.

For the scenario of sample noise, where a particular sample is affected by noise across all its features:

SNR2 = E[∥βHz∥2
2]

E[∥ϵ∥2
2] = E[β2z⊤H⊤Hz]

E[ϵ⊤ϵ] =
β2Ez[EH|z[z⊤H⊤Hz|z]]

E
[∑D

i=1 ϵ2
i

] =
(1)

(3)

β2Ez[z⊤EH|z[H⊤H]z]
D

=
(2)

β2Ez[z⊤D · Id×dz]
D

= β2 · D · Ez[z⊤z]
D

= β2E

[
d∑

i=1
z2

i

]
=
(1)

β2 · d.

Isolating β, we get that β = SNR√
d

.

(1) Given a vector a ∼ N (0, ID) of D i.i.d. samples, E
[∑D

i=1 a2
i

]
=

∑D
i=1 E[a2

i ] =
∑D

i=1 1 = D.

(2) Given a matrix M ∼ N (0, ID) of size D × D where all entries are i.i.d., then

E[M⊤M ] = E

 M2
1,1 + · · · + M2

D,1 . . . M1,1M1,D + · · · + MD,1MD,D

...
. . .

...
M1,1M1,D + · · · + MD,1MD,D . . . M2

1,D + · · · + M2
D,D

 =

D . . . 0
...

. . .
...

0 . . . D

 = D · ID×D.

For the scenario of feature noise, each train sample has only D · p noisy features, meaning the noise vector
contains values for only D · p entries. Consequently, β is determined by

√
p
d · SNR. For practitioners who want

to explore the scenario involving domain shift, where the source and target are noisy, note that the matrix
responsible for projecting ztest into a higher-dimensional space is denoted as H

′′ = H + s · H
′ where H

′ is
sampled from a standard normal distribution N (0, I) and both H and H

′ are i.i.d. Consequently, H
′′

ij ∼
N (0, 1+s2). Substituting H with H

′′ in equation equation 3, we find that EH′′ |z[H ′′⊤H
′′ ] = D · (1+s2) · Id,

leading to SNR2 = (1 + s2) · β2 · d, therefore β = SNR√
(s2+1)d

. In other words, since the covariance matrix of

H
′′ is (1 + s2)I, we need to make sure we first normalize the matrix by

√
1 + s2 to maintain the identity

covariance matrix.

For other datasets, such as the single-cell RNA dataset, we normalize each sample x by its norm ∥x∥, and

similarly normalize each noise vector ϵ, yielding: x̂ = x

∥x∥
and ϵ̂ = ϵ

∥ϵ∥
. This ensures that the ratio x̂

ϵ̂
equals

1. By employing equation equation 2, we attain the intended linear SNR factor β, and then scale down ϵ̂ by
β, yielding ϵ̂scaled = ϵ̂

β
. This guarantees that the linear SNR is x̂

ϵ̂scaled
= β.

C Proof of Theorem 5.2

Assumption C.1. Let XD×N = (x1, x2, . . . , xN ) represent the training set, with each column xi corre-
sponding to a data point according to the formulation in equation (1). Assume that the number of samples
N is large enough such that the rank of the data matrix X is almost surely equal to the number of features
D. This assumption is reasonable due to the noise added to many samples.
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Theorem 4.1 [No double descent in linear Autoencoders] Let Φa(·; θ), Φb(·; θ) : RD → RD be two linear
AEs, each with L ≥ 2 layers and architectures defined by Da and Db (refer to section 5 for definition),
with bottleneck sizes ma and mb, where ma < mb ≤ D. Let θopt

a and θopt
b be the optimal parameters under

assumption C.1. Let d denote the dimension of the support of Px̃ (the dimension of the span of the samples
x̃ ∼ Px̃). Then, the following holds,

G
(

Db; θopt
b , Px̃

)
≤ G

(
Da; θopt

a , Px̃

)
,

with the inequality replaced with equality if: (1) ma = mb, even if Da ̸= Db, or (2) ma, mb ≥ D.

