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Abstract

We propose and analyze a new class of unbalanced weak optimal transport (OT)
problems with total variation penalties, motivated by spatial resource allocation
tasks. Unlike classical OT, our framework accommodates general unbalanced non-
negative measures and incorporates cost objectives that directly capture operational
trade-offs between transport cost and supply–demand mismatch. In the general
setting, we establish the existence of optimal solutions and a dual formulation.
We then focus on the semi-discrete setting, where one measure is discrete and
the other is absolutely continuous, a structure relevant to applications such as
service area partitioning for facilities like schools or medical stations. Exploit-
ing a tessellation-based structure, we derive the corresponding explicit optimality
conditions. We further address a quantization problem that jointly optimizes the
locations and weights of discrete support points, applicable to facility location
tasks such as the cost-efficient deployment of battery swap stations or e-commerce
warehouses, informed by demand-side data. The dual-tessellation structure also
yields explicit gradient expressions, enabling efficient numerical optimization in
finite dimensions.

1 Introduction

Optimal Transport (OT) provides a principled way to compare and transform probability measures by
reallocating mass at minimal cost, as determined by a ground metric. Its sensitivity to distributional
geometry and capacity to interpolate between measures have made OT a central tool in machine
learning, statistics, and applied mathematics [51]. Applications span generative modeling [6, 18, 21],
domain adaptation [10, 16, 23, 28], robust statistics [45, 46], clustering [35], image and shape
processing [49, 59], graph matching [29], stochastic dynamics [66], and posterior inference [30].

Classical OT enforces strict mass conservation, which is often impractical in real-world scenarios
due to noise, outliers, or domain mismatch [45, 58]. Unbalanced OT (UOT) addresses this limitation
by relaxing marginal constraints through penalty functions [42, 43]. Various penalties have been

∗Equal-contribution authorship listed in alphabetical order.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



introduced to accommodate different applications, such as Kullback–Leibler (KL) divergence [20, 43],
f -divergences [43], χ2-divergence [10], and total variation (TV) [45, 53, 54, 62]. Correspondingly,
a range of computational strategies have been developed, including regression-based approaches
[17], generalized Sinkhorn algorithms [20, 52], low-rank solvers [57], and GAN-based methods
[65]. Despite these advances, the theoretical foundations of UOT under non-superlinear penalties,
particularly TV, remain underdeveloped.

Meanwhile, the semi-discrete OT setting, where one marginal is continuous and the other discrete,
has gained prominence in applications like autoencoders [5, 63] and GAN training [4]. Semi-discrete
UOT further integrates this structure with mass imbalance, and has proven effective in tasks like
quantization [15] and mode regularization in GANs [64]. In parallel, weak OT formulations generalize
classical couplings by evaluating cost over disintegration of transport plans, allowing each source
point to be matched with a probability distribution over the target space [2, 7, 19, 22]. This added
flexibility enhances robustness to sampling noise and is particularly advantageous in settings where
empirical distributions render classical couplings unstable [3, 8, 29].

In this paper, motivated by spatial resource allocation problems, we study a new class of unbalanced
weak OT problems with total variation penalties. Unlike smoother, superlinear divergences studied in
existing theory, TV-based penalties are piecewise linear and less smooth, posing substantial analytical
challenges. Our work advances the theory of OT by developing a rigorous framework for this more
general and practically motivated setting.

Our Contributions.

• A novel UOT formulation. We propose the first formulation of semi-discrete, unbalanced
weak optimal transport with total variation penalties, integrating weak couplings, mass
imbalance, and non-superlinear regularization. This formulation is motivated by practical
applications and introduces new mathematical structures.

• Comprehensive theoretical results for TV-penalized UOT. We establish the existence of
optimal solutions and derive a dual formulation in the general setting. In the semi-discrete
case, we develop a tessellation-based reformulation that reduces the infinite-dimensional
problem to a finite-dimensional one, enabling explicit optimality conditions via Laguerre
cell partitioning. Building on this, we further address an associated quantization problem.
These results significantly extend and generalize classical entropy-regularized transport
frameworks to the non-smooth, TV-penalized regime.

• Practical significance. Our theoretical framework captures key features of real-world
problems, including semi-discrete geometry, mass imbalance, TV-type regularization, and
probabilistic routing. In the semi-discrete regime, the induced dual-tessellation structure and
explicit gradient expressions enable efficient optimization, which we demonstrate through
two illustrative applications: supply area division and spatial resource allocation.

Related Work.

From a theoretical standpoint, recent work has significantly advanced the understanding of OT
under classical assumptions and various extensions [12, 25, 26, 31, 36, 44, 47, 56]. Among these,
Pooladian et al. [55] investigate the semi-discrete OT problem with entropic regularization, followed
by Agarwal et al. [1], which develops a combinatorial algorithm for the same setting. Theoretical
analysis of UOT has also emerged, although much of the focus has been on algorithmic convergence
and scalability rather than fundamental properties of the UOT problem itself [14, 24, 52, 60, 66].
A notable exception is the work of Bourne et al. [15], which addresses semi-discrete UOT with
smooth entropy-based penalties. Besides, weak OT has received growing attention [9, 38]. Chung
and Trinh [22] develop a general duality theory for weak optimal entropy transport under superlinear
convex penalties. Most recently, Beiglböck et al. [11] extend strong duality results to weak OT with
nonlinear cost functions, establishing a fundamental theorem for weak OT.

2 An unbalanced weak optimal total variation transport problem

2.1 Background on optimal transport and its generalizations

Rooted in the seminal work of Monge and Kantorovich, the classical OT problem seeks the most
cost-efficient plan to transport mass from a source distribution µ1 on X1 to a target distribution µ2 on
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X2 under a prescribed cost function c(x1, x2). Formally, it solves

min
π∈Π(µ1,µ2)

∫
X1×X2

c(x1, x2)dπ(x1, x2),

where Π(µ1, µ2) denotes the set of couplings with marginals µ1 and µ2. To better accommodate
various practical needs, several generalizations of OT have been proposed. Two important directions
include weak OT, which relaxes the requirement of exact target marginal matching, and entropy-
regularized UOT, which allows for mass variation while promoting smoother solutions. These
extensions have proven particularly valuable in real-world applications, where strict mass conservation
or exact marginal fidelity is either infeasible or undesirable.

Weak OT. The weak OT framework replaces the hard constraint of matching the target distribu-
tion exactly with a more relaxed, aggregate matching condition, typically through expectations or
barycentric projections. A representative formulation is:

min
π∈Π(µ1,µ2)

∫
X1

C(x1, πx1
)µ1(dx1),

where (πx1)x1∈X1 denotes the disintegration of the coupling π with respect to its first margin. Here,
the cost function changes to C : X1 × P(X2) → R ∪ {+∞}, where P(X) represents the space
of probability measures on X . Notably, the classical OT formulation is recovered as a special case
when C(x, p) :=

∫
c(x, y)dp(y) for a base point-to-point cost c [2, 8, 32]. Weak OT approach proves

particularly useful when the target measure µ2 is only partially observed or known with uncertainty,
a common situation in learning systems built on finite data. Compared to the rigid structure of
classical OT, the weak formulation enhances stability and robustness in the learned transport plan.
Furthermore, with suitable convexity properties, weak OT problems remain computationally tractable
and well-suited for integration into learning pipelines.

Entropy-Regularized UOT. Another prominent extension is entropy-regularized UOT, which com-
bines the benefits of entropic smoothing with the ability to handle measures of unequal total mass.
This variant modifies the classical formulation by relaxing marginal constraints and penalizing
deviations using divergence terms. A typical formulation, following [43], is

inf
γ∈M(X1×X2)

2∑
i=1

Fi(γi|µi) +

∫
X1×X2

c(x1, x2)dγ(x1, x2),

where M(X) denotes the space of nonnegative finite Borel measures, and γi is the margin of the
transport plan γ on Xi. In contrast to classical OT, the plan γ is not constrained to be a coupling,
and the input measures µ1 and µ2 need not have equal total mass. The functions Fi typically encode
divergences such as the KL divergence, thereby penalizing deviation from the prescribed marginals.
Intuitively, although perfect mass preservation is inherently unattainable in the unbalanced setting,
the resulting formulation aims to strike a balance between minimizing transport cost and permitting
controlled deviations from marginal consistency. The entropic terms enhance smoothness and yield
strongly convex objectives, enabling fast convergence of iterative solvers such as generalized Sinkhorn
algorithms [20, 52]. Notably, the classical OT problem is recovered as a limiting case when both
input measures are probability distributions and the penalization for any deviation is infinite.

2.2 Our considered problem

In many decision-centric tasks, particularly those arising in operational and resource-constrained
environments, the cost of deviating from a desired distribution cannot be adequately captured by
standard divergence-based penalties. Although statistical divergences such as the KL divergence
are inherently asymmetric, their asymmetry does not generally reflect the directional economic
or operational significance observed in real-world applications. For example, under-supplying
a resource (e.g., understocking inventory or under-allocating service capacity) typically incurs
substantially higher costs than over-supplying, due to lost sales, service failures, or unmet demand.
More importantly, classical divergence measures quantify statistical dissimilarity without conveying
explicit physical meaning or cost implications, limiting their interpretability in applied settings such
as supply-demand matching and resource allocation.

To address this gap, we propose an unbalanced weak optimal total variation transport problem that
replaces statistical divergence penalties with a newsvendor-type loss function, a cost model well-
established in inventory management and economics [34, 37, 50]. The newsvendor loss offers a
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parsimonious yet expressive way of modeling asymmetric penalties by assigning distinct weights
to overestimation and underestimation. Its piecewise linear form directly reflects the real-world
mismatch level, providing a physically meaningful and interpretable objective that aligns with the
goals of many resource allocation problems [33, 67]. We consider the following optimization
problem: for nonnegative vectors k1 = (a1, b1) and k2 = (a2, b2), µ1 ∈ M(X1), µ2 ∈ M(X2),
and γ ∈ M(X1 ×X2),

Ek1,k2

C (µ1, µ2) := inf
γ∈M(X1×X2)

ETk1,k2

C (γ|µ1, µ2), (1)

where

ETk1,k2

C (γ|µ1, µ2) :=a1|(µ1 − γ1)
+|+ b1|(γ1 − µ1)

+|+ a2|(µ2 − γ2)
+|+ b2|(γ2 − µ2)

+|

+

∫
X1

C(x1, γx1
)dγ1(x1),

with γ1 and γ2 denoting the marginals of γ, and (γx1
)x1∈X1

being the disintegration of γ with respect
to its first marginal. Here, for a scalar or measurable function g, we set g+ := max{g, 0}, while for a
signed measure ν, we take ν+ to be the positive variation in the Jordan decomposition ν := ν+ + ν−

with ν+ ≥ 0, ν− ≥ 0, and ν+ ⊥ ν−. When interpreted through the lens of supply-demand matching,
the objective function offers a clear economic interpretation. The first two terms penalize supply-side
mismatches: shortages are penalized at rate b1, while excess supply incurs cost a1. The next two terms
represent demand-side penalties: lost demand due to undersupply is penalized at rate a2, whereas
overprovision relative to demand incurs cost b2. When all weights are set to one, the objective
corresponds to the TV distance between marginals and has been applied in prior work, such as [68].

