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Abstract

We propose and analyze a new class of unbalanced weak optimal transport (OT)
problems with total variation penalties, motivated by spatial resource allocation
tasks. Unlike classical OT, our framework accommodates general unbalanced non-
negative measures and incorporates cost objectives that directly capture operational
trade-offs between transport cost and supply—demand mismatch. In the general
setting, we establish the existence of optimal solutions and a dual formulation.
We then focus on the semi-discrete setting, where one measure is discrete and
the other is absolutely continuous, a structure relevant to applications such as
service area partitioning for facilities like schools or medical stations. Exploit-
ing a tessellation-based structure, we derive the corresponding explicit optimality
conditions. We further address a quantization problem that jointly optimizes the
locations and weights of discrete support points, applicable to facility location
tasks such as the cost-efficient deployment of battery swap stations or e-commerce
warehouses, informed by demand-side data. The dual-tessellation structure also
yields explicit gradient expressions, enabling efficient numerical optimization in
finite dimensions.

1 Introduction

Optimal Transport (OT) provides a principled way to compare and transform probability measures by
reallocating mass at minimal cost, as determined by a ground metric. Its sensitivity to distributional
geometry and capacity to interpolate between measures have made OT a central tool in machine
learning, statistics, and applied mathematics [51]]. Applications span generative modeling [6} (18} 21]],
domain adaptation [[10} 16} 23| 28], robust statistics [45, 46], clustering [35], image and shape
processing [49} 59], graph matching [29], stochastic dynamics [66]], and posterior inference [30]].

Classical OT enforces strict mass conservation, which is often impractical in real-world scenarios
due to noise, outliers, or domain mismatch [45,|58]]. Unbalanced OT (UOT) addresses this limitation
by relaxing marginal constraints through penalty functions [42] 43]]. Various penalties have been
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introduced to accommodate different applications, such as Kullback-Leibler (KL) divergence [20}43],
f-divergences [43]], x2-divergence [[10], and total variation (TV) [45} [53[54} [62]]. Correspondingly,
a range of computational strategies have been developed, including regression-based approaches
[[L7]], generalized Sinkhorn algorithms [20, 52]], low-rank solvers [57], and GAN-based methods
[65]]. Despite these advances, the theoretical foundations of UOT under non-superlinear penalties,
particularly TV, remain underdeveloped.

Meanwhile, the semi-discrete OT setting, where one marginal is continuous and the other discrete,
has gained prominence in applications like autoencoders [5,163]] and GAN training [4]. Semi-discrete
UOT further integrates this structure with mass imbalance, and has proven effective in tasks like
quantization [15] and mode regularization in GANs [[64]. In parallel, weak OT formulations generalize
classical couplings by evaluating cost over disintegration of transport plans, allowing each source
point to be matched with a probability distribution over the target space [2,[7, |19} 122]]. This added
flexibility enhances robustness to sampling noise and is particularly advantageous in settings where
empirical distributions render classical couplings unstable [3} (8} [29].

In this paper, motivated by spatial resource allocation problems, we study a new class of unbalanced
weak OT problems with total variation penalties. Unlike smoother, superlinear divergences studied in
existing theory, TV-based penalties are piecewise linear and less smooth, posing substantial analytical
challenges. Our work advances the theory of OT by developing a rigorous framework for this more
general and practically motivated setting.

Our Contributions.

* A novel UOT formulation. We propose the first formulation of semi-discrete, unbalanced
weak optimal transport with total variation penalties, integrating weak couplings, mass
imbalance, and non-superlinear regularization. This formulation is motivated by practical
applications and introduces new mathematical structures.

¢ Comprehensive theoretical results for TV-penalized UOT. We establish the existence of
optimal solutions and derive a dual formulation in the general setting. In the semi-discrete
case, we develop a tessellation-based reformulation that reduces the infinite-dimensional
problem to a finite-dimensional one, enabling explicit optimality conditions via Laguerre
cell partitioning. Building on this, we further address an associated quantization problem.
These results significantly extend and generalize classical entropy-regularized transport
frameworks to the non-smooth, TV-penalized regime.

 Practical significance. Our theoretical framework captures key features of real-world
problems, including semi-discrete geometry, mass imbalance, TV-type regularization, and
probabilistic routing. In the semi-discrete regime, the induced dual-tessellation structure and
explicit gradient expressions enable efficient optimization, which we demonstrate through
two illustrative applications: supply area division and spatial resource allocation.

Related Work.

From a theoretical standpoint, recent work has significantly advanced the understanding of OT
under classical assumptions and various extensions [[12} 25} 26} 311 136, 144} 47, 56]. Among these,
Pooladian et al. [55] investigate the semi-discrete OT problem with entropic regularization, followed
by Agarwal et al. [[1]], which develops a combinatorial algorithm for the same setting. Theoretical
analysis of UOT has also emerged, although much of the focus has been on algorithmic convergence
and scalability rather than fundamental properties of the UOT problem itself [14} 24, 52 60, [66]].
A notable exception is the work of Bourne et al. [15]], which addresses semi-discrete UOT with
smooth entropy-based penalties. Besides, weak OT has received growing attention [9,|38]. Chung
and Trinh [22]] develop a general duality theory for weak optimal entropy transport under superlinear
convex penalties. Most recently, Beiglbock et al. [[11] extend strong duality results to weak OT with
nonlinear cost functions, establishing a fundamental theorem for weak OT.

2 An unbalanced weak optimal total variation transport problem

2.1 Background on optimal transport and its generalizations

Rooted in the seminal work of Monge and Kantorovich, the classical OT problem seeks the most
cost-efficient plan to transport mass from a source distribution p1 on X to a target distribution po on



X under a prescribed cost function ¢(z1, 22). Formally, it solves

min / c(xr, x2)dm(z1, 22),
m€(p1,12) J X, x Xo

where TI(u1, 2) denotes the set of couplings with marginals ;1 and . To better accommodate
various practical needs, several generalizations of OT have been proposed. Two important directions
include weak OT, which relaxes the requirement of exact target marginal matching, and entropy-
regularized UOT, which allows for mass variation while promoting smoother solutions. These
extensions have proven particularly valuable in real-world applications, where strict mass conservation
or exact marginal fidelity is either infeasible or undesirable.

Weak OT. The weak OT framework replaces the hard constraint of matching the target distribu-
tion exactly with a more relaxed, aggregate matching condition, typically through expectations or
barycentric projections. A representative formulation is:

min C(x1, 7y, )p1(dzy),
m€ll(p1,p2) J x,

where (7, ), e x, denotes the disintegration of the coupling 7 with respect to its first margin. Here,
the cost function changes to C' : X; x P(X3) — R U {400}, where P(X) represents the space
of probability measures on X . Notably, the classical OT formulation is recovered as a special case
when C'(z,p) := [ ¢(x,y)dp(y) for a base point-to-point cost ¢ [2,[8,[32]]. Weak OT approach proves
particularly useful when the target measure p5 is only partially observed or known with uncertainty,
a common situation in learning systems built on finite data. Compared to the rigid structure of
classical OT, the weak formulation enhances stability and robustness in the learned transport plan.
Furthermore, with suitable convexity properties, weak OT problems remain computationally tractable
and well-suited for integration into learning pipelines.

Entropy-Regularized UOT. Another prominent extension is entropy-regularized UOT, which com-
bines the benefits of entropic smoothing with the ability to handle measures of unequal total mass.
This variant modifies the classical formulation by relaxing marginal constraints and penalizing
deviations using divergence terms. A typical formulation, following [43], is

2
veMgl(E xX3) ; Falwilua) + /Xl X X o, m)dy(@, @)

where M (X) denotes the space of nonnegative finite Borel measures, and -, is the margin of the
transport plan v on X;. In contrast to classical OT, the plan ~ is not constrained to be a coupling,
and the input measures y; and po need not have equal total mass. The functions F; typically encode
divergences such as the KL divergence, thereby penalizing deviation from the prescribed marginals.
Intuitively, although perfect mass preservation is inherently unattainable in the unbalanced setting,
the resulting formulation aims to strike a balance between minimizing transport cost and permitting
controlled deviations from marginal consistency. The entropic terms enhance smoothness and yield
strongly convex objectives, enabling fast convergence of iterative solvers such as generalized Sinkhorn
algorithms [20, 52]]. Notably, the classical OT problem is recovered as a limiting case when both
input measures are probability distributions and the penalization for any deviation is infinite.

2.2 Our considered problem

In many decision-centric tasks, particularly those arising in operational and resource-constrained
environments, the cost of deviating from a desired distribution cannot be adequately captured by
standard divergence-based penalties. Although statistical divergences such as the KL divergence
are inherently asymmetric, their asymmetry does not generally reflect the directional economic
or operational significance observed in real-world applications. For example, under-supplying
a resource (e.g., understocking inventory or under-allocating service capacity) typically incurs
substantially higher costs than over-supplying, due to lost sales, service failures, or unmet demand.
More importantly, classical divergence measures quantify statistical dissimilarity without conveying
explicit physical meaning or cost implications, limiting their interpretability in applied settings such
as supply-demand matching and resource allocation.

