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ABSTRACT

Meta-learning enables learning systems to adapt quickly to new tasks, similar to
humans. To emulate this human-like rapid learning and enhance alignment and
discrimination abilities, we propose ConML, a universal meta-learning framework
that can be applied to various meta-learning algorithms without relying on specific
model architectures nor target models. The core of ConML is task-level contrastive
learning, which extends contrastive learning from the representation space in unsu-
pervised learning to the model space in meta-learning. By leveraging task identity
as an additional supervision signal during meta-training, we contrast the outputs
of the meta-learner in the model space, minimizing inner-task distance (between
models trained on different subsets of the same task) and maximizing inter-task
distance (between models from different tasks). We demonstrate that ConML
integrates seamlessly with optimization-based, metric-based, and amortization-
based meta-learning algorithms, as well as in-context learning, resulting in perfor-
mance improvements across diverse few-shot learning tasks. Code is provided at
https://anonymous.4open.science/r/conml_ano-3372.

1 INTRODUCTION

Meta-learning, or "learning to learn" (Schmidhuber, 1987; Thrun & Pratt, 1998), is a powerful
paradigm designed to enable learning systems to adapt quickly to new tasks. During the meta-training
phase, a meta-learner simulates learning across a variety of relevant tasks to accumulate knowledge
on how to adapt effectively. In the meta-testing phase, this learned adaptation strategy is applied
to previously unseen tasks. The adaptation is typically accomplished by the meta-learner, which,
given a set of task-specific training examples, generates a predictive model tailored to that task.
Meta-learning has been widely applied to important learning problems such as few-shot learning
(Finn et al., 2017; Wang et al., 2020), reinforcement learning (Yu et al., 2020; Nagabandi et al., 2019),
and neural architecture search (Elsken et al., 2020; Shaw et al., 2019).

Despite the success of meta-learning, there remains room for improvement in how models gen-
eralize to new tasks. Human learning leverages two key cognitive abilities—alignment and dis-
crimination—which are essential for rapid adaptation (Hummel, 2013; Chen, 2012; Christie, 2021).
Alignment refers to integrating different perspectives of an object to form a coherent understanding
(Christian, 2021), while discrimination involves distinguishing between similar stimuli to respond
appropriately only to relevant inputs (Robbins, 1970). Incorporating these abilities into meta-learning
models could enhance their adaptability and precision.

Several existing approaches attempt to leverage alignment and discrimination in meta-learning. Some
methods assume that task-specific target models for meta-training tasks are available, allowing
meta-training to be supervised by aligning the learned model with the target model, either through
model weight alignment (Wang & Hebert, 2016; Wang et al., 2017) or knowledge distillation (Ye
et al., 2022). However, these methods have limited applicability, as learning target models can be
computationally expensive and, in many real-world problems, such target models are not readily
available. Fei et al. (2021) and Wang et al. (2023) introduce alignment into meta-learners by aligning
classifiers in few-shot classification. However, their reliance on a static pool of base classes for
meta-training limits their flexibility in more dynamic or diverse tasks. Similarly, Gondal et al. (2021)
and Mathieu et al. (2021) explore contrastive representations for neural processes, but their methods
are tied to specific models, reducing their generalizability.
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In this paper, we propose ConML, a universal meta-learning framework that employs task-level
contrastive learning to enhance both alignment and discrimination abilities. Our approach is applicable
to various meta-learning algorithms without relying on specific model architectures, target models, or
extensive modifications. By treating tasks similarly to how contrastive learning handles unlabeled
samples, ConML contrasts the outputs of the meta-learner based on task identity. Positive pairs consist
of different subsets of the same task, while negative pairs come from different tasks, with the objective
of minimizing inner-task distance (alignment) and maximizing inter-task distance (discrimination).
ConML is efficient, requiring no additional data or retraining, and is learner-agnostic that can be
integrated into diverse representative meta-learning algorithms from different categories including
optimization-based (e.g., MAML (Finn et al., 2017)), metric-based (e.g., ProtoNet (Snell et al.,
2017)), and amortization-based (e.g., Simple CNAPS (Bateni et al., 2020)). We also demonstrate
how ConML enhances in-context learning (Brown et al., 2020) within the meta-learning paradigm.

Our contributions can be summarized as below:

• We propose a universal meta-learning framework, ConML, that emulates cognitive alignment
and discrimination abilities in meta-learning, helping to bridge the gap between the fast learning
capabilities of humans and meta-learners.

• We extend contrastive learning from the representation space in unsupervised learning to the model
space in meta-learning. By introducing model representations for various types of meta-learners,
ConML integrates efficiently into episodic training.

• We empirically show that ConML universally improves a wide range of meta-learning algorithms
with minimal implementation cost on diverse few-shot learning problems and in-context learning.

In the following sections, we first review related work and introduce the general learning to learn
process in Section 2, setting the foundation for how we incorporate alignment and discrimination
into meta-learning. In Section 3, we first present the general framework of learnig with ConML and
then provide the specifications of different types of meta-learning approaches. Section 4 presents
experimental results, demonstrating the effectiveness of ConML.

2 META-LEARNING: RELATED WORKS AND PRELIMINARIES

Meta-learning, or "learning to learn," focuses on improving the learning algorithm itself (Schmidhuber,
1987). Popular meta-learning approaches can be broadly categorized into three types (Bronskill et al.,
2021): (i) Optimization-based approaches (Andrychowicz et al., 2016; Finn et al., 2017; Nichol
et al., 2018), which focus on learning better optimization strategies for adapting to new tasks; (ii)
Metric-based approaches (Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018), which leverage
learned similarity metrics; and (iii) Amortization-based approaches (Garnelo et al., 2018; Requeima
et al., 2019; Bateni et al., 2020), which aim to learn a shared representation across tasks, amortizing
the adaptation process by using neural networks to directly infer task-specific parameters from the
training set.

All of these meta-learning approaches utilize episodic training, where the meta-learner is trained
across multiple tasks (episodes). Recently, several works have focused on optimizing task sampling
strategies by adjusting the task schedule based on task difficulty and diversity (Agarwal & Singh,
2023; Han et al., 2021; Zhang et al., 2022; Liu et al., 2020; Kumar et al., 2023). In contrast, ConML
does not alter the task sampling process. Instead, it incorporates task-level contrastive learning within
the episodic training framework to enhance the meta-learner’s alignment and discrimination abilities.
Moreover, ConML can be used alongside task sampling strategies, further increasing its versatility.