Proof. For simplicity of notation, we will omit the attributions a and b unless explicitly needed. Without
the loss of generality, we denote the training set by XD×N = (x1, x2, . . . , xN ) where the matrix column
xi are w.r.t formulation (1). Recall that rank(X) = D, with probability 1 under assumption C.1. Let
Σ ∈ RD×D represent the covariance matrix, defined as Σ = XX⊤. Let its singular value decomposition
(SVD) be expressed as Σ = UΛU⊤, and similarly Σx̃ = ŨΩŨ⊤. Note that the eigenvectors of Σ, which
are the columns of U , are arranged in descending order corresponding to their associated eigenvalues in Λ.
By Lemma C.2, since rank(X) = D ≥ m, then for the optimal solution, θopt = argminθL(θ; X), we have
that rank

(
W opt

L−1 · · · W opt
2

)
= m, means that the rank of the inner layers multiplication is exactly the size

of the bottleneck. By Theorem 3.2, proof Case II in (Kawaguchi, 2016), all local minima of the considered
optimization problem are global minima, and the expression of a global minimum of the training optimization,
namely

θopt = argminθL(θ; X) = argminθ

1
N

∥Φ(X; θ) − X∥2
F ,

is given by
θopt = UmU⊤

mXX⊤ (
XX⊤)−

,

where Um, is the matrix containing the first m eigenvectors of the full eigenbasis U of XX⊤, namely
Um = [u1, . . . , um] (those corresponding to the m largest eigenvalues), and the operator (·)− stands for the
pesudo inverse. Since Σ = XX⊤ is invertible (rank(X) = D), we have

θopt = UmU⊤
m,

and consequently,
Φ(X; θ) = UmU⊤

mX.

Due to the misalignment, U and Ũ are related by a unitary matrix R, such that,

U = RŨ .

Calculating the generalization error,

G(D; θopt, Px̃) = E
[
∥Φ(x̃; θopt) − x̃∥2

2
]

= E
[
∥UmU⊤

mx̃ − x̃∥2
2
]

= E [∥( I − UmU⊤
m

)
x̃∥2

2
]

= E
[
x̃⊤ (

I − RŨmŨ⊤
mR⊤)

x̃
]

= E
[
∥x̃∥2

2
]

− E
[∥∥Ũ⊤

mR⊤x̃
∥∥2

2

]
= Tr(Σx̃) − E

[∥∥Ũ⊤
mR⊤x̃

∥∥2
2

]
, (4)

where Σx̃ := E
[
x̃x̃⊤]

. Now, since there exists at least d different indexes j ∈ [D] for which u⊤
j R ̸= 0

(otherwise the latent dimension of the test-set x̃ would be strictly lower than d in contradiction), then for
ma + 1 < d and mb + 1 < d, E

[∥∥Ũ⊤
ma

R⊤x̃
∥∥2

2

]
, E

[∥∥Ũ⊤
mb

R⊤x̃
∥∥2

2

]
> 0. Hance, since the larger is m in (4)

the lower is G, we have
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G
(

Db; θopt
b , Px̃

)
≤ G

(
Da; θopt

a , Px̃

)
,

and obviously, if ma, mb ≥ D, then

G
(

Db; θopt
b , Px̃

)
= G

(
Da; θopt

a , Px̃

)
= 0.

Lemma C.2. Consider the pre-trained linear autoencoder, Φ(·; θopt) : RD → RD, of L ≥ 2 layers, where
θopt ≡

{
W d1×D

1 , . . . , W
dL−1×dL−2
L−1 , W

D×dL−1
L

}
, for which its bottleneck size holds m(≤ D), and a training

set X, of any dimension satisfies rank (X) ≥ m, then rank (WL−1 · · · W2) = m.

Proof. Let X ∈ RD×N be the training data, with rank(X) ≥ m. The reconstruction is given by

X̂ = WLWL−1 · · · W2W1X.

Accordingly, the reconstruction loss is

L = ∥X − X̂∥2
F = ∥X − WLWL−1 · · · W2W1X∥2

F .