To address this gap, we propose an unbalanced weak optimal total variation transport problem that

replaces statistical divergence penalties with a newsvendor-type loss function, a cost model well-
established in inventory management and economics [34, 37, 150]. The newsvendor loss offers a



parsimonious yet expressive way of modeling asymmetric penalties by assigning distinct weights
to overestimation and underestimation. Its piecewise linear form directly reflects the real-world
mismatch level, providing a physically meaningful and interpretable objective that aligns with the
goals of many resource allocation problems [33) [67]. We consider the following optimization
problem: for nonnegative vectors k; = (a1,b1) and ky = (a9, b2), p1 € M(X1), po € M(X32),
and v € M(X; x X5),

ki, ko o : ki ,ko
& (M17M2)._7€M%§{XX2)ETC (|1, p2), 1)

where
ETEM (v]p, p2) ==a1| (1 — 1) 7|+ bil (71 — p1) 7| + a2l (u2 — 72) 7| + bo| (72 — p2) T

+ C(iUl»’Yzl)dVl(wl)a
X1
with v, and 2 denoting the marginals of 4y, and (., )., c x, being the disintegration of v with respect
to its first marginal. Here, for a scalar or measurable function g, we set g™ := max{g, 0}, while for a
signed measure v, we take v to be the positive variation in the Jordan decomposition v := v+ + v~
with ™ > 0,v~ > 0,and v L v~. When interpreted through the lens of supply-demand matching,
the objective function offers a clear economic interpretation. The first two terms penalize supply-side
mismatches: shortages are penalized at rate b1, while excess supply incurs cost a;. The next two terms
represent demand-side penalties: lost demand due to undersupply is penalized at rate ay, whereas
overprovision relative to demand incurs cost by. When all weights are set to one, the objective
corresponds to the TV distance between marginals and has been applied in prior work, such as [68].

Following the introduction in Section[2.1] the considered weak formulation can reduce to a normal
case by choosing C'(z1,p) = k fX2 c(x1, x2)dp(x2) for some point-to-point function ¢ : X x Xo —
(=00, +00]. This choice leads to a special case of entropy-regularized UOT studied in [43]:

EXR R (g pg) = veMg?({xXz) ETkl?kQ’k(’}’Wl’ 12), @)

where
ET (g, pg) =an| (1 = 70) 7+ 0l (1 = i) ¥+ @2 (2 = 72) 7| + b2 (2 — p2) |

+k c(x1, x2)dy (21, x2),
X1 ><X2
where the nonnegative constant k serves to rescale the transportation cost, reflecting the relative
importance between transport and mismatch costs. While technically it can be absorbed into the
definition of the cost function c, keeping it explicit highlights the application-dependent trade-off.

Definition 2.1. We say that the problem (1) (resp. 2)) is feasible if there exists a transport plan
v € M(X; x X5) such that ETI((;’I‘2 (y|p1, pr2) < o0 (resp. ET<VR2F (o] 11y 115) < 00).

While our primary focus application is on resource allocation, we anticipate that the proposed
unbalanced weak OT framework holds significant potential across a broader spectrum of applications.
As discussed earlier, this setting represents one of the most expressive and versatile generalizations in
OT theory. In particular, the weak formulation enables us to push the theory to its limits and includes
classical OT as a special case. Beyond its generality, the weak formulation has shown promising
practical advantages: by relaxing the coupling constraints, it enhances robustness to sampling noise
and stability in empirical settings where exact couplings may not exist or may be sensitive to
perturbations (see, e.g., [8, [29]). In this work, our objective is to establish a rigorous theoretical
foundation for this framework, paving the way for its application in diverse decision-making and
learning contexts.

Example 2.1 (Order dispatching in ride-sourcing platforms). [68|] considers an order dispatching
problem in ride-sourcing platforms, where the objective is to assign idle vehicles to meet customer
demand across different locations. To simultaneously account for transportation cost and supply-
demand mismatches, both of which directly affect platform efficiency and profitability, the authors
propose a formulation that can be viewed as a special instance of the model in (). In their context,
problem-specific constraints are imposed to reflect practical considerations, such as a fixed supply-
side marginal to represent the limited number of available drivers.



Remark 2.1. Recasting resource allocation problems as an unbalanced weak OT framework provides
several theoretical and practical advantages. First, the OT formulation is geometrically expressive.
By embedding the problem in a metric space, it naturally captures spatial relationships through
structures such as Laguerre and Voronoi tessellations—features that are difficult to obtain from purely
algebraic linear programming (LP) models. This geometric perspective is not only mathematically
elegant but also supports practical applications, such as service-area partitioning for facilities like
fire stations or warehouses. Second, OT allows a natural treatment of imbalance through TV penalties,
which directly quantify the cost of mass creation or deletion. This yields an explicit trade-off between
transportation and mismatch costs, avoiding artificial slack variables often used in LP formulations.
The magnitude of the TV term provides an intuitive measure of over- or under-supply. Third, the
continuous formulation greatly enhances scalability, particularly in semi-discrete formulation, as
it avoids high-dimensional LP formulations by reducing the optimization to a weight vector whose
size matches the number of facilities. Overall, the OT-based approach offers a geometrically faithful,
imbalance-aware, and efficient modeling framework. While LP methods remain convenient for direct
implementation, we believe the structure, interpretability, and flexibility of the OT perspective provide
substantial benefits.

3 Main theoretical results

In this section, we present our main theoretical contributions, which are organized into three key
components. First, in Section [3.1I] we derive a dual formulation for the unbalanced weak optimal
total variation transport problem (I). This dual characterization serves as a foundational tool for
establishing optimality conditions and facilitates both analysis and computation. We then turn our
attention to the semi-discrete setting in Sections[3.2]and [3.3] where one marginal is a discrete measure
and the other is absolutely continuous with respect to the Lebesgue measure. This setting is motivated
by practical applications in spatial resource allocation, including (1) service area partitioning, where
one seeks to determine the optimal service regions of facilities such as medical stations or schools,
and (2) facility location problems, such as the placement of battery swap stations or e-commerce
warehouses. Specifically, Section [3.2] establishes optimality conditions for the semi-discrete transport
problem, while Section [3.3|addresses a quantization problem in which both the weights and locations
of the discrete marginal are jointly optimized to minimize the total transport cost.

3.1 A dual formulation of weak optimal total variation transport

We first introduce some technical notations. For a metric space X, we denote by Cy,(X) and B(X)
the space of bounded continuous real functions and Borel real functions on X, respectively. A metric
space X is Polish if it is complete and separable.

Definition 3.1. We say that a measurable map C : X1 X P(X3) — (—o00, +00] has property (T) if for
every M > 0 and every sequence {y" }nen C M (X1 x X3) such that le C(wy,73, )dvi (x1) < M

forallmn €N, the sequence {y"}nen is tight.

Let X7, X5 be Polish metric spaces, and let C': X; X P(X3) — (—o00, +0o0] be a lower semicon-
tinuous function that is bounded from below and satisfies property (T) as defined in Definition[3.1]
These assumptions on C' are nearly minimal and encompass commonly used cost functions as special
cases. Assume further that (by + b2)/2 + inf C' > 0. Before proceeding to duality and optimality
conditions, it is essential to establish that the unbalanced weak OT problem @ admits a solution. The
following theorem guarantees the existence of an optimal transport plan under these mild conditions.

Theorem 3.1 (Existence of optimal solutions). Let y1; € M(X;), for i = 1,2 and suppose that
problem (1)) is feasible. Then the problem (1)) has at least one optimal plan.