Following the introduction in Section 2.1, the considered weak formulation can reduce to a normal
case by choosing C(x1, p) = k

∫
X2

c(x1, x2)dp(x2) for some point-to-point function c : X1×X2 →
(−∞,+∞]. This choice leads to a special case of entropy-regularized UOT studied in [43]:

Ek1,k2,k(µ1, µ2) := inf
γ∈M(X1×X2)

ETk1,k2,k(γ|µ1, µ2), (2)

where

ETk1,k2,k (γ|µ1, µ2) :=a1|(µ1 − γ1)
+|+ b1|(γ1 − µ1)

+|+ a2|(µ2 − γ2)
+|+ b2|(γ2 − µ2)

+|

+ k

∫
X1×X2

c(x1, x2)dγ(x1, x2),

where the nonnegative constant k serves to rescale the transportation cost, reflecting the relative
importance between transport and mismatch costs. While technically it can be absorbed into the
definition of the cost function c, keeping it explicit highlights the application-dependent trade-off.
Definition 2.1. We say that the problem (1) (resp. (2)) is feasible if there exists a transport plan
γ ∈ M(X1 ×X2) such that ETk1,k2

C (γ|µ1, µ2) < ∞ (resp. ETk1,k2,k(γ|µ1, µ2) < ∞).

While our primary focus application is on resource allocation, we anticipate that the proposed
unbalanced weak OT framework holds significant potential across a broader spectrum of applications.
As discussed earlier, this setting represents one of the most expressive and versatile generalizations in
OT theory. In particular, the weak formulation enables us to push the theory to its limits and includes
classical OT as a special case. Beyond its generality, the weak formulation has shown promising
practical advantages: by relaxing the coupling constraints, it enhances robustness to sampling noise
and stability in empirical settings where exact couplings may not exist or may be sensitive to
perturbations (see, e.g., [8, 29]). In this work, our objective is to establish a rigorous theoretical
foundation for this framework, paving the way for its application in diverse decision-making and
learning contexts.
Example 2.1 (Order dispatching in ride-sourcing platforms). [68] considers an order dispatching
problem in ride-sourcing platforms, where the objective is to assign idle vehicles to meet customer
demand across different locations. To simultaneously account for transportation cost and supply-
demand mismatches, both of which directly affect platform efficiency and profitability, the authors
propose a formulation that can be viewed as a special instance of the model in (2). In their context,
problem-specific constraints are imposed to reflect practical considerations, such as a fixed supply-
side marginal to represent the limited number of available drivers.
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Remark 2.1. Recasting resource allocation problems as an unbalanced weak OT framework provides
several theoretical and practical advantages. First, the OT formulation is geometrically expressive.
By embedding the problem in a metric space, it naturally captures spatial relationships through
structures such as Laguerre and Voronoi tessellations—features that are difficult to obtain from purely
algebraic linear programming (LP) models. This geometric perspective is not only mathematically
elegant but also supports practical applications, such as service-area partitioning for facilities like
fire stations or warehouses. Second, OT allows a natural treatment of imbalance through TV penalties,
which directly quantify the cost of mass creation or deletion. This yields an explicit trade-off between
transportation and mismatch costs, avoiding artificial slack variables often used in LP formulations.
The magnitude of the TV term provides an intuitive measure of over- or under-supply. Third, the
continuous formulation greatly enhances scalability, particularly in semi-discrete formulation, as
it avoids high-dimensional LP formulations by reducing the optimization to a weight vector whose
size matches the number of facilities. Overall, the OT-based approach offers a geometrically faithful,
imbalance-aware, and efficient modeling framework. While LP methods remain convenient for direct
implementation, we believe the structure, interpretability, and flexibility of the OT perspective provide
substantial benefits.

3 Main theoretical results

In this section, we present our main theoretical contributions, which are organized into three key
components. First, in Section 3.1, we derive a dual formulation for the unbalanced weak optimal
total variation transport problem (1). This dual characterization serves as a foundational tool for
establishing optimality conditions and facilitates both analysis and computation. We then turn our
attention to the semi-discrete setting in Sections 3.2 and 3.3, where one marginal is a discrete measure
and the other is absolutely continuous with respect to the Lebesgue measure. This setting is motivated
by practical applications in spatial resource allocation, including (1) service area partitioning, where
one seeks to determine the optimal service regions of facilities such as medical stations or schools,
and (2) facility location problems, such as the placement of battery swap stations or e-commerce
warehouses. Specifically, Section 3.2 establishes optimality conditions for the semi-discrete transport
problem, while Section 3.3 addresses a quantization problem in which both the weights and locations
of the discrete marginal are jointly optimized to minimize the total transport cost.

3.1 A dual formulation of weak optimal total variation transport

We first introduce some technical notations. For a metric space X , we denote by Cb(X) and B(X)
the space of bounded continuous real functions and Borel real functions on X , respectively. A metric
space X is Polish if it is complete and separable.

Definition 3.1. We say that a measurable map C : X1×P(X2) → (−∞,+∞] has property (T) if for
every M > 0 and every sequence {γn}n∈N ⊂ M(X1×X2) such that

∫
X1

C(x1, γ
n
x1
)dγn

1 (x1) ≤ M

for all n ∈ N, the sequence {γn}n∈N is tight.

Let X1, X2 be Polish metric spaces, and let C : X1 × P(X2) → (−∞,+∞] be a lower semicon-
tinuous function that is bounded from below and satisfies property (T) as defined in Definition 3.1.
These assumptions on C are nearly minimal and encompass commonly used cost functions as special
cases. Assume further that (b1 + b2)/2 + inf C > 0. Before proceeding to duality and optimality
conditions, it is essential to establish that the unbalanced weak OT problem (1) admits a solution. The
following theorem guarantees the existence of an optimal transport plan under these mild conditions.

Theorem 3.1 (Existence of optimal solutions). Let µi ∈ M(Xi), for i = 1, 2 and suppose that
problem (1) is feasible. Then the problem (1) has at least one optimal plan.

We now proceed to derive the dual formulation of the primal problem (1), which, as previously noted,
constitutes a critical intermediate step in our theoretical development. To elucidate the geometric role
of the TV penalty in the weak formulation, we begin by introducing a family of auxiliary functions
Ii and Ji for i = 1, 2, along with the corresponding admissible function classes ΦI and ΦJ . These
constructions will be used in the strong duality result presented in Theorem 3.2.
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For each i = 1, 2, we define the functions Ii : R → (−∞,+∞] by

I1(φ) := inf
s≥0

(sφ+ a1(1− s)+ + b1(s− 1)+) = a11{φ>a1} + φ1{−b1≤φ≤a1} −∞1{φ<−b1},

I2(φ) := inf
s≥0

(sφ+ a2(1− s)+ + b2(s− 1)+) = a21{φ>a2} + φ1{−b2≤φ≤a2} −∞1{φ<−b2}.

(3)

Likewise, we define the conjugate-type functions Ji : R → (−∞,+∞] by

J1(ϕ) = sup
s>0

ϕ− a1(1− s)+ − b1(s− 1)+

s
= +∞1{ϕ>a1} + ϕ1{−b1≤ϕ≤a1} − b11{ϕ<−b1},

J2(ϕ) = sup
s>0

ϕ− a2(1− s)+ − b2(s− 1)+

s
= +∞1{ϕ>a2} + ϕ1{−b2≤ϕ≤a2} − b21{ϕ<−b2}.

Using these functions, we define two sets of admissible test functions:

ΦI := {(φ1, φ2) ∈ Cb(X1)× Cb(X2) : −b1 ≤ φ1(x1),−b2 ≤ φ2(x2) for every xi ∈ Xi, i = 1, 2

and φ1(x1) + p(φ2) ≤ C(x1, p) for every x1 ∈ X1, p ∈ P(X2)},

ΦJ := {(φ1, φ2) ∈ Cb(X1)× Cb(X2) : φ1(x1) ≤ a1, φ2(x2) ≤ a2 for every xi ∈ Xi, i = 1, 2

and J1(φ1(x1)) + p(J2(φ2)) ≤ C(x1, p) for every x1 ∈ X1, p ∈ P(X2)}.

Theorem 3.2 (Dual representation). Suppose that for every x1 ∈ X1, C(x1, ·) : P(X2) →
(−∞,+∞] is convex. Then for every µi ∈ M(Xi), i = 1, 2, we have

Ek1,k2

C (µ1, µ2) = sup
(φ1,φ2)∈ΦJ

2∑
i=1

∫
Xi

φidµi = sup
(φ1,φ2)∈ΦI

2∑
i=1

∫
Xi

Ii(φi(xi))dµi(xi).

Remark 3.1. A similar dual representation has been established in the case where both X1 and X2

are compact [22, Theorem 2]. Extending this result to general (non-compact) spaces, however, is
nontrivial, primarily due to the presence of non-superlinear, newsvendor-type penalties, which are
motivated by practical considerations. In this work, we adopt a different proof strategy from that used
in [22, Theorem 2] to accommodate these challenges.

Such a dual perspective plays a central role in the modern development and application of OT
theory, owing to both its theoretical and practical advantages. On the theoretical side, the dual
formulation provides essential structural insights, such as the characterization of optimal plans
through Kantorovich potentials (φ1, φ2) and the derivation of necessary and sufficient conditions
for optimality. On the practical side, it often leads to more computationally tractable formulations.
Notably, the dual representation established in Theorem 3.2 is very general, and it partially recovers
[43, Corollary 4.12] when C(x1, p) = k

∫
c(x1, x2)dp and the entropy functions are given by

Fi = ai(1− s)+ + bi(s− 1)+, i = 1, 2, as stated in the following corollary.