If rank(WL−1 · · · W2) = d < m, then the rank of X̂ is at most d. This means that WL−1 · · · W2W1 maps
X into a subspace of dimension d < m. However, the optimal low-rank approximation of X that minimizes
the reconstruction loss is achieved by projecting X onto the subspace spanned by its top m singular vectors
(the rank-m approximation). By the Eckart-Young-Mirsky theorem (Eckart & Young, 1936),

Loptimal = ∥X − Xm∥2
F ,

where Xm is the rank-m approximation of X. If rank(WL−1 · · · W2) < m, the projection would not span
the top m singular vectors, leading to

L > Loptimal,

contradicting the assumption that weights are optimal.

D Train Loss Results

In this section, we provide the train loss figures corresponding to each of the test losses mentioned in the
main paper.

(a) Linear FCN AEs. (b) Nonlinear FCN AEs.

Figure 18: Heatmap of train losses for both linear and nonlinear AEs.
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(a) Subspace model. SNR = -15 dB. (b) Single-cell RNA. SNR = -17 dB.
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(c) MNIST. SNR = -17 dB.

Figure 19: Model-wise train losses for the case of varying sample noise.

(a) Subspace model. Sample noise =
80%.

(b) Single-cell RNA. Sample noise =
40%.
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(c) MNIST. Sample noise = 50%.

Figure 20: Model-wise train losses for the case of noisy samples and varying SNR.

(a) Subspace data model.
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Figure 21: Train losses of source data.

(a) Subspace data model with SNR = -2 dB. (b) Single-cell RNA data with SNR = -17 dB.

Figure 22: Epoch-wise train losses for varying number of noisy samples.
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(a) Subspace data model. Sample noise = 40%. (b) Single-cell RNA data with SNR = -17 dB.

Figure 23: Epoch-wise train losses for the case of sample noise influenced by the SNR.

(a) Subspace data model with 5% noisy samples
and SNR = 20 dB.

(b) Single-cell RNA data trained on the ’Baron’
batch.

Figure 24: Epoch-wise train loss influenced by the amount of domain shift.

Figure 25: Train loss of the subspace data model
with sample noise = 70% and SNR = -15 dB for differ-
ent number of training samples.

Figure 26: Train loss rises as the number of samples
increases for the scenario of sample noise. Similar
behavior exists for feature noise and domain shift sce-
narios. Train loss rises because a larger training set
makes the model relatively under-parameterized, re-
ducing training effectiveness and resulting in higher
train loss. However, despite the increase in training loss
with more samples, the test loss decreases, suggesting
improved reconstruction of the test samples.

24



Under review as submission to TMLR

E Results for Feature Noise

In this section, we present the results for the feature noise scenario. Feature noise adds complexity since each
sample contains noise in some of its features. As a result, the model never encounters samples with entirely
clean features, making it unable to isolate and focus on clean data. Consequently, the model experiences
difficulty in learning the correct data structure. Surprisingly, increasing feature noise actually leads to a
decrease in the test loss for the single-cell RNA dataset (Figure 27(b)). This can also be observed in Appendix
F.3, Figure 35(b) and Appendix F.4, Figure 46(b). Moreover, the peak shifts left as the number of noisy
features rises in Figure 27(a).

(a) Final ascent phenomenon (Xue et al., 2022) for
the Subspace data model trained with SNR =
-13 dB.

(b) Non-monotonic behavior for the Single-cell
RNA data trained with SNR = -12 dB.

Figure 27: Test loss exhibits model-wise double descent and non-monotonic behaviors for the case of varying
feature noise.

(a) Subspace data model with 40% noisy features.
Beyond hidden layer of size 300, the test loss rises.

(b) Single-cell RNA data with 10% noisy features.
Beyond a hidden layer size of 2600, the test loss
continues to decrease, and the train loss increases.

Figure 28: The effect of SNR for the case of noisy features on the test loss curve.
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(a) Subspace data model with SNR = -12 dB. (b) Single-cell RNA data with SNR = -12 dB.

Figure 29: Epoch-wise double descent influenced by the number of noisy features.