Formally, let L(D;h) represent the loss when evaluating a model h on a dataset D using a loss
function ℓ(y, ŷ) (e.g., cross-entropy or mean squared error). Let g(; θ) be a meta-learner that maps
a dataset D to a model h, i.e., h = g(D; θ). Given a distribution of tasks p(τ), where each task
τ consists of a training set Dtr

τ = (xτ,i, yτ,i)
n
i=1 and a validation set Dval

τ = (xτ,i, yτ,i)
m
i=n+1, the

objective of meta-learning is to train g(; θ) to generalize well to a new task τ ′ sampled from p(τ ′).
The model’s performance on the new task is evaluated by L(Dval

τ ′ ; g(Dtr
τ ′ ; θ)).
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In meta-training, the meta-learner g(; θ) is optimized
through a series of episodes, each consisting of a batch
b of B tasks. The goal is to minimize an episodic loss
Lv. A common objective is to minimize the validation
loss, given by Eτ∼p(τ)L(Dval

τ ; g(Dtr
τ ; θ)). As outlined

in Algorithm 1, in each episode, B tasks are sampled
from p(τ) to form the batch b, and the validation loss
for each task is aggregated as the supervision signal:
Lv = 1

B

∑
τ∈b L(Dval

τ ; g(Dtr
τ ; θ)), which is used to up-

date θ. While different meta-learning algorithms may
implement their own specific functions within g and Lv ,
they all share this same episodic training framework to
develop the ability to generalize across tasks.

Algorithm 1 Meta-Training.

while Not converged do
Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

Get task-specific model hτ =
g(Dtr

τ ; θ);
Get validation loss L(Dval

τ ;hτ );
end for
Lv = 1

B

∑
τ∈b L(Dval

τ ; g(Dtr
τ ; θ))

Update θ by θ ← θ −∇θLv .
end while

3 META-LEARNING WITH CONML

Now, we introduce our ConML (Figure 1 which equip meta-learners with the desired alignment and
discrimination ability via task-level CL. We first present the general framework of ConML based on
episodic training in Section 3.1, followed by specifications for the three main streams of meta-learning
approaches in Section 3.2.

Figure 1: Illustration of ConML. In each episode, given a batch of tasks sampled from the meta-
training dataset, ConML first samples subsets from each task using the sub-sampling strategy π.
These subsets are independently fed into the meta-learner gθ, and the resulting models are projected
into the model space using a learner-specific projection ψ to perform alignment and discrimination.
Combined with the original episodic loss Lv (e.g., validation loss), this forms a learner-agnostic
objective for optimization.

3.1 A GENERAL FRAMEWORK

To enhance the alignment and discrimination abilities of meta-learning, we draw inspiration from
Contrastive Learning (CL) (Oord et al., 2018; Chen et al., 2020; Wang & Isola, 2020). CL focuses on
learning representations that are invariant to irrelevant details while preserving essential information.
This is achieved by maximizing alignment and discrimination (uniformity) in the representation space
(Wang & Isola, 2020). While most existing studies focus on sample-wise contrastive learning in the
representation space via unsupervised learning (Wu et al., 2018; Hjelm et al., 2018; Bachman et al.,
2019; Tian et al., 2020; He et al., 2020; Chen et al., 2020; Khosla et al., 2020), we extend CL to the
model space in meta-learning. Specifically, we design a taks-level CL in the model space, where
alignment is achieved by minimizing the inner-task distance (i.e., the distance between models trained
on different subsets of the same task), and discrimination is achieved by maximizing the inter-task
distance (i.e., the distance between models from different tasks). The detailed procedures of ConML
are introduced below.

3
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Obtaining Model Representation. To train the meta-learner g, the distances din, dout are measured
in the output space of g, also referred to as the model spaceH. A practical approach is to represent
the model h = g(D; θ) ∈ H as a fixed-length vector e ∈ Rd, and then compute the distances using
an explicit distance function ϕ(·, ·) (e.g., cosine distance). Note that H is learner-specific, so to
generalize across different learners to form a learner-agnostic framework, we introduce a projection
function ψ : H → Rd to obtain the model representations e = ψ(h), and then the proceedings are
learner-agnostic. The details ofH and ψ will be explained and specified for different meta-learners
in Section 3.2.

Obtaining Inner-Task Distance. During meta-training, the combined dataset Dtr
τ ∪ Dval

τ contains
all the available information about task τ . The meta-learner is expected to produce similar models
when trained on any subset κ of this dataset. Moreover, models trained on subsets should resemble
the model learned from the full dataset Dtr

τ ∪ Dval
τ . For ∀κ ⊆ Dtr

τ ∪ Dval
τ , we expect eκτ = e∗τ , where

eκτ = ψ(g(κ; θ)), e∗τ = ψ(g(Dtr
τ ∪ Dval

τ ; θ)). The inner-task distance din
τ for each task τ is computed

as:

din
τ = (1/K) ·

∑K

k=1
ϕ(eκk

τ , e∗τ ), s.t., κk ∼ πκ(Dtr
τ ∪ Dval

τ ), (1)

where {κk}Kk=1 are K subsets sampled from Dtr
τ ∪Dval

τ using a specific sampling strategy πκ. In each
episode, given a batch b of task containing B tasks, the overall inner-task distance is averaged as
din = 1

B

∑
τ∈b d

in
τ .

Obtaining Inter-Task Distance. Since the goal of meta-learning is to improve performance on
unseen tasks, it is crucial for the meta-learner g to generalize well across diverse tasks. Given the
natural assumption that different tasks require distinct task-specific models, it is essential that g can
learn to differentiate between tasks—i.e., possess strong discrimination capabilities. To enhance task-
level generalization, we define the inter-task distance dout, which should be maximized to encourage g
to learn distinct models for different tasks. Specifically, for any two tasks τ ̸= τ ′ during meta-training,
we aim to maximize the distance between their respective representations, e∗τ and e∗τ ′ . To make this
practical within the mini-batch episodic training paradigm, we compute dout across a batch of tasks
sampled in each episode:

dout = (1/B(B − 1)) ·
∑

τ∈b

∑
τ ′∈b\τ

ϕ(e∗τ , e
∗
τ ′). (2)

Training Procedure. We optimize
ConML w.r.t. the combination of the
original episodic loss Lv and contrastive
meta-objective din − dout:

L = Lv + λ(din − dout). (3)

The training procedure of ConML is pro-
vided in Algorithm 2. Compared to Al-
gorithm 1, ConML introduces additional
computations for ψ(g(D; θ)) a total of
K + 1 times per episode. However, ψ
is implemented as a lightweight func-
tion (e.g., extracting model weights), and
g(D; θ) is already part of the standard
episodic training process, with multiple
evaluations of g(D; θ) being paralleliz-
able. As a result, ConML incurs only a
minimal increase in computational cost.