We now proceed to derive the dual formulation of the primal problem (TJ), which, as previously noted,
constitutes a critical intermediate step in our theoretical development. To elucidate the geometric role
of the TV penalty in the weak formulation, we begin by introducing a family of auxiliary functions
I; and J; for i = 1, 2, along with the corresponding admissible function classes ®; and ® ;. These
constructions will be used in the strong duality result presented in Theorem 3.2}



For each ¢ = 1, 2, we define the functions I; : R — (—o0, +00] by
L(p) = inf(sp+ar(l=5)" +bi(s = 1)7) = a1l{psa) + ¢l{-bi<o<a} ~ e,
L(p) = inf (s + as(L = )" +ba(s = 1)) = a2l{ysar) + PL{-ba<pgar) — ©Lfpcbs}-
3)
Likewise, we define the conjugate-type functions J; : R — (—o0, +00] by

¢ —ar(l—s)T —bi(s—1)"

Ji(¢) = Sl;%) 5 = +001{p>as} + PL{—p <p<ar} — b1l{p<—b,}
¢ —az(l—s)t —by(s—1)"
J2(9) = SL;IE)) 2 )S 2 ) = +0Ll{45a,) + ¢1{—b2§¢ﬁa2} - b21{¢<—b2}'

Using these functions, we define two sets of admissible test functions:

b= {(301,4,02) S Cb(Xl) X Cb(XQ) i —b1 < cpl(xl), —by < <p2(x2) for every x; € Xi,i = 1,2
and ¢1(x1) + p(p2) < C(z1,p) forevery z1 € X1,p € P(X2)},

D= {((pl,(pg) S Cb(Xl) X Cb(XQ) : @1(1‘1) < al,(pg(l'g) < ay for every x; € X;,i=1,2
and J1(p1(z1)) + p(J2(p2)) < C(21,p) forevery z1 € X1,p € P(X2)}

Theorem 3.2 (Dual representation). Suppose that for every x1 € X7, C(z1,-) : P(X2) —
(=00, +00] is convex. Then for every p; € M(X;),i = 1,2, we have

2 2

EE7 (w1, p2) = sup Z/ @idp; = sup Z/ Li(i(wi))dpi(:).
(p1,02)€Rs 527 /X (p1,02)€Pr 57 /X

Remark 3.1. A similar dual representation has been established in the case where both X1 and Xo
are compact [22) Theorem 2]. Extending this result to general (non-compact) spaces, however, is
nontrivial, primarily due to the presence of non-superlinear, newsvendor-type penalties, which are
motivated by practical considerations. In this work, we adopt a different proof strategy from that used
in [22} Theorem 2] to accommodate these challenges.

Such a dual perspective plays a central role in the modern development and application of OT
theory, owing to both its theoretical and practical advantages. On the theoretical side, the dual
formulation provides essential structural insights, such as the characterization of optimal plans
through Kantorovich potentials (¢1, ¢2) and the derivation of necessary and sufficient conditions
for optimality. On the practical side, it often leads to more computationally tractable formulations.
Notably, the dual representation established in Theorem [3.2]is very general, and it partially recovers
(43l Corollary 4.12] when C(x1,p) = k [ ¢(z1,22)dp and the entropy functions are given by
F;=a;(1—-8)T +b;(s—1)",i=1,2, as stated in the following corollary.

Corollary 3.1. Let ¢ : X; X X9 — (—00, +00] be a lower semicontinuous function that is bounded
Sfrom below and has compact sublevels. Suppose that (b1 + b2)/2 + kinf ¢ > 0. Then, for every
wi € M(X;),i=1,2, we have

2 2

ghvlet (g, ) = sup Z/ pidp; = sup Z/ Li(pi(zi))dpi(z:),
(p1,02)€EA; 27 X, (p1,02)€Ar ;27 /X

where the admissible sets Ay and Aj are respectively defined as Ay := {(¢1,p2) € Cp(X71) X
Cp(X2) + p1(21) < a1, 92(22) < a2, Ji(p1(21)) + Ja(p2(22)) < k- c(21,22) for every 1 €
X129 € Xopand Ag :={(p1, p2) € Cop(X1) X Cp(X2) : p1(z1) = —b1,p2(22) = —b2, p1(z1)+
pa(w2) < k- c(w1, 22) for every v € X1, 22 € Xo}.

In what follows, rather than deriving the optimality conditions directly under the general framework
of Theorem which is straightforward but offers limited intuitive insight, we shift our focus to
more practically relevant semi-discrete settings. This allows for a clearer theoretical development
and facilitates meaningful applications, particularly in the context of spatial resource allocation.



3.2 Semi-discrete unbalanced total variation transport

Here, we consider a semi-discrete scenario under the problem formulation @]) where the first marginal
is continuous and the second marginal is discrete. Specifically, we let ;13 € M (X)) be absolutely

continuous with respect to the Lebesgue measure, and define o = Zf\il m;dy, € M(X3) for some
given integer M > 0, where J,,, denotes the Dirac measure centered at ;. Examples arising in spatial
resource allocation, such as the placement of e-commerce warehouses or public facilities like schools,
naturally fit within this framework. In such settings, the discrete points represent service stations (i.e.,
supply locations), while the continuous measure models the spatial distribution of service demand
across the region. We first introduce several new notations or concepts that will be used later. For
any a,b € R, we denote a VV b := max{a, b}. Let n > 0 be any given integer, and let X; and X5 be
subsets of R™. Assume that (b; + b2)/2 + kinf ¢ > 0 and ¢ has compact sublevels. In both Sections
and we further assume that c is radial according to the following definition (see also [15]).

Definition 3.2. A function ¢ : X1 x Xo — (—o0, 4+00] is radial if it can be written as c¢(x,y) =
g(d(z,y)) with a continuous, strictly increasing function g : [0, +00] — [0, +00] satisfying g(0) = 0.

Beyond its practical significance, the semi-discrete setting is of theoretical interest due to the
special geometric structure of its solutions. In particular, the optimal transport plan induces a cell
decomposition of the domain, which is both mathematically elegant and operationally interpretable.

Definition 3.3 (Generalized Laguerre cells, [15]). Given a transportation cost ¢ : X1 X X9 —
(—o00,4+00] and y1,...,ym € Xa, we define the generalized Laguerre cells corresponding to the
weight vector w € RM as follows: fori € {1,..., M}

Ci(w) ={z € X1 | e(z,y;) < +00, c(x,y;) —w; < c(x,y;) —wj forallj € {1,...,M}}. (4)
The residual set, denoted by R, is defined as R = {x € X1 | ¢(x,y;) = +00}.
The next theorem recasts the dual functional from Theorem 3.2]as a finite-dimensional optimization

over the weight vector w associated with the cell division, thereby reducing the original infinite-
dimensional problem over Kantorovich potentials to a more tractable finite-dimensional setting.

Theorem 3.3 (Dual tessellation formulation). Suppose that problem (@) is feasible. Then

gkhk%k(/}’l?ﬂﬂ) = Sup {g(w)|w = (wlv s ,U)M) € [_b27 _’_OO)JW} ) (5
where

g(w’:i/@

M
= /Q\R Li(c"(x))dp (z) + a1pn (R) + ;b(wi)mi (6)

M
) I (=b1 V [k - e(z,y:) — wil)dpa (z) + arpa (R) + ZIZ(wi)mi
w i=1

with ¢ : X1 — (—00, +00] defined by ¢ (x) := —by V ‘_IlninM{k “c(x,yi) — wi}.

Equation (6)) reveals that the reformulated dual objective G admits an explicit and tractable dependence
on the weight vector w, facilitating algorithm design for identifying the optimal weights. Building on
Theorem [3.3] we now proceed to establish the corresponding optimality condition.

Theorem 3.4 (Optimality conditions). Suppose that Xo = {y1,...,yn } and problem @) is feasible.
Let v € M(X1 x X3) be an optimizer for problem @) and w = (wy, ..., wpr) € [~ba, +00)™ be
an optimizer for problem (). Then ~ admits the form v = 2£1 1 @ Oy, forn; € M(Xq),i =

d
1,..., M. The Lebesgue decomposition of 1 with respect to (i1 is y1 = Zf\il n; = dlm + it
M1

Define S1 = {i € {1,... .M} : m; # 0} and Sy := {i € {1,...,M} : m; = 0}. Then the
following conditions hold:

M
7, = 11.Ci(w) foreveryi=1,..., M (i.e., v = Z’}/lLCi(w) ® 0y, ), 7
i=1
where v1.C;(w) denotes the restriction of v to the cell C;(w), and
d d
l(x) = 1for pi-a.e. v € X1 \ R, l(x) = 0for pu1-a.e. v € R, ©))
dpy dp



|ni| = mg foralli € S;, ¥ (x) = —by foryi-a.e. z € X1 \ R, )
w; = —by foreveryi € Ss. (10)
Conversely, if v and w satisfy (\I0), then they are optimal solutions to (@) and @), respectively.

The first marginal of the optimal transport plan comprises two components: an absolutely continuous
part with respect to the input marginal p1, and a singular part that arises due to the piecewise-linear TV
penalty, which differs from [15]]. In particular, the optimality conditions established in Theorem [3.4]
enable efficient recovery of the optimal transport plan once the optimal weight vector w* has been
determined. The latter can be computed using gradient-based methods, as the exact (sub-)gradient of
the dual objective G(w) with respect to each wj is explicitly available and presented below.

Proposition 3.1 (Gradient of dual tessellation formulation). G defined in (6)) from Theorem[3.3)is
(sub-)differentiable with respect to each w; and

—p1(Ci(w) N{z : k- ez, ;) — w; € [~b1,a1]}) +my, w; € (—bg,az),
0w, G(w) = { —p (Ci(w) N{z : k- c(x,y;) —w; € [=b1,a1]}) +[0,m5], w; € {az},
= (Ci(w) N {z : k- c(x,y:) — w; € [~b1,0a1]}), w; € (ag, +00).