(a) Subspace data model. Feature noise = 80%. (b) Single-cell RNA data. Feature noise = 50%.

Figure 30: Epoch-wise double descent for the case of feature noise influenced by the SNR.

(a) Sample-wise non-monotonicity for varying
SNRs in the scenario of feature noise = 90 %.

(b) Sample-wise non-monotonicity for varying num-
ber of noisy features. SNR = -13 dB.

Figure 31: Sample-wise non-monotonicity pattern for the subspace data model for the scenario of feature
noise.
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F Additional Experiments

F.1 More Results for Domain Adaptation

This section presents the UMAP visualizations of the different domains for both the subspace model and
single-cell RNA data in Figure 32. Results for different model sizes trained on the subspace model dataset
are also reported in Figure 33.

(a) The UMAP representation shows a clear domain
shift between the source and target datasets.

(b) Clusters represent different cell types. Different
domains are represented by different colors.

Figure 32: UMAP representations of source and target datasets for the subspace data model (a) and single-cell
RNA dataset (b).

Figure 33 illustrates the results based on a similar experiment conducted in Section 7.1 for the subspace data
model. As expected, the interpolating models exhibit the poorest KNN-DAT outcomes. Over-parameterized
models introduce a decrease in the test loss indicating an improved reconstruction of the target data. In this
scenario, we noticed that smaller models perform better than over-parameterized models based on KNN-DAT
results. We think that the small size of the hidden layer (4) and the high dimensionality of the dataset (50
features) result in significant information loss in these layers. This could lead to closely clustered vectors in
the embedding space, ultimately causing low KNN-DAT results. However, a hidden layer of size 4 indicates
insufficient capacity to represent the signal, as shown by the high values of test and train losses in Figure 33.

F.2 Overcomplete AEs

In this section, we show that overcomplete AEs learn the identity function, rendering them irrelevant for our
study. Figure 34 is an extension of Figure 2 to overcomplete AEs, where models are trained on the subspace
data model (Subsection 3.1) with D = 50 features. Models with embeddings and hidden layers exceeding D
(above the white dashed lines), making them overcomplete, achieve zero train and test reconstruction loss,
confirming they learn the identity function, resulting in the absence of double descent.

F.3 Double Descent Results For CNNs Trained on MNIST and CIFAR-10

In this section, we demonstrate that the double descent phenomenon can be reproduced in other unsupervised
AE architectures. We employed the MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky et al., 2009)
datasets and trained undercomplete CNNs as detailed in Figure 17. For the case of sample noise, the noise is
added to p · 100% of the images, and we present results for both MNIST and CIFAR-10, while all the other
cases are presented using the MNIST dataset. For the feature noise scenario, noise is introduced to p · 100% of
the pixels of each image. To demonstrate the phenomenon with the presence of domain shift, the models are
trained on the MNIST-M and MNIST datasets and tested on MNIST and MNIST-M, respectively. Results
for model-wise double descent for varying amounts of sample and feature noise cases for the MNIST dataset
are presented in Figures 3(c), 35 respectively. Varying levels of sample noise and SNRs for the CIFAR-10
dataset are presented in Figure 36.
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Figure 33: UMAP of the embedding vectors with a size of 45 and KNN-DAT results for different model sizes
trained on the subspace data model for a shift of 3.

(a) Linear AEs models. (b) Nonlinear AEs models.

Figure 34: An extension of the heatmaps presented in Figure 2 to overcomplete AEs (models above the white
dashed lines) resulting in zero train and test reconstruction loss for both linear and nonlinear AEs.

In Figure 37, we show the test and train loss results (top two sub-figures) for three different models (3,
5, and 60 channels) trained on MNIST with 50% sample noise and an SNR of -15 dB and find out that
over-parameterized models can reduce the noise levels in an image. The smallest model, with 3 channels,
is under-parameterized. The second model, within the critical regime, with 5 channels, performs poorly,
while the third is over-parameterized, containing 60 channels. Interestingly, We noticed that even though our
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Figure 35: Model-wise double descent for CNNs trained on MNIST with varying levels of feature noise and
SNR = -20 dB.