Algorithm 2 Meta-Training with ConML.

while Not converged do
Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

†Sample κk from πκ(Dtr
τ ∪ Dval

τ ) for k ∈
{1, 2, · · · ,K};
†Get model representation eκk

τ = ψ(g(κk; θ));
†Get model representation e∗τ =ψ(g(Dtr

τ ∪Dval
τ ; θ));

†Get inner-task distance din
τ by equation 1;

Get task-specific model hτ = g(Dtr
τ ; θ);

Get episodic loss Lv;
end for
†Get din = 1

B

∑
τ∈b d

in
τ and dout by equation 2;

Get loss L by equation 3;
Update θ by θ ← θ −∇θL.

end while

"†" indicates additional steps introduced by ConML to integrate
into standard episodic training procedure of meta-learning.

3.2 INTEGRATING CONML WITH MAINSTREAM META-LEARNING APPROACHES

ConML is universally applicable to enhance any meta-learning algorithm that follows episodic
training. It does not depend on a specific form of g or Lv and can be used alongside other forms of
task-level information. Next, we provide the specifications of H and ψ(g(D, θ)) to obtain model
representations for implementing ConML. We illustrate examples across different categories of meta-
learning algorithms, including optimization-based, metric-based, and amortization-based approaches.

4
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These examples are explicitly represented by model weights, as summarized in Table 1. Appendix A
provides the detailed procedures for integrating ConML with various meta-learning algorithms. We
also demonstrate how ConML enhances in-context learning within the meta-learning paradigm in
Appendix B.

Table 1: Specifications of integrating ConML with mainstream meta-learning approaches.

Category Examples Meta-learner g(D; θ) Model representation ψ(g(D; θ))

Optimization
-based

MAML,
Reptile

Update model weights
θ −∇θL(D;hθ)

θ −∇θL(D;hθ)

Metric
-based

ProtoNet,
MatchNet

Build classifier with
{({fθ(xi)}xi∈Dj , label j)}Nj=1

Concatenate
[ 1
|Dj |

∑
xi∈Dj

fθ(xi)]
N
j=1

Amortization
-based

CNPs,
CNAPs

Map D to model weights
by Hθ(D)

Hθ(D)

With Optimization-Based Methods. The representative algorithm of optimization-based meta-
learning is MAML, which meta-learns an initialization from where gradient steps are taken to learn
task-specific models, i.e., g(D; θ) = hθ−∇θL(D;hθ). Since MAML directly generates the model
weights, we use these weights as model representation. Specifically, the representation of the model
learned by g given a dataset D is: ψ(g(D; θ)) = θ −∇θL(D;hθ). certain optimization-based meta-
learning algorithms, such as FOMAML (Finn et al., 2017) and Reptile (Nichol et al., 2018), use
first-order approximations of MAML and do not strictly follow Algorithm 1 to minimize validation
loss. Nonetheless, ConML can still be incorporated into these algorithms as long as they adhere to
the episodic training framework.

With Metric-Based Methods. Metric-based algorithms are well-suited for classification tasks.
Given a dataset D for an N -way classification task, these algorithms classify based on the distances
between input samples {{fθ(xi)}xi∈Dj

}Nj=1 and their corresponding labels, where fθ is a meta-
learned encoder and Dj represents the set of inputs for class j. We represent this metric-based
classifier by concatenating the mean embeddings of each class in a label-aware order. For example,
ProtoNet (Snell et al., 2017) computes the prototype cj , which is the mean embedding of samples in
each class: cj = 1

|Dj |
∑

(xi,yi)∈Dj
fθ(xi). The classifier hθ,D then makes predictions as p(y = j |

x) = exp(−d(fθ(x), cj))/
∑

j′ exp(−d(fθ(x), cj′)). Since the outcome model hθ,D depends on
D through {cj}Nj=1 and their corresponding labels, the representation is specified as ψ(g(D; θ)) =
[c1|c2| · · · |cN ], where [·|·] denotes concatenation.

With Amortization-Based Methods. Amortization-based approaches meta-learns a hypernetwork
Hθ that aggregates information from D to task-specific parameter α, which serves as the weights
for the main-network h, resulting in a task-specific model hα. For example, Simple CNAPS (Bateni
et al., 2020) uses a hypernetwork to generate a small set of task-specific parameters that perform
feature-wise linear modulation (FiLM) on the convolution channels of the main-network. In ConML,
we represent the task-specific model hα using the task-specific parameters α, i.e., the output of the
hypernetwork Hθ: ψ(g(D; θ)) = Hθ(D).

4 EXPERIMENTS

4.1 FEW-SHOT REGRESSION

We begin by conducting experiments on synthetic data in a controlled setting to address two key ques-
tions: (i) Does training with ConML enable meta-learners to develop alignment and discrimination
abilities that generalize to meta-testing tasks? (ii) How do alignment and discrimination individually
contribute to meta-learning performance?

We take MAML w/ ConML as example and investigate above questions with few-shot regression
problem following the same settings in (Finn et al., 2017). Each task involves regressing from the
input to the output of a sine wave, where the amplitude and phase of the sinusoid are varied between
tasks. The amplitude varies within [0.1, 5.0] and the phase varies within [0, π]. This synthetic
regression dataset allows us to sample data and adjust the distribution as necessary for analysis.

5
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The implementation of ConML follows a simple intuitive setting: inner-task sampling K = 1 and
πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ , ϕ(a, b) = 1− a·b/∥a∥∥b∥ (cosine distance) and λ = 0.1.

Table 2: Meta-testing and clustering performance on few-shot regression problem.

Method MSE (5-shot) MSE (10-shot) Silhouette DBI CHI

MAML .6771± .0377 .0678± .0022 .1068± .0596 .0678± .0021 31.55± 2.52

MAML w/ ConML .3935± .0100 .0397± .0009 .1945± .0621 .0397± .0009 39.22± 2.61

(a) Model distribution of MAML. (b) Inner-task distance distribution. (c) Varying test shots.

(d) Model distribution of MAML
w/ ConML.

(e) Inter-task distance distribution. (f) Varying test distribution.

Figure 2: Evaluation of ConML on few-shot regression problem.