Corollary 3.1. Let c : X1 ×X2 → (−∞,+∞] be a lower semicontinuous function that is bounded
from below and has compact sublevels. Suppose that (b1 + b2)/2 + k inf c > 0. Then, for every
µi ∈ M(Xi), i = 1, 2, we have

Ek1,k2.k(µ1, µ2) = sup
(φ1,φ2)∈ΛJ

2∑
i=1

∫
Xi

φidµi = sup
(φ1,φ2)∈ΛI

2∑
i=1

∫
Xi

Ii(φi(xi))dµi(xi),

where the admissible sets ΛJ and ΛI are respectively defined as ΛJ := {(φ1, φ2) ∈ Cb(X1) ×
Cb(X2) : φ1(x1) ≤ a1, φ2(x2) ≤ a2, J1(φ1(x1)) + J2(φ2(x2)) ≤ k · c(x1, x2) for every x1 ∈
X1, x2 ∈ X2} and ΛI := {(φ1, φ2) ∈ Cb(X1)×Cb(X2) : φ1(x1) ≥ −b1, φ2(x2) ≥ −b2, φ1(x1)+
φ2(x2) ≤ k · c(x1, x2) for every x1 ∈ X1, x2 ∈ X2}.

In what follows, rather than deriving the optimality conditions directly under the general framework
of Theorem 3.2, which is straightforward but offers limited intuitive insight, we shift our focus to
more practically relevant semi-discrete settings. This allows for a clearer theoretical development
and facilitates meaningful applications, particularly in the context of spatial resource allocation.
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3.2 Semi-discrete unbalanced total variation transport

Here, we consider a semi-discrete scenario under the problem formulation (2), where the first marginal
is continuous and the second marginal is discrete. Specifically, we let µ1 ∈ M(X1) be absolutely
continuous with respect to the Lebesgue measure, and define µ2 =

∑M
i=1 miδyi

∈ M(X2) for some
given integer M > 0, where δyi

denotes the Dirac measure centered at yi. Examples arising in spatial
resource allocation, such as the placement of e-commerce warehouses or public facilities like schools,
naturally fit within this framework. In such settings, the discrete points represent service stations (i.e.,
supply locations), while the continuous measure models the spatial distribution of service demand
across the region. We first introduce several new notations or concepts that will be used later. For
any a, b ∈ R, we denote a ∨ b := max{a, b}. Let n > 0 be any given integer, and let X1 and X2 be
subsets of Rn. Assume that (b1 + b2)/2 + k inf c > 0 and c has compact sublevels. In both Sections
3.2 and 3.3, we further assume that c is radial according to the following definition (see also [15]).
Definition 3.2. A function c : X1 × X2 → (−∞,+∞] is radial if it can be written as c(x, y) =
g(d(x, y)) with a continuous, strictly increasing function g : [0,+∞] → [0,+∞] satisfying g(0) = 0.

Beyond its practical significance, the semi-discrete setting is of theoretical interest due to the
special geometric structure of its solutions. In particular, the optimal transport plan induces a cell
decomposition of the domain, which is both mathematically elegant and operationally interpretable.
Definition 3.3 (Generalized Laguerre cells, [15]). Given a transportation cost c : X1 ×X2 →
(−∞,+∞] and y1, . . . , yM ∈ X2, we define the generalized Laguerre cells corresponding to the
weight vector w ∈ RM as follows: for i ∈ {1, . . . ,M}
Ci(w) = {x ∈ X1 | c(x, yi) < +∞, c(x, yi)− wi ≤ c(x, yj)− wj for all j ∈ {1, . . . ,M}}. (4)

The residual set, denoted by R, is defined as R = {x ∈ X1 | c(x, yi) = +∞}.

The next theorem recasts the dual functional from Theorem 3.2 as a finite-dimensional optimization
over the weight vector w associated with the cell division, thereby reducing the original infinite-
dimensional problem over Kantorovich potentials to a more tractable finite-dimensional setting.
Theorem 3.3 (Dual tessellation formulation). Suppose that problem (2) is feasible. Then

Ek1,k2,k(µ1, µ2) = sup
{
G(w)|w = (w1, . . . , wM ) ∈ [−b2,+∞)M

}
, (5)

where

G(w) =
M∑
i=1

∫
Ci(w)

I1(−b1 ∨ [k · c(x, yi)− wi])dµ1(x) + a1µ1(R) +

M∑
i=1

I2(wi)mi

=

∫
Ω\R

I1(c
w(x))dµ1(x) + a1µ1(R) +

M∑
i=1

I2(wi)mi (6)

with cw : X1 → (−∞,+∞] defined by cw(x) := −b1 ∨ min
i=1,...,M

{k · c(x, yi)− wi}.

Equation (6) reveals that the reformulated dual objective G admits an explicit and tractable dependence
on the weight vector w, facilitating algorithm design for identifying the optimal weights. Building on
Theorem 3.3, we now proceed to establish the corresponding optimality condition.
Theorem 3.4 (Optimality conditions). Suppose that X2 = {y1, . . . , yM} and problem (2) is feasible.
Let γ ∈ M(X1 ×X2) be an optimizer for problem (2) and w = (w1, . . . , wM ) ∈ [−b2,+∞)M be
an optimizer for problem (5). Then γ admits the form γ =

∑M
i=1 ηi ⊗ δyi

for ηi ∈ M(X1), i =

1, . . . ,M . The Lebesgue decomposition of γ1 with respect to µ1 is γ1 =
∑M

i=1 ηi =
dγ1
dµ1

µ1 + γ⊥
1 .

Define S1 := {i ∈ {1, . . . ,M} : mi ̸= 0} and S2 := {i ∈ {1, . . . ,M} : mi = 0}. Then the
following conditions hold:

ηi = γ1⌞Ci(w) for every i = 1, . . . ,M (i.e., γ =

M∑
i=1

γ1⌞Ci(w)⊗ δyi), (7)

where γ1⌞Ci(w) denotes the restriction of γ1 to the cell Ci(w), and
dγ1
dµ1

(x) = 1 for µ1-a.e. x ∈ X1 \R,
dγ1
dµ1

(x) = 0 for µ1-a.e. x ∈ R, (8)
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|ηi| = mi for all i ∈ S1, cw(x) = −b1 for γ⊥
1 -a.e. x ∈ X1 \R, (9)

wi = −b2 for every i ∈ S2. (10)

Conversely, if γ and w satisfy (7-10), then they are optimal solutions to (2) and (5), respectively.

The first marginal of the optimal transport plan comprises two components: an absolutely continuous
part with respect to the input marginal µ1, and a singular part that arises due to the piecewise-linear TV
penalty, which differs from [15]. In particular, the optimality conditions established in Theorem 3.4
enable efficient recovery of the optimal transport plan once the optimal weight vector w∗ has been
determined. The latter can be computed using gradient-based methods, as the exact (sub-)gradient of
the dual objective G(w) with respect to each wi is explicitly available and presented below.

Proposition 3.1 (Gradient of dual tessellation formulation). G defined in (6) from Theorem 3.3 is
(sub-)differentiable with respect to each wi and

∂wi
G(w) =

{ −µ1(Ci(w) ∩ {x : k · c(x, yi)− wi ∈ [−b1, a1]}) +mi, wi ∈ (−b2, a2),
−µ1(Ci(w) ∩ {x : k · c(x, yi)− wi ∈ [−b1, a1]}) + [0,mi], wi ∈ {a2},
−µ1(Ci(w) ∩ {x : k · c(x, yi)− wi ∈ [−b1, a1]}), wi ∈ (a2,+∞).

Remark 3.2. It is clear that G(w) is decreasing in wi over (a2,+∞). Therefore, for fixed values of
{wj}j ̸=i, the maximizer of (5) with respect to wi must lie within the interval (−b2, a2].

3.3 Optimal spatial resource allocation

In the previous subsection, both the locations and masses of the discrete measure were fixed, and the
objective was to determine a service area partition. We now advance the analysis by formulating a
quantization problem in which the locations and masses are jointly optimized to minimize the overall
transport cost. This extension naturally connects to practical applications such as facility location and
resource allocation. Specifically, we adopt a sequential optimization strategy: we first optimize the
mass vector while holding the locations fixed, leveraging the optimality conditions established in
Theorem 3.4, and subsequently update the locations to further reduce the aggregate loss.

Theorem 3.5 (Optimal masses given locations). Given fixed cardinality M and fixed support points
y1, · · · , yM ∈ X2, define

Q(y1, · · · , yM ) := min

{
Ek1,k2,k(µ1, µ2) : µ2 =

M∑
i=1

miδyi
,m1, · · · ,mM > 0

}
, (11)

where Ek1,k2,k(µ1, µ2) is defined in (2) with γ runs over M(X1 × {y1, . . . , yM}). Assume that
µ1(Ci(0)) > 0 for every i = 1, . . . ,M , where 0 is the M -dimensional zero vector. Then the
minimizer of (11) is (m∗

1, · · · ,m∗
M ) satisfying m∗

i = µ1(Ci(0)) > 0 for every i = 1, . . . ,M .
Moreover, we have

Q(y1, · · · , yM ) =

M∑
i=1

∫
Ci(0)

I1(−b1 ∨ k · c(x, yi))dµ1(x) + a1µ1(R). (12)

To complete the quantization procedure, it remains to optimize over the locations of support points.
Based on Theorem 3.5, this amounts to solving the following location optimization problem:

min {Q(y1, · · · , yM ) : y1, · · · , yM ∈ X2} ,

where Q(y1, · · · , yM ) is defined in (11). This optimization can be carried out efficiently using
gradient-based methods [39, 40, 41], as the necessary gradients are derived and provided below.

Proposition 3.2 (Gradient of quantization objective function). Assume the cost function c :
X1 ×X2 → (−∞,+∞] is differentiable with respect to its second argument, and denote its gradient
by ∇yc(x, y). Assume that µ1(Ci(0)) > 0 for every i = 1, . . . ,M . Then, for each i = 1, · · · ,M ,
the gradient of the quantization objective Q(y1, · · · , yM ) with respect to yi is given by

∇yiQ(y1, · · · , yM ) =k

∫
Ci(0)∩{x:k·c(x,yi)∈(−b1,a1)}

∇yic(x, yi)dµ1(x).
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4 Numerical examples and illustrative applications

Given our primary focus on establishing a rigorous theoretical framework and the space limitations,
we illustrate the practical relevance of our results through two representative application scenarios
with numerical examples. Further exploration of additional applications is left for future research.

4.1 Supply area division

We demonstrate the application of Section 3.2 through a spatial supply-area division problem. An
urban planner must allocate m=4 fixed emergency depots Y = {yi}mi=1 ⊂ [0, 1]2 to serve incident
locations distributed continuously over X ⊂ [0, 1]2 with density µ. The total incident mass is
normalized to Mµ = 1, while the available standby capacity is limited to Mν = 0.7, represented by
the discrete measure ν =

∑m
i=1 νiδyi , with

∑
i νi = 0.7. Travel cost is set to the Euclidean distance.