(a) SNR = -20 dB. (b) Sample noise = 90%

Figure 36: Model-wise double descent for CNNs trained on CIFAR-10 with varying levels of sample noise (a)
and SNRs (b).

AE was not trained to remove noise (as in denoising AEs (Vincent et al., 2008; 2010)), over-parameterized
models were able to reduce noise to some extent. In contrast, models within the critical regime performed
significantly worse.

After training, we evaluated each model by feeding it images with varying SNR values and examining
the reconstructed outputs (bottom sub-figure in Figure 37). The over-parameterized model produced the
best-quality reconstructed images. Following that, the under-parameterized model performed moderately well,
and the model in the critical regime generated the noisiest images. This is because the critical model focused
on memorizing the noise during training instead of learning the underlying signal, resulting in consistently
noisy outputs. In contrast, the over-parameterized model had enough capacity to memorize the noise and
learn the signal. While the under-parameterized model cleans the images better than the critical model, it
still distorts some details compared to the over-parameterized model due to its limited capacity.

To quantify noise reduction, we used the Peak Signal-to-Noise Ratio (PSNR), a metric that assesses signal
quality by comparing the original image to its noisy version. PSNR measures the ratio between the maximum
possible value of a signal (R2) and the power of the noise (MSE). Higher PSNR values indicate better quality,
meaning less noise. The formula for PSNR is:

PSNR = 10 · log
(

R2

MSE(x, f(x + ϵ))

)
,

where x + ϵ represents the noisy image (ϵ is the noise), and x is the clean version. This metric, expressed in
decibels, allows us to evaluate how well each model cleans the images. As shown, the over-parameterized model
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Figure 37: Models trained on 50% noisy MNIST images with SNR = -15 [dB] and tested on MNIST images
with different values of SNR.

consistently achieves the highest PSNR values (highlighted in bold green), while the poorly interpolating
model, which primarily memorized noise, produces the lowest PSNR values (in red). In conclusion, over-
parameterized models are capable of reducing noise when trained on noisy data, even without being explicitly
tasked to do so.

We proceed by illustrating the impact of SNR on the test loss curve for both sample and feature noise
scenarios in Figures 4(c), 38 respectively. As expected, low SNR values unveil double descent and increase
test loss. We then investigate the effect of domain shifts between the training and testing datasets in two
cases. First, models are trained on the MNIST dataset and tested on the MNIST-M dataset, as shown in
Figure 5(b). Second, models are trained on MNIST-M and tested on MNIST, as seen in Figure 39(b). In
both cases, the model-wise double descent curve is observed.

We further illustrate this phenomenon along the epochs axis, displaying non-monotonic behavior and double
descent under different levels of sample and feature noise (Figure 40) and showing the impact of SNR variation
(Figure 41) for models trained on contaminated MNIST. Additionally, we provide similar results under
domain shift conditions between the train and test datasets (Figure 42). Sample-wise double descent and
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Figure 38: Model-wise double descent for CNN trained on MNIST with varying levels of SNRs and feature
noise = 10%.

Figure 39: Model-wise double descent for CNNs trained on MNIST-M and tested on MNIST.

non-monotonic behavior is observed as well in all contamination setups. The cases of varying levels of sample
noise and feature noise are displayed in Figure 43 and for varying SNRs for both scenarios in Figure 44.
Sample-wise double descent is also illustrated in Figure 45 for when a domain shift is present between the
training data (MNIST) and the testing data (MNIST-M).

(a) SNR = 0 dB. (b) SNR = -5 dB.

Figure 40: Epoch-wise non-monotonic behavior for CNNs trained on noisy version of MNIST with varying
levels of sample noise (a) and feature noise (b).

F.4 Double Descent Results for the Nonlinear Subspace Data Model

Building on the subspace data model discussed in Subsection 3.1, we have developed a new dataset with
nonlinear characteristics to investigate the double descent phenomenon in more complex scenarios. Although
the single-cell RNA dataset is already nonlinear, we have created this dataset to demonstrate the reproducibility
of the double descent phenomenon across various datasets.

