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Abstract

Offline safe reinforcement learning (RL) aims to find an optimal policy using a
pre-collected dataset when data collection is impractical or risky. We propose a
novel linear programming (LP) based primal-dual algorithm for convex MDPs that
incorporates “uncertainty” parameters to improve data efficiency while requiring
only partial data coverage assumption. Our theoretical results achieve a sample
complexity of O(1/(1− γ)

√
n) under general function approximation, improving

the current state-of-the-art by a factor of 1/(1 − γ), where n is the number of
data samples in an offline dataset, and γ is the discount factor. The numerical
experiments validate our theoretical findings, demonstrating the practical efficacy
of our approach in achieving improved safety and learning efficiency in safe offline
settings.

1 Introduction

Safe reinforcement learning (RL) aims to learn a reward-maximizing policy while satisfying multiple
safety constraints, demonstrating its practicality in many real-world applications, such as autonomous
driving [Kiran et al., 2021], robotics [Levine et al., 2016], and healthcare [Yu et al., 2021]. In these
tasks, certain behaviors may potentially harm the agent or its surroundings, which is crucial for
task completion. One way to mathematically characterize safe RL is through Constrained Markov
Decision Processes (CMDPs) [Altman, 2021], where safety constraints are incorporated into the
problem when optimizing the objective.

Offline RL aims to learn a sequence of actions from a pre-collected dataset to address scenarios
where interacting with the environment is risky, expensive, or impractical. Ensuring sample efficiency
in offline RL with function approximation typically requires additional assumptions about both the
function classes and the dataset due to training instability and distribution shift issues [Fujimoto
et al., 2019, Kostrikov et al., 2021, Paine et al., 2020]. Earlier studies [Chen and Jiang, 2019, Liao
et al., 2022, Liu et al., 2019, Wang et al., 2019, Zhang et al., 2020b] in offline RL usually require
that all functions in the function space are Bellman-complete and that the dataset has full coverage,
meaning it covers the state-action distributions induced by all policies. This might be a mild and
accepted assumption in offline RL without considering safety. However, it is highly unacceptable and
impractical in safe offline RL, as it would require the dataset to cover all hazardous state-action pairs
induced by all dangerous policies. To address the full coverage issue, later works [Chen and Jiang,
2022, Rashidinejad et al., 2021, Uehara and Sun, 2021, Xie et al., 2021, Zhan et al., 2022, Zhu et al.,
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Table 1: Comparison of algorithms for offline safe RL with function approximation.

Algorithm Convex MDP Data Function Sample
Coverage Approximation Complexity

CoptiDICE [Lee et al., 2021] No Partial General None

DPDL [Chen et al., 2022] No Partial None O
(

1
(1−γ)2

√
n

)
MBCL [Le et al., 2019] No Full General O

(
1

(1−γ)5
√
n

)
PDCA [Hong et al., 2024] No Full General O

(
1

(1−γ)2
√
n

)
Ours Yes Partial General O

(
1

(1−γ)
√

n

)

2023] reduce the assumption to single-policy coverage by using pessimism in the face of uncertainty.
Unfortunately, all existing studies [Chen et al., 2022, Hong et al., 2024, Le et al., 2019] in safe offline
RL still require coverage for all policies.

Beyond traditional offline safe RL, many applications do not fit the standard RL problem [Abel
et al., 2021]. There is a substantial body of literature [Geist et al., 2022, Mutti et al., 2023,
Zahavy et al., 2021] studying a more general scenario called convex MDPs, where the objec-
tive function is modeled as a convex (or concave) utility function instead of linear, as in the
standard RL problem. This framework is quite general and captures various learning scenar-
ios, including imitation [Abbeel and Ng, 2004], exploration [Hazan et al., 2019], and more.
However, studying convex MDPs introduces additional challenges. In convex MDPs, moving
beyond cumulative rewards means that the Bellman equation fails to hold due to the lack of
reward additivity. This leads to breakdowns in many techniques based on Dynamic Program-
ming (DP) [Zhang et al., 2020b]. Despite a large body of practical literature [Lee et al., 2021,
Xu et al., 2022, Zheng et al., 2023], robust theoretical analysis remains lacking in this setting.
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Figure 1: Performance of our algorithm
on FrozenLake with completely random
data.

To address the coverage issue and extend the general func-
tion approximation setting, we focus on convex MDPs in
the safe offline setting. Our main contributions are sum-
marized below (the detailed comparisons can be found in
Table 1):

• We are the first to study offline convex MDPs under
safety constraints with partial data coverage assumption.
We reformulate the problem using marginalized impor-
tance weights to avoid issues caused by the Bellman equa-
tion’s failure in convex MDPs.

• We analyze the convergence rate of our proposed ap-
proach under partial coverage assumption and theoretically prove that our algorithm achieves
O
(

1
(1−γ)

√
n

)
in both objective and violation bounds with general function approximation, when

the number of iteration is larger than n. The sample complexity of O
(

1
(1−γ)

√
n

)
improves the best

existing result by a factor of 1/(1− γ)2.

• Experimental results on Imitation Learning and standard CMDPs demonstrate the generality and
effectiveness of our algorithm. As Figure 1 shows our algorithm performs well even with a completely
random and safety-violated offline dataset with general function approximation, which verifies our
theoretical findings.

1.1 Related Work

Offline Safe RL: The offline safe reinforcement learning setting entails the agent learning from a
fixed dataset while adhering to safety constraints. This involves a blend of offline RL and safe RL,
yet research on this approach, particularly concerning theoretical analysis, remains limited. BCQL

2Note that, they consider standard CMDPs which is a special case of ours.
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augmented by BCQ [Fujimoto et al., 2019] optimizes the policy in the offline phase and applies
the Lagrange method to handle constraints. CPQ [Xu et al., 2022] tackles the safety constraints
by overestimating the cost value function of out-of-distribution (’unsafe’) actions and updating the
reward value function with ’safe’ actions. Another line of work [Lee et al., 2021] using DICE-style
technique optimizes policy by calculating the stationary distribution of state-action pairs instead
of value function and extracts the policy by importance-sample behavior cloning. CDT [Liu et al.,
2023b] combines Decision Transformer with safety constraints and utilizes data augmentation based
on Pareto frontiers to enhance the safety and adaptability of the Transformer. It also focuses on the
model’s capability to different cost thresholds. The work [Le et al., 2019] proposes a meta-algorithm,
using Fitted Q Evaluation and Fitted Q Iteration as subroutines to evaluate safety constraints and
learn policy respectively. [Chen et al., 2022] analyzes the information-theoretic sample complexity
lower bound and proposes a near-optimal primal-dual learning algorithm under partial data coverage
but without function approximation. The most related work [Hong et al., 2024] approaches the
problem from the perspective of the Actor-Critic algorithm, analyzing the sample complexity to be
O( 1

(1−γ)2
√
n
) under Slater’s condition and full data coverage assumption.

Convex MDP: Convex MDP problem extends the scope of MDP by focusing on convex objective
functions of stationary distribution, rather than an inner product between reward and stationary
distribution. To address the challenge, [Zhang et al., 2020b] introduces a variational Monte Carlo
gradient estimation algorithm, demonstrating convergence to the optimal policy across general utility
functions. The work [Zahavy et al., 2021] utilizes Fenchel duality to cast convex MDPs as min-max
"two-player" games, proposing a meta-algorithm that addresses various convex MDPs through distinct
subroutines. The work [Geist et al., 2022] approaches convex MDPs from the Mean-Field Game
(MFG) perspective, establishing the equivalence between the optimal condition in convex MDPs
and Nash equilibrium in MFGs. [Ying et al., 2023] studies the convex CMDP problem through a
policy-based primal-dual algorithm and proves an O

(
T−1/3

)
convergence rate in both optimality

gap and constraint violation. The existing literature on convex MDPs primarily focuses on the online
setting, while this paper specifically targets the offline scenario.