Semi-discrete. The demand distribution µ is continuous, while supply is concentrated at finitely
many depots (ν). The tessellation-based dual formulation thus applies directly.

Unbalanced. Since Mµ ̸= Mν , only a fraction of incidents can be served. The optimization identifies
where to allocate supply and where to forgo service. We set µ to be uniform and initialize νi randomly.

TV penalty. Asymmetric newsvendor parameters are set to a1 = 1, b1 = 0.5, and a2 = b2 = 0,
penalizing undersupply at rate b1 and oversupply at rate a1. We further let k = 1.

Proposition 3.1 provides the sub-gradient gi(w) = clip[−b1,a1]

(
νi − µ(Ci(w))

)
, which we use in

gradient descent algorithms with decaying step size αt = α0(1 + t)−decay, where α0 = 0.05 and
decay = 0.6. The algorithm stops after 1000 iterations in 0.9 seconds. The final supply-area partition,
determined by the optimized weights {wi}4i=1, is shown in Figure 1. This example highlights
the practicality of the dual formulation and subgradient structure from Section 3.2 in addressing
semi-discrete, unbalanced, and asymmetrically penalized transport problems.
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Figure 1: Fig. (a) displays the resulting supply-area partition, with black crosses indicating depot
locations. Fig. (b) presents the learned dual weights wi∈ [−1, 1]. Figs. (c)–(d) plot the ℓ2 norm of
the gradient and the total mass mismatch

∑
i |µ(Ci)− νi|.

4.2 Spatial resource allocation

This experiment extends the previous example by endogenously selecting the depots, echoing
Section 3.3. Specifically, we now optimize the positions Y = {yi}mi=1 ⊂ [0, 1]2 along with the
dual weights wi, and the optimal mass allocation is determined by Theorem 3.5. Each point x
is assigned to the depot minimizing the effective cost z(x, i) = c(x, yi) − wi. If the minimal
cost exceeds the threshold a1, this point is assigned to the residual set R, incurring a penalty
of a1µ(R). If a cell Ci(w) = {x : z(x, i) ≤ z(x, j), ∀j} becomes empty, the corresponding
weight is set to wi = −b2, effectively deactivating the facility. The resulting outer objective,
Q(y) =

∑
i

∫
Ci(w⋆)

z(x, i) dµ(x) + a1µ(R), matches the form addressed in Theorem 3.5.

Setting. We sample N = 2000 incident locations from a two-component Gaussian mixture with
means (0.3, 0.3) and (0.7, 0.7), and covariance 0.02I2. Samples are clipped to [0, 1]2 and rescaled
to ensure Mµ = 1. The number of depots is fixed at m = 4, with initial positions drawn i.i.d. from
the uniform distribution on [0, 1]2. Newsvendor parameters are set to a1 = 0.3, a2 = 1, b1 = 0.1,
and b2 = 0.2. The choice of a smaller a1 encourages visible residual mass, while the ordering
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b1 < b2 < a1 conforms to the structure of the folded loss I1. A decaying step size 0.3/(1 + t)0.6 is
used. The CPU running time is 2.6 s, and the results shown in Figure 2 confirm that the outer–inner
decomposition prescribed by Proposition 3.2 yields an effective gradient-based solver.
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Figure 2: Fig. (a) plots the objective Q(y) (blue) and the residual mass µ(R) (orange), which stabilizes
around 0.05, indicating that approximately 5% of demand is optimally left unserved due to excessive
transport cost. Fig. (b) illustrates the trajectories of the four depots: arrows trace movement from
random initial positions toward demand clusters. In Fig. (c), the initial location of depots (black “×”)
and the nearby demands partition the entire area into several distinct parts (in different colors), which
resembles a Laguerre diagram. In this partition, the demands within each Laguerre cell are serviced
by the depot of the same color. However, there are still areas with high-density demands (gray “×”)
falling into the residual set R. After optimization, Fig. (d) shows four depots concentrating near
high-density regions, while low-demand areas are absorbed into R, reflecting TV-induced saturation.

5 Conclusion and future work

This paper presents a comprehensive theoretical framework for unbalanced weak OT problems with
total-variation penalties. We establish a general dual formulation that encompasses many existing
models as special cases. We then focus on the semi-discrete setting, motivated by spatial resource
allocation applications, and show that the problem admits a Laguerre tessellation structure. This
allows for explicit optimality conditions and a next-level tractable quantization procedure. While
our primary emphasis is on theoretical development, we include preliminary numerical examples
to demonstrate the framework’s applicability. We anticipate that this foundation will support future
extensions in both theory and practice.
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A Proofs of assertions in Section 3

A.1 Auxiliary lemmas

Lemma A.1. Let X be a metric space and µ1, µ2, ν1, ν2 ∈ M(X). Then

|(µ1 − ν1)
+|+ |(µ2 − ν2)

+| ≥ |(µ1 + µ2 − ν1 − ν2)
+|.

Proof. The results follow from that

(µ1 − ν1)
+ + (µ2 − ν2)

+ =
1

2

[
|µ1 − ν1|+ |µ2 − ν2|+ µ1 − ν1 + µ2 − ν2

]
≥ 1

2

[
|µ1 + µ2 − (ν1 + ν2)|+ µ1 + µ2 − (ν1 + ν2)

]
= (µ1 + µ2 − (ν1 + ν2))

+.

Lemma A.2. Let X be a metric space and µ, ν ∈ M(X). Then

|(µ− ν)+| ≥ (µ(X)− ν(X))+.

Proof. Let ν = fµ+ ν⊥ be the Lebesgue decomposition of ν with respect to µ. Then

|(µ− ν)+| = |((1− f)µ− ν⊥)+|

=

∫
X

(1− f)+dµ

=
1

2

∫
X

(|1− f |+ 1− f)dµ

≥ 1

2

(∣∣∣∣ ∫
X

(1− f)dµ

∣∣∣∣+ ∫
X

(1− f)dµ

)
=

(∫
X

(1− f)dµ

)+

= (µ(X)− ν(X))+.

Lemma A.3. Let c1 and c2 be non-negative numbers. We define the map J : R → (−∞,+∞] by

J(ϕ) = sup
s>0

ϕ− c1(1− s)+ − c2(s− 1)+

s
=

{
+∞ if ϕ > c1,
ϕ if − c2 ≤ ϕ ≤ c1,
−c2 otherwise.

Then for every ν, µ ∈ M(X) we have that

c1|(µ− ν)+|+ c2|(ν − µ)+| ≥
∫
X

φdµ−
∫
X

J(φ)dν,

for every φ ∈ B(X) satisfying that supx∈X φ(x) ≤ c1.

Proof. The statement is true for the case µ = ν are the null measure. Therefore, we can assume
that (µ + ν)(X) > 0. Let h be the Lebesgue density of ν with respect to µ + ν. We define
V := {x ∈ X : 0 < h(x) < 1}, Vµ := {x ∈ X : h(x) = 0} and Vν := {x ∈ X : h(x) = 1}. Then
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(V, Vµ, Vν) is a Borel partition of X . We define the Borel functions f on X by f :=
h

1− h
on V ,

and f = 0 on X \ V . Then ν = fµ+ ν⊥, ν⊥(X \ Vν) = µ(Vν) = 0. Then

c1|(µ− ν)+|+ c2|(ν − µ)+| = c1|[(1− f)µ− ν⊥]+ + c2|[(f − 1)µ+ ν⊥]+|

= c1

∫
X\Vν

(1− f)+dµ+ c2

[ ∫
X\Vµ

(f − 1)+dµ+ ν⊥(Vν)

]
.

By the definition of J we get that c1(1 − f)+ + c2(f − 1)+ + fJ(φ) − φ ≥ 0. Hence for every
φ ∈ B(X) with supx∈X φ(x) ≤ c1 we have that

c1|(µ− ν)+|+ c2|(ν − µ)+| −
∫
X

φdµ+

∫
X

J(φ)dν

≥c1

[ ∫
V

(1− f)+dµ+

∫
Vµ

dµ

]
+ c2

[ ∫
V

(f − 1)+dµ+

∫
Vν

dν⊥
]
−

(∫
V

φdµ+

∫
Vµ

φdµ

)
+

(∫
V

fJ(φ)dµ+

∫
Vν

J(φ)dν⊥
)

=

∫
V

(c1(1− f)+ + c2(f − 1)+ + fJ(φ)− φ)dµ+

∫
Vµ

(c1 − φ)dµ+

∫
Vν

(c2 + J(φ))dν⊥

≥0.

A.2 Proof of Theorem 3.1

Before proving Theorem 3.1, let us provide some examples of the function C : X1 × P(X2) →
(−∞,+∞] having property (T) (see Definition 3.1). Recall that for a metric space X , {νn}n∈N ⊂
M(X) is tight if for every ε > 0, there exists a compact subset Kε of X such that νn(X \Kε) < ε
for every n ∈ N.
Example A.1. Let c : X1×X2 → (−∞,+∞] be a measurable function. Assume that c has compact
sublevels, i.e. for every L ∈ R, the subset {(x1, x2) ∈ X1 ×X2 : c(x1, x2) ≤ L} of X1 ×X2 is
compact. We define the map

C : X1 × P(X2) → (−∞,+∞]

by C(x1, p) =
∫
X2

c(x1, x2)dp(x2) for every x1 ∈ X1, and p ∈ P(X2). Given M > 0 and let
{γn}n∈N ⊂ M(X1 × X2) such that

∫
X1

C(x1, γ
n
x1
)dγn

1 (x1) ≤ M , for every n ∈ N. For every
L > 0, the set

AL := {(x1, x2) ∈ X1 ×X2 : c(x1, x2) ≤ L}
is compact. Since∫

X1×X2

c(x1, x2)dγ
n(x1, x2) =

∫
X1

∫
X2

c(x1, x2)dγ
n
x1
(x2)dγ

n
1 (x1) =

∫
X1

C(x1, γ
n
x1
)dγn

1 (x1),

for every L > 0, we have

γn((X1 ×X2) \AL) ≤
∫
X1×X2

cdγn

L
=

∫
X1

C(x1, γ
n
x1
)dγn

1 (x1)

L
≤ M

L
.

For every ε > 0, choose L > 0 such that
M

L
< ε, then γn((X1 ×X2) \AL) < ε, for every n ∈ N.

Therefore, the map C has property (T).