Remark 3.2. It is clear that G(w) is decreasing in w; over (ag, +00). Therefore, for fixed values of
{w;}j#i, the maximizer of @) with respect to w; must lie within the interval (—bs, as).

3.3 Optimal spatial resource allocation

In the previous subsection, both the locations and masses of the discrete measure were fixed, and the
objective was to determine a service area partition. We now advance the analysis by formulating a
quantization problem in which the locations and masses are jointly optimized to minimize the overall
transport cost. This extension naturally connects to practical applications such as facility location and
resource allocation. Specifically, we adopt a sequential optimization strategy: we first optimize the
mass vector while holding the locations fixed, leveraging the optimality conditions established in
Theorem [3.4] and subsequently update the locations to further reduce the aggregate loss.

Theorem 3.5 (Optimal masses given locations). Given fixed cardinality M and fixed support points
Y1, 5 YMm € X2: deﬁne

M
Q(yla"' 7yM) = min{gkhk%k(ula//w) L2 = Zmi(syi,ml,"' M > O}a (11)
i=1

where EX1X2:F (11 1o) is defined in @) with ~ runs over M(X1 x {y1,...,yn}). Assume that
u1(Ci(0)) > 0 for every i = 1,...,M, where 0 is the M-dimensional zero vector. Then the
minimizer of is (m3,---,m},) satisfying m} = p1(C;(0)) > 0 for every i = 1,..., M.
Moreover, we have

M
Qo) = | o BBV E ) (@) + o () (12)
i=1vC%

To complete the quantization procedure, it remains to optimize over the locations of support points.
Based on Theorem [3.3] this amounts to solving the following location optimization problem:

mln{Q(y17 7y]\4):yla"' s YM €X2}7

where Q(y1,--- ,yn) is defined in (TI). This optimization can be carried out efficiently using
gradient-based methods [39, 140, 41], as the necessary gradients are derived and provided below.

Proposition 3.2 (Gradient of quantization objective function). Assume the cost function c :
X1 X Xg — (—00, +00] is differentiable with respect to its second argument, and denote its gradient
by Vyc(x,y). Assume that j11(C;(0)) > 0 for every i = 1,..., M. Then, for eachi =1,--- , M,
the gradient of the quantization objective Q(y1, - - ,ynr) with respect to y; is given by

V,. QU - ya) =k / Vel i) dpa ().
C;(0)N{x:k-c(x,y;)€(—b1,a1)}



4 Numerical examples and illustrative applications

Given our primary focus on establishing a rigorous theoretical framework and the space limitations,
we illustrate the practical relevance of our results through two representative application scenarios
with numerical examples. Further exploration of additional applications is left for future research.

4.1 Supply area division

We demonstrate the application of Section [3.2]through a spatial supply-area division problem. An
urban planner must allocate m =4 fixed emergency depots Y = {y;}, C [0,1]? to serve incident
locations distributed continuously over X C [0, 1]? with densny w. The total incident mass is
normalized to M,, = 1, while the available standby capacity is limited to M, = 0.7, represented by
the discrete measure v = >\ | ;0,,, with Y. v; = 0.7. Travel cost is set to the Euclidean distance.

Semi-discrete. The demand distribution p is continuous, while supply is concentrated at finitely
many depots (v). The tessellation-based dual formulation thus applies directly.

Unbalanced. Since M,, # M, only a fraction of incidents can be served. The optimization identifies
where to allocate supply and where to forgo service. We set y to be uniform and initialize v; randomly.

TV penalty. Asymmetric newsvendor parameters are set to a; = 1, by = 0.5, and as = by = 0,
penalizing undersupply at rate b; and oversupply at rate a;. We further let £ = 1.

Propositionprovides the sub-gradient g;(w) = clip[_bwl](ui — u(C; (w))), which we use in
gradient descent algorithms with decaying step size oy = (1 + t) 9%, where ag = 0.05 and
decay = 0.6. The algorithm stops after 1000 iterations in 0.9 seconds. The final supply-area partition,
determined by the optimized weights {w;}7_;, is shown in Figure [Il This example highlights
the practicality of the dual formulation and subgradient structure from Section [3.2]in addressing
semi-discrete, unbalanced, and asymmetrically penalized transport problems.
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Figure 1: Fig. (a) displays the resulting supply-area partition, with black crosses indicating depot
locations. Fig. (b) presents the learned dual weights w; € [—1, 1]. Figs. (¢)—(d) plot the {5 norm of
the gradient and the total mass mismatch ), |1(C;) — v4].

4.2 Spatial resource allocation

This experiment extends the previous example by endogenously selecting the depots, echoing
Section Specifically, we now optimize the positions Y = {y;}™, C [0,1]? along with the
dual weights w;, and the optimal mass allocation is determined by Theorem [3.5] Each point
is assigned to the depot minimizing the effective cost z(x,i) = c(z,y;) — w;. If the minimal
cost exceeds the threshold a;, this point is assigned to the residual set R, incurring a penalty
of aju(R). If a cell C;(w) = {x : z(x,i) < z(z,j), Vj} becomes empty, the corresponding
weight is set to w; = —bo, effectively deactivating the facility. The resulting outer objective,
Qy) =, fCi(w*) z(x,4) dp(x) + a1 u(R), matches the form addressed in Theorem

Setting. We sample N = 2000 incident locations from a two-component Gaussian mixture with
means (0.3,0.3) and (0.7,0.7), and covariance 0.02]>. Samples are clipped to [0, 1]? and rescaled
to ensure M, = 1. The number of depots is fixed at m = 4, with initial positions drawn i.i.d. from
the uniform distribution on [0, 1]2. Newsvendor parameters are set to a; = 0.3, ax = 1, by = 0.1,
and b, = 0.2. The choice of a smaller a; encourages visible residual mass, while the ordering



b1 < ba < ay conforms to the structure of the folded loss I;. A decaying step size 0.3/(1 + t)o'6 is
used. The CPU running time is 2.6 s, and the results shown in Figure 2] confirm that the outer—inner
decomposition prescribed by Proposition [3.2] yields an effective gradient-based solver.
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Figure 2: Fig. (a) plots the objective Q(y) (blue) and the residual mass p(R) (orange), which stabilizes
around 0.05, indicating that approximately 5% of demand is optimally left unserved due to excessive
transport cost. Fig. (b) illustrates the trajectories of the four depots: arrows trace movement from
random initial positions toward demand clusters. In Fig. (c), the initial location of depots (black “x)
and the nearby demands partition the entire area into several distinct parts (in different colors), which
resembles a Laguerre diagram. In this partition, the demands within each Laguerre cell are serviced
by the depot of the same color. However, there are still areas with high-density demands (gray “x”)
falling into the residual set R. After optimization, Fig. (d) shows four depots concentrating near
high-density regions, while low-demand areas are absorbed into R, reflecting TV-induced saturation.

5 Conclusion and future work

This paper presents a comprehensive theoretical framework for unbalanced weak OT problems with
total-variation penalties. We establish a general dual formulation that encompasses many existing
models as special cases. We then focus on the semi-discrete setting, motivated by spatial resource
allocation applications, and show that the problem admits a Laguerre tessellation structure. This
allows for explicit optimality conditions and a next-level tractable quantization procedure. While
our primary emphasis is on theoretical development, we include preliminary numerical examples
to demonstrate the framework’s applicability. We anticipate that this foundation will support future
extensions in both theory and practice.
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A Proofs of assertions in Section 3|

A.1 Auxiliary lemmas

Lemma A.1. Let X be a metric space and py, pia, v1,v9 € M(X). Then
(1 = v1)* |+ (2 = v2) T > (1 + po — 1 — v2) ™.

Proof. The results follow from that

+

(1 =)+ (p2 — )t = [Hl —vi| + [p2 —va| + p1 — Vi + po Vz]

Y

1
2
1

3 [+ p2 = (1 va)l 4+ pz = (01 + 12)

(1 + pa = (11 +2)) 7"
Lemma A.2. Let X be a metric space and p,v € M(X). Then
[(n—=v)*] > ((X) = v(X))".

Proof. Letv = fu + vt be the Lebesgue decomposition of v with respect to 4. Then

(=)t = (1= flu—vh)T|

- /X(l — f)Tdu

3 (1= fl+1 = D
(‘/ (L= f)dp| + /(1—f)du>
(/X( f)du)

= (u(X) - (X))

\ \/

O

Lemma A.3. Let ¢; and co be non-negative numbers. We define the map J : R — (—o0, +0o0| by

¢ lf —C2 S ¢ S C1,
—co  otherwise.