2 Problem Setup

2.1 Convex CMDP problem

We study a discounted constrained Markov decision process (CMDP), denoted by M =
(S,A, R, C, T, γ, µ0), where S is the state space (a finite set), A is the action space (a finite
set), R : S × A → [0, 1] and C : S × A → [0, 1] are reward and cost functions, respectively,
T : S ×A → ∆(S) is the transition probability kernel, where ∆(·) denotes the probability simplex,
γ ∈ [0, 1) denotes the discount factor, and µ0 ∈ ∆(S) is the initial state distribution. We define
a policy π : S → ∆(A) as a probability mapping from states to actions. At time slot t, the agent
observes state st and takes action at according to the policy π. For a policy π, we define its discounted
state-action occupancy measure dπ as follows

dπ(s, a) = (1− γ)
∞∑
t=0

γtPπ (st = s, at = a) , ∀s ∈ S, a ∈ A,

where Pπ (st, at) is the probability of state-action pair (s, a) being visited at time slot t under the
policy π. Further, we let dπ (s) =

∑
a∈A dπ (s, a) be the discounted state occupancy measure.

Given the occupancy measure above, we can formulate the following convex CMDP problem
min
dπ∈K

f (dπ) s.t. g (dπ) ≤ τ, (1)

where f and g are both convex functions, and τ is the cost threshold. We present a single safety
constraint for simple exposition, and our result can be readily generalized to the setting with multiple
constraints. The set K is a probability simplex that satisfies global balance equations of the underlying
Markov process

K = {d |
∑
a

d(s, a) = (1− γ)µ0(s) +
∑
s′,a′

T (s | s′, a′) d (s′, a′) , ∀s ∈ S}.

This set can also be written as a compact matrix form that

K = {d |Md = (1− γ)µ0 }, M = Diag(1⊤
|A|, · · · ,1⊤

|A|)− γP, (2)
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where 1|A| = [1, 1, · · · , 1]⊤ ∈ R|A| and P ∈ R|S|×|S||A| is the transition probability matrix.

The convex CMDP problem in (1) is quite general to capture various learning scenarios, including
apprenticeship learning [Abbeel and Ng, 2004], standard CMDPs [Altman, 2021], pure exploration
[Hazan et al., 2019], and inverse reinforcement learning in contextual MDPs [Belogolovsky et al.,
2021]. Take the standard CMDP as an example, the agent aims to find a policy that maximizes
cumulative reward while satisfying the safety constraints [Altman, 2021], which can be written as

max
dπ∈K

∑
s,a

r(s, a)dπ(s, a) s.t.
∑
s,a

c(s, a)dπ(s, a) ≤ τ, (3)

where f and g are linear functions w.r.t. the state-action occupancy measure.

Take safety-aware apprenticeship learning [Zhou and Li, 2018] for another example, the agent aims
to mimic the expert’s demonstrations while avoiding the unsafe states in H, which can be written as

min
dπ∈K

F (dπ, de) s.t. dπ(s) ≤ τ, ∀s ∈ H. (4)

where de represents the empirical distribution of the expert’s demonstration and F (·, ·) is the convex
distance function, such as KL-divergence or total variation distance [Zhang et al., 2020a].

However, solving these problems in the online setting can be time-consuming, costly, and potentially
dangerous in safety-critical contexts. In contrast, by leveraging historical data, offline RL offers a
promising avenue for developing safe and effective algorithms, as introduced next.

2.2 Offline Reinforcement Learning

In offline RL, we cannot interact with the environment and only have access to dataset with a finite
number of samples. Let D = (si, ai, ri, ci)

n
i=1 be a collected offline dataset where we assume all the

pairs (si, ai)
n
i=1 are generated independently and identically distributed (i.i.d.) from data distribution

µ(s, a) induced by a behavior policy πµ. Let nD(s, a) represents the number of occurrences of the
state-action pair (s, a) in the offline dataset D, then µD(s, a) = nD(s, a)/n is an empirical version of
µ(s, a). In offline RL, a major challenge is distribution shift, which measures the mismatch between
data distribution and occupancy measure induced by candidate policies. To quantify the distribution
shift, we make the following π∗ concentrability assumption that refers to partial data coverage,
Assumption 1 (π∗–concentrability). Let π∗ be the optimal policy to problem (1), there exists constant
Cπ∗ > 0 such that dπ∗(s, a)/µ(s, a) ≤ Cπ∗ , for all s ∈ S, a ∈ A.

This assumption controls the distribution shift between offline data distribution µ and the occupancy
measure dπ∗ induced by optimal policy π∗. Specifically, the partial data coverage assumption
indicates the offline dataset D should cover state-action pairs visited by the optimal policy π∗. Unlike
the common full data coverage assumption in previous works that the dataset D should encompass
data visited by all policies [Chen and Jiang, 2019, Hong et al., 2024, Le et al., 2019], our assumption
is considerably more relaxed. Furthermore, in the field of safe RL, partial coverage assumption also
offers significant advantages, as the full coverage implies the behavior policy needs to visit every
dangerous state and action space, which is obviously impractical.

Beyond using assumptions to limit distribution shift in offline RL, we consider Marginalized Impor-
tance Weight (MIW), a method widely used in the existing literature [Hong et al., 2024, Ozdaglar
et al., 2023, Zhan et al., 2022], to further address this challenge.
Definition 1 (Marginalized Importance Weight). Given a policy π, let d be the occupancy measure
induced by π. We define marginalized importance weight w : S × A → R+ as w(s, a) = d(s,a)

µ(s,a) ,
∀s ∈ S, a ∈ A.

Note w can be regarded as the density ratio between the normalized discounted occupancy measure
and data distribution. Moreover, recall the definition of w and M in equation (2) , we define matrix
K ∈ R|S|×|S||A| and KD ∈ R|S|×|S||A| as

K(s′, (s, a)) = M(s′, (s, a)) · µ(s, a), KD(s
′, (s, a)) = M(s′, (s, a)) · µD(s, a),

where KD can be seen as an empirical version of K in dataset D and it is straightforward to verify
Kw = Md. With these notations, we establish an equivalent formulation with problem (1) w.r.t.
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MIW

min
w≥0

f(µ · w) (5)

s.t. Kw = (1− γ)µ0 (6)
g(µ · w) ≤ τ (7)

where the operator “·” denotes the element-wise product of vectors. As we aim to establish the
sample-efficient learning algorithms in large state-action spaces, we regard the importance weight w
as a function, i.e. w : S × A → R+ that belongs to the convex function class W in the following
assumption.

Assumption 2 (Realizability). We assume w∗ ∈ W where w∗ is the optimal solution to the problem
(5)–(7).

This assumption assumes the optimal solution w∗(π∗) can be realizable for a convex function class
W . Note that the assumption of the convex function class W is reasonable and standard, which
is also achievable with the convexification process in case the function class is non-convex. The
convexification process is a common practice in the offline safe RL literature, particularly in the
context of general function approximation [Le et al., 2019, Hong et al., 2024]. Now we consider W
as a discrete function class for simplicity and it readily extends to continuous settings (in Remark 1).
Further, we introduce a completeness assumption that is used to relax the key constraint in (6).

Assumption 3 (Completeness). Let xw be within the function class X . Define a mapping ϕ: such
that ϕ(w)⊤(Kw − (1 − γ)µ0) = x⊤

w(Kw − (1 − γ)µ0) = ∥Kw − (1 − γ)µ0∥1. Then, we have
(W,X )-completeness under the mapping ϕ, i.e. xw ∈ X for all w ∈ W .

Intuitively, the completeness assumption allows us to replace the computation of the l1-norm with a
linear product and simplifies our subsequent analysis. Next, we introduce the standard boundness
assumption in offline RL literature with general function approximation [Chen and Jiang, 2019, 2022,
Le et al., 2019, Munos and Szepesvári, 2008].

Assumption 4 (Boundness of W and X ). We assume function classes W and X are bounded, i.e.
∥w∥∞ ≤ Bw, ∀w ∈ W and ∥xw∥∞ ≤ Bw, ∀xw ∈ X .

Combining this assumption with Assumption 1 implies Bw ≥ Cπ∗ . Lastly, we impose a mild
assumption for the reward and cost functions in the problem (1).

Assumption 5 (Lipschitz condition). The functions f(x) and g(x) are convex and satisfy the Lipschitz
condition, where there exist constants Lf and Lg such that for any x, y, the following inequalities
hold |f(x)− f(y)| ≤ Lf∥x− y∥ and |g(x)− g(y)| ≤ Lg∥x− y∥.