Example A.2. If C(x1, p) = α

(∫
X2

c(x1, x2)dp(x2)

)
, for every x1 ∈ X1, p ∈ P(X2) for some

non-decreasing function α : (−∞,+∞] → (−∞,+∞], and c has compact sublevels, then C has
property (T).

Example A.3. If X1 and X2 are compact, then every measurable map C : X1 × P(X2) →
(−∞,+∞] has property (T).
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Proof of Theorem 3.1. Let {γn}n∈N ⊂ M(X1 × X2) such that EC(µ1, µ2) =
limn→∞ ETC(γ

n|µ1, µ2). First, we will prove that {γn} is bounded. Choose t0 ≥ 0 such

that
F1(s)

s
≥ b1

2
and

F2(s)

s
≥ b2

2
for every s ≥ t0, where Fi(s) = ai(1− s)+ + bi(s− 1)+. Now

we will show that

γn(X1 ×X2) ≤
2

M
ETC(γ

n|µ1, µ2) for all γnj with γn(X1 ×X2) ≥ t0 max{µ1(X1), µ2(X2)},
(13)

where M :=
b1
2

+
b2
2

+ inf C > 0. Let γn with γn(X1 × X2) ≥ t0 max{µ1(X1), µ2(X2)}. If

µ1(X1) = 0 then F1(γ
n
1 |µ1) = b1γ

n
1 (X1). If µ1(X1) > 0 then by the choice of t0 and Lemma A.2

we get that

F1(γ
n
1 |µ1) = a1|(µ1 − γn

1 )
+|+ b1|(γn

1 − µ1)
+|

≥ a1(µ1(X1)− γn
1 (X1))

+ + b1(γ
n
1 (X1)− µ1(X1))

+

= µ1(X1)

[
a1

(
1− γn

1 (X1)

µ1(X1)

)+

+ b1

(
γn
1 (X1)

µ1(X1)
− 1

)+]
= γn

1 (X1)
µ1(X1)

γn
1 (X1)

F1(
γn
1 (X1)

µ1(X1)
)

≥ γn
1 (X1)

b1
2
.

Therefore, F1(γ
n
1 |µ1) ≥ γn(X1 × X2)

b1
2

for all γn with γn(X1 × X2) ≥

t0 max{µ1(X1), µ2(X2)}. Similarly, F2(γ
n
2 |µ2) ≥ γn(X1 × X2)

b2
2

for all µ2 and

γn with γn(X1 × X2) ≥ t0 max{µ1(X1), µ2(X2)}. Then for all γn with γn(X1 × X2) ≥
t0 max{µ1(X1), µ2(X2)} we have that

ETk1,k2

C (γn|µ1, µ2) = F1(γ
n
1 |µ1) + F2(γ

n
2 |µ2) +

∫
X1

C(x1, γ
n
x1
)dγn

1 (x1)

≥ γn(X1 ×X2)(
b1
2

+
b2
2

+ inf C).

Hence we get that {γn}n∈N is bounded.

γn(X1 ×X2) ≤
2

M
ETC(γ

n|µ1, µ2) for all γnj with γn(X1 ×X2) ≥ t0 max{µ1(X1), µ2(X2)},
(14)

Now we will prove that {γn}n∈N is tight. There exists K > 0 such that ETa,b
C (γn|µ1, µ2) ≤ K

and hence
∫
X1

C(x1, γ
n
x1
)dγn

1 (x1) ≤ K for every n. Since C has property (T), we get that {γn} is
tight. As {γn} is tight and bounded, there exists γ0 ∈ M(X1 ×X2) and a subsequence of {γn}
which is still denoted by {γn} such that γn converges weakly to γ0. From [42, Corollary 2.9] and
[22, Lemma 4] we get that the map γ 7→ EC(γ|µ1, µ2) is lower semicontinuous. Therefore, γ0 is an
optimal plan of problem (1).

Remark A.1. If C is nonnegative, we can prove the boundedness of {γn} easier as follows. Choose
M > 0 such that ETa,b

C (γn|µ1, µ2) ≤ M for every n ∈ N. First, we will prove that {γn} is bounded.
As C is nonnegative we get that a1|(µ1 − γn

1 )
+| + b1|(γn

1 − µ1)
+| ≤ M for every n ∈ N. Then

|γn
1 − µ1|(X1) = |(µ1 − γn

1 )
+|+ |(γn

1 − µ1)
+| is bounded. Hence γn

1 (X1) is bounded. Therefore
{γn} is bounded.

A.3 Proof of Theorem 3.2

Lemma A.4. We have

sup
(φ1,φ2)∈ΦJ

2∑
i=1

∫
Xi

φi(xi)dµi(xi) = sup
(φ1,φ2)∈ΦI

2∑
i=1

∫
Xi

Ii(φi(xi))dµi(xi). (15)
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Proof. For any (φ1, φ2) ∈ ΦJ , we have −b1 ≤ J1(φ1(x1)) ≤ a1, −b2 ≤ J2(φ2(x2)) ≤ a2
and J1(φ1(x1)) + p(J2(φ2)) ≤ C(x1, p) for every x1 ∈ X1, p ∈ P(X2). Since J1 and J2 are
continuous on (−∞, a1] and (−∞, a2], respectively, one has (J1(φ1), J2(φ2)) ∈ ΦI . Therefore,

2∑
i=1

∫
Xi

φi(xi)dµi(xi) ≤
2∑

i=1

∫
Xi

Ji(φi(xi))dµi(xi)

=

2∑
i=1

∫
Xi

Ii ◦ Ji(φi(xi))dµi(xi)

≤ sup
(φ1,φ2)∈ΦI

2∑
i=1

∫
Xi

Ii(φi(xi))dµi(xi).

On the other hand, for any (φ1, φ2) ∈ ΦI , we have −b1 ≤ I1(φ1(x1)) ≤ a1, −b2 ≤ I2(φ2(x2)) ≤
a2 and hence J1 ◦ I1(φ1(x1)) + p(J2 ◦ I2(φ2)) ≤ C(x1, p) for every x1 ∈ X1, p ∈ P(X2). Since
I1 and I2 are continuous on [−b1,∞) and [−b2,∞), respectively, one has (I1(φ1), I2(φ2)) ∈ ΦJ .
Hence,

2∑
i=1

∫
Xi

Ii(φi(xi))dµi(xi) ≤ sup
(φ1,φ2)∈ΦJ

2∑
i=1

∫
Xi

φi(xi)dµi(xi).

We obtain the result.

Given a metric space X , for every µ ∈ M(X), the map Tµ : Cb(X) → R, defined by f 7→
∫
X
fdµ,

is a bounded linear operator, i.e., it belongs to (Cb(X))∗. We define the functional ET : (Cb(X1))
∗×

(Cb(X2))
∗ → [−∞,+∞] as follows.

ETk1,k2(T1, T2) :=

{
EC(µ1, µ2) if (T1, T2) = (Tµ1 , Tµ2),
+∞ otherwise,

Given µ, ν ∈ M(X), if
∫
X
fdµ =

∫
X
fdν for every f ∈ Cb(X) then one gets µ = ν [48, Theorem

5.9, page 39]. Therefore, for every metric space X we can consider M(X) as a subset of (Cb(X))∗.
Hence, the map ETk1,k2,k is well defined.

For convenience, we will write ETk1,k2(µ1, µ2) for ETk1,k2(Tµ1
, Tµ2

) for every (µ1, µ2) ∈
M(X1) × M(X2). The weak topology on M(X) is the smallest topology such that for each
f ∈ Cb(X), the map µ 7→

∫
X
fdµ is continuous, i.e. a sequence {µn}n∈N ⊂ M(X) converges

weakly to µ ∈ M(X) if and only if limn→∞
∫
X
fdµn =

∫
X
fdµ for every f ∈ Cb(X).

Lemma A.5. Let X1, X2 be Polish metric spaces. Then

1. the functional ETk1,k2 : (Cb(X1))
∗ × (Cb(X2))

∗ → (−∞,+∞] is convex and positively
one homogeneous, i.e. ETk1,k2(λT1, λT2) = λETa,b(T1, T2) for every λ ≥ 0, T1 ∈
(Cb(X1))

∗, T2 ∈ (Cb(X2))
∗;

2. Assume that c has compact sublevels in X1 × X2. Then the function ETk1,k2 is lower
semicontinuous under the weak topology.

Proof. Claim 1: Using the convention that 0 · (+∞) = 0, it is clear that ETk1,k2(0, 0) = 0 and
ETa,b(λT1, λT2) = λETk1,k2(T1, T2) for every λ ≥ 0, (T1, T2) /∈ M(X1) × M(X2). Hence,
to check ETk1,k2 is positively one homogeneous it is sufficient to check ETk1,k2(λTµ1 , λTµ2) =

λETk1,k2(Tµ1
, Tµ2

) for every λ > 0, (µ1, µ2) ∈ M(X1)×M(X2). Given γ ∈ M(X1 ×X2) and
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λ > 0. We have that

ETk1,k2(λTµ1 , λTµ2) =ETk1,k2(Tλµ1 , Tλµ2) = Ek1,k2

C (λµ1, λµ2)

= inf{ETk1,k2(γ|λµ1, λµ2) : γ ∈ M(X1 ×X2)}
= inf{ETk1,k2(λγ|λµ1, λµ2) : γ ∈ M(X1 ×X2)}
= inf

{
a1|(λµ1 − λγ1)

+|+ b1|(λγ1 − λµ1)
+|+ a2|(λµ2 − λγ2)

+|+

+ b2|(λγ2 − λµ2)
+|+ λ

∫
X1

C(x1, γx1
)dγ1(x1) : γ ∈ M(X1 ×X2)}

=λ inf
{
a1|(µ1 − γ1)

+|+ b1|(γ1 − µ1)
+|+ a2|(µ2 − γ2)

+|+

+ b2|(γ2 − µ2)
+|+

∫
X1

C(x1, γx1)dγ1(x1) : γ ∈ M(X1 ×X2)
}

=λETk1,k2(µ1, µ2)

=λETk1,k2(Tµ1
, Tµ2

).

By the homogeneity property of ETk1,k2 , to show that ETk1,k2 is convex, we onlyneed to check that

ETk1,k2(µ1, µ2) + ET(ν1, ν2) ≥ ETk1,k2(µ1 + ν1, µ2 + ν2) for every µi, νi ∈ M(Xi), i = 1, 2.