ConML Brings Generalizable Alignment and Discrimination. If optimizing din and dout does
equip meta-learner with generalizable alignment and discrimination, MAML w/ ConML can generate
more similar models from different subsets of the same task, while generating more separable
models from different tasks. This can be verified by evaluating the clustering performance for
model representations e. During meta-testing, we randomly sample 10 different tasks. For each
task, we sample 10 different subsets, each containing N = 10 samples. Using these 100 different
training sets Dtr as input, the meta-learner generates 100 models. Figure 2(a) and 2(d) visualize the
distribution of these models, where each point corresponds to the result of a subset and the same color
indicates sampled from the same task. It can be obviously observed MAML w/ ConML performs
better alignment and discrimination than MAML. To quantity the results, we also evaluate the
supervised clustering performance, where task identity is used as label. Table 2 shows the supervised
clustering performance of different metrics: Silhouette score (Rousseeuw, 1987), Davies-Bouldin
index (DBI) (Davies & Bouldin, 1979) and Calinski-Harabasz index (CHI) (Caliński & Harabasz,
1974). The results indicate that MAML with ConML significantly outperforms standard MAML
across all metrics. These findings confirm that training with ConML enables meta-learners to develop
alignment and discrimination abilities that generalize to meta-testing tasks.

Alignment Enhance Fast-Adaptation and Discrimination Enhance Task-Level Generalizability.
We aim to understand the individual contributions of optimizing din (alignment) and dout (discrim-
ination) to meta-learning performance. In conventional unsupervised contrastive learning, both
positive and negative pairs are necessary to avoid learning representations without useful information.
However, in ConML, the episodic lossLv plays a fundamental role in "learning to learn," while the

6
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contrastive objective serves as additional supervision to enhance alignment and discrimination. Thus,
we consider two variants of ConML: MAML w/ din which optimize Lv and din, MAML w/ dout

which optimize Lv and dout. During meta-testing, we randomly sample 1000 different tasks, with 10
different subsets (each containing N = 10 samples) per task. These subsets are aggregated into a
single set of N = 100 to obtain e∗τ for each task. Figure 2(b) and 2(e) visualize the distribution of din

and dout respectively, where the dashed lines mark mean values. Smaller din means better alignment
and larger dout means better discrimination. We can find that the alignment and discrimination
abilities are separable, generalizable, and that ConML effectively couples both. Figure 2(c) shows
the testing performance given different numbers of examples per task (shot), while the meta-leaner is
trained with a fixed N = 10. The results indicate that the improvement from alignment (MAML w/
din) is more pronounced in few-shot scenarios, highlighting its close relationship with fast-adaptation.
Figure 2(f) shows the out-of-distribution testing performance. Meta-trained on tasks with amplitudes
uniformly distributed over [0.1, 5], meta-testing is performed on tasks with amplitudes uniformly
distributed over [0.1+ δ, 5+ δ], where δ is shown on the x-axis. As the distribution gap increases, the
improvement from discrimination (MAML w/ dout) is more significant than from alignment (MAML
w/ din), indicating that discrimination plays a critical role in task-level generalization. ConML
leverages the benefits of both alignment and discrimination.

4.2 FEW-SHOT IMAGE CLASSIFICATION

Here, we evaluate the meta-learning performance on few-shot image classification problem follow
existing works (Vinyals et al., 2016; Finn et al., 2017; Bateni et al., 2020). We use two few-shot
image classification benchmarks: miniImageNet (Vinyals et al., 2016) and tieredImageNet (Ren et al.,
2018), evaluating on 5-way 1-shot and 5-way 5-shot tasks. We also evaluate on a large-scale dataset,
META-DATASET (Triantafillou et al., 2020), whose results are provided in Appendix C.

We consider representative meta-learning algorithms from different categories, including optimization-
based: MAML (Finn et al., 2017), FOMAML (Finn et al., 2017), Reptile (Nichol et al., 2018);
metric-based: MatchNet (Vinyals et al., 2016), ProtoNet (Snell et al., 2017); and amortization-based:
SCNAPs (Simple CNAPS) (Bateni et al., 2020). We evaluate the meta-learning performance of
each algorithm in its original form (w/o ConML) and after incorporating ConML into the training
process (w/ ConML). The implementation of ConML follows the general procedure described in
Algorithm 2 and the specification for corresponding category in Section 3.2. In addition, we assess
the impact of ConML on a state-of-the-art few-shot image classification method utilizing in-context
learning, CAML (Fifty et al., 2024). The implementation details for equipping in-context learners
with ConML are provided in Appendix B.

(a) miniImageNet 1-shot. (b) miniImageNet 5-shot.

(c) tieredImageNet 1-shot. (d) tieredImageNet 5-shot.

Figure 3: Few-shot image classification performance.
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Since we focus on comparing the improvement of each algorithm with and without ConML, rather
than comparing different algorithms directly, we follow the originally reported settings for each
baseline. For ConML, all baselines share the same hyperparameter settings: task batch size B = 32,
inner-task sampling K = 1, and πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ . We use cosine distance for ϕ(a, b) =
1 − a·b/∥a∥∥b∥ and set λ = 0.1. Other hyperparameters related to model architecture and training
procedure remain consistent with their original settings. Note that settingK = 1 and πκ(Dtr

τ∪Dval
τ ) =

Dtr
τ represents the simplest and most efficient implementation, referred to as ConML (K = 1) in

Appendix A. In this setup, the only additional computation compared to Algorithm 1 is g(Dtr
τ∪Dval

τ ; θ),
resulting in similar time consumption, as shown in Section 4.4.1.

Figure 3 shows the results on miniImageNet and tieredImageNet respectively (numerical results are
provided in Table 9 and 10 in Appendix C). The relative gain is calculated as the sum of the 1-shot
and 5-shot accuracy improvements. The significant relative gain, combined with comparable time
consumption (Appendix C), demonstrates that ConML offers universal improvements across different
meta-learning algorithms with minimal additional overhead.

Table 3: Testing accuracy (%) of CAML and CAML w/ ConML on few-shot image classification.

Benchmark miniImageNet tieredImageNet Aircraft CIFAR-fs

Shots n=1 n=5 n=1 n=5 n=1 n=5 n=1 n=5

CAML 96.2 98.6 95.4 98.1 63.3 79.1 70.8 85.5

CAML w/ ConML 97.0 98.9 96.6 98.2 65.8 81.5 72.3 86.1

Futher, we equip the state-of-the-art meta-learning method CAML (Fifty et al., 2024) with our
ConML as CAML w/ ConML. CAML is based on in-context learning and consists of a feature
extractor and an in-context learner (transformer). The feature extractor is pre-trained and remains
frozen during meta-training, meaning ConML does not affect it. Instead, ConML influences the
training of the in-context learner, following the procedure described in Appendix B. We adopt the
same experimental settings as Fifty et al. (2024), where the feature extractor is a ViT-based model
with pre-trained parameters, and the in-context learner is trained on ImageNet-1k, Fungi, MSCOCO,
and WikiArt. In Fifty et al. (2024), this process is referred to as "large-scale pretraining," but in
our case, it is treated as the meta-training process for ConML. We also introduce ConML with the
efficient settings of K = 1 and π = random half. All other training and evaluation settings remain
consistent with the public code provided by Fifty et al. (2024). The results, presented in Table 3,
show 5-way n-shot performance. We find that CAML with ConML consistently outperforms CAML
without it, further demonstrating that ConML is a learner-agnostic approach that can enhance even
state-of-the-art methods.

