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ABSTRACT

The combinatorial structure of many real-world action spaces leads to exponential
growth in the number of possible actions, limiting the effectiveness of conven-
tional reinforcement learning algorithms. Recent approaches for combinatorial
action spaces impose factorized or sequential structures over sub-actions, failing
to capture complex joint behavior. We introduce the Sub-Action Interaction Net-
work using Transformers (SAINT), a novel policy architecture that represents
multi-component actions as unordered sets and models their dependencies via
self-attention conditioned on the global state. SAINT is permutation-invariant,
sample-efficient, and compatible with standard policy optimization algorithms.
In 20 distinct combinatorial environments across three task domains, including
environments with nearly 17 million joint actions, SAINT consistently outperforms
strong baselines. 1

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable success across a range of domains, primarily
through methods designed for either small, discrete action spaces (Hessel et al., 2018; Mnih et al.,
2015; van Hasselt et al., 2015; Mnih et al., 2016) or continuous control (Fujimoto et al., 2018; Haarnoja
et al., 2018; Lillicrap et al., 2015; Schulman et al., 2017). Many real-world problems, however,
involve action spaces that lie between these extremes. These large discrete combinatorial spaces
are defined as Cartesian products of multiple subspaces, where each joint action a = (a1, . . . , aA)
consists of several coordinated sub-actions. Such settings, which arise in critical applications like
traffic signal control (Rasheed et al., 2020) and drug selection (Tang et al., 2022), require learning
policies that can effectively represent and reason about exponentially large, structured action spaces.

Traditional RL methods model discrete action spaces with a flat categorical policy, but this becomes
intractable in combinatorial settings where the number of actions scales as

∏A
d=1 md for A sub-action

dimensions with md choices each. To mitigate this combinatorial explosion, existing approaches
(Dulac-Arnold et al., 2015; Pierrot et al., 2021; Tavakoli et al., 2018; Zhang et al., 2018) rely
on simplifying assumptions that constrain the representational capacity of the policy class. One
family of methods (Pierrot et al., 2021; Tavakoli et al., 2018) factorizes the policy as π(a | s) =∏

i πi(ai | s), which cannot represent interactions between sub-actions. Another class of approaches
(Zhang et al., 2018) imposes a fixed autoregressive order, specifying a policy class of distributions
of the form π(a|s) =

∏
i πi(ai|s, a<i). This introduces an arbitrary sequence over sub-actions,

breaking permutation invariance and impairing learning when the imposed order misaligns with the
true dependency structure. Many real-world tasks violate both the independence and fixed-order
assumptions. In healthcare, for example, drug combinations can exhibit complex interaction effects
— treatments may be safe individually but harmful together, motivating permutation-invariant models
for combinatorial action spaces. Our work targets precisely these settings: combinatorial action
spaces wherein sub-action indexing is arbitrary or only weakly meaningful, and the fundamental
structure lies in sub-action interactions rather than in any prescribed ordering.

We introduce the Sub-Action Interaction Network using Transformers (SAINT), a policy architecture
that learns explicit representations of combinatorial actions by treating them as unordered sets of
sub-actions. Through self-attention conditioned on the global state, SAINT captures dependencies

1Code is available at https://anonymous.4open.science/r/SAINT-6BB9
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among sub-actions to produce expressive yet tractable policies. SAINT proceeds in three stages.
First, global state information is injected into initial sub-action representations. Next, self-attention
(Vaswani et al., 2017) is applied over the set of state-conditioned representations to capture sub-action
dependencies while preserving permutation equivariance. Finally, the representations are decoded
in parallel, producing action distributions that preserve the modeled interactions while remaining
computationally tractable.

We evaluate SAINT on challenging benchmark tasks, which exhibit both state-independent and
state-dependent sub-action dependencies, including traffic light control (Zhang et al., 2019), navi-
gation (Landers et al., 2024), and discretized MuJoCo locomotion tasks (Towers et al., 2024). Our
results demonstrate that by learning a more expressive representation of the action space’s internal
structure, SAINT consistently outperforms strong factorized and autoregressive baselines, scaling
to environments with nearly 17 million discrete actions. Targeted ablations validate the role of
state conditioning and show that the additional cost of modeling dependencies is often offset by
substantial gains in sample efficiency. Together, these findings establish that learning explicit rep-
resentations of sub-action interactions is a practical and scalable approach to decision-making in
complex combinatorial domains.

2 RELATED WORK

Combinatorial Action Spaces Combinatorial action spaces arise naturally in sequential decision
problems such as traffic signal control, games, and resource allocation. Prior work has introduced
task-specific architectures, imposed domain-specific assumptions, or exploited problem-specific
structure (Bello et al., 2016; Chen et al., 2023; Delarue et al., 2020; He et al., 2015; 2016; Nazari
et al., 2018; Zahavy et al., 2018; Farquhar et al., 2020). Such methods typically lack generality and
require manual design effort. A parallel body of work addresses continuous control problems by
discretizing the action space (Barth-Maron et al., 2018; Metz et al., 2017; Tang & Agrawal, 2020;
Van de Wiele et al., 2020), which contrasts with our focus on inherently discrete action spaces with
combinatorial structure.

A number of general-purpose architectures have been developed to scale RL to large combinatorial
action spaces. One strategy reduces complexity by assuming conditional independence across
sub-actions (Pierrot et al., 2021; Tavakoli et al., 2018), while another imposes an autoregressive
order (Zhang et al., 2018). These approaches improve tractability but either ignore dependencies
among sub-actions or introduce arbitrary orderings that break permutation symmetry. Retrieval-based
methods such as Wolpertinger (Wol-DDPG) (Dulac-Arnold et al., 2015) scale to large discrete spaces
by embedding and pruning candidate actions, but similarly fail to capture the joint structure of
unordered sub-actions (Chen et al., 2023). These limitations motivate architectures that can represent
dependencies across sub-actions while preserving permutation invariance.