3 Algorithm Design and Main Results

Despite the practical importance of offline safe RL in real-world applications, there is still a lack of
theoretical research on this topic. The earlier literature on this setting often lacks robust theoretical
analysis [Lee et al., 2021, Liu et al., 2023b, Xu et al., 2022], and articles with theoretical analysis
either yield unsatisfactory results or rely on strong assumptions [Chen et al., 2022, Hong et al., 2024,
Le et al., 2019].

In this section, we propose a provable algorithmic framework and establish the first theoretical result
in offline convex CMDP, to the best of our knowledge. Moreover, when reducing to standard offline
CMDP, we achieve a sample complexity of O

(
1

(1−γ)
√
n

)
with general function approximation,

which improves the current state-of-the-art result by a factor of 1/(1− γ).

3.1 Algorithm Design

Inspired by [Ozdaglar et al., 2023], we first introduce an empirical version of problem (5)–(7) in the
offline setting by incorporating a suitable relaxed parameter into the safety constraint. Intuitively, the
empirical version of the problem is "close" to the original problem when the dataset is large. This
is the key observation for analyzing the convergence performance and safety violations. To solve
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(5)–(7), we present its empirical and relaxed problem:

min
w∈W

f(µD · w) (8)

s.t. ∥KDw − (1− γ)µ0∥1 ≤ ζ, (9)
g(µD · w)− τ ≤ κ, (10)

where µD and KD are the empirical version of µ and K, respectively; ζ and κ are the relaxed
hyperparameters for the validity constraint (Bellman equation) and safety constraint. Intuitively,
the parameters of ζ and κ capture the “uncertainty” induced by the offline dataset D in terms of
distribution shift and safety concerns. The values of these parameters will be specified later and
play an important role in our analysis. Next, we demonstrate that the mismatch of the objective and
constraint violation bound depends on the “uncertainty”, which exhibits O(1/

√
n) distance.

Note that all parameters in the optimization problem (8)–(10) can be determined from the offline
dataset. When the state-action space is not large, this problem can be efficiently solved by convex
optimization solvers. However, when the state-action space is large, and the function approximation
is necessary (e.g., w is parameterized by a neural network), it would be quite challenging (if not
impossible) to solve this problem. To address this challenge, we propose a primal-dual algorithm that
is sample-efficient and computationally tractable to solve the problem iteratively. We first introduce
the Lagrange function of problem (8)–(10),

L (w, λ, ϕ) = f (µD · w) + λ (∥KDw − (1− γ))µ0∥1 − ζ) + ϕ (g (µD · w)− τ − κ) , (11)

where λ and ϕ are Lagrange multipliers.

Algorithm 1: Primal-dual algorithm for Offline Convex CMDP (POCC)

1 Input: Dataset D = {(si, ai, ri, ci)}ni=1, the relaxed parameters κ, ζ, and the step size η = 1√
K

;
2 Initialization: Choose any w1 ∈ W and the Lagrangian multipliers λ1 = 0, ϕ1 = 0;
3 for k = 1, 2, . . . ,K do

4

Primal: wk+1 = PW
[
wk − η∇Lw(wk, λk, ϕk)

]
,

Dual: ϕk+1 =
[
τk − η∇Lϕ(wk, λk, ϕk)

]ϕk+1
max

0
, λk+1 =

[
λk − η∇Lλ(wk, λk, ϕk)

]λk+1
max

0
,

where PW is the projection onto set W and [·]hl is the projection onto interval [l, h].
5 Compute the average wK =

∑K
i=1 w

i;
6 Extract the policy πK with formula (12);
7 Output: Policy πK ;

Given the Lagrange function above, we introduce our algorithm called POCC (in Algorithm 1),
which takes the offline dataset D as input and runs a primal-dual method on the estimated Lagrange
function. Specifically, at each iteration k, POCC updates the importance weight by gradient descent
and projects it back to function class W , then updates Lagrange multipliers of validity constraint (6)
and safety constraint (7) respectively. After K steps, POCC returns an averaged wK , we can extract
the corresponding policy πK based on the offline dataset D as follows

πK(a | s) :=
{

wK(s,a)πµ(a|s)∑
a′∈A wK(s,a′)πµ(a′|s) , if

∑
a′∈A wK(s, a′)πµ(a

′ | s) > 0
1

|A| , if
∑
a′∈A wK(s, a′)πµ(a

′ | s) = 0
(12)

where the second equality means that if
∑
a′∈A wK(s, a′)πµ(a

′ | s) = 0 we randomly choose an
action for state s.

3.2 Theoretical Results

We present the theoretical results of our proposed approach in the following theorem.

Theorem 1 (Sample complexity of πK). Suppose Assumptions 1–7 hold. Denote πK as the

corresponding policy induced by wK . Set the relaxed parameters ζ = 2
√
2Bw√
n

√
log |W||X |

δ and

6



κ =
√
2LgBw√
n

√
log 2|W|

δ , and the step size η = 1√
K

. Let the constants υ = 1
1−γ (4B + 4L+ 2ε)

and ι = 1
1−γ

(
B2 + 4B + 4L+ L2

√
K

+ ε
)

, we have, with at least 1− 8δ probability,

Jr(πK)− Jr(π
∗) ≤ 6LfBw

√
2 log(|W||X |/δ)

(1− γ)
√
n

+
ι

2
√
K

(13)

Jc (πK)− τ ≤ 6LgBw
√
2 log(2|W||X |/δ)

(1− γ)
√
n

+
υ√
K

(14)

where Jr(πK) = f(dK) and Jc(πK) = g(dK) are objective and constraint performance of policy π
respectively, B represents the distance between initial value w1 of the iteration and optimal solution
wD to problem (8)–(10), ε ≥ 0 is a constant, L is the max Lipschitz constant of Lagrange function
and K is the number of iterations.
Remark 1. We remark that Theorem 1 remains valid even when the function class W is a continuous
set. In this case, the cardinality |W| can be replaced with the covering number of W , and the union
bound can be applied to its ϵ-covering set. This adjustment also preserves the sample complexity
order of O(1/

√
n), up to a constant dependent on ϵ. For further details on the extension from discrete

W to a continuous set, please refer to [Le et al., 2019, Xie and Jiang, 2021].

Theorem 1 demonstrates that the convergence performance of our algorithm can be divided into two
parts: O(1/

√
n) + O(1/

√
K). Regarding the first term, except for the size of dataset, it mainly

depends on the function class (searching space) log |W||X | and relaxed parameters ζ and κ that
capture the “uncertainty” for addressing the distribution shift and safety concern. Moreover, the
second term O(1/

√
K) connects with the error bound between wK and optimal solution wD, which

decays at the rate of 1/
√
K when the number of iterations increases. It is worth noting that the

convergence rate of policy πK is still O(1/
√
n) when the iterative number is sufficient to satisfy

K ≥ n. The algorithm is gradient-based and does not involve additional computations for solving
the optimization problem (8)–(10). This suggests that we can improve the convergence performance
w.r.t. K by employing more advanced primal-dual techniques to reduce the convergence rate of the
second term, such as those discussed in [Yu and Neely, 2017] with a convergence rate of O(1/K).

Unlike most of the previous work focuses on convex MDPs in online setting [Bai et al., 2023, Ying
et al., 2023, Zahavy et al., 2021, Zhang et al., 2020b], Theorem 1 to the best of our knowledge, is the
first provable result in offline convex MDPs. Moreover, compared to the best result O

(
1

(1−γ)2
√
n

)
in offline CMDP [Hong et al., 2024, Chen et al., 2022], our results achieve a sample complexity
of O

(
1

(1−γ)
√
n

)
, which outperform the state-of-the-art by a factor of 1/(1 − γ). Besides, our

algorithm is appropriate in the scenario with large-scale state-action space due to the general function
approximation for w while the work [Chen et al., 2022] targets the tabular setting; our result is
more favorable in the safety applications compared to [Hong et al., 2024] because we replace the
realizability of value function ν with a slightly stronger completeness assumption but reduce the data
coverage from full to partial. As stated in Assumption 1, the full data coverage not only implies
access to a highly exploratory dataset but also is impractical for offline safe RL, as it assumes behavior
policy needs to visit every dangerous state-action pair. Finally, we want to comment that the previous
work all focuses on the standard RL, whose objective function is linear, while our algorithm is general
enough to tackle the convex MDPs.
Remark 2. In the theorem, we assume prior knowledge of the behavior policy πµ for the sake of
exposition. However, in practice, it is often challenging to know the behavior policy in advance, as we
typically only have access to the offline dataset. The most popular approach to tackle this challenge
is behavior clone. It posits that π̂µ can be estimated as π̂µ(a|s) = n(s,a)

n(s) , where n(s, a) denotes the
number of the occurrences of the state-action pair (s, a) in the offline dataset. We employed this
estimation method in the experiments and results demonstrate its effectiveness.