As in the subspace data model discussed in Subsection 3.1, we sample N latent vectors {zi}N
i=1 from a normal

distribution and project them to a higher dimension using a random matrix H1. The key difference is the
inclusion of nonlinear components z2

i and z3
i , each projected to a higher dimensional space with different
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(a) Sample noise = 100%. (b) Feature noise = 40%.

Figure 41: Epoch-wise double descent and non-monotonic behavior for CNNs trained on MNIST with varying
SNRs. (a): sample noise, (b): feature noise.

(a) Source = MNIST, target = MNIST-M. (b) Source = MNIST-M, target = MNIST.

Figure 42: Epoch-wise double descent and non-monotonic behavior for domain shift.

random matrices H2 and H3. To create contaminated setups of sample and feature noise, noise is added to
p · 100% of the data where β controls the SNR:

xi =
{

β(H1zi + H2z2
i + H3z3

i ) + ϵi, with probability p,

β(H1zi + H2z2
i + H3z3

i ), with probability 1 − p.

For the domain shift scenario, we divide the latent vectors into training and testing sets and use the same
parameter ’s’ as described in Subsection 3.1 to control the shift between the train and test sets in the following
manner: H

′′

j = Hj + s · H
′ for 1 ≤ j ≤ 3 and get:

xi =
{

H1zi
train + H2(zi

train)2 + H3(zi
train)3, if train,

H
′′

1 zi
test + H

′′

2 (zi
test)2 + H

′′

3 (zi
test)3, if test.

For anomaly detection, clean samples are represented by β(H1zi + H2z2
i + H3z3

i ), with p · 100% of them
replaced by anomalies sampled from a normal distribution, as detailed in Subsection 3.1.

The model used in this section is the same FCN model described in Figure 2(a). We start by presenting
results for the sample and feature noise scenarios as depicted in Figure 46. As shown, the test loss results for
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(a) SNR = -17 dB. (b) SNR = -20 dB.

Figure 43: Sample-wise double descent and non-monotonic behavior for CNNs trained on contaminated
MNIST with varying levels of sample noise (a) and feature noise (b).

(a) Sample noise = 50%. (b) SNR = -20 dB.

Figure 44: Sample-wise double descent and non-monotonic behavior for CNNs trained on contaminated
MNIST with varying levels of SNR. (a): sample noise, (b): feature noise.

the case of sample noise (Figure 46(a)) resemble those of the subspace data model presented in Figure 3(a).
Figure 46(b) demonstrates the model-wise final ascent phenomenon for the case of feature noise as elaborated
in Appendix F.5. Figure 47 shows how the SNR affects the test loss curve for both sample and feature noise
cases. As observed, the test loss increases with decreasing SNR. Additionally, the final ascent in the test loss
is depicted in 47(b) for the feature noise scenario, where the slope becomes steeper as the SNR decreases. We
also demonstrate the double descent and final ascent results regarding the domain shift scenario in Figure 48
and the anomaly detection capabilities in Figure 49.

We also observed epoch-wise double descent and non-monotonic behavior for this dataset, as shown in
Figure 50 for different percentages of sample and feature noise and in Figure 51 for varying SNRs under
the same noise conditions. Additionally, epoch-wise double descent is also observed when a domain shift is
present between train and test sets, as depicted in Figure 52. Instances of sample-wise double descent and
non-monotonic curves are also reported and displayed in Figure 53 for varying levels of sample and feature
noise, Figure 54 for varying levels of SNR, and in Figure 55 for domain shift.
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Figure 45: Sample-wise double descent for models trained on the MNIST dataset and tested on the MNIST-M
dataset.

(a) Sample noise scenario with SNR = -15
dB.

(b) Feature noise scenario exhibits final ascent
(Appendix F.5) with SNR = -20 dB.

Figure 46: Model-wise double descent for the nonlinear subspace data model with varying levels of sample
noise (a) and final ascent with varying levels of feature noise (b).