4.3 FEW-SHOT MOLECULAR PROPERTY PREDICTION

Few-shot molecular property prediction is another important testbed for meta-learning methods (Altae-
Tran et al., 2017; Guo et al., 2021; Wang et al., 2021; Chen et al., 2022; Schimunek et al., 2023). We
use FS-Mol (Stanley et al., 2021), a widely studied benchmark consisting of a large number of diverse
tasks. We follow the public data split provided in Stanley et al. (2021). Each training set contains 64
labeled molecules and can be imbalanced, where the number of labeled active and inactive molecules
may not be equal. The remaining molecules in each task form the validation set.

We consider the following meta-learning approaches: PAR (Wang et al., 2021), ADKF-IFT (Chen
et al., 2022), and PACIA (Wu et al., 2024). Note that MHNfs (Schimunek et al., 2023) is excluded
from the comparison, as it uses additional reference molecules from external datasets, which would
result in an unfair comparison. All baselines share the same encoder provided by the benchmark,
which maps molecular graphs to embedding vectors and is meta-trained from scratch. The perfor-
mance is evaluated by ∆AUPRC (change in area under the precision-recall curve) w.r.t. a random
classifier (Stanley et al., 2021), averaged across meta-testing tasks.

We incoporate ConML into state-of-the-art method PACIA, an amortization-based meta-learner,
as PACIA w/ ConML. The embedding vectors from Dtr are input into the hypernetwork, and the
output modulates the embedding vectors through FiLM. We set the hyperparameters for ConML
as follows: B = 16, ϕ(a, b) = 1 − a·b/∥a∥∥b∥ (cosine distance), and λ = 0.1. For the sampling
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strategy πκ and the number of times K, we sample subsets of different sizes for each task, specifically
m ∈ 4, 8, 16, 32, 64, with 128/m iterations for each size. Each subset contains m/2 positive and
m/2 negative samples, selected randomly. All other hyperparameters related to model structure and
training follow the default settings from the benchmark (Stanley et al., 2021).

Table 4 presents the results. PACIA w/ ConML outperforms the state-of-the-art approach across all
meta-testing scenarios with different shots. Comparing PACIA w/ ConML to the original PACIA, the
impact of ConML is notably significant.

Table 4: Few-shot molecular property prediction performance (∆AUPRC) on FS-Mol.

2-shot 4-shot 8-shot 16-shot

MAML .009± .006 .125± .009 .146± .007 .159± .009

PAR .124± .007 .140± .005 .149± .009 .164± .008

ProtoNet .117± .006 .142± .007 .175± .006 .206± .008

CNP .139± .004 .155± .008 .174± .006 .187± .009

ADKF-IFT .131± .007 .166± .005 .202± .006 .234± .009

PACIA .142± .007 .169± .006 .205± .008 .236± .008

PACIA w/ ConML .175± .006 .196± .006 .218± .005 .241± .007

4.4 MODEL ANALYSIS OF CONML

As mentioned in Section 4.2, ConML uses a simple and intuitive configuration across all baselines in
the experiments, demonstrating significant improvement even with minimal hyperparameter tuning.
Fully unlocking the potential of ConML through hyperparameter optimization presents an interesting
but challenging task due to the high dimensionality of its settings. These settings include surrogate
forms of contrastive loss, the distance function ϕ, the weight parameter λ, subset sampling strategy
πκ, the number of subsets K, task batch size B, and batch sampling strategy, all of which may vary
for each specific meta-learner.

In this section, we explore the impact of key ConML settings: (1) the number of subset samples K,
which influences the model’s complexity, and (2) the contrastive loss, including the distance function
ϕ, the weighting factor λ, and the use of InfoNCE as a replacement for (din − dout). All results are
based on the 5-way 1-shot miniImageNet setting.

4.4.1 EFFECT OF THE NUMBER OF SUBSET SAMPLES K

Table 5: Varying the number of subset samples K. The relative time is the ratio of the time taken by
the meta-learner with ConML to the time taken by the original meta-learner per epoch.

w/o K=1 2 4 8 16 32

MAML w/ ConML
Acc.(%) 48.75 56.25 56.25 56.08 57.59 57.40 57.33

Mem.(MB) 1331 2801 2845 3011 3383 4103 5531
Time (relative) 1 1.1 1.1 1.1 1.1 1.1 1.1

ProtoNet w/ ConML
Acc.(%) 48.90 51.03 51.46 52.04 52.30 52.34 52.48

Mem.(MB) 7955 14167 14563 15175 16757 19943 26449
Time (relative) 1 1.2 1.2 1.2 1.2 1.2 1.2

Table 5 presents the results from varying the number of subset samples K. Starting from K = 1,
we observe moderate performance growth as K increases, while memory usage grows linearly with
K. Notably, there is a significant discrepancy in both performance and memory (approximately
∼ 2×) between the configurations without ConML and with K = 1. However, K has minimal
impact on time efficiency, assuming sufficient memory, since the processes are independent and can
be parallelized.
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4.4.2 THE DESIGN OF CONTRASTIVE LOSS

Here, we explore various design factors of the contrastive loss.

ConML optimizes the following objective: L = Lv + λLc, where Lv is the validation loss, Lc is
the constrastive loss. In the previous sections, to highlight our motivation and perform a decoupled
analysis, we used a simple contrastive loss Lc = din − dout, with the natural cosine distance
ϕ(x, y) = 1− x⊤y

∥x∥∥y∥ . Here, we also considered a manually bounded Euclidean distance ϕ(x, y) =
sigmoid(∥x − y∥). Beyond the simple contrastive loss, we incorporate the InfoNCE (Oord et al.,
2018) loss for an episode with a batch b containing B tasks. The contrastive loss is defined as

Lc = −
∑

τ∈b log

(
exp(−Din

τ )
exp(−Din

τ )+
∑

τ′∈b\τ exp(−Dout
τ,τ′ )

)
, where Dout

τ,τ ′ = ϕ(e∗τ , e
∗
τ ′). In this case, we

treat negative "distance" as "similarity." For the similarity metric in InfoNCE, we experiment with
both cosine distance ϕ(x, y) = 1− x⊤y

∥x∥∥y∥ and Euclidean distance ϕ(x, y) = ∥x− y∥.