4 Theoretical Analysis

In this section, we present a sketch of the proof of Theorem 1. We focus on illustrating the analysis
of the constraint violation, and the convergence of the objective follows similar steps. The detailed
proof can be found in Appendix A.
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We first decompose the bound into different major terms and then sutdy them individually

Jc(πK)− τ = g(dπK )− τ (15)

= g(dπK )− g(dK)︸ ︷︷ ︸
I

+ g(µ · wK)− g(µD · wK)︸ ︷︷ ︸
II

+ g(µD · wK)− τ︸ ︷︷ ︸
III

(16)

The first equality holds due to the definition: Jc(πK) = g(dπK ), where dπK represents the occupancy
measure induced by returned policy πK . Recall the definition w(s, a) · µ(s, a) = d(s, a), we then
have g(dK) = g(µ · wK). It is worth noting that the decomposition is intuitive since terms I and II
relates to the idea of constructing “uncertainty” parameter for the offline dataset and term III mainly
depends on the convergence of primal-dual method.

Specifically, term I is the distance between g(dK) and g(dπK ). It represents the error that we rectify
the unnormalized occupancy measure dK , which violates the validity constraint (6), to a satisfying
one dπK . The term II illustrates the error incurred when applying the calculated wK from offline
dataset D to the real environment µ, which depends on the sample size of the dataset. The term III is
related to the relaxed parameter κ in safety constraint (7) and the distance between returned wK and
optimal solution wD. Next, we present the following lemmas to bound these terms.
Lemma 1. Suppose Assumptions 1–4 hold, we have, with probability at least 1− 2δ,

Jc(πK)− g(dK) ≤ 4LgBw
√
2 log(|W||X |/δ)

(1− γ)
√
n

.

Lemma 2. Suppose Assumptions 1–4 hold. For wK ∈ W , we have, with probability at least 1− δ,

g(µ · wK)− g(µD · wK) ≤
√
2LgBw√

n

√
log

2|W|
δ

.

Lemma 3. Suppose Assumptions 1–7 hold. For wK ∈ W , we have

g(µD · wK)− τ ≤ κ+
υ√
K

.

Combining the above lemmas, we have, with at least 1− 3δ probability,

Jc(πK)− τ = g(dπK )− g(dK)︸ ︷︷ ︸
I

+ g(µ · wK)− g(µD · wK)︸ ︷︷ ︸
II

+ g(µD · wK)− τ︸ ︷︷ ︸
III

≤ 4LgBw
√
2 log(|W||X |/δ)

(1− γ)
√
n

+
2
√
2LgBw√
n

√
log

2|W|
δ

+
υ√
K

≤ 6
√
2LgBw

√
2 log(2|W||X |/δ)

(1− γ)
√
n

+
υ√
K

.

where we set ζ = 2
√
2Bw√
n

√
log |W||X |

δ , κ =
√
2LgBw√
n

√
log 2|W|

δ .

5 Experiments

This section aims to justify the effectiveness of our proposed framework through numerical experi-
ments. We test a practical version of Algorithm 1, where we replace the gradient-type update with
the “Adam”-type update (the detailed algorithm can be found in Algorithm 2 in the appendix). We
test our algorithm to two specific offline convex CMDPs: 1) Safe imitation learning and 2) standard
offline CMDP. Our objective is to address the following questions: (i) Are the experimental results
consistent with our theory? (ii) how does the data quality affect the performance of our algorithm?
The additional details can be found in the Appendix B.

5.1 Safe Imitation Learning

To showcase the generality of our algorithm, we choose imitation learning as a user case of convex
MDPs and conduct the experiments in a maze environment. We design the environment, as illustrated
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in Figure 2, modified from [Geist et al., 2022]. The problem of (safe) imitation learning can be
formulated as F (d) = KL(d || dE), where dE represents the stationary distribution of an expert.
The environment is deterministic; agent has four actions (left, down, right, up); moving towards
the wall (white) and the boundary does not change the state; the goal is to learn from the expert
demonstrations (yellow) under safety constraints.

We collect data by expert demonstrations in (a) but randomly remove 25% states. We intend for
the algorithm to learn to fill in the gaps using its inherent properties and function approximation, as
emphasized in our theory. We are presenting two sets of results: one that considers safety constraints
with a cost threshold of 0, and another that does not consider safety constraints. It’s important to note
that we cannot simply take the stationary distribution of the dataset as our final result. This is due
to several reasons, including the fact that expert demonstrations are incomplete (25% of states are
removed), simple replacement leads to poor results, and it’s not suitable when considering the safety
of the agents.
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Figure 2: Reading order: (a) target demonstrations in yellow, wall in white; (b) result for log-density
without considering the safety constraint; (c) target demonstrations that all states in top-right corners
have cost; (d) result for log-density with safety constraint.

Our results are presented in Figure 2. In Figure (2b), it is demonstrated that our policy can accurately
replicate the expert distribution using function approximation and completely bridge the gap required
by the expert. Additionally, when taking into account the safety constraints, which involve setting the
cost in the entire top-right corners, it is evident that our policy avoids states with cost and behaves
appropriately, aligning with our theoretical framework.

5.2 Offline CMDP

We consider an 8x8 grid world environment FrozenLake, with the initial state being the top-left grid.
The agent has four actions: N (north), S (south), E (east), and W (west). The primary objective is to
reach the goal while avoiding all holes. The game terminates if the agent achieves the goal within 25
steps. A reward of 1 is obtained when the agent achieves the goal, and the main cost function assigns
a cost of 1 if the agent falls into a hole and 0 otherwise. The diagram of the environment has been
presented in Figure 1 in the introduction.

Initially, we simulate a mixture of different percentages of optimal and uniform policies to collect
the offline dataset. We employ various behavior policies πD, running 200 trajectories to collect the
offline dataset D, with each trajectory having a maximum of 50 time steps to ensure that the optimal
goal is included in the dataset.

Additionally, we increase the difficulty of the environment compared to classical FrozenLake, such
that if the agent falls into a hole, it can also come out in the next step. This implies that our cost
constraint influences the training. We set the cost threshold as 0 here, which means that the agent
is not supposed to incur any cost. Note that a higher percentage with a uniform policy indicates
that the problem becomes more difficult. We set the discount factor as γ = 0.99, ζ = 0.1, and κ
in our algorithm. Furthermore, we encode the environment with one-hot encoding and employ a
more practical algorithm. We refer to w as a single hidden-layer neural network which we describe in
Algorithm 2 in Appendix B. We set the learning rate of 10−5 for w and 10−4 for Lagrange multipliers.

In remark (), we have stated that there are two approaches when facing with the scenario that the
behavior policy is unknown, and here we choose to use the behavior clone method that we will
estimate the behavior policy through the offline dataset. We compare our algorithm with COptiDICE

9



[Lee et al., 2021], which is a well-acknowledged baseline algorithm in the offline safe RL literature
[Hong et al., 2024, Liu et al., 2023b].
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Figure 3: Performance on FrozenLake with general function approximation. Reading order: (a) and
(b) show the training result with four different behavior policies of COptiDICE and ours. (c) and (d)
demonstrate the variations in rewards and costs as the dataset increases. Each point is the average
result of 10 independent runs.

Denote p as the percentage of optimal policy within the behavior policy. We evaluate the algorithm
with different behavior policies p = {0.75, 0.5, 0.25, 0} and dataset sizes. We present the results in
Figure 3. In the first two figures, it can be seen that our algorithm can consistently find the optimal
path even with completely random data. Conversely, COptiDICE behaves well when the proportion
of optimal policy is 0.75, but cannot even learn a logical and safe policy when the majority of the
data in dataset is random and constraint violated. In the last two figures, we test the performance of
algorithms in different sizes of dataset, where p = 0.5 in behavior policy. The results demonstrate
that our algorithm can find a safe and optimal path as the dataset size increases. In contrast, the
results from the COptiDICE algorithm show high variance, where it can only find a safe path in about
50% runs.

