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Abstract

We present a pipeline for characterizing and constraining initial conditions in
cosmology via persistent homology. The cosmological observable of interest is the
cosmic web of large scale structure, and the initial conditions in question are non-
Gaussianities (NG) of primordial density perturbations. We compute persistence
diagrams and derived statistics for simulations of dark matter halos with Gaussian
and non-Gaussian initial conditions. For computational reasons and to make contact
with experimental observations, our pipeline computes persistence in sub-boxes
of full simulations and simulations are subsampled to uniform halo number. We
use simulations with large NG (f locNL = 250) as templates for identifying data with
mild NG (f locNL = 10), and running the pipeline on several cubic volumes of size
40 (Gpc/h)3, we detect f locNL = 10 at 97.5% confidence on ∼ 85% of the volumes
for our best single statistic. Throughout we benefit from the interpretability of
topological features as input for statistical inference, which allows us to make
contact with previous first-principles calculations and make new predictions.

1 Introduction

The last few decades have established a concordance model of cosmology, which relies on a handful
of very well-constrained parameters [1, 2]. Despite this progress, mysteries remain. Perhaps the most
pressing question is the mechanism that seeded primordial perturbations. These perturbations evolved
under gravity to form the cosmic structure we observe today. By studying the statistics of cosmo-
logical observables, we aim to reverse-engineer the theory that generated primordial perturbations.
Observations of the cosmic microwave background have so far provided the strongest constraints on
the two-point function of primordial perturbations [3], which however only provides coarse-grained
information about the free theory of the fields generating these perturbations, while not answering
fundamental questions about the field content and interactions during this early phase. To probe the
precise microphysics of this theory, we must move beyond the two-point function. One way to do
this is to search for evidence of primordial non-Gaussianity (NG), the precise form of which allows
one to discriminate between different theories of the very early universe [4]. For example, local NG
[5] is described by the ansatz

ΦNG(x) = ΦG(x) + f locNL

(
Φ2

G(x)−
〈
Φ2

G(x)
〉)2

(1)
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where ΦNG is the primordial gravitational potential, ΦG is a Gaussian random field, and f locNL controls
the amount of NG. Single field models necessarily produce very small local NG as implied by
consistency relations in the squeezed limit [6, 7], though large NG can be realized in other shapes [8].
Primordial NG has still not been detected in any form. Of the various forms of NG, local NG is the
most tightly constrained, with f locNL = −0.9± 10.2 at 2σ [9].

There are several reasons to expect that topology is sensitive to NG. Namely, departures from
Gaussianity are expected via an Edgeworth expansion to be most noticeable in the tail of a probability
distribution. In terms of the primordial density perturbation, these tails are probed by local minima
and local maxima. Under gravity, local maxima (overdense regions) collapse to form dark matter
halos while local minima (underdense regions) expand as cosmic voids. These objects, along with
filament loops, form a topological decomposition of large-scale structures (LSS) in the universe.

We therefore propose to robustly compute the topology of LSS and corresponding constrain cosmology
using persistent homology [10, 11, 12]. In the context of LSS, persistent homology tracks the creation
and destruction of clusters, filament loops, and voids across scales. While certain qualitative aspects
of persistent homology have been computed before for LSS [13, 14, 15], the ability to perform
statistics and generate constraints is underexplored. As the first work in this vein, we take into
account several important observational effects, including varying halo density. Additionally, this is
the first computation of the persistent topology of LSS with non-Gaussian initial conditions. In a
cosmology context, the statistics derived from persistent homology have the advantage over other ML
techniques of interpretability: we are able to reproduce previous results in certain limits and we make
new predictions for unexplored observables, such as filament loops formed by dark matter halos.

This is a condensed version of the paper [16].

2 Method

Data set, subboxing, subsampling

We use the EOS DATASET1, a suite of N-body simulations created to investigate the imprint of
primordial non-Gaussianity in LSS at low redshift. The nomenclature for the cosmologies in the
dataset is as follows: (G/NG)#(L/S), where G/NG distinguishes Gaussian from non-Gaussian initial
conditions, # gives the value of the cosmological parameter σ8 in the G case or the value of f locNL 6= 0
in the NG case (NG simulations have σ8 = 0.85, the same σ8 value as in G85 simulations), and
L/S determines whether a simulation was computed in a “large box” of side length of 2 Gpc/h or a
“small box” of side length of 1 Gpc/h with different resolution. Each simulation in L has O(106)
DM halos at redshift z = 1. When performing statistics, we will consider concatenated simulations
with volume 40 (Gpc/h)3. In the end we are considering similar volumes, redshift ranges, and DM
halo mass ranges as those measured by upcoming galaxy surveys like Euclid. One difference to keep
in mind is that galaxy surveys observe luminous galaxies hosted by DM halos, while restricting to
DM-only simulations allows us to maintain control over the relevant physics.