Table 6: Testing accuracy (%) with varying contrastive loss form (Lc), distance function (ϕ) and
contrastive weight λ.

Lc ϕ λ = 0 0.01 0.03 0.1 0.3 1

din − dout Cosine 48.75 52.19 54.43 56.25 55.82 47.39

MAML sigmoid(Euc) 48.75 51.64 54.40 54.06 53.94 54.21

w/ ConML InfoNCE Cosine 48.75 54.66 55.90 57.24 56.87 56.95

Euc 48.75 53.02 55.08 55.61 55.89 55.40

din − dout Cosine 48.90 49.16 51.58 51.03 50.06 48.81

ProtoNet sigmoid(Euc) 48.90 50.27 51.45 52.09 52.80 52.02

w/ ConML InfoNCE Cosine 48.90 50.73 52.20 52.44 52.86 52.15

Euc 48.90 51.54 52.39 53.42 53.30 53.81

Table 6 presents the results. We observe that ConML can significantly improve the performance of
meta-learners across a considerable range of λ, though setting λ too high can lead to model collapse by
overshadowing the original meta-learning objective. The choice of distance function varies between
algorithms, with some performing better with specific functions. Additionally, InfoNCE outperforms
the naive contrastive strategy, offering greater potential and reduced sensitivity to hyperparameters.
These findings suggest that we may not have yet reached the full potential of ConML, and there are
several promising directions for further improvement. For instance, refining batch sampling strategies
to account for task-level similarities or developing more advanced subset-sampling methods could
enhance performance further.

5 CONCLUSION AND DISCUSSION

In this work, we propose ConML, a universal, learner-agnostic contrastive meta-learning framework
that emulates the alignment and discrimination capabilities integral to human fast learning, achieved
through task-level contrastive learning in the model space. ConML can be seamlessly integrated
with conventional episodic meta-training, and we provide specific implementations across a wide
range of meta-learning algorithms. Empirical results show that ConML consistently and significantly
enhances meta-learning performance by improving the meta-learner’s fast-adaptation and task-level
generalization abilities. Additionally, we explore in-context learning by reformulating it within
the meta-learning paradigm, demonstrating how ConML can be effectively integrated to boost
performance. The primary contribution of ConML is offering a learner-agnostic and efficient
framework built on the most general meta-learning setting and training procedure. While the current
implementation of ConML is relatively simple, it lays a foundation for general contrastive meta-
learning and offers numerous opportunities for further improvement, such as optimizing sampling
strategies or refining the contrastive loss function.
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A SPECIFICATIONS OF META-LEARNING WITH CONML

Here, we provide the specific algorithm process of representative implementation ConML, including
the universal framework of ConML (Algorithm 3), the most efficient implementation of ConMLwith
K = 1 and πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ (Algorithm 4), training ICL model with ConML (Algorithm 5),
MAML w/ ConML (Algorithm 6), Reptile w/ ConML (Algorithm 7), SCNAPs w/ ConML (Algo-
rithm 8), ProtoNet w/ ConML (Algorithm 9).

Algorithm 3 ConML.

Input: Task distribution p(τ), batch size B, inner-task sample times K and sampling strategy πκ.
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Get model representation eκk
τ = ψ(g(κk; θ));

end for
Get model representation e∗τ = ψ(g(Dtr

τ ∪ Dval
τ ; θ));

Get inner-task distance din
τ by equation 1;

Get task-specific model hτ = g(Dtr
τ ; θ);

Get validation loss L(Dval
τ ;hτ );

end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by equation 2;

Get loss L by equation 3;
Update θ by θ ← θ −∇θL.

end while

Algorithm 4 ConML (K = 1).

Input: Task distribution p(τ), batch size B (inner-task sample times K = 1 and sampling strategy
πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ ).
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

Get task-specific model hτ = g(Dtr
τ ; θ), and model representation eκk

τ = ψ(g(κk; θ));
Get model representation e∗τ = ψ(g(Dtr

τ ∪ Dval
τ ; θ));

Get inner-task distance din
τ by equation 1;

Get validation loss L(Dval
τ ;hτ );

end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by equation 2;

Get loss L by equation 3;
Update θ by θ ← θ −∇θL.

end while
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Algorithm 5 In-Context Learning with ConML (ICL w/ ConML).

Input: Task distribution p(τ), batch size B, inner-task sample times K and sampling strategy πκ,
dummy input u (probe).
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dτ );
Get eκk

τ = g([κ⃗k, u]; θ);
end for
Get e∗τ = g([D⃗τ , u]; θ);
Get inner-task distance din

τ by equation 1;
Get task loss 1

m

∑m−1
i=0 ℓ(yτ,i+1, g([D⃗τ,0:i, xτ,i+1]; θ));

end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by equation 2;

Get loss L = 1
B

∑
τ∈b

1
m

∑m−1
i=0 ℓ(yτ,i+1, g([D⃗τ,0:i, xτ,i+1]; θ)) + λ(din − dout);

Update θ by θ ← θ −∇θL.
end while

Algorithm 6 MAML w/ ConML.

Input: Task distribution p(τ), batch size B, inner-task sample times K = 1 and sampling strategy
πκ
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Get model representation eκk
τ = θ −∇θL(κk;hθ);

end for
Get model representation e∗τ = θ −∇θL(Dtr

τ ∪ Dval
τ ;hθ).

Get inner-task distance din
τ by equation 1;

Get task-specific model hθ−∇θL(Dtr
τ ;θ)

;
Get validation loss L(Dval

τ ;hθ−∇θL(Dtr
τ ;hθ));

end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by equation 2;

Get loss L by equation 3;
Update θ by θ ← θ −∇θL.

end while

Algorithm 7 Reptile w/ ConML.

Input: Task distribution p(τ), batch sizeB. (inner-task sample timesK = 1 and sampling strategy
πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ )
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dτ );
Get model representation eκk

τ = θ −∇θL(κk;hθ);
end for
Get model representation e∗τ = θ −∇θL(Dtr

τ ∪ Dval
τ ;hθ).

Get inner-task distance din
τ by equation 1;

end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by equation 2;

Get loss L by equation 3;
Update θ by θ ← θ + 1

B

∑
τ∈b(e

∗
τ − θ)− λ∇θ(d

in − dout).
end while
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Algorithm 8 SCNAPs w/ ConML.