T® =5 ;

b —c1(1— )t —eo(s — 1)t { too i > e,
Then for every v, u € M(X) we have that
=) |+l =1 > [ pdn— [ I(e)ar

for every p € B(X) satisfying that sup,¢ x p(z) < c1.

Proof. The statement is true for the case u = v are the null measure. Therefore, we can assume
that (u + v)(X) > 0. Let h be the Lebesgue density of v with respect to p + v. We define
Vi={zeX:0<h(z)<1},V,:={x e X :h(z) =0}and V, := {z € X : h(z) = 1}. Then
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(V,V,,V,) is a Borel partition of X. We define the Borel functions f on X by f :=
and f =00n X \ V. Thenv = fu+ v+, v (X \V,) = u(V,) = 0. Then

onV,

al(p =) +ellv - =alll - Hr—v T +ell(f - Du+v]F|

— e /X\Vu(l—f)J’d,u—&—cz[/X\v (f—1)+du+yl(vy)].

"

By the definition of J we get that ¢;(1 — )T + ca(f — 1)T + fJ(p) — ¢ > 0. Hence for every
¢ € B(X) with sup,¢ x ¢(z) < ¢1 we have that

C1 —I/Jr Co|(V — T — 174
(= )|+ eal v — )] /tidqu/XJ(v?)d

ch[/v(l—f)*d,u—&-/v du} +c2[/v(f—1)+du+/v dyl] —(/V@dm/v cpdﬂ)

m v "

+ ( | 1o+ /V | J(so)dvl>

- / (1= )" +ea(f — V)* + £I(9) — o)+ / (c1 — )dp + / (cz + T(i0))dvt
174 V,

Vi Y
>0.

A.2 Proof of Theorem 3.1]

Before proving Theorem let us provide some examples of the function C' : X7 x P(X3) —
(=00, +00] having property (T) (see Definition . Recall that for a metric space X, {v"},en C
M(X) is tight if for every e > 0, there exists a compact subset /. of X such that v"(X \ K.) < ¢
for every n € N.

Example A.1. Let ¢ : X7 x X5 — (—00, +00] be a measurable function. Assume that ¢ has compact
sublevels, i.e. for every L € R, the subset {(x1,22) € X1 X Xo : ¢(x1,22) < L} of X1 X Xo is
compact. We define the map
C: Xl X P(XQ) (—OO +OO]
by C(x1,p fX (z1,x2)dp(x2) for every x1 € X1, and p € P(X3). Given M > 0 and let
{¥"}nen C M(Xy x Xa) such that [ C(x1,7y,)dyi(z1) < M, for every n € N. For every
L >0, the set
Ap = {(z1,22) € X1 x Xa:c(x1,22) < L}

is compact. Since

/ (a1, 22)dy" (21, 2) = / / (1, 22)dn", (2)dn} (1) = / Clar o2 )P (),
X1><X2 X1 X2 Xl

for every L > 0, we have

fxl X X cdy™ fx (w1, 79z, )d7 (z1) M
I

Y (X1 x X2) \ Ar) < 7 7 <

M
For every € > 0, choose L > 0 such that T < e, theny"((X1 x X2) \ AL) < ¢, for everyn € N.
Therefore, the map C' has property (T).

Example A.2. If C(z1,p) = oz(sz c(xl,xg)dp(xg)),for every x1 € X1, p € P(X2) for some

non-decreasing function o : (—o0, +00] — (—00, +00|, and ¢ has compact sublevels, then C has
property (T).

Example A.3. If X1 and X5 are compact, then every measurable map C : X7 x P(X3) —
(—00, +00]| has property (T).
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Proof of Theorem[3.1} Let {y"},en C  M(X1 x X3) such that Ec(pr,p2) =
limy, 00 ETe(y"|pt1, t2). First, we will prove that {4™} is bounded. Choose ¢, > 0 such

b F b
Fils) > — and 2(5) > 52 for every s > tg, where F;(s) = a;(1 — s)* + b;(s — 1)*. Now
s

that
S
we will show that

2 -
V(X1 x X2) < 2 ETo (" |uy, p2) forall v with ™ (Xy x Xz) > to max{p1(X1), p2(X2)},
(13)

by b
where M := ?1 + 52 +inf C > 0. Let 4™ with y™(X; x X5) > to max{u1(X1), po(X2)}. If

p1(X1) = 0 then Fy (79]p1) = b173(X1). If 11 (X1) > 0 then by the choice of ¢y and LemmalA.2]
we get that
Fir(07 ) = arl(pr =)+ b1l (07 — pa) ¥
> ay(p(X1) =77 (X1) " + b (37 (X1) — pa (X1)) ™

wwﬁ))* <v?(X1) )*]

= X1)lar|1— +b -1
mon) (1= 2055) (o
X "X

n(Xl).u’l( 1)F1 ’Yl( 1))

) (%)
b
> 7?(X1)51-

b
? b

tomax{p1(X1), p2(Xo)}.  Similarly, Fo(v3|u2) > ~™(X1 X Xg)?2 for all po and
)

A" with ¥y (X7 x Xa) > tomax{pi(X1),pu2(X2)}. Then for all 4" withy™(X; x X3) >
to maxqp (X1), p2(X2)} we have that

Therefore, Fi(v}|p1) >  ~A"(X:1 x Xb) for all ~™withy™"(X; x X,) >

BT (7" 1, pa) = Fu(0 ) + Fo(ys|ia) + | Clar, i, )t (1)
X1
n by by .
Z ’7 (Xl X X2)(5 + 5 —+ ll'lfC).
Hence we get that {7" },en is bounded.

2 o
V(X1 x Xp) < T ETo (" |, p2) forall v with 4™ (X x Xz) > to max{p (X1), p2(X2)}
(14)

Now we will prove that {-y,, }nen is tight. There exists K > 0 such that ETZJb(qf"\ul, ) < K
and hence [ x, C(z1,77,)dr (1) < K for every n. Since C has property (T), we get that {y"} is
tight. As {v™} is tight and bounded, there exists v° € M(X; x X2) and a subsequence of {y"}
which is still denoted by {+"} such that 4™ converges weakly to 4°. From [42, Corollary 2.9] and
(22, Lemma 4] we get that the map ~ ~ Ec (|1, p2) is lower semicontinuous. Therefore, 4 is an
optimal plan of problem (). O

Remark A.1. If C is nonnegative, we can prove the boundedness of {y™} easier as follows. Choose

M > 0 such that ETg’b(’y”ml, p2) < M for everyn € N. First, we will prove that {~"} is bounded.
As C' is nonnegative we get that ay|(u1 — )| + b1|(7) — u1) ™| < M for every n € N. Then
v = pa|(X1) = [(pr — Y1) | + | (4 — pa) | is bounded. Hence v7'(X1) is bounded. Therefore
{~¥"} is bounded.

A.3 Proof of Theorem

Lemma A.4. We have
2 2

wp [ ety = s S [ L. as

(pryp2)€®y =1 (p1,02)€®r 55
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Proof. For any (¢1,p2) € @5, we have —b; < Ji(p1(z1)) < a1, —ba < Ja(pa(z2)) < ag
and J1(p1(x1)) + p(J2(p2)) < C(x1,p) forevery z1 € Xi,p € P(X3). Since J; and Jo are
continuous on (—oo, a1] and (—oo, as], respectively, one has (J1(¢1), Jo(p2)) € ®1. Therefore,

2 2
FZI/X @i(zi)dpi(;) S;/X Ji(oi(xi))dpi(z:)

:Z; /X RARACICNIZICY
2

< s Y[ Geie)ds(e).
(p1,92)€Qr ;1 v X,

On the other hand, for any (@1, p2) € @1, we have —b; < I1(¢1(21)) < a1, —ba < Ia(pa(z2)) <
as and hence Jy o I1 (@1 (1)) + p(J2 0 Ix(¢2)) < C(z1,p) for every z1 € X1, p € P(X>). Since
I, and I, are continuous on [—by, 00) and [—bs, 00), respectively, one has (I1(¢1), I2(v2)) € @ ;.
Hence,

2

2
;/XL Li(pi(wi))dpi(z;) < sup Z/Xz ©i(zs)dpi ().

(801 aSOQ)E‘I)J i=1

‘We obtain the result. O

Given a metric space X, for every i € M(X), the map 7}, : Cy(X) — R, defined by f — fX fdu,
is a bounded linear operator, i.e., it belongs to (Cj(X))*. We define the functional ET : (Cy(X71))* X
(Cp(X2))* — [—o0, +00] as follows.

ETkl,kz (Tl,TQ) = { f—%(o,ula,UQ) loi}(lg\;vﬁi)’ = (T';uazjuz)a

Given p,v € M(X),if [ fdu = [, fdv forevery f € Cy(X) then one gets yu = v [48| Theorem

5.9, page 39]. Therefore, for every metric space X we can consider M (X)) as a subset of (Cj,(X))*.
Hence, the map ETX k2% i well defined.