We will consider (µ1, µ2), (ν1, ν2) ∈ M(X1) × M(X2) such that ETk1,k2(µ1, µ2) <

∞ and ETk1,k2(ν1, ν2) < ∞ (the other cases are trivial). Let {γn}n∈N, {γn}n∈N ⊂
M(X1 ×X2) such that ETk1,k2(µ1, µ2) = limn→∞ ETk1,k2(γn|µ1, µ2) and ETk1,k2(ν1, ν2) =

limn→∞ ETk1,k2(γn|ν1, ν2).

As
(
(dγn

1 /d(γ
n
1 + γn

1 ))γ
n
x1

+ (dγn
1/d(γ

n
1 + γn

1 ))γ
n
x1

)
x1∈X1

is the disintegration of γn + γn with

respect to γn
1 + γn

1 and C(x1, ·) is convex on P(X2) for every x1 ∈ X1, we obtain that∫
X1

C(x1, γ
n
x1
)dγn

1 (x1) +

∫
X1

C(x1, γ
n
x1
)dγn

1 (x1) ≥
∫
X1

C(x1, (γ
n + γn)x1

)d(γn
1 + γn

1 )(x1).

Combining with Lemma A.1, we have that

ETk1,k2(µ1, µ2) + ETk1,k2(ν1, ν2)

= lim
n→∞

[
a1|(µ1 − γn

1 )
+|+ b1|(γn

1 − µ1)
+|+ a2|(µ2 − γn

2 )
+|+ b2|(γn

2 − µ2)
+|+

∫
X1

C(x1, γ
n
x1
)dγn

1 (x1)+

+ a1|(ν1 − γn
1 )

+|+ b1|(γn
1 − ν1)

+|+ a2|(ν2 − γn
2 )

+|+ b2|(γn
2 − ν2)

+|+
∫
X1

C(x1, γ
n
x1
)dγn

1 (x1)

]
≥ lim

n→∞

[
a1|(µ1 + ν1 − (γn

1 + γn
1 ))

+|+ b1|(γn
1 + γn

1 − (µ1 + ν1)
+|+ a2|(µ1 + ν1 − (γn

1 + γn
1 ))

+|

+ b2|(γn
1 + γn

1 − (µ1 + ν1)
+|+

∫
X1

C(x1, (γ
n + γn)x1

)d(γn
1 + γn

1 )(x1)

]
≥ETk1,k2(µ1 + ν1, µ2 + ν2).

Therefore, ETk1,k2 is convex.

Claim 2: For i = 1, 2, let {µn
i } ⊂ M(Xi) such that µn

i weakly converges to µi as n → ∞.

To prove ETk1,k2 is lower semicontinuous, we need to show that

lim inf
n→∞

ETk1,k2(µn
1 , µ

n
2 ) ≥ ETk1,k2(µ1, µ2).

We only need to check it for the case lim infn→∞ ETk1,k2(µn
1 , µ

n
2 ) < ∞. We can choose a subse-

quence {nj}j∈N such that lim infn→∞ ETk1,k2(µn
1 , µ

n
2 ) = limj→∞ ETk1,k2(µ

nj

1 , µ
nj

2 ). For every
j ∈ N, applying Theorem 3.1 there exists γnj ∈ M(X1 ×X2) such that

ETk1,k2(µ
nj

1 , µ
nj

2 ) = ETk1,k2(γnj |µnj

1 , µ
nj

2 ) for every j ∈ N.
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Then there exists K > 0 such that ETk1,k2(γnj |µnj

1 , µ
nj

2 ) ≤ K for every j. Hence∫
X1

C(x1, γ
nj
x1 )dγ

nj

1 (x1) ≤ K for every j. Since C has property (T) we get that {γnj} is tight.

Now we will prove that {γnj} is bounded. Choose t0 ≥ 0 such that
F1(s)

s
≥ b1

2
and

F2(s)

s
≥ b2

2
for every s ≥ t0. Now we will show that

γnj (X1 ×X2) ≤
2

M
ETk1,k2(γnj |µnj

1 , µ
nj

2 ) for all γnj with γnj (X1 ×X2) ≥ t0 max{µnj

1 (X1), µ
nj

2 (X2)},
(16)

where M :=
b1
2
+

b2
2
+ inf C > 0. Let γnj with γnj (X1 ×X2) ≥ t0 max{µnj

1 (X1), µ
nj

2 (X2)}. If

µ
nj

1 (X1) = 0 then F1(γ
nj

1 |µnj

1 ) = b1γ
nj

1 (X1). If µnj

1 (X1) > 0 then by the choice of t0 and Lemma
A.2 we get that

F1(γ
nj

1 |µnj

1 ) = a1|(µ
nj

1 − γ
nj

1 )+|+ b1|(γ
nj

1 − µ
nj

1 )+|
≥ a1(µ

nj

1 (X1)− γ
nj

1 (X1))
+ + b1(γ

nj

1 (X1)− µ
nj

1 (X1))
+

≥ µ
nj

1 (X1)

[
a1

(
1− γ

nj

1 (X1)

µ
nj

1 (X1)

)+

+ b1

(
γ
nj

1 (X1)

µ
nj

1 (X1)
− 1

)+]
= γ

nj

1 (X1)
µ
nj

1 (X1)

γ
nj

1 (X1)
F1(

γ
nj

1 (X1)

µ
nj

1 (X1)
)

≥ γ
nj

1 (X1)
b1
2
.

Therefore, F1(γ
nj

1 |µnj

1 ) ≥ γnj (X1 × X2)
b1
2

for all µ
nj

1 and γnj with γnj (X1 × X2) ≥

t0 max{µnj

1 (X1), µ
nj

2 (X2)}. Similarly, F2(γ
nj

2 |µnj

2 ) ≥ γnj (X1 × X2)
b2
2

for all µ
nj

2 and

γnj with γnj (X1 ×X2) ≥ t0 max{µnj

1 (X1), µ
nj

2 (X2)}. Then for all γnj with γnj (X1 ×X2) ≥
t0 max{µnj

1 (X1), µ
nj

2 (X2)} we have that

ETk1,k2(γnj |µnj

1 , µ
nj

2 ) = F1(γ
nj

1 |µnj

1 ) + F2(γ
nj

2 |µnj

2 ) +

∫
X1

C(x1, γ
n
x1
)dγn

1 (x1)

≥ γnj (X1 ×X2)(
b1
2

+
b2
2

+ inf C)

Hence, we get (16). On the other hand, {µnj

1 (X1)}j∈N and {µnj

1 (X2)}j∈N are bounded as µ
nj

i
weakly converges to µi for i = 1, 2. Therefore {γnj}j∈N is bounded. As {γnj}j∈N is also tight,
applying Prokhorov’s theorem there exists a subsequence {γnj}j∈N, still denoted by {γnj}j∈N, and
a γ ∈ M(X1 ×X2) such that γnj weakly converges to γ. Applying [13, Theorem 8.4.7] or [61,
Part 2, Theorem 3] we get that

lim inf
j→∞

|µnj

1 − γ
nj

1 |(X1) ≥ |µ1 − γ1|(X1).

Hence

lim inf
j→∞

|(µnj

1 − γ
nj

1 )+| = lim inf
j→∞

1

2

[
|µnj

1 − γ
nj

1 |(X1) + (µ
nj

1 − γ
nj

1 )(X1)

]
≥ 1

2

[
|µ1 − γ1|(X1) + (µ1 − γ1)(X1)

]
= |(µ1 − γ1)

+|.
Similarly, we have

lim inf
j→∞

|(µnj

2 − γ
nj

2 )+| ≥ |(µ2 − γ2)
+|,

lim inf
j→∞

|(γnj

1 − µ
nj

1 )+| ≥ |(γ1 − µ1)
+|,

lim inf
j→∞

|(γnj

2 − µ
nj

2 )+| ≥ |(γ2 − µ2)
+|.
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Then
lim inf
n→∞

ETk1,k2(µn
1 , µ

n
2 ) = lim inf

n→∞
ETk1,k2(γn|µn

1 , µ
n
2 )

= lim inf
n→∞

[
a1|(µ

nj

1 − γ
nj

1 )+|+ b1|(γ
nj

1 − µ
nj

1 )+|+ a2|(µ
nj

2 − γ
nj

2 )+|

+ b2|(γ
nj

2 − µ
nj

2 )+|+
∫
X1

C(x1, γ
nj
x1
)dγ

nj

1 (x1)

]
≥a1|(µ1 − γ1)

+|+ b1|(γ1 − µ1)
+|+ a2|(µ2 − γ2)

+|

+ b2|(γ2 − µ2)
+|+

∫
X1

C(x1, γ
nj
x1
)dγ

nj

1 (x1)

≥ETk1,k2(µ1, µ2).

Proof of Theorem 3.2. We denote by (ETk1,k2)∗ the Fenchel conjugate of ETk1,k2 , i.e.

(ETk1,k2)∗(φ1, φ2) := sup
ν1∈M(X1),ν2∈M(X2)

{ 2∑
i=1

∫
φidνi(xi)− ETk1,k2(ν1, ν2)

}
,

for every φi ∈ Cb(Xi), i = 1, 2. By Lemma A.5 we get that

(ETk1,k2)∗(φ1, φ2) =

{
0 if (φ1, φ2) ∈ ΦE ,
+∞ otherwise,

where

ΦE :=

{
(φ1, φ2) ∈ Cb(X1)× Cb(X2) :

2∑
i=1

∫
Xi

φi(xi)dνi(xi) ≤ ETk1,k2(ν1, ν2)

for every (ν1, ν2) ∈ M(X1)×M(X2)

}
.

We now check that ΦJ ⊂ ΦE . Let any (φ1, φ2) ∈ ΦJ . Let νi ∈ M(Xi), i = 1, 2. If
Ek1,k2

C (ν1, ν2) = +∞ then it is clear that
∑2

i=1

∫
Xi

φi(xi)dνi(xi) ≤ ETk1,k2(ν1, ν2). Thus,

we only consider Ek1,k2

C (ν1, ν2) < +∞. Applying Theorem 3.1 there exists γ ∈ M(X1 ×X2) such
that Ek1,k2

C (ν1, ν2) = ETk1,k2(γ|ν1, ν2). Then, applying Lemma A.3 we get that

ETk1,k2(ν1, ν2)

=a1|(ν1 − γ1)
+|+ b1|(γ1 − ν1)

+|+ a2|(ν2 − γ2)
+|+ b2|(γ2 − µ2)

+|+
∫
X1

C(x1, γx1)dγ1(x1)

≥
∫
X1

φ1dν1 −
∫
X1

J1(φ1)dγ1 +

∫
X2

φ2dν2 −
∫
X2

J2(φ2)dγ2 +

∫
X1

[J1(φ1(x1)) + γx1(J2(φ2))]dγ1(x1)

=

∫
X1

φ1dν1 −
∫
X1

J1(φ1)dγ1 +

∫
X2

φ2dν2 −
∫
X2

J2(φ2)dγ2 +

∫
X1

J1(φ1)dγ1+

+

∫
X1

∫
X2

J2(φ2(x2))dγx1
(x2)dγ1(x1)

=

∫
X1

φ1dν1 +

∫
X2

φ2dν2 −
∫
X2

J2(φ2)dγ2 +

∫
X2

J2(φ2(x2))dγ2(x2)

=

∫
X1

φ1dν1 +

∫
X2

φ2dν2.