Note: Here hw corresponds to the feature extractor fθ; Hθ corresponds to the task encoder gϕ in
(Bateni et al., 2020).
Input: Task distribution p(τ), batch size B, inner-task sample times K and sampling strategy πκ.
Pretrain hw with the mixture of all meta-training data;
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Get model representation eκk
τ = Hθ(κk);

end for
Get model representation e∗τ = Hθ(Dtr

τ ∪ Dval
τ );

Get inner-task distance din
τ by equation 1;

Get task-specific model by FiLM hτ = hw,Hθ(Dtr
τ )

;
Get validation loss L(Dval

τ ;hτ );
end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by equation 2;

Get loss L by equation 3;
Update θ by θ ← θ −∇θL.

end while

Algorithm 9 ProtoNet w/ ConML (N -way classification).

Input: Task distribution p(τ), batch size B, inner-task sample times K = 1 and sampling strategy
πκ
while Not converged do

Sample a batch of tasks b ∼ pB(τ).
for All τ ∈ b do

for k = 1, 2, · · · ,K do
Sample κk from πκ(Dtr

τ ∪ Dval
τ );

Calculate prototypes cj = 1
|κk,j |

∑
(xi,yi)∈κk,j

fθ(xi) for j = 1, · · · , N ;
Get model representation eκk

τ = [c1|c2| · · · |cN ];
end for
Calculate prototypes cj = 1

|Dj |
∑

(xi,yi)∈Dj
fθ(xi) for j = 1, · · · , N ;

Get model representation e∗τ = [c1|c2| · · · |cN ];
Get inner-task distance din

τ by equation 1;
Get task-specific model h[c1|c2|···|cN ], which gives prediction by p(y = j | x) =

exp(−d(fθ(x),cj))∑
j′ exp(−d(fθ(x),cj′ ))

;

Get validation loss L(Dval
τ ;h[c1|c2|···|cN ]);

end for
Get din = 1

B

∑
τ∈b d

in
τ and dout by equation 2;

Get loss L by equation 3;
Update θ by θ ← θ −∇θL.

end while
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B IN-CONTEXT LEARNING WITH CONML

B.1 IN-CONTEXT LEARNING

In-context learning (ICL) is first proposed for large language models (Brown et al., 2020), where
examples in a task are integrated into the prompt (input-output pairs) and given a new query input,
the language model can generate the corresponding output. This approach allows pre-trained model
to address new tasks without fine-tuning the model. For example, given "happy->positive; sad-
>negative; blue->", the model can output "negative", while given "green->cool; yellow->warm;
blue->" the model can output "cool". ICL has the ability to learn from the prompt. Training ICL
can be viewed as learning to learn, i.e., meta-learning (Min et al., 2022; Garg et al., 2022; Kirsch
et al., 2022). More generally, the input and output are not necessarily to be natural language. In
ICL, a sequence model Tθ (typically transformer (Vaswani et al., 2017)) is trained to map sequence
[x1, y1, x2, y2, · · · , xm−1, ym−1, xm] (prompt prefix) to prediction ym. Given distribution P of
training prompt t, then training ICL follows an auto-regressive manner:

min
θ

Et∼P (t)
1

m

∑m−1

i=0
ℓ(yt,i+1, Tθ([xt,1, yt,1, · · · , xt,i+1])). (4)

It has been mentioned that the training of ICL can be viewed as an instance of meta-learning (Garg
et al., 2022; Akyürek et al., 2022) as Tθ learns to learn from prompt. In this section we first formally
reformulate Tθ to meta-learner g(; θ), then introduce how ConML can be integrated with ICL.

B.2 A META-LEARNING REFORMULATION

Denote a sequentialized D as D⃗ where the sequentializer is default to bridge p(τ) and P (t). Then
the prompt [xτ,1, yτ,1, · · · , xτ,m, yτ,m] can be viewed as D⃗tr

τ which is providing task-specific infor-
mation. Note that ICL does not specify an explicit output model h(x) = g(D; θ)(x); instead, this
procedure exists only implicitly through the feeding-forward of the sequence model, i.e., task-specific
prediction is given by g([D⃗, x]; θ). Thus we can reformulate the training of ICL equation 4 as:

min
θ

Eτ∼p(τ)
1

m

∑m−1

i=0
ℓ(yτ,i+1, g([D⃗τ,0:i, xτ,i+1]; θ)). (5)

The loss in equation 5 can be evaluated through episodic meta-training, where each task in each
episode is sampled multiple times to form Dval

τ and Dtr
τ to evaluate the episodic loss Lv in an auto-

regressive manner. The training of ICL thus follows the episodic meta-training (Algorithm 1), where
the validation loss with determined Dtr

τ and Dval
τ : L(Dval

τ ; g(Dtr
τ ; θ)), is replaced by loss validated in

the auto-regressive manner: 1
m

∑m−1
i=0 ℓ(yτ,i+1, g([D⃗τ,0:i, xτ,i+1]; θ)).

B.3 INTEGRATING CONML WITH ICL

Since the training of ICL could be reformulated as episodic meta-training, the three steps to measure
ConML proposed in Section 3 can be also adopted for ICL, but the first step to obtain model
representation ψ(g(D, θ)) needs modification. Due to the absence of an inner learning procedure for
a predictive model for prediction h(x) = g(D; θ)(x), representation by explicit model weights of h
is not feasible for ICL.

To represent what g learns from D, we design to incorporate D⃗ with a dummy input u, which
functions as a probe and its corresponding output can be readout as representation:

ψ(g(D; θ)) = g([D⃗, u]; θ), (6)

where u is constrained to be in the same shape as x, and has consistent value in an episode. The
complete algorithm of ConML for ICL is provided in Appendix A.For example, for training a
ICL model on linear regression tasks we can choose u = 1, and in pre-training of LLM we can
choose u ="what is this task?". From the perspective of learning to learn, ConML encourages ICL
to align and discriminate like it does for conventional meta-learning, while the representations to
evaluate inner- and inter- task distance are obtained by probing output rather than explicit model
weights. Thus, incorporating ConML into the training process of ICL benefits the fast-adaptation and
task-level generalization ability. From the perspective of supervised learning, ConML is performing
unsupervised data augmentation that it introduces the dummy input and contrastive objective as
additional supervision to train ICL.
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Table 7: Relative minimal error (Rel. Min. Error) and spared example number to reach the same error
(Shot Spare) comparing ICL w/ and w/o ConML.