For convenience, we will write ET*"*2 (1, up) for ET*%2(T, [ T,,,) for every (u1,p2) €
M(X;1) x M(X3). The weak topology on M(X) is the smallest topology such that for each
f € Cy(X), the map p — [ fdpu is continuous, i.e. a sequence {ji, }nen C M(X) converges
weakly to 1 € M(X) if and only if lim, 0 [ fdpn = [y fduforevery f € Cyp(X).

Lemma A.5. Let X1, X5 be Polish metric spaces. Then

1. the functional ET***2 : (Cy(X1))* x (Cy(X2))* — (=00, +00] is convex and positively
one homogeneous, i.e. ETkuke (AT, \T) = )\ETa’b(Tl,Tg) for every A > 0,1y €
(Co(X1))", T3 € (Ch(X2))™

2. Assume that ¢ has compact sublevels in X1 X Xo. Then the function ET* %2 s Jower
semicontinuous under the weak topology.

Proof. Claim 1: Using the convention that 0 - (+-00) = 0, it is clear that ET**'*2(0,0) = 0 and
ET*P(\T1, \Ty) = AET*V*2 (T, Ty) for every A > 0, (T1,T2) ¢ M(X1) x M(X3). Hence,
to check ET*"'¥2 is positively one homogeneous it is sufficient to check ET*1-k2 (AT, , AT,,) =
AETK R (T, T),,) forevery A > 0, (u1, f12) € M(X1) x M(Xz). Giveny € M(X; x X») and
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A > 0. We have that
ET< K2 (\T, AT, ) =ET*UR2(Ty ,  Th,,) = E55 (A, Aia)
=inf{ET* %2 (5| Apy, Apig) - v € M(X1 x X3)}
=inf{ET* %2 (\y| Ay, Apg) = v € M(X1 x X»)}
=inf {a1|(Ap1 — My1) T[4+ b1 (M1 = Apa) ¥ |+ a2 (Apz — My2) [+

bl (A2 — M) | + A/ (1,7 ) (21) 7 € M(X) x X2)}
X,
=\inf {al|(M1 =)+ b1l (= )T+ azl(p2 — 72) T |+
+ ba|(y2 — p2) | +/ C(z1, 72, )dyi (1) s v € M(X1 x X2)}

X1

=AET*V*2 (11y, 1)
=AET* (T, , T,,).

By the homogeneity property of ETX1k2 o show that ET**'X2 js convex, we onlyneed to check that
ET*%2 (111, po) + ET (1, v0) > BET*¥2 (uy + 11, g + 1) for every i, v; € M(X;),i = 1,2.

We will consider (u1,ps),(vi,v2) € M(X)) x M(X3) such that ET*"%2 (4, o) <
oo and ETkl’k2(1/1,l/2) < oo (the other cases are trivial). Let {v"}nen, {7 }nen C
M(X; x X3) such that ET*¥V%2 (11 15) = limy,_y 00 ET**2 (7|1, p12) and ET*VX2 (1) 15) =
lim,, o, ETXK? (F"|v1, va).

As ((d'y?/d('ﬁ +30) v, + (@37 /d(VT + 7?))7;‘1> is the disintegration of 4™ + 7" with
r1€X1
respect to v} + 77 and C(z1, -) is convex on P(X3) for every 1 € X7, we obtain that

. Clar, vz, ) (e1) + . Clar, 7y, )dyy (21) = . Clar, (0" +7")a)dOy1 +77) (1)

Combining with Lemma[A-T] we have that
BT (g, j1o) + BT (1, 1)

= lim |a1|(u1 — 7))+ b1|(0] — pa) T+ azl(p2 — ¥5) |+ b2l (v — p2) T+ [ Clwr, 7y )di (z1)+

n— oo Xl

+ar|(v1 =)+ b1l (7T = v1) |+ aal(va — 75) T + ba| (75 — v2) ™| +/ C(xl,ﬂl)dvi’(xl)}

X1

T n—oo

> lm |aq|(ur +v1 — (OF + 7)1+ 01 + 77 — (a + )t + azl(pr + 01 — (7 + 7)) T

Hlf + 78 = G+ T+ [ Ol (07 30 w)(xl)]

X1
SET*R2 (4 vy, po + ).
Therefore, ET*%2 ig convex.

Claim 2: Fori = 1,2, let {u'} € M(X;) such that u}* weakly converges to p; as n — oo.
To prove ETX*2 is lower semicontinuous, we need to show that

lim inf BTS2 (4 ) > BT (g, o).

n—oo

We only need to check it for the case lim inf,, ., ET*!*2 (17, u%) < oco. We can choose a subse-
quence {n;};en such that lim inf,, o ET**2 (17, u2) = limy oo BT %2 ()7, 157). For every
j € N, applying Theoremthere exists v € M(X; x X5) such that

BTk (19, u7) = BTR (7 77 1u37) for every j € N,
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Then there exists K > 0 such that ET** (5™ |y} uy?) < K for every j. Hence
fX (z1,727)dy,? (x1) < K for every j. Since C has property (T) we get that {~" } is tight.
Fl(S) > bil and FQ(S) b2

> =
s 2 s 2

Now we will prove that {v™/ } is bounded. Choose ¢y > 0 such that
for every s > ty. Now we will show that

. 2 . s
Y(X1 x Xy) < METkl’k"’('r I|pi? s po”) for all 4™ with ™ (X1 x Xo) > to max{u,” (X1), py’ (X2)},
(16)

b1 bo n; n;
where M := 51 + = 5 +inf C > 0. Let 4™ with v (X1 X X3) > tomax{u,’ (X1), 1y’ (X2)}. If

uy? (X1) = 0 then Fy (777 |u]?) = biy,? (X1). If u]7 (X1) > O then by the choice of ¢y and Lemma
[A2) we get that

Fr(vy )

ar](py” =)+ b (7 — e

> ay(py? (X1) — 17 (X)) + b1 (77 (X1) — iy (X1))

B n(X)\" 7n(x) N\
(&ﬂ( ’%w)*“@ﬂ&>0]

oy 1y? (X1) n’(Xl)

—h (Xl)V?j(Xl)Fl( oy (Xl))

> 77 (X0) 2

V

\ V

Cn b v
Therefore, Fi(y)7|uy?) > ™ (X1 x Xg)El for all ;)7 and 4™ withy™ (X; x X5) >

n; n; . . n; n, . b n;
tomax{p,’ (X1), 1y’ (X2)}. Similarly, Fo(vy? |ug’) > 4™ (X1 % Xg);2 for all p,’ and
~™ with 4% (X1 x Xo) > tomax{u|’ (X1), 1y’ (X2)}. Then for all ¥ with 4™ (X x Xg) >
to max{u,” (X1), usy’ (X2)} we have that

BT (9l 457) = Py ) + PO ) + [ Clana i (o)
X1

by b
(X, % Xo)(— +52+1nf0)

Hence, we get (T6). On the other hand, {u]” (X1)};en and {u]? (X2)} en are bounded as y;”
weakly converges to p; for ¢ = 1,2. Therefore {v"};cn is bounded. As {v™ };¢y is also tight,
applying Prokhorov’s theorem there exists a subsequence {7" } jcn, still denoted by {¥"/ } <, and
ay € M(X; x X3) such that ¥ weakly converges to ~. Applying [[13} Theorem 8.4.7] or [61}
Part 2, Theorem 3] we get that

1ijrgi£f|u?j — 17 |(X1) > |1 — | (Xq).

Hence

IMMM”WV—MMPW Wwww&ﬂmwﬂ

> 3 =0 + G = x|
(1 =) 7.

Similarly, we have
liminf (3’ = 95)*] 2 (12 = 12)*1,
liminf|(1” — )" 2 |0 = ),

liminf (57 — pg”) ") > (2 — p2) ¥
j—o00
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Then
lim inf ET*0k2 (4 0 = 1inIr—l>i<>I<1>f ET %2 (v |uf, i)

n—o0
= lim inf [all(u’fj — W) 0O = i)+ sl (y” = 757)

+hol(vy” = py )+ | Clar,vy)dyy (1)
X1
Zal\(ul - 71)+| + b1|(71 - M1)+| + a2|(ﬂ2 - 72)+\

1 bl (v2 — )| + / Clwr, ™) (1)
X1

SETS*2 (1, pa).