In summary, our algorithm performs well across various behavior policies and dataset sizes, which is
consistent with our theoretical results and assumptions.

6 Conclusions

In this work, we consider convex CMDPs in the offline setting. We propose a sample efficient
RL approach that addresses the challenges in offline convex CMDPs. We theoretically prove that
we can suffer O(1/

√
n) sample complexity in both performance and violation bound with general

function approximation under mild data coverage assumption, which is the first result in offline
convex MDPs as best of our knowledge and surpasses the state-of-the-art result in offline safe RL by
a factor of 1/(1− γ). Experimental studies further demonstrate the effectiveness and generality of
our framework.
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Appendix

A Proof of Theorem 1

In this section, we give the complete proof of Theorem 1. Specifically, we bound the regret first and
constraint violation second. Hence, we first present some auxiliary lemmas and combine them to
prove the final theorem.

Proof of objective bound

We also decompose the expression by adding and subtracting corresponding terms and prove them
individually.

Jr(πK)− Jr(π
∗) = f(dπK )− f(d∗)

= f(dπK )− f(dK) + f(dK)− f(d∗)

= f(dπK )− f(dK) + f(µ · wK)− f(µ · w∗)

= f(dπK )− f(dK)︸ ︷︷ ︸
I

+ f(µ · wK)− f(µD · wK)︸ ︷︷ ︸
II

+ f(µD · wK)− f(µ · w∗)︸ ︷︷ ︸
III

Next, we will prove these items individually.
Lemma 4. ∀w∗ ∈ W , w∗ satisfies constraint functions (6) and (7) with at least 1− 2δ probability.

Proof. First, we focus on the safety constraint (7). We prove it with Hoeffding inequality. Recall the
Hoeffding inequality:

P
(∣∣X̄ − E[X]

∣∣ ≥ t
)
≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
Take µD · w as the random variable, we have

E[(µD − µ) · w] = 0

Since µ(s, a) ∈ [0, 1], and meanwhile w lies in [−Bw, Bw], we have (µD − µ) · w lies in interval
[−Bw, Bw]. To satisfy the safety constraint function:

g(µD · w)− τ ≤ κ

We set t =
√
2Bw√
n

√
log 2|W|

δ . Combine with the Hoeffding inequality, we have

P (|µD · w − µ · w| ≥ t) ≤ δ

|W| (17)

For the constraint function, recall we suppose that it satisfies the Lipschitz condition,

|g(µD · w)− g(µ · w)| ≤ Lg∥µD · w − µ · w∥
Before proceeding to the following derivation, we first state a fact:

P (z ≥ t) ≤ δ and y ≤ z =⇒ P (y ≥ t) ≤ δ

The above equation means that if a variable z is greater than t with probability less than or equal to δ,
then any variable such as y that is lower than that variable must also be lower than t with probability
less than or equal to δ.

We get

P (|g(µD · w)− g(µ · w)| ≥ Lg · t) ≤
δ

|W| (18)

Note the fact that (µD · w − µ · w) is obviously lower than |µD · w − µ · w|, then

P (g(µD · w)− g(µ · w) ≥ Lg · t) ≤
δ

|W| (19)
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Take the union bound for w ∈ W , then

∀w ∈ W, P (g(µD · w)− g(µ · w) ≥ Lg · t) ≤ δ (20)

Then for all w∗ ∈ W ,
P (g(µD · w∗)− g(µ · w∗) ≥ Lg · t) ≤ δ (21)

Because w∗ is the optimal solution for problem (5)–(7) and we suppose the assumption of realizability
is set up, then in equation (7), w∗ satisfies

g(µ · w∗) ≤ τ

Combing with equation (19), we get

P (g(µD · w∗)− τ ≥ Lg · t) ≤ δ (22)

So we have, with at least 1− δ probability,

g(µD · w∗)− τ ≤ Lg · t = κ (23)

Next, we focus on the validity constraint function (6).

Here, we take x⊤(KD − K)w as the random variable and note the fact that it lies in the interval
[−2Bw, 2Bw]. Use the Hoeffding inequality we have that ∀x ∈ B,

P(x⊤(KD −K)w ≥ t) ≤ exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
= exp

(−nt2

8B2
w

)
(24)

Set t = 2Bw
√

2 log(|W||X |/δ)√
n

, the inequality becomes the form as:

P
(
x⊤(KD −K)w ≥ t

)
≤ δ

|W||X | (25)

Take the union bound for all w and x, we have

P
(
x⊤(KD −K)w ≥ t

)
≤ δ , ∀w ∈ W, ∀x ∈ X (26)

So for all w∗ ∈ W ,
P
(
x⊤(KD −K)w∗ ≥ t

)
≤ δ (27)

Note the fact ∥Kw∗ − (1− γ)µ0∥ = 0, we have the inequality for all w∗ ∈ W

P
(
x⊤ (KDw

∗ − (1− γ)µ0) ≥ t
)
≤ δ (28)

That is, with at least 1− δ probability,

x⊤ (KDw
∗ − (1− γ)µ0) ≤ t = ζ (29)

Take the union bound for equation (23) and (29) completes the proof.

Next, we show that f (µD · wD) is close to f (µ · w∗).

Then the empirical covering number n(ϵ,W) is defined as the size of the smallest ϵ-cover. Intuitively,
the ϵ cover set can represents the original set in the sense of ϵ. This definition is very useful when the
original set is continuous and we want to take the union bound of it. By this ϵ cover we can take the
union bound of the continuous set and the distance of them is measured by ϵ.

Lemma 5. We have

f (µD · wD) ≤ f (µ · w∗) +

√
2LfBw√

n

√
log

2|W|
δ

with 1− 3δ probability.
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Proof. From Lemma 4, we have

f (µD · wD) ≤ f (µD · w∗)

with probability at least 1− 2δ. Now, we use Hoeffding inequality to bound f (µD · w)− f (µ · w).
Take (µD − µ) · w as the random variable and note it lies in interval [−Bw, Bw], then we have

P (| (µD − µ) · w| ≥ t) ≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
= 2 exp

(−nt2

2B2
w

)
(30)

Set t = Bw
√

2 log(2|W|/δ)√
n

, the inequality becomes

P (| (µD − µ) · w| ≥ t) ≤ δ

|W|
Use the Lipschitz condition and union bound of w, we have

∀w ∈ W , P (f (µD · w)− f (µ · w) ≥ Lf · t) ≤ δ (31)

Choose w∗ ∈ W and combine with the inequality f (µD · wD) ≤ f (µD · w∗), we get the final result

f (µD · wD) ≤ f (µ · w∗) +

√
2LfBw√

n

√
log

2|W|
δ

(32)

with at least 1− 3δ probability.

Next, we prove term II that f (µ · wK) is close to f (µD · wK).

Lemma 6. We have

f (µ · wK) ≤ f (µD · wK) +

√
2LfBw√

n

√
log

2|W|
δ

with probability 1− δ.

Proof. This is easy to prove as we have a general result for all w ∈ W in equation (31). Here we
take wK ∈ W ,

P (f (µ · wK)− f (µD · wK) ≥ t) ≤ δ (33)

which completes the proof.

Note that wK violates the validity constraint in problem (5). This means that the calculated result
may not satisfy the quality of the occupancy measure. To find the relation, we utilize the analogous
lemmas in [Ozdaglar et al., 2023] to get the error bound between validity constraint violation and
absolute objective difference.

Lemma 7. Let dK be a variable solved by Program (8) that violates the validity constraint (6) and
πK is the policy induced by dK . We can get that

f(dπK ) ≤ f(dK) +
2BwLf

√
2 log(|W||X |/δ)

(1− γ)
√
n

with at least 1− δ probability.