Therefore (φ1, φ2) ⊂ ΦE . Hence ΦJ ⊂ ΦE .

Now, let (φ1, φ2) ∈ ΦE . We will show that (φ1, φ2) ∈ ΦJ . Denote by η the null measure on
X1 ×X2. As (φ1, φ2) ∈ ΦE , for every (ν1, ν2) ∈ M(X1)×M(X2) one has

2∑
i=1

∫
Xi

φi(xi)dνi(xi) ≤ ETk1,k2(ν1, ν2) ≤ Ek1,k2

C (η|ν1, ν2) = a1|ν1|+ a2|ν2|.
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For every z ∈ X1, setting ν1 := δz and ν2 is the null measure on X2, we obtain that φ1(z) ≤ a1.
Similarly, we also have φ2 ≤ a2 on X2.

Let x1 ∈ X1 and p ∈ P(X2). Now we will prove that J1(φ1(x1)) + p(J2(φ2)) ≤ C(x1, p) . For
every r > 0, put ν1 := δx1

and γ := rδx1
⊗ p. Then for every ν2 ∈ M(X2), we have

φ1(x1) +

∫
X2

φ2dν2 =

2∑
i=1

∫
Xi

φidνi

≤ ETk1,k2(ν1, ν2)

≤ Ek1,k2

C (γ|ν1, ν2)
= a1(1− r)+ + b1(r − 1)+ + a2|(ν2 − γ2)

+|+ b2|(γ2 − ν2)
+|+ rC(x1, p).

Hence for all ν2 ∈ M(X2) we have
1

r
[φ1(x1)− a1(1− r)+ − b1(r − 1)+] ≤ 1

r

[
a2|(ν2 − γ2)

+|+ b2|(γ2 − ν2)
+| −

∫
X2

φ2dν2

]
+ C(x1, p),

We define A := φ−1
2 ([−b2, a2]) and B := φ−1

2 (−∞,−b2) = X2 \ A, and the Borel bounded
function f : X2 → [0, 1] by

f(x) :=

{
1 if x ∈ A,
0 otherwise .

Put ν2 = fγ2. As J2(φ2(x)) =

{
φ2(x) if x ∈ A,
−b2 if x ∈ B,

we get that

a2|(ν2 − γ2)
+|+ b2|(γ2 − ν2)

+| −
∫
X2

φ2dν2 =b2

∫
X2

(1− f)dγ2 −
∫
X2

φ2fdγ2

=b2

∫
B

dγ2 −
∫
A

φ2dγ2

=

∫
X2

−J2(φ2)dγ2.

Hence for every r > 0 we have
1

r
[φ1(x1)− a1(1− r)+ − b1(r − 1)+] ≤ −1

r

∫
X2

J2(φ2)dγ2 + C(x1, p)

= C(x1, p)− p(J2(φ2)).

Therefore, for every x1 ∈ X1, p ∈ P(X2), we get

J1(φ1(x1)) = sup
r>0

φ1(x1)− a1(1− r)+ − b1(r − 1)+

r
≤ C(x1, p)− p(J2(φ2)).

This implies that ΦE ⊂ ΦJ . Hence ΦE = ΦJ .

Now we are ready to prove our duality formula. Moreover, by Lemma A.5 one has ETk1,k2 is convex
and lower semi-continuous. Hence, applying [27, Proposition 3.1, page 14 and Proposition 4.1, page
18] we get that (ETk1,k2)∗∗ = ETk1,k2 . Therefore, applying Lemma A.4, we get

ETk1,k2(µ1, µ2) = sup
(φ1,φ2)∈Cb(X1)×Cb(X2)

{
2∑

i=1

∫
Xi

φi(xi)dµi(xi)− (ETk1,k2)∗(φ1, φ2)

}

= sup
(φ1,φ2)∈ΦE

2∑
i=1

∫
Xi

φi(xi)dµi(xi)

= sup
(φ1,φ2)∈ΦJ

2∑
i=1

∫
Xi

φi(xi)dµi(xi)

= sup
(φ1,φ2)∈ΦI

2∑
i=1

∫
Xi

Ii(φi(xi))dµi(xi).
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A.4 Proof of Corollary 3.1

Proof of Corollary 3.1. We define C : X1 × P(X2) → (−∞,+∞] by C(x1, p) :=
k
∫
X2

c(x1, x2)dp(x2) for every x1 ∈ X1, p ∈ P(X2). Then C is bounded from below,
b1
2

+
b2
2

+ inf C > 0, and C(x1, ·) is convex for every x1 ∈ X1. Applying [22, Lemma 14],
we get that C is lower semicontinuous. From Example A.1-A.3, we also have that C has property
(T).

Now we prove that ΦI = ΛI . For every (φ1, φ2) ∈ ΦI , x1 ∈ X1, x2 ∈ X2 we have

φ1(x1) + φ2(x2) = φ1(x1) + δx2(φ2)

=

∫
X2

(φ1(x1) + φ2(y))dδx2(y)

≤
∫
X2

k · c(x1, y)dδx2(y)

= k · c(x1, x2).

Hence ΦI ⊂ ΛI . On the other hand, for every (φ1, φ2) ∈ ΛI , x1 ∈ X1, p ∈ P(X2), we have

φ1(x1) + p(φ2) =

∫
X2

(φ1(x1) + φ2(y))dp(y)

≤
∫
X2

k · c(x1, y)dp(y)

= C(x1, p).

Hence ΛI ⊂ ΦI , and therefore ΦI = ΛI . Similarly, we also have ΦJ = ΛJ . Applying Theorem 3.2,
we get the result.

A.5 Proof of Theorem 3.3

Proof of Theorem 3.3. Applying Corollary 3.1 we have

Ek1,k2,k(µ1, µ2) = sup

{∫
X1

I1(φ1(x))dµ1(x) +

∫
X2

I2(φ2(y))dµ2(y) : φi ∈ Cb(Xi),

φ1(x) ≥ −b1, φ2(y) ≥ −b2, φ1(x) + φ2(y) ≤ k · c(x, y),∀x ∈ X1, y ∈ X2

}
.

As µ2 =
∑M

i=1 miδyi , we get that

Ek1,k2,k(µ1, µ2) = sup

{∫
X1

I1(φ1(x))dµ(x) +

M∑
i=1

miI2(wi) : φ1 ∈ Cb(X1), φ1(x) ≥ −b1,

wi ≥ −b2, φ1(x) + wi ≤ k · c(x, yi),∀x ∈ X1, i = 1, . . . ,M

}
.

As c is lower semicontinuous and satisfies radial property (see Definition 3.2) with respect to
µ1, we obtain that {C1(w), . . . , CM (w), R} is a µ1-measurable partition of X1. Given n ∈ N
and w = (w1, . . . , wM ) ∈ [−b2,+∞)M , we define the map cwn : X1 → (−∞,+∞] by
cwn (x) = min{n, cw(x)}}. As c is measurable, so are cw and cwn . Since {cwn }n∈N increases, con-
verges pointwise to cw, I1 is continuous and increasing on [−b1,+∞), and lims→∞ I1(s) = a1, we
get that

lim
n→∞

∫
X1

I1(c
w
n (x))dµ1(x) = lim

n→∞

[ M∑
i=1

∫
Ci(w)

I1(c
w
n (x))dµ1(x) +

∫
R

I1(c
w
n (x))dµ1(x)

]

=

M∑
i=1

∫
Ci(w)

I1(−b1 ∨ [k · c(x, yi)− wi])(x))dµ1(x) + a1µ1(R).
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Therefore,

Ek1,k2,k(µ1, µ2) = sup

{
G(w) : w = (w1, . . . wM ) ∈ [−b2,+∞)M

}
.

A.6 Proof of Theorem 3.4

Proof of Theorem 3.4. Put Bi = X1 × {yi}, i = 1, . . . ,M . Then {Bi : i = 1, . . . ,M} is a
measurable partition of X1 ×X2 and hence we can write γ =

∑M
i=1 ηi ⊗ δyi

for ηi ∈ M(X1), i =

1, . . . ,M . Put f =
dγ1
dµ1

. As Ek1,k2,k(γ|µ1, µ2) < ∞ we get
∫
X1×X2

cdγ < ∞ and hence

γ1(R) = 0. Therefore
∫
R
fdµ1 = 0, i.e., f(x) = 0 for µ1-a.e. x ∈ R. The Lebesgue decomposition

of γ2 = π2#γ with respect to µ2 is γ2 =
∑

i∈S1
|ηi|δxi + γ⊥

2 , where γ⊥
2 =

∑
i∈S2

|ηi|δxi . Here
πi#γ refers to the ith marginal of γ. We have

Ek1,k2,k(γ|µ1, µ2) =k

∫
X1×{y1,...,yM}

cdγ +

∫
X1

[a1(1− f(x))+ + b1(f(x)− 1)+]dµ1(x)+

+ b1γ
⊥
1 (X1) +

∑
i∈S1

[
a2

(
1− |ηi|

mi

)+

+ b2

(
|ηi|
mi

− 1

)+]
mi + b2

∑
i∈S2

|ηi|

=

M∑
i=1

k

∫
X1\R

c(x, yi)dηi(x) +

∫
X1\R

[a1(1− f(x))+ + b1(f(x)− 1)+]dµ1(x)+

+ a1µ(R) + b1γ
⊥
1 (X1) +

∑
i∈S1

[
a2

(
1− |ηi|

mi

)+

+ b2

(
|ηi|
mi

− 1

)+]
mi + b2

∑
i∈S2

|ηi|.

On the other hand, for i = 1, 2, we have

ai(1− s)+ + bi(s− 1)+ − Ii(φ) ≥

{ −sai if φ > ai,
−sφ if − bi ≤ φ ≤ ai,
∞ otherwise.