The size of individual realizations in the EOS DATASET presents a challenge for persistent homology.
To deal with it, we use filtrations built from subcomplexes of the Delaunay triangulation, as well as
computing filtrations and their persistent homology in sub-boxes of a full simulation with side length
1 Gpc/h. This is possible without introducing systematics because the topological features in our
filtrations die at scales of O(10)Mpc/h� 1 Gpc/h.

An additional complication in the context of experimental observations of LSS is cosmic variance,
which means that the number of halos in a fixed simulation volume can vary between simulations.
This effect can compete with variations in halo density due to cosmology, and can have a large effect
on persistence diagrams. To remove this systematic, we subsample each simulation to have the same
number of halos. Without subsampling, two cosmologies that increase the total number of halos are
much more difficult to distinguish via persistent homology, while subsampled simulations can be
distinguished [16].

1Information on the full dataset is available at https://mbiagetti.gitlab.io/cosmos/nbody/eos/. The original
paper investigated the imprint of primordial non-Gaussianity on the halo power spectrum [17].
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Filtrations and statistics

Our primary filtration is a modification of the DTM-based filtration of [18]. In particular, we consider
subcomplexes of the Delaunay triangulation organized by both scale and the extent to which a
particular point is an outlier. We call this an αDTM`-filtration. The outlier property of a point is
quantified by the Distance-to-Measure (DTM) function. Given a set of points X , a positive integer k,
and a positive real number p, the empirical DTM function is given by [19]

DTM(x) =
1

k

 ∑
Xi∈Nk(x)

||x−Xi||p
1/p

(2)

where Nk(x) is the list of the k nearest neighbors in X to x. We will take p = 2 and k = 15. Now,
given a point x ∈ X and a positive real number q we consider the radius function

rx(ν) = (νq −DTM(x)q)
1/q if ν ≥ DTM(x) (3)

and −∞ otherwise, and by definition a ball of radius r = −∞ is the empty set. The role of DTM(x)
is to delay the contribution of outliers to the filtration. Here q controls the mixing between DTM(x)
and ν. We will take q = 2. For very large q, rx(ν) is −∞ until ν = DTM(x), at which point it
quickly jumps to ν. Beyond the vertices, we add an edge [x1x2] that is present in the Delaunay
complex once the relevant balls overlap, i.e. Brx1 (ν)

∩ Brx2 (ν)
6= ∅. Triangles and tetrahedra are

then added when all necessary faces are present. In this construction, topological features will suffer
less from the presence of outliers that in the α-filtration.

From the persistence diagrams corresponding to these filtrations, we derive several summary statistics
for the purpose of inference. These include Persistence Images (PIs) [20] and the “topological curves”
defined by

Bp(ν) = countp(ν > νbirth) (4)
Dp(ν) = countp(ν > νdeath) (5)
Pp(ν) = countp(ν > νpersist) (6)
bp(ν) = Dp(ν)−Bp(ν) (7)

The curves Bp, Dp, Pp correspond up to normalization to empirical distribution functions of births,
deaths, and persistences of p-cycles in a given diagram, while bp are the familiar Betti numbers. Note
that once a binning in ν is specified, these curves live in finite-dimensional vector spaces.

3 Results

We show the average PIs and their differences for our simulations in Figure 1. We examine the
signature generated by f locNL = 250, as the signal is large and results in clean patterns when averaged
over our simulation volume. In the end we are interested in “detecting” f locNL = 10 using these
patterns. The effects of a nonzero f locNL on all the topological features share a common turnover
feature: non-Gaussian simulations dominate the statistics for small and large birth scales while at
intermediate scales, Gaussian simulations dominate. The PIs suggest that the topological curves
Bp(ν), Dp(ν), and bp(ν) should outperform Pp(ν) in detecting f locNL.