Proof. Define the marginalized occupancy measure as d̂K(s) =
∑
a∈A dK(s, a) and d̂πK (s) =∑

a∈A dπK (s, a). Then, we can write

d̂K(s) =
∑
a∈A

dK(s, a) and d̂πK (s) =
∑
a∈A

dπK (s, a). (34)
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Let P |S||A|
π ∈ R be the state transition matrix, i.e.,

PπD (j, i) =
∑
a∈A

Psi,a(s
j) · π(a | si).

Also, we define the matrix Gπ = Diag(πd(· | s1), πd(· | s2), · · · , πd(· | s|S|)) ∈ R|S||A|×|S|, and
notice the fact that MGπ = I − γPπ. Now, since dπ satisfies the constraints in Problem, we have
Mdπ = (1− γ)µ0. This implies:

∥MdK − (1− γ)µ0∥1 = ∥M(dK − dπK )∥1
= ∥MGπ(d̂K − d̂πK )∥1
= ∥(I − γPπ)(d̂K − d̂πK )∥1
≥ (1− γ)∥d̂K − d̂πK∥1. (35)

Here the last inequality is because γ∥Pπ(d̂K − d̂πK )∥1 ≤ γ∥d̂K − d̂πK∥1, which follows from the
fact that Pπ is a column stochastic matrix.

We have:

|f(dK)− f(dπK )| ≤ Lf |dK − dπK | (36)

= Lf |Gπ(d̂K − d̂πK )|
≤ Lf∥d̂K − d̂πK∥1. (37)

The first inequality holds because of the Lipschitz condition of function f . So combining the above
two inequalities, we get

f (dπK )− f
(
dK
)
≤ Lf∥MdK − (1− γ)µ0∥1

1− γ
(38)

=
Lf∥KwK − (1− γ)µ0∥1

1− γ
(39)

which follows the definition of density ratio w. Next, we give the bound of ∥KwK − (1− γ)µ0∥1.

From inequality (26) above we have that

P
(
x⊤(KD −K)w ≥ ζ

)
≤ δ , ∀w ∈ W, ∀x ∈ X

Then take w as wK and x as 1-norm, with at least 1− δ we have

∥KwK − (1− γ)µ0∥1 ≤∥KDwK − (1− γ)µ0∥1 + ∥(K −KD)wK∥1
≤ζ + ζ (40)

where the first inequality is because of the triangle inequality and the last inequality follows the fact
that wK is the optimal solution to problem (8) and the above inequality. Combining (40) and (38)
completes the proof.

Now, we have the bound of term I and II. To further demonstrate the final bound, we also need to
investigate the distance between the returned value wK by primal-dual method and optimal solution
wD.

Our algorithm 1 is the classical type of primal-dual subgradient method and our analysis mostly refers
to [Nedić and Ozdaglar, 2009]. We put it here for the sake of completeness and add the theoretical
analysis of our algorithm.

First, recall the Lagrange function and updated rules of the algorithm

L (w, λ, ϕ) = f (µD · w) + λ (∥KDw − (1− γ))µ0∥1 − ζ) + ϕ (g (µD · w)− τ − κ)

wk+1 = PW
[
wk − η∇Lw(wk, λk, ϕk)

]
λk+1 =

[
λk − η∇Lλ(wk, λk, ϕk)

]λk+1
max

0

ϕk+1 =
[
ϕk − η∇Lϕ(wk, λk, ϕk)

]ϕk+1
max

0
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For simplicity, we combine the Lagrange multipliers into one variable and call it ν, accordingly, we
set the constraint g (w) ≤ 0. Note that constraints are analogous and we would split them in the end.
Now the updated rules become

wk+1 = PW
[
wk − η∇Lw(wk, νk)

]
(41)

νk+1 = PM
[
νk − η∇Lν(wk, νk)

]
(42)

where νk ∈ M and note that we turn the interval of ν into a projection set which is an equivalent
transformation. The Lagrange function is denoted as

L (w, ν) = f (w) + νg (w) (43)

Theorem 2 (Saddle-Point Theorem in [Bertsekas, 1997]). The pair (wD, νD) is a primal-dual
optimal solution if and only if

L (wD, ν) ≤ L (wD, νD) ≤ L (w, νD) , for all w ∈ W, ν ≥ 0,

where wD ∈ W and νD ≥ 0.

The analysis of convergence is based on this theorem and it is a standard result that characterizes
the primal-dual optimal solutions as the saddle points of the Lagrange function[Nedić and Ozdaglar,
2009].

Theorem 3. According to the updated rules, denote the solution to problem (8) as wK . Compared to
the optimal solution wD, we have the upper bound for performance and constraint violation:

(1) ∥g (wK)
+ ∥ ≤ 2∥w1 − wD∥

Kη
+

2L√
K

+ ε (44)

(2) f (wK) ≤ f∗ +
∥w1 − wD∥2

2Kη
+ ηL2 (45)

where η is the constant learning rate, w1 is an initial state, ε ≥ 0, K is the iteration step and L
is the max subgradient of the Lagrange function. Furthermore, we denote, w∗ = wD, f (wK) =
f (µD · wK) and f∗ = f (µD · wD), we use the above notations for simplicity.

We first introduce some lemmas and prove the theorem step by step.

Lemma 8. Suppose that the sequence {wk} and {νk} are generated by the updated rules. Then we
have

(1) ∀w ∈ W, ∥wk+1 − w∥2 ≤ ∥wk − w∥2 − 2η (L (wk, νk)− L (w, νk)) + η2∥Lw (wk, νk) ∥2.

(2) ∀ν ∈ M, ∥νk+1 − ν∥2 ≤ ∥νk − ν∥2 − 2η (L (wk, νk)− L (wk, ν)) + η2∥Lν (wk, νk) ∥2.

Proof. We prove (1) and (2) is similar to (1).

∥wk+1 − w∥2 = ∥P (wk − ηLw (wk, νk))− w∥2

≤ ∥wk − ηLw (wk, νk)− w∥2

= ∥wk − w∥2 − 2ηLw (wk, νk) (wk − w) + η2∥Lw (wk, νk) ∥2

≤ ∥wk − w∥2 − 2η (L (wk, νk)− L (w, νk)) + η2∥Lw (wk, νk) ∥2

where the first equality comes from the update rule and the last inequality is because of the convexity
of the Lagrange function.

Assumption 6 (Boundness of subgradient). We assume that the subgradient of the Lagrange function
is bounded, such as

∥Lw (wk, νk) ∥ ≤ L , ∥Lν (wk, νk) ∥ ≤ L, ∀k ≥ 0.

where L is the max Lipschitz constant in Lagrange function.
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Lemma 9. Set wk = 1
k

∑k
i=1 wki and νk = 1

k

∑k
i=1 νki , we have

(1)
1

k

k∑
i=1

L (wi, νi)− L (w, νk) ≤
∥w1 − w∥2

2ηk
+

ηL2

2
, ∀w ∈ W.

(2) − ∥ν1 − ν∥2
2ηk

− ηL2

2
≤ 1

k

k∑
i=1

L (wi, νi)− L (wk, ν) , ∀ν ∈ M.

Proof. We only prove (1) and equation (2) is similar to (1). By using Lemma 8 we have

L (wi, νi)− L (w, νi) ≤
∥wi − w∥2 − ∥wi+1 − w∥2

2η
+

ηL2

2

Sum it from 1 to k,

1

k

k∑
i=1

L (wi, νi)− L (w, νi) ≤
∥w1 − w∥2 − ∥wk − w∥2

2η
+

ηL2

2

≤ ∥w1 − w∥2
2η

+
ηL2

2
(46)

And combine with 1
k

∑k
i=1 L (w, νi) ≥ L (w, νk) which is because of Jensen’s inequality, we have

1

k

k∑
i=1

L (wi, νi)− L (w, νk) ≤
∥w1 − w∥2

2η
+

ηL2

2
(47)

Assumption 7 (Slater’s condition). There exists a vector ŵ such that

gj(ŵ) < 0, ∀j = 1, 2, · · · , N
we refer to ŵ as a Slater’s vector.

Note that Slater’s condition is assumed in many primal-dual method literature [Chen et al., 2022,
Hong et al., 2024, Nedić and Ozdaglar, 2009].
Lemma 10. Under Assumption 7, suppose q∗ is the dual optimal solution and w̄ is a vector that
satisfies Slater’s condition, we have

∥ν∥1 ≤ 1

γ
(f (ŵ)− q∗)

where γ = min1≤j≤m{−gj(ŵ)} and m is the number of constraints.