Hence ai(1− s)+ + bi(s− 1)+ − Ii(φ) ≥ −sφ for all s, φ. The inequality is an equality if and only
if −bi ≤ φ and s = 1. Therefore, we get that

Ek1,k2,k(γ|µ1, µ2)− G(w) =k

M∑
i=1

∫
X1\R

c(x, yi)dηi(x) + b1γ
⊥
1 (X1) + b2

∑
i∈S2

|ηi|

+

∫
X1\R

[
a1(1− f(x))+ + b1(f(x)− 1)+ − I1(c

w(x))

]
dµ1(x)

+
∑
i∈S1

[
a2

(
1− |ηi|

mi

)+

+ b2

(
|ηi|
mi

− 1

)+

− I2(wi)

]
mi

≥
M∑
i=1

∫
X1\R

c(x, yi)dηi(x) + b1γ
⊥
1 (X1) + b2

∑
i∈S2

|ηi|

−
∫
X1\R

cw(x)fdµ1(x)−
∑
i∈S1

|ηi|wi

=

M∑
i=1

∫
X1\R

[
kc(x, yi)− wi − cw(x)

]
dηi(x) +

∫
X1\R

cw(x)dγ⊥
1 (x)

+ b1γ
⊥
1 (X1 \R) +

∑
i∈S2

|ηi|wi + b2
∑
i∈S2

|ηi|

=

M∑
i=1

∫
Ci(w)

[
kc(x, yi)− wi − cw(x)

]
dηi(x) +

∫
X1\R

[cw(x) + b1]dγ
⊥
1 (x)
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+
∑
i∈S2

|ηi|(wi + b2)

≥0.

The first inequality is an equality if and only if
dγ1
dµ1

(x) = f(x) = 1 for µ1-a.e. x ∈ X1 \ R and

|ηi|
mi

= 1 for all i ∈ S1. The second inequality becomes equality if and only if suppηi ⊂ Ci(w) and

hence ηi = γ1⌞Ci(w) for i = 1, . . . ,M , cw(x) = −b1 for γ⊥
1 -a.e. x ∈ X1 \ R, and wi = −b2 for

every i ∈ S2. Therefore, we get that Ek1,k2,k(γ|µ1, µ2)− G(w) = 0 if and only if conditions (7-10)
hold.

A.7 Proof of Proposition 3.1

Proof of Proposition 3.1. By Definition 3.3, we have cw(x) = +∞ for any x ∈ R. By (3), for any
x ∈ R, we have I1(c

w(x)) = I1(+∞) = a1.Thus, a1µ1(R) =
∫
R
I1(c

w(x))dµ1(x). Combining
this result with (6), we obtain

G(w) =
∫
X1

I1(c
w(x))dµ1(x) +

M∑
i=1

I2(wi)mi.

By definition in (3), I1 is differentiable on (−b1, a1)∪(a1,+∞), such that ∂xI1(x) = 1 on (−b1, a1)
and ∂xI1(x) = 0 on (a1,+∞). Thus, for any x ∈ Ci(w), it holds I1(c

w(x)) = I1((−b1 ∨ k ·
c(x, yi)− wi), and we can derive the derivatives

∂wiI1(c
w(x)) =


0, k · c(x, yi)− wi ∈ (−∞, b1),
[−1, 0], k · c(x, yi)− wi ∈ {b1},
−1, k · c(x, yi)− wi ∈ (−b1, a1),
[−1, 0], k · c(x, yi)− wi ∈ {a1},
0, k · c(x, yi)− wi ∈ (a1,+∞).

On the other hand, for any x ∈ Ci(w), we have ∂wj
I1(c

w(x)) = 0, for any j ̸= i. Therefore,
by Lemma 3.8 of [15], radial property (see Definition 3.2) of cost function c, and the absolutely
continuity of µ1 with respect to Lebesgue measure, then

∂wi

∫
Ω

I1(c
w(x))dµ1(x) = −µ1(Ci(w) ∩ {x : k · c(x, yi)− wi ∈ [−b1, a1]}). (17)

Similarly, by definition in (3), we know

∂wiI2(wi) =

{
1, wi ∈ (−b2, a2),
[0, 1], wi ∈ {a2},
0, wi ∈ (a2,+∞).

Then the (sub-)gradient can be obtained as presented.

A.8 Proof of Theorem 3.5

Equations (7-10) show that continuous mass rearranges only within Laguerre cells, while the residual
mass collapses into the remainder set R. This insight later underpins our quantization and pruning
strategies. Plugging the optimality conditions of Theorem 3.4 back yields the following explicit
primal form, facilitating comparison with classical semi-discrete OT.
Corollary A.1 (Primal tessellation formulation). If there exists optimizers for (2) and (5), then

Ek1,k2,k(µ1, µ2) = min

{
k

M∑
i=1

∫
Ci(w)

c(x, yi)dγ1(x) + a1|(µ1 − γ1)
+|+ b1|(γ1 − µ1)

+|+

(18)∑
i∈S1

[
a2(1−

|ηi|
mi

)+ + b2(
|ηi|
mi

− 1)+
]
mi + b2

∑
i∈S2

|ηi|

∣∣∣∣∣w ∈ [−b2,+∞)M , γ1 ∈ M(X1), γ1⌞R = 0

}
,
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where ηi = γ1⌞Ci(w), i = 1, · · · ,M . If γ and w are optimizers for (2) and (5), then the first margin
γ1 and w are optimizers for (18). Conversely, if γ1 and w are optimizers for (18), then γ defined by
(7) is the optimizer for (2).

Proof. For any choice of w ∈ [−b2,+∞)M , γ1 ∈ M(X1), and γ1⌞R = 0, define γ =∑M
i=1 γ1⌞Ci(w) ⊗ δyi

∈ M(X1 × X2). The right-hand side of (18) can be written in the same
form as (2) where the admissible set for γ is restricted to a subset such that γ takes the form
γ =

∑M
i=1 γ1⌞Ci(w)⊗ δyi . Therefore, the right-hand side of (18) is no less than Ek1,k2,k(µ1, µ2).

On the other hand, by Theorem 3.4, if γ∗ =
∑M

i=1 ηi ⊗ δyi
and w∗ ∈ [−b2,+∞)M are taken

to be the optimizers for (2) and (5), respectively, then they should satisfy (7-10), which leads to
ηi = γ∗

1⌞Ci(w), i = 1, · · · ,M , and γ∗
1⌞R = 0, where γ∗

1 is the first margin of γ∗. In this case, the
right-hand side of (18) equals Ek1,k2,k(µ1, µ2), and γ∗

1 and w∗ are the optimizers for (18).

Conversely, if γ∗
1 and w∗ are optimizers for (18), then γ defined by (7) in terms of γ∗

1 and w∗ is the
optimizer for (2).

Proof of Theorem 3.5. Consider any fixed {y1, · · · , yM} ⊂ X2. For any constant a ∈ R,
let Ci(a) := Ci((a, · · · , a)), where (a, · · · , a) is an M -dimensional vector. For every w ∈
[−b2,+∞)M , we define

G(w,m1, . . . ,mM ) :=

∫
X1\R

I1(c
w(x))dµ1(x) + a1µ1(R) +

M∑
i=1

I2(wi)mi,

where cw : X1 → (−∞,+∞] is defined by cw(x) = min{k · c(x, yi)−wi : i = 1, . . . ,M}}∨−b1.

From Theorem 3.3 we get that

Ek1,k2,k(µ1, µ2) ≥ G(0,m1, . . . ,mM ).

As I2(0) = 0 we get that G(0,m1, . . . ,mM ) =
∫
X1\R I1(c

0(x))dµ1(x) + a1µ1(R) =: G(0) does
not depend on m1, . . . ,mM .

Let µ∗
2 =

∑M
i=1 m

∗
i δyi . We define the measurable map f : X1 → R, defined by f(x) = 1 for

µ1-a.e x ∈ X1 \R and f(x) = 0 for µ1-a.e x ∈ R. Define η∗ := fµ1 ∈ M(X1), η∗i := η∗⌞Ci(0),
and γ∗ :=

∑M
i=1 η

∗⌞Ci(0) ⊗ δyi
. Then the Lebesgue decomposition of γ∗

1 with respect to µ1

is γ∗
1 =

∑M
i=1 η

∗
i = fµ1. Optimality conditions (10) is fulfilled. By Theorem 3.4, it holds that

Ek1,k2,k(µ1, µ
∗
2) = G(0). Hence Q(y1, · · · , yM ) = G(0), i.e.

Q(y1, · · · , yM ) =

M∑
i=1

∫
Ci(0)

I1(−b1 ∨ k · c(x, yi))dµ1(x) + a1µ1(R).

A.9 Proof of Proposition 3.2

Proof of Proposition 3.2. Note that

Q(y1, · · · , yM ) =

∫
X1

I1(c
0(x))dµ1(x).

By definition in (3), we know

∂xI1(x) =

{
1, x ∈ (−b1, a1),
[0, 1], x ∈ {a1},
0, x ∈ (a1,+∞).

Fix x ∈ Ci(0), we have I1(c
0(x)) = I1((−b1 ∨ k · c(x, yi)), and its derivative is obtained by chain

rule,

∇yi
I1(c

0(x)) =

{
0, k · c(x, yi) ∈ (−∞, b1),
k∇yi

c(x, yi), k · c(x, yi) ∈ (−b1, a1),
0, k · c(x, yi) ∈ (a1,+∞).
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Besides, ∇yjI1(c
0(x)) = 0 for any j ̸= i. Therefore,

∇yi
Q(y1, · · · , yM ) =

∫
Ci(0)

k∇yi
c(x, yi)1{x:k·c(x,yi)∈(−b1,a1)}dµ1(x)

=k

∫
Ci(0)∩{x:k·c(x,yi)∈(−b1,a1)}

∇yi
c(x, yi)dµ1(x).
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Answer: [Yes]

Justification: All assumptions are stated explicitly at the beginning of Section 3 and reiterated
in the statements of each theorem when necessary. Given the density of theoretical results,
we present only the theorem statements in the main text for clarity, while full proofs are
provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental details and settings are provided in Subsections 4.1 and 4.2,
as well as in the supplementary material. All experiments are designed to be easily repro-
ducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is included in the supplementary material and will be made publicly
available upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed experimental settings and hyperparameters are provided in Sections
4.1 and 4.2, as well as in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [No]
Justification: Our experiments are designed to illustrate the main theoretical results, which
are primarily mathematical in nature. All experiment results support the validity of the
explicit (sub)gradient formula employed in our optimization algorithm.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, the experiments can be executed on a CPU with a runtime of approximately
2.5 seconds, as reported in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This is a primarily theoretical work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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