Recall that 0-cycles in our filtrations are born at the DTM values of their respective halos. Examining
PI0, we see that f locNL > 0 mainly causes a population of 0-cycles to shift to earlier births, i.e. smaller
DTM values, while a subdominant population shifts to larger DTM values. This is consistent with the
heuristic observation that positive f locNL affects structure as if there were more gravitational evolution
in overdense regions (lowering the DTM values of corresponding halos as the neighborhood becomes
more dense with halos) and less in underdense regions (increasing DTM values as fewer halos are
formed there) [21, 22, 23, 24].

Among the topological curves we consider, Dp is correlated with the sizes of topological features.
We show the effect of f locNL > 0 on Dp in Fig. 2. Examining these more closely, we find that D2

exhibits features consistent with previously derived results [25]. Ref. [25] performed a first-principles
calculation of the effect of f locNL of the distribution of void sizes, finding that f locNL would increase the
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Figure 1: The effect of local non-Gaussianity on PIs for the αDTM`-filtration. In the top row the
difference between the PIs averaged over NG250L and G85L is shown. The bottom row shows the
PIs averaged over G85L.
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Figure 2: The effect of f locNL > 0 on Dp. We show Dp(f
loc
NL > 0) − Dp(f

loc
NL = 0) averaged over

realizations with non-Gaussian simulations taken either from NG10L or NG250L and Gaussian
simulations taken from G85L.

number of voids of small radius and decrease the number of voids of large radius. The manifests as
the initial dip and subsequent rise of D2(f locNL > 0) −D2(f locNL = 0) in Fig. 2. At large scales, we
again measure a larger fraction of voids dying in the non-Gaussian case, a prediction not made in the
approximation scheme of [25].

Intriguingly, a similar structure in D1 suggests that similar physics is at play for filament loops.
However, for these observables first-principles results are lacking, in part because filament loops
break spherical symmetry. Our results motivate the development of analytical techniques like those
in [25] for studying filament loops.

All in all, the interpretability of our statistics allows us to make contact with previously derived
quantities, while motivating future study to derive other aspects of our results from first principles.

We can perform the following statistical test: for a statistic ~S (e.g. B1, here written as a vector),
we compute the template ~TNG ≡ ~SNG250S − ~SG85S, where the subscript denotes averaging over all
realizations. Given a simulation to test for NG, we compute the topological statistic ~Stest and then

4



compute the distance

Dtemplate =
~Stest · ~TNG − ~SG85L · ~TNG

σ
(8)

where σ describes the variance of ~S · ~TNG within G85L. Intuitively, if the test simulation has NG
initial conditions, Dtemplate will be positive via the construction of ~TNG. To generate quantitative
predictions, we set a baseline by using test simulations drawn from G85L. This case models our
uncertainty due to cosmic variance: even if some actual galaxy survey data had the exact same
cosmological parameters as G85L, it would still be seeded by a different realization of a random
field.

We run this pipeline with test simulations taken from G85L and for NG10L (being careful to use
distinct simulation seeds). We use the distribution of Dtemplate when the test data comes from G85L
to set a 97.5% detection threshold for NG10L, see Fig. 3. Each data point in Fig. 3 reoresents a
combination of simulations with total volume 40 (Gpc/h)3. We find that for the statistic B1, NG at a
level f locNL = 10 is detected at 97.5% confidence for ∼ 85% of these volumes.

The standard approach to detecting NG in LSS relies on the two- and three-point correlations of
galaxies (or in our case DM halos). Recently, a rigorous study of these correlation functions for the
EOS DATASET was not able to detect f locNL = 10 at 2σ [26]. Our current topological methods are
sensitive to higher-order correlations in the data, allowing them to probe more subtle patterns in the
distribution of halos.
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Figure 3: Distribution of Dtemplate. Each data point represents a volume of 40 (Gpc/h)3. The
fraction of NG10L data points lying beyond the 97.5% threshold of the G85L distribution is quoted
as the detection rate of f locNL = 10.

4 Discussion

We have introduced several practical considerations for persistent homology including subsampling
and the use of sub-boxes to generate quantitative constraints on cosmology within a set of simulations.
While this pipeline was presented in terms of detecting primordial non-Gaussianity, it is applicable
to constraining any cosmological parameter. In future work we plan to study the effect of a broad
range of cosmological parameters on these topological observables. We plan to eventually apply
this pipeline to galaxy survey data, for which systematics like baryon feedback and redshift space
distortions must be taken into account.

Our code, which proves a convenient API for loading halo catalogs and computing their persistent
topology, summary statistics, and corresponding constraints, is provided publicly.2

2The code is available at https://gitlab.com/mbiagetti/persistent_homology_lss.
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