The proof is referred to [Hiriart-Urruty and Lemaréchal, 1996]. The lemma above motivates the
choice of dual set, that is

M =

{
ν ≥ 0 | f(ŵ)− q̃

γ
+ r

}
where q̃ ≤ q∗ and r ≥ 0 is a constant.

Proof. Now, we are ready to give the general proof of Theorem 3. Combine Lemma 8 and Assumption
6, we have

∥νk+1 − ν∥2 ≤ ∥νk − ν∥2 − 2η (L (wk, νk)− L (wk, ν)) + η2∥Lν (wk, νk) ∥2 (48)

Moreover,

(νi − νD)Lν (wi, νi) ≤ L (wi, νi)− L (wi, νD)

≤ L (wi, νi)− f∗ (49)
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where the first equation is because of convexity of Lν and the last equation dues to the Slater’s
condition. We have, ∀ν ∈ M and i ≥ 1

(ν − νD)
⊤ Lν (wi, νi) = (ν − νD + νi − νi)

⊤ Lν (wi, νi)
= (ν − νi)

⊤ Lν (wi, νi) + (νi − νD)Lν (wi, νi)

≤ ∥νi − ν∥2 − ∥νi+1 − ν∥2
2η

+
ηL2

2
+ L (wi, νi)− f∗ (50)

Then, sum over i = 1, · · · , k,

k∑
i=1

(ν − νD)
⊤ L (wi, νi) ≤

∥ν1 − ν∥2
2η

+
ηkL2

2
+

k−1∑
i=0

L (wi, νi)− kf∗ (51)

Because the above function is for all ν, then

max
ν∈M

{
k∑
i=1

(ν − νD)
⊤ L (wi, νi)

}
≤ 1

2η
max
ν∈M

∥ν1 − ν∥2 ηkL
2

2
+

k∑
i=1

L (wi, νi)− kf∗ (52)

Set

s =

k∑
i=1

Lν (wi, νi) =
k∑
i=1

g (wi) ≥ kg (ŵk) (53)

Hence, if s+ = 0, equation (52) holds. If s+ ̸= 0, define vector:

ν̂ = νD + r
s+

∥s+∥ ≥ 0

Combine Lemma 10, we have

∥ν̂∥ ≤ ∥νD∥+ r ≤ f (ŵ)− q̃

γ
+ r (54)

which implies that for ν̂ ∈ M,

(ν̂ − νD)
⊤
s =

k∑
i=1

(ν̂ − νD)
⊤ L (wi, νi)

≤ max
ν∈M

{
k∑
i=1

(ν − νD)
⊤ L (wi, νi)

}
(55)

Recall the definition of s, we have

(ν̂ − νD)
⊤
s = r∥

[
k∑
i=0

g (wi)

]+
∥

≤ rmax
ν∈M

{
k∑
i=1

(ν − νD)
⊤ L (wi, νi)

}

≤ 1

2η
max
ν∈M

∥ν1 − ν∥2 + ηkL2

2
+

k∑
i=1

L (wi, νi)− kf∗

≤ 1

2η
max
ν∈M

(∥ν1∥+ ∥ν∥)2 + ηkL2

2
+

∥w1 − wD∥2
2ηk

+
ηL2

2

≤ 1

2η
max
ν∈M

∥ν∥+ ηkL2

2
+

∥w1 − wD∥2
2ηk

+
ηL2

2

≤ 1

2η

[
f (ŵ)− q̃

γ
+ r

]
+

ηkL2

2
+

∥w1 − wD∥2
2ηk

+
ηL2

2
(56)
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Then,

∥g (wk)+ ∥ ≤ ∥w1 − wD∥2
2ηk

+
ηL2

2
+

2

kηr

(
f (ŵ)− q̃

γ
+ r

)2

(57)

Until now, we assume the dual set is appropriately chosen in every iteration and we should quantify
it. For the dual set

M =

{
ν ≥ 0|∥ν∥ ≤ f (ŵ)− q̃

γ
+ r

}
and the result in (57), We should choose

r = min
r≥0

{
∥w1 − wD∥2

2ηk
+

ηL2

2
+

2

kηr

(
f (ŵ)− q̃

γ
+ r

)2
}

which is

r∗ (k) =

√(
f (ŵ)− q̃

γ

)2

+
∥w1 − wD∥2

4
+

kη2L2

4
, ∀k ≥ 1.

So the dual set in every iteration is

Mk =

{
ν ≥ 0|∥ν∥ ≤ f (ŵ)− q̃

γ
+ r∗ (k)

}
which implies

∥g (wk)+ ∥ ≤ 4

kη

f (ŵ)− q̃

γ
+

√(
f (ŵ)− q̃

γ

)2

+
∥w1 − wD∥2

4
+

kη2L2

4


≤ 4

ηk

[
2 (f (ŵ)− q̃)

γ
+

∥w1 − wD∥
2

+
ηL

√
k

2

]
(58)

For simplicity, we take the first term as a constant which doesn’t affect our result:

∥g (wk)+ ∥ ≤ ε+
2∥w1 − wD∥

kη
+

2L√
k

(59)

The result of (1) in Theorem 3 completes.

Next, we give the bound of the objective value. From the definition of the Lagrange function,

f (wk) ≤
1

k

k∑
i=1

f (wi) =
1

k

k−1∑
i=0

L (wi, νi)−
1

k

k∑
i=1

g (wi) νi

Then,

f (wk)− f∗ ≤ 1

k

k∑
i=1

L (wi, νi)−
1

k

k∑
i=1

g (wi) νi − f∗

≤ ∥w1 − w∗∥2
2ηk

+
ηL2

2
− 1

k

k∑
i=1

νig (wi) (60)

Note that

0 ∈ M =

{
ν ≥ 0|∥ν∥ ≤ f (ŵ)− q̃

γ
+ r

}
Set ν = 0 and combine Lemma 8, we have

∥νk+1∥2 ≤ ∥νk∥2 + 2ηνkg (wk) + η2L2
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Then

2ηνkg (wk) ≤ ∥νk∥2 − ∥νk+1∥2 + η2L2

Sum over i = 0, · · · , k − 1,

−
k−1∑
i=1

νig (wi) ≤
1

2η

(
∥w1∥2 − ∥νk∥2

)
+

η2L2k

2
(61)

We get the final result,

f (wk) ≤ f∗ +
∥ν1∥2
2η

+
∥w1 − wD∥2

2ηk
+

η2L2

2

which completes the proof of Theorem 3.

Then we have the all results to prove the regret bound in Theorem 1.

Theorem 3 indicates that after K iterations the objective and violation bound for problem (8) are

f (µD · wK) ≤ f (µD · wD) +
∥ν1∥2
2η

+
∥w1 − wD∥2

2ηK
+

η2L2

2

= f (µD · wD) +
B2

2ηK
+

η2L2

2

= f (µD · wD) +
B2

2
√
K

+
L2

2K
(62)

x⊤ (KDwK − (1− γ)µ0) ≤ ζ +
2∥w1 − wD∥

Kη
+

2L√
K

+
ε√
K

= ζ +
2B√
K

+
2L√
K

+
ε√
K

(63)

g (hD · wK) ≤ τ + κ+
2∥w1 − wD∥

Kη
+

2L√
K

+
ε√
K

= τ + κ+
2B√
K

+
2L√
K

+
ε√
K

(64)

where we set the initial Lagrange values equal to 0, the constant step size η = 1√
K

and B is the
distance between w1 and optimal solution wD.