F.5 Final Ascent Phenomenon

While training various models on different datasets contaminated with sample and feature noise at different
SNR levels and domain shifts between train and test sets, we observed a final ascent phenomenon characterized
by a pattern of decreasing-increasing-decreasing-increasing test loss. The phenomenon was first observed
in (Xue et al., 2022) in supervised learning with label noise. We suspect a potential connection to this
phenomenon in unsupervised learning, which we have yet to fully analyze. We refer to Figure 56(a), which
illustrates the final ascent results for the subspace data model under extreme conditions of 100% sample noise,
as a continuation of Figure 3(a). We also present the final ascent results for the single-cell RNA dataset in
Figure 56(b). Another instance of final ascent with the presence of varying feature noise is illustrated in
Figure 27(a) for the subspace data model and in Figures 46(b), 47(b) for the nonlinear subspace data model.
Results are also replicated using the nonlinear subspace data model under various domain shifts, as observed
in Figure 48.

F.6 Multiple Descents Under Different Noise Types and Sparse AEs

This section explores the emergence of double and triple descent for noise distributions beyond Gaussian
noise and sparse AEs. Figure 57 illustrates the phenomenon for the subspace data model and single-cell RNA
datasets when subjected to Laplacian noise. The experimental setup mirrors that of Figure 3(a). As shown,
both datasets exhibit similar results under these conditions.

We extend our research to recent applications of AEs, including sparse AEs, which are increasingly utilized in
explainable AI (XAI) (Gao et al., 2024) and have been adopted by Google in their Gemini project. Using
sparse CNN AEs, we trained models on the MNIST dataset containing 80% noisy samples and observed
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(a) Double descent with sample noise = 80%. (b) Double descent and final ascent with fea-
ture noise = 100%.

Figure 47: Effect of SNR on the test loss curve as a function of model size. (a): sample noise scenario. (b):
feature noise scenario.

Figure 48: Model-wise double descent and final ascent for the scenario of domain shift.

the emergence of double descent. The models were configured with an embedding layer of size 550, and the
parameter k, determining the top k highest embedding values to retain, was set to 500. The results are
illustrated in Figure 58.
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Figure 49: Nonlinear anomaly data with SAR = -15 [dB]. Left: test loss of the clean samples. A double
descent pattern emerges for low SARs and high anomaly presence in the training data. Middle: test loss of
the anomaly data. Right: Non-monotonic behavior of the ROC-AUC.

(a) SNR = 0 dB. (b) SNR = -15 dB.

Figure 50: Epoch-wise double descent and non-monotonic behavior for varying levels of sample noise (a) and
feature noise (b). For the scenario of feature noise, we mostly noticed the non-monotonic curve at 10%.

(a) Sample noise = 30%. (b) Feature noise = 10%.

Figure 51: Epoch-wise double descent and non-monotonic behavior for varying levels of SNR. (a): sample
noise, (b): feature noise.
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Figure 52: Epoch-wise double descent for when a domain shift is present between train and test sets.

(a) SNR = -15 dB. (b) SNR = -20 dB.

Figure 53: Sample-wise double descent and non-monotonic behavior for varying levels of sample noise (a)
and feature noise (b).

(a) Sample noise = 90%. (b) SNR = -20 dB.

Figure 54: Sample-wise double descent and non-monotonic behavior for varying levels of SNR. (a): sample
noise, (b): feature noise.

Figure 55: Sample-wise non-monotonic behavior for the domain shift scenario.
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(a) Subspace data model and SNR = -15
dB.

(b) Single-cell RNA data and SNR = -10
dB.

Figure 56: Test loss exhibits model-wise double descent followed by a final ascent for the scenario of varying
sample noise.

(a) Subspace data model and SNR = -15
dB.

(b) Single-cell RNA data and SNR = -17
dB.

Figure 57: Test loss exhibits model-wise double descent for the case of Laplace noise.

Figure 58: Test loss exhibits model-wise double descent for sparse CNN AEs trained on MNIST with
embedding layer size of 550 and k = 500.
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