Function (max prompt len.) LR (10 shot) SLR (10 shot) DT (20 shot) NN (40 shot)

Rel. Min. Error 0.42± 0.09 0.49± .06 0.81± 0.12 0.74± 0.19

Shot Spare −4.68± 0.45 −3.94± 0.62 −4.22± 1.29 −11.25± 2.07

Following (Garg et al., 2022), we investigate ConML on ICL by learning to learn synthetic functions
including linear regression (LR), sparse linear regression (SLR), decision tree (DT) and 2-layer neural
network with ReLU activation (NN). We train the GPT-2 (Radford et al., 2019)-like transformer
for each function with ICL and ICL w/ ConML respectively and compare the inference (meta-
testing) performance. We follow the same model structure, data generation and training settings
(Garg et al., 2022). We implement ICL w/ ConMLwith K = 1 and πκ([x1, y1, · · · , xn, yn]) =
[x1, y1, · · · , x⌊n

2 ⌋, y⌊n
2 ⌋]. To obtain the implicit representation equation 6, we sample u from a

standard normal distribution (the same with x’s distribution) independently in each episode. Since
the output of equation 6 is a scalar, i.e., representation e ∈ R, we adopt distance measure ϕ(a, b) =
σ((a− b)2), where σ(·) is sigmoid function to bound the squared error. λ = 0.02.

(a) LR. (b) SLR. (c) DT. (d) NN.

Figure 4: In-context learning performance.

B.4 PERFORMANCE COMPARISON

Figure 4 shows that varying the number of in-context examples during inference, ICL w/ ConML
always makes more accurate predictions than ICL. Table 7 collects the two values to show the effect
ConML brings to ICL: Rel. Min. Error is ICL w/ ConML’s minimal inference error given different
number of examples, divided by ICL’s; Shot Spare is when ICL w/ ConML obtain an error no larger
than ICL’s minimal error, the difference between the corresponding example numbers. Note that the
learning of different functions (different meta-datasets) share the same settings about ConML, which
shows ConML can bring ICL universal improvement with cheap implementation. We notice that
during training of LR and SLR ⌊n2 ⌋ = 5, which happens to equals to the dimension of the regression
task. This means sampling by πκ would results in the minimal sufficient information to learn the
task. In this case, minimizing din is particularly beneficial for the fast-adaptation ability, shown as
Figure 4(a) and 4(b). This indicates that introducing prior knowledge to design the hyperparameter
settings of ConML could bring more advantage. The effect of ConML on ICL is without loss of
generalizability to real-world applications like pretraining large language models.

C MORE RESULTS ON FEW-SHOT IMAGE CLASSIFICATION

Here, we provide ConML’s empirical results on miniImageNet, tieredImageNet, and a large-scale
dataset, META-DATASET (Triantafillou et al., 2020).

Table 8 shows results on META-DATASET, experimented in the same model, training (on ILSVRC-
2012 only) and evaluation setting following (Triantafillou et al., 2020), and the ConML is introduced
with the same setting as Section 4.2 (inner-task sampling K = 1 and πκ(Dtr

τ ∪ Dval
τ ) = Dtr

τ ,
ϕ(a, b) = 1− a·b/∥a∥∥b∥ (cosine distance) and λ = 0.1.). It can be observed that ConML also brings
consistent improvement on META-DATASET.
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Table 8: Experiment results on META-DATASET.

Baseline MatchNet ProtoNet fo-MAML fo-Proto-MAML

ConML w/o w/ w/o w/ w/o w/ w/o w/

ILSVRC 45.0 51.1 50.5 52.3 45.5 54.1 49.5 54.3
Omniglot 52.2 54.6 59.9 61.2 55.5 63.7 63.3 69.8
Aircraft 48.9 51.5 53.1 54.9 56.2 64.9 55.9 61.5
Birds 62.2 66.8 68.7 68.9 63.6 69.9 68.6 68.6

Textures 64.1 67.6 66.5 68.4 68.0 72.3 66.4 69.4
Quick Draw 42.8 46.7 48.9 50.0 43.9 48.5 51.5 53.1

Fungi 33.9 36.4 39.7 40.9 32.1 40.6 39.9 43.7
VGG Flower 80.1 84.9 85.2 88.0 81.7 90.4 87.1 91.0
Traffic Signs 47.8 49.5 47.1 48.6 50.9 52.2 48.8 51.5
MS COCO 34.9 40.1 41.0 42.4 35.3 43.5 43.7 48.9

Table 9: Meta-testing accuracy on miniImageNet.

Category Algorithm Objective 5-way 1-shot 5-way 5-shot Relative Gain Relative Time

Optimization-
Based

MAML - 48.75± 1.25 64.50± 1.02
9.16% 1.1×w/ ConML 56.25± 0.94 67.37± 0.97

FOMAML - 48.12± 1.40 63.86± 0.95
12.65% 1.2×w/ ConML 57.64± 1.29 68.50± 0.78

Reptile - 49.21± 0.60 64.31± 0.97
5.58% 1.5×w/ ConML 52.82± 1.06 67.04± 0.81

Metric-
Based

MatchNet - 43.92± 1.03 56.26± 0.90
10.59% 1.2×w/ ConML 48.75± 0.88 62.04± 0.89

ProtoNet - 48.90± 0.84 65.69± 0.96
3.31% 1.2×w/ ConML 51.03± 0.91 67.35± 0.72

Amortization-
Based SCNAPs - 53.14± 0.88 70.43± 0.76

3.12% 1.3×w/ ConML 55.73± 0.86 71.70± 0.71

Table 10: Meta-testing accuracy on tieredImageNet.

Category Algorithm Objective 5-way 1-shot 5-way 5-shot Relative Gain Relative Time

Optimization-
Based

MAML - 51.39± 1.31 68.25± 0.98
10.07% 1.1×w/ ConML 58.75± 1.45 72.94± 0.98

FOMAML - 51.44± 1.51 68.32± 0.95
9.78% 1.2×w/ ConML 58.21± 1.22 73.26± 0.78

Reptile - 47.88± 1.62 65.10± 1.13
10.78% 1.5×w/ ConML 55.01± 1.28 70.15± 1.00

Metric-
Based

MatchNet - 48.74± 1.06 61.30± 0.94
11.00% 1.2×w/ ConML 53.29± 1.05 67.86± 0.77

ProtoNet - 52.50± 0.96 71.03± 0.74
3.94% 1.2×w/ ConML 54.62± 0.79 73.78± 0.75

Amortization-
Based SCNAPs - 62.88± 1.04 79.82± 0.87

2.91% 1.3×w/ ConML 65.06± 0.95 81.79± 0.80
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