And recall Lemma 7, we have with at least 1− 2δ probability,

∥KwK − (1− γ)µ0∥1 ≤∥KDwK − (1− γ)µ0∥1 + ∥(K −KD)wK∥1

≤2ζ +
ε√
K

+
2∥w1 − wD∥

Kη
+

2L√
K

(65)

Then, we have, with at least 1− δ probability, the bound is,

Jr(πK)− Jr(π
∗)

= f(dπK )− f(dK)︸ ︷︷ ︸
I

+ f(µ · wK)− f(µD · wK)︸ ︷︷ ︸
II

+ f(µD · wK)− f(µ · w∗)︸ ︷︷ ︸
III

= f(dπK )− f(dK)︸ ︷︷ ︸
I

+ f(µ · wK)− f(µD · wK)︸ ︷︷ ︸
II

+ f(µ · wK)− f(µD · wD) + f(µD · wD)− f(µD · w∗)︸ ︷︷ ︸
III

≤ Lf
1− γ

· ∥KwK − (1− γ)µ0∥1 +
√
2BwLf√

n

√
log

2|W|
δ

+
B2

2
√
K

+
L2

2K
+

√
2BwLf√

n

√
log

2|W|
δ
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≤ 1

1− γ

(
6
√
2LfBw√

n

√
log

2|W||X |
δ

+
2B√
K

+
2L√
K

+
B2

2
√
K

+
L2

2K
+

ε√
K

)

≤ 1

1− γ

(
6
√
2LfBw√

n

√
log

2|W||X |
δ

+
ι

2
√
K

)
≤ O(1/

√
n) +O(1/

√
K)

where we set ι = 4B + 4L+B2 + L2
√
K

+ ε.

Proof of violation bound

In the main text, we split the violation bound into three parts and list the relevant lemmas. Here we
give the proofs for these lemmas and theorem.

Proof of Lemma 1

Proof. This proof is quite similar to Lemma 7 since we always want to establish connections between
the required function and validity error bound. The main difference is the objective function and
constraint function. So we keep the first half conclusion of the Lemma 7 which is

∥MdK − (1− γ)µ0∥1 = ∥M(dK − dπK )∥1
≥ (1− γ)∥d̂K − d̂πK∥1. (66)

Then for the safety constraint function, we have

|g(dK)− g(dπK )| ≤ Lg|dK − dπK | (67)

= Lg|Gπ(d̂K − ˆdπK )|
≤ Lg∥d̂K − d̂πK∥1. (68)

where the first inequality is because Lipschitz condition of the safety constraint function. Also by
combining the above functions, we have

g(dK)− g(dπK ) ≤
Lg∥MdK − (1− γ)µ0∥1

1− γ
(69)

=
Lg∥KwK − (1− γ)µ0∥1

1− γ
(70)

And in Lemma 7 we have already established the bound of ∥KwK − (1− γ)µ0∥1, then with at least
1− 2δ probability

g(dK) ≤ g(dπK ) +
2LgBw

√
2 log(|W||X |/δ)

(1− γ)
√
n

.

which completes the proof.

Proof of Lemma 2

Proof. In this lemma, actually, we will prove that g (µ · wK) is close to g (µD · wK). We take
(µ− µD) · w as the random variable and it lies in [−Bw, Bw]. We have the Hoeffding inequality

P (|µ · w − µD · w| ≥ t) ≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
=

δ

|W| (71)

where we set t =
√
2Bw√
n

√
log 2|W|

δ . Next, take the union bound for w and use the Lipschitz condition
for g, we have

∀w ∈ W, P (g (µD · w)− g (µ · w) ≥ Lg · t) ≤ δ (72)

So for wK ∈ W ,
P (g (µD · wK)− g (µ · wK) ≥ Lg · t) ≤ δ (73)
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which means that with at least 1− δ probability,

g (µD · wK)− g (µ · wK) ≤
√
2LgBw√

n

√
log

2|W|
δ

.

The proof is complete.

Proof of Lemma 3

Proof. This lemma is easy to be verified because we choose the relax parameter κ is equal to
√
2LgBw√
n

√
log 2|W|

δ and recall the result in Theorem 3 which completes the proof.

Thus, take the Lemma 1, 2 and 3 together, we have, with at least 1− 3δ,

Jc(πK)− τ = g(dπK )− g(dK)︸ ︷︷ ︸
I

+ g(µ · wK)− g(µD · wK)︸ ︷︷ ︸
II

+ g(µD · wD)− τ︸ ︷︷ ︸
III

≤ Lg
1− γ

· ∥KwK − (1− γ)µ0∥1 +
√
2Bw√
n

√
log

2|W|
δ

+ κ+
2B√
K

+
2L√
K

+
ε√
K

≤ 1

1− γ

(
6
√
2LgBw√
n

√
log

2|W||X |
δ

+
2B√
K

+
2L√
K

+
ε√
K

)
+

2B√
K

+
2L√
K

+
ε√
K

≤ 6
√
2LgBw

(1− γ)
√
n

√
log

2|W||X |
δ

+
υ√
K

≤ O(1/
√
n) +O(1/

√
K)

where we set υ = 1
1−γ (4B + 4L+ 2ε) which completes the proof.

B Experiments

We introduce a practical version of our primal-dual algorithm, following the key structure in Algorithm
1. We utilize this algorithm to conduct various experiments in this paper.

Algorithm 2: Practical version of POCC
1 Input: Dataset D = {(si, ai, ri, ci)}ni=1, cost threshold τ , learning rate ηλ, ηw, ηϕ, relaxed

parameter ζ, κ.;
2 Initialize network of importance weight wψ;
3 for k = 1, 2, . . . ,K do
4 Jointly optimize:

wk+1
ψ = Adam

(
wkψ − ηϕ∇L(wψ, λ

k, ϕk)
)
,

λk+1 = Adam
(
λk − ηλ∇L(wkψ, λ, ϕ

k
)
,

ϕk+1 = Adam
(
ϕk − ητ∇L(wkψ, λ

k, ϕ)
)
.

5 Compute the importance weight: ∀(s, a), w(s, a) = wψ(s, a);
6 Extract the policy: π(a | s) = wψ(s,a)πµ(a|s)∑

a′∈A wψ(s,a
′)πµ(a′|s) ;

7 Output: Policy π ;

Hyperparameters In the experiments of maze and FrozenLake environments, we set the discount
factor as γ = 0.99 and the cost threshold as τ = 0, indicating that the agent is not supposed to incur
any cost. For our algorithm 2 and COptiDICE [Lee et al., 2021], we perform a grid search on the set
{0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005} to determine the learning rate for parameters. We
ultimately select a learning rate of 0.00001 for the neural network and a Lagrange scalar learning
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rate of 0.0001. We set ζ = 0.1 and κ = 0.001 in our algorithm, and we set α = 0.5 in COptiDICE.
In both environments, we run the algorithm for K = 100000 iterations to ensure model convergence.
Additionally, we use fully-connected neural networks with a single hidden layer of width 64.

Continuous environments We also run a list of experiments in SafetyGym with offline datasets
provided by [Liu et al., 2023a] and compare with comprehensive baselines (e.g., CPQ in [R5], PDCA
in [R4], CoptiDICE in [R6], and BEAR-Lagrangian in [R7], [R8]). Note that only PDCA and our
algorithm provide theoretical results. In these experiments, to deal with the continuous state-action
space, we use the fully connected single hidden-layer neural network of width 128 to represent w.
We summarize the evaluation results in the following table. All the rewards and costs are normalized
and the cost threshold is 1. Each value is averaged over 20 evaluation episodes and 3 random seeds.

Table 2: All the rewards and costs are normalized. The cost threshold is 1. Blue: Safe agents with the
highest reward.

Task COptiDICE CPQ BEAR-Lag PDCA Ours
[Reward, Cost] [Reward, Cost] [Reward, Cost] [Reward, Cost] [Reward, Cost]

AntRun [0.6, 0.94] [0.03, 0.02] [0.15, 0.73] [0.28, 0.93] [0.6, 0.01]
CarRun [0.87, 0.0] [0.95, 1.79] [0.68, 7.78] [0.91, 0.0] [0.90, 0.0]
BallRun [0.59, 3.52] [0.22, 1.27] [−0.47, 5.03] [0.55, 3.38] [0.24, 0.0]

BallCircle [0.70, 2.61] [0.64, 0.76] [0.86, 3.09] [0.63, 2.29] [0.39, 0.93]
CarPush1 [0.23, 0.5] [−0.03, 0.95] [0.21, 0.54] [0.17, 0.41] [0.20, 0.4]

Compute setting We run the experiments with NVIDIA GeForce RTX 3080 Ti 8-Core Processor.
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For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide a proof sketch of our theorem in the main paper and complete the
full proof in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information needed to reproduce the main experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the data and code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify the experimental settings in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars correctly in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the sufficient information on the computer resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conform with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper and abide by the license.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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