Proof of Theorem[3.2] We denote by (ET*'*2)* the Fenchel conjugate of ET*"* ..
2
BTOH) (o o) = sup { > [ wdnten) ~ BTk, >}
UleM(Xl),VzeM(Xz) i=1
for every ¢; € Cy(X;), i = 1,2. By Lemma[A.5|we get that

ki, ko * _ 0 if (‘Pl, 902) € &g,
(ET )" (e1: 2) _{ 400 otherwise,

where

2 = {(orn) € G00) (X0 Y [ ulaan () < BT

for every (v1,v2) € M(X1) % M(Xg)}.
We now check that &; C ®g. Let any (p1,¢92) € ®;. Lety; € M(X;), i = 1,2. If
Egl’b(yl, v3) = 4oo then it is clear that Z?Zl Jx. pilzi)dvi(z;) < ETX0X2(1y 1), Thus,

we only consider Sgl’kz (v1,12) < +00. Applying Theoremthere exists v € M(X; x X3) such
that Egl’k2 (v1, 1) = ET¥U¥2 (4|1 1), Then, applying Lemmawe get that

ETkl k2 (1/1 s 1/2)

=a1|(v1 — )+ b1l — v) I+ aal(va — 92) T+ b2l(ve — p2) |+ | Clz1, 70, )dy(21)
X1

> /X i - /X e+ /X ady - /X lpa) + /X () + 3, (el )

:/ S01dV1*/ J1(<,01)d71+/ <,02dl/2*/ J2(502)d72+/ Ji(p1)dy+
X1 X1 X2 X2 Xl
[ [ st em)n )
X1/ Xo

=/ wldl/1+/ <P2dV2—/ J2(<P2)d72+/ Jo(p2(z2))dya(72)
X1 Xg X2 X2

Z/ gOldlll —‘r/ (pgdl/g.
X1 Xo

Therefore (o1, 92) C ®g. Hence &5 C Pp.

Now, let (¢1,92) € ®Pr. We will show that (¢1,p2) € ®;. Denote by n the null measure on
X1 x Xo. As (¢1,p2) € O, forevery (v1,12) € M(X7) x M(X5) one has
2

/ (pl(‘Tl)dl/Z(fL'l) S ETk17k2 (Vl, VQ) S ggl’lq (7]|V1, 1/2) = a1|1/1| + GQ|V2|.
17X

i=
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For every z € X1, setting v; := §, and v is the null measure on X5, we obtain that ¢1(2) < ay.
Similarly, we also have @9 < as on Xo.

Let ;1 € X; and p € P(X3). Now we will prove that .J1 (¢1(x1)) + p(J2(p2)) < C(x1,p) . For
every r > 0, put vy := d,, and v := rd,, ® p. Then for every vo € M(X3), we have

2
o1(x —|—/ padrg = / p;dy;
1(z1) . 2aV ; .

< ET* (4, 1)
ki,ko
< ESE(vIv, ve)
=ar(1—7r)" +bi(r —1)" +azl(va — 72) T+ b2l (72 — v2) T + rC(z1,p).
Hence for all 5 € M(X5) we have

%[wl(xl)—al(l—Tﬁ—bl(”—1)+] < [02(V2—72)+|+b2(72—1/2)+|—/x <P2dl/2] + C(1,p),

We define A := @5 ([~b2,as]) and B := ¢, (—00,~by) = X3 \ A, and the Borel bounded
function f : X2 — [0, 1] by

S| =

|1 ifze A,
f(z) = { 0 otherwise .
Put vy = fy2. As Ja(pa2(x)) = { be(Qx) gi g é’ we get that

a2|<u2—vz>+|+62|<w—u2>+|—/
X

padvy :bz/ (1= f)dvy —/ pafdye
2 X 2

X
:bz/ d’YQ*/ padry2
B A

:/ —Ja(p2)dy2.
X2

Hence for every > 0 we have

L) — (1= —nr =17 <~ [ hleadn+ Clarp)

= C(x1,p) — p(J2(p2)).
Therefore, for every z1 € X1, p € P(X2), we get

1) —a (1 —=r)F =b(r = 1DF
T(pa(an)) = sup 2D a7 Z il 2 1)
r>0 r
This implies that & C ® ;. Hence o = ;.

< C(z1,p) — p(J2(p2))-

Now we are ready to prove our duality formula. Moreover, by Lemmaone has ET*"%2 j5 convex
and lower semi-continuous. Hence, applying [27, Proposition 3.1, page 14 and Proposition 4.1, page

18] we get that (ET*1k2)** — ET*0k2 Therefore, applying Lemma we get

2
ETk ke (1, p2) = sup {Z/x pi(wi)dpi(w;) — (ETkl’kz)*(Wla ‘P2)}

(01,02)€CH(X1) X Cy(X2) | 3=
2
= sup / @i(w)dpi ()
(4,017LP2)€‘1>E; Xi
2
= sup /%(m)dﬂi(mi)
(<P1,992)€‘1>J1-221 Xi
2

= s Y /X L))

(p1,02)€Qr ;7
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A4 Proof of Corollary[3.1]

Proof of Corollary[3.d] We define C' : X; x P(X3) — (—o0,+ox] by C(z1,p) =
k;fX2 c(x1,x2)dp(zo) for every 1 € X1, p € P(Xz2). Then C is bounded from below,

51 + 52 + inf C > 0, and C(x1,-) is convex for every z; € X;. Applying [22] Lemma 14],
we get that C' is lower semicontinuous. From Example [A-T{A3] we also have that C' has property
(T).
Now we prove that ®; = A;. For every (o1, 92) € @1, 1 € X1, 29 € X5 we have

P1(21) + p2(z2) = @1(21) + 0z, (92)

= /X (p1(z1) + @2(y))dos, (v)
< /X k- 0(371, y)d5$2 (y>

=k-c(x1,x2).

Hence ®; C A;. On the other hand, for every (¢1, ¢2) € Ar, 1 € X1, p € P(X3), we have

o1(21) + plp2) = / (1(21) + 2(1))dp(y)

X2

IN

/ k- c(z1,y)dp(y)
X2
= C('Tlap)

Hence A; C ®;, and therefore ®; = A;. Similarly, we also have ® ; = A ;. Applying Theorem [3.2]
we get the result. O

A.5 Proof of Theorem

Proof of Theorem[3.3] Applying Corollary [3.T| we have
EXI R (1, pg) = sup {/ I (g1 (2))dpr (2) +/ I (p2(y))dpa(y) = @i € Cp(X3),
X1 X2
1(0) 2 “b1.2(0) 2 b a(a) + ) < B el Vo € Xrvp € Xa

As iy = M mid,,, we get that

EXE (11, o) SUP{/ I (o1 (z))dp(x +Zm212 (wi) : o1 € Cp(Xn), p1() = —by,
X1 i=1

w; > —bo,o1(x) +w; < k-c(z,y), Ve € X1,i= 1,...,M}.

As c is lower semicontinuous and satisﬁes radial property (see Definition [3.2)) with respect to
w1, we obtain that {C (w),...,Cy(w fl is a p1-measurable partition of X;. Givenn € N
and w = (wy,...,wpr) c —b27+oo , we define the map ¢¥ : X; — (—o0,+0o0] by
¢y (x) = min{n, ¢(x)}}. As c is measurable, so are ¢ and ¢;}". Since {c¢;'}nen increases, con-
verges pointwise to ¢*, I is continuous and increasing on [—by, +00), and lim;_, o [1(s) = a1, we

get that
Jm [ D)) = fim [Z / D)+ [ Bt @) (o)

- Z /C by [ e i) — wil) () dpns (2) + an s (R).
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Therefore,

Ekvka k() i) = sup {g(w) cw = (wy,...wpr) € [—ba, —|—oo)M}.

A.6 Proof of Theorem 3.4]

Proof of Theorem[3.4} Put B; = X; x {y;},i = 1,...,M. Then {B; : i = 1,...,M}isa

measurable partition of X; x X5 and hence we can write v = Zf\il n; ® Oy, forn; € M(X1),1 =
d

1,...,M. Put f = d—li As EXUR R (g, pp) < oo we get [y |\ edy < oo and hence

71(R) = 0. Therefore [, fdu, = 0, i.e., f(x) = 0 for ui-a.e. z € R. The Lebesgue decomposition

of 75 = may~y with respect to g is v2 = ;e g, [7il02, + 73, where 73~ = Y-, g [0z, Here
w4y refers to the 7th marginal of . We have

£k oy, ) =k [ e+ [ o (U= )+ 0 () = 1) o)+
X X1

1X{Y1,ym }

+hirE (X)) + > [a2<1—|773ﬂ> + by (l —1)+}mi+bgz I

i€S1 v v 1€ So

—Z Joa ot + /X\R[“l“f@)ﬁbl(f(x)1>+]dm<x>+

I\ Il \"
+a i g - — - i E il
1(R) + b1y (X1) + 4 {ag(l - + by - 1 m; + by | |7 ]
i€Sy 1€Ss
On the other hand, for i = 1, 2, we have

—sa; if ¢ > ay,
00 otherwise.

Hence a;(1 — s)* +b;(s — 1)T — I;(p) > —s¢p for all s, ¢. The inequality is an equality if and only
if —b; < ¢ and s = 1. Therefore, we get that

5k1,k2,k(,7|ﬂ1,ﬂ2 kZ/ " ZL’ s Yi dnz( )+b1’yf'(X1) +b2 Z |771|
X1 1€S5

o (1= ) + () = D = 1 @) i)
+
+Z€ZS:1 [ < |ml|) + by (L?Z:J —1) —Iz(wi)]mi

M
Z/X " ez, y;)dni(x) + bivi (X1) + b Z |70

i€Ss
- fdﬂl |nz|wz
Joga @)= 3

i€S1

Z/Xl\R [kc z,y;) cw(x)]dm(x) +/X1\R ' (z)dyi (z)

+o (X \R)+ D |milwi +b2 > [

i1€Sa 1€S2

o) = s = o) (o) + [ NECENEE
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+ > Imil(w; +b2)

1€Ss
>0.

d
The first inequality is an equality if and only if dl(x) = f(z) = 1 for py-a.e. z € X; \ R and
1

|m| = 1forall i € Sy. The second inequality becomes equality if and only if suppn; C C;(w) and

my

hence 7; = v1.C;(w) fori = 1,..., M, ¢ (x) = —b, for vi--a.e. x € X; \ R, and w; = —by for
every i € So. Therefore, we get that E¥1:X2:F (y| 111 | 115) — G(w) = 0 if and only if conditions (7{10)
hold. L]

A.7 Proof of Proposition 3.1]

Proof of Proposition @ By Definition[3.3] we have ¢ ( ) +00 for any z € R. By (@), for any
x € R, we have I (c"(x)) = I1(4+00) = a1.Thus, aypuy (R) = [, Ii(¢*(x))dp1 (x). Combining
this result with (6), we obtain

6(w) = [ h(e @)t +212w2

By definition in (3), I is differentiable on (—by,a1)U(as, +oo), such that 9, I; () = 1 on (—by, a1)
and 9,11 (z) = 0 on (a1, +00). Thus, for any z € C;(w), it holds I; (¢ (z)) = ((=b1 V k -
c(x,y;) — w;), and we can derive the derivatives

07 k - C(xayi) —w; € (-OO,bl),
[-1,0], k-c(z,y;) —w; € {b1},
8will(cw($)) = _17 k- C(Ivyi) —w; € (_b17a1)7
[-1,0], k-c(z,y) —w; € {a1},
07 k - C(Ivyi) —w; € (a1,+oo).
On the other hand, for any 2 € C;(w), we have 0, I1(c"(x)) = 0, for any j # 4. Therefore,

by Lemma 3.8 of [15]], radial property (see Definition [3:2) of cost function ¢, and the absolutely
continuity of py with respect to Lebesgue measure, then

8%/[1 2))dp (z) = —pa (Cs(w) N {z k- ez, i) — ws € [—bra]}).  (17)

Similarly, by definition in (3)), we know

1, w; € (—bg,ag),
31,11,]2(101') = [0, 1]7 w; € {ag},
0, w; € (ag,+00).

Then the (sub-)gradient can be obtained as presented.

A.8 Proof of Theorem

Equations (7{I0) show that continuous mass rearranges only within Laguerre cells, while the residual
mass collapses into the remainder set R. This insight later underpins our quantization and pruning
strategies. Plugging the optimality conditions of Theorem [3.4] back yields the following explicit
primal form, facilitating comparison with classical semi-discrete OT.

Corollary A.1 (Primal tessellation formulation). If there exists optimizers for @) and (), then

4 ) = min & Z/C e ) () + anl(n — )|+ bil(n — )

(18)

i€S, mi mi i€S,

w e [_bQ; +OO)]V[,71 € M(Xl)v’yl‘—R = 0}7
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where n; = y1.Ci(w),i = 1,- -+ , M. If v and w are optimizers for @) and @), then the first margin
v1 and w are optimizers for (I8). Conversely, if y1 and w are optimizers for (I8), then ~ defined by
(@) is the optimizer for @).

Proof. For any choice of w € [—by,+00)™, 41 € M(X;), and LR = 0, define v =

Zij\il 11.Ci(w) ® 6y, € M(Xq x X3). The right-hand side of (I8) can be written in the same
form as () where the admissible set for v is restricted to a subset such that v takes the form

v = vail 71LC;(w) ® 6,,. Therefore, the right-hand side of (I8) is no less than EX1k2:F (141 1),

On the other hand, by Theorem [3.4} if v* = Y 1, ® 6,, and w* € [—by, +00)™ are taken
to be the optimizers for (2) and (3)), respectively, then they should satisfy (7{I0), which leads to
7 = Y5 Ci(w),i =1,--- M, and vfLR = 0, where 77 is the first margin of v*. In this case, the
right-hand side of (T8) equals £Xt-%2:% (111 115), and 77 and w* are the optimizers for (T8).

Conversely, if 7§ and w* are optimizers for (I8), then «y defined by (7)) in terms of 7§ and w* is the
optimizer for ). O

Proof of Theorem[3.3] Consider any fixed {y1,---,ym} C X,. For any constant a € R,
let Ci(a) := C;((a,--- ,a)), where (a,--- ,a) is an M-dimensional vector. For every w €
[—ba, +00)M, we define

M
Glw,mi, .. ) = /X @)+ an (R) + > fatwiym,

where ¢ : X1 — (—o00, +00] is defined by ¢ (z) = min{k-c(z,y;) —w; i =1,...,M}}V —b;.
From Theorem[3.3| we get that

Rk (g 1p) > G(0,ma, ... may).
As I5(0) = 0 we get that G(0,m1, ..., mar) = [\ g [1(c®(2))dpi (2) + arp1 (R) =: G(0) does
not depend on my, ..., myy.

Let u = Zfil m;d,,. We define the measurable map f : X; — R, defined by f(z) = 1 for
pi-aex € Xy \ Rand f(x) = 0 for yj-a.e x € R. Define n* := fu; € M(Xy), nf :=n*LC;(0),
and v* := Zf\il n*LCi(0) ® dy,. Then the Lebesgue decomposition of ~; with respect to p;
isyy = Zf\il n¥ = fu1. Optimality conditions (T0) is fulfilled. By Theorem it holds that
ik k() sy = G(0). Hence Q(y1,- -+ ,ym) = G(0), i.e.

M
Q@h~-wM)=§;1%mfﬂ—hVk-d%wDWn@)+muﬂR)

A.9 Proof of Proposition3.2]

Proof of Proposition[3.2] Note that
Qe o) = [ D@ (o)

By definition in (3), we know
xr e (—bl, al),

1,
0,11 (z) = { ([) 1], z €{ar},

, x € (ay,+00).

Fix z € C;(0), we have I1(c®(z)) = I;((—b1 V k - ¢(x,;)), and its derivative is obtained by chain
rule,

0; k- c(x7yi) € (—OO,bl),
Vyill(co(x)) = kvyic(m7yi)7 k- C(‘Tayi) € (_b17a1)7
07 k- C(x7y’i) € (a’17+oo)'

25



Besides, V,, I1 (c°(z)) = 0 for any j # i. Therefore,
vyi Q(yh T vyM) :/c" © kVin(xa yi)l{z:kf(x,yi)e(—bl,a1)}d;U/1(x)

— | Ve, i)l ().
C;(0)N{x:k-c(x,y;)€(—b1,a1)}
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract outlines our study of an unbalanced weak optimal transport
problem with total variation penalties and highlights the key contributions relative to existing
literature. The introduction further elaborates on the scope and significance of our work
through clearly structured bullet points, providing a detailed overview of the theoretical and
practical advancements.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Given the paper’s primary focus on developing a rigorous theoretical frame-
work and the associated space constraints, we clearly state at the beginning of Section 4
that the numerical examples are preliminary and illustrative in nature. While our general
framework has broad potential for real-world applications, a more extensive exploration of
specific use cases is left for future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are stated explicitly at the beginning of Section[3|and reiterated
in the statements of each theorem when necessary. Given the density of theoretical results,
we present only the theorem statements in the main text for clarity, while full proofs are
provided in the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental details and settings are provided in Subsections .| and .2}
as well as in the supplementary material. All experiments are designed to be easily repro-
ducible.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is included in the supplementary material and will be made publicly
available upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed experimental settings and hyperparameters are provided in Sections
and[4.2] as well as in the supplementary material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer:

Justification: Our experiments are designed to illustrate the main theoretical results, which
are primarily mathematical in nature. All experiment results support the validity of the
explicit (sub)gradient formula employed in our optimization algorithm.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, the experiments can be executed on a CPU with a runtime of approximately
2.5 seconds, as reported in Section E}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: [NA]
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
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10. Broader impacts

11.

12.

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This is a primarily theoretical work.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: [NA]

Guidelines:
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13.

14.

15.

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: [NA]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA|
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Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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