Transformers for Action Representation Efforts to use Transformers for action space modeling
have largely focused on sequential representations. RT-1 (Brohan et al., 2022) and RT-2 (Zitkovich
et al., 2023) tokenize robot control trajectories and decode action tokens autoregressively, while
Q-Transformer (Chebotar et al., 2023) autoregresses across action dimensions within a timestep.
Learned tokenizers such as FAST (Pertsch et al., 2025) compress high-frequency control signals
into vocabularies for vision–language–action (VLA) training. Extensions of trajectory-based models
(Chen et al., 2021; Shang et al., 2022), interleave state and action tokens or design state-aware
tokenizations to handle multi-component actions. Together, these methods establish the efficacy of
Transformers for action encoding, but have been mostly designed for continuous control tasks in
offline RL or VLA settings that are not directly comparable to the combinatorial domains we study.
Moreover, they largely rely on sequential decompositions that impose arbitrary order and obscure
permutation symmetry.

3 PRELIMINARIES

Combinatorial Action Spaces We consider RL problems formalized as a Markov Decision Process,
defined by the tupleM = ⟨S,A, p, r, γ, µ⟩. Here, S denotes the state space, A the action space,
p(s′ | s, a) the transition function, r(s, a) the reward function, γ ∈ [0, 1] the discount factor, and
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Figure 1: Overview of SAINT. Initial sub-action embeddings are conditioned on the global state s to produce
state-aware representations. Stacked Transformer blocks then model dependencies among sub-actions. The
resulting context-aware representations are passed to independent Decision MLPs, which output per-sub-action
policy distributions used for factorized sampling.

µ the initial state distribution. A policy π maps states to distributions over actions, π : S → P(A),
which defines the agent’s behavior in the environment.

In this work we assume actions have an explicit compositional structure. Specifically, the action space
is a product of sub-action domains,A = A1×· · ·×AA, where each sub-action spaceAi is a discrete
set. A single action thus comprises A sub-decisions, a = (a1, . . . , aA), with each ai ∈ Ai. This
representation gives rise to high-dimensional action spaces with potentially complex dependencies
among sub-actions.

Attention Attention is a general computational primitive that allows a model to selectively ag-
gregate information from a set of inputs based on learned relevance scores (Vaswani et al., 2017).
Formally, given a set of queries Q ∈ Rnq×d, keys K ∈ Rnk×d, and values V ∈ Rnk×d, the scaled
dot-product attention computes output Attn(Q,K, V ) = softmax(QK⊤/

√
d)V . Multi-head self-

attention extends this by learning multiple independent projections and aggregating their outputs,
enabling the model to capture different types of interactions in parallel. Transformers, which stack
layers of multi-head self-attention with feedforward components, have been widely adopted in
domains requiring flexible modeling of structured dependencies.

4 SUB-ACTION INTERACTION NETWORK USING TRANSFORMERS (SAINT)

We introduce the Sub-Action Interaction Network using Transformers (SAINT), a policy architecture
that learns a state-conditioned, permutation-equivariant representation of the action space, enabling
efficient computation of expressive action distributions. The SAINT architecture comprises three
stages: (1) state conditioning, which injects global state information into sub-action representations;
(2) interaction modeling, which applies self-attention to model higher-order relationships among sub-
actions while preserving permutation equivariance; and (3) action decoding, which transforms each
sub-action representation into a distribution over its discrete choices, with all sub-actions decoded in
parallel to maintain tractability. An overview of the SAINT architecture is shown in Figure 1.

4.1 STATE CONDITIONING

SAINT represents each sub-action i ∈ {1, . . . , A} with a learnable embedding vector ei =
Embed(i) ∈ Rd, drawn from a table Embed ∈ RA×d. With d treated as a fixed hyperparame-
ter shared across all sub-actions, each sub-action is represented by a d-dimensional embedding
independent of its original cardinality |Ai|, yielding a shared space for uniform processing by the
subsequent Transformer layers.

Because sub-action identity alone is insufficient for decision-making, SAINT augments each base
embedding ei with information from the global state s ∈ Rds , enabling dependencies to be modeled
in a state-aware manner. While several conditioning mechanisms such as cross-attention or concate-
nation are possible, we adopt Feature-wise Linear Modulation (FiLM) (Perez et al., 2018), which
we found to be effective and parameter-efficient (see Appendix C). Notably, FiLM preserves the

3
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Algorithm 1 Policy Learning with the SAINT Architecture

1: Initialize SAINT policy πθ and value network Vϕ

2: for each training iteration do
3: Collect a batch of transitions (st,at, rt, donet) by executing πθ

4: Compute return Rt and weighting term wΦ(st,at, Rt) for each transition
5: Compute policy log-probabilities ℓt ← LOGPROBS(st,at) ▷ See function below
6: Update policy θ by ascending the objective Et[wΦ(st,at) · ℓt]
7: Update value function ϕ by descending the loss Et[(Vϕ(st)−Rt)

2]
8: end for

9: function LOGPROBS(S,Ataken)
10: Get sub-action embeddings E← [Embed(1), . . . ,Embed(A)]⊤

11: Inject state information Ẽ← StateCondition(S,E)

12: Model interactions X← TransformerBlocks(Ẽ)
13: Get logits for each sub-action Logitsi ← fi(X[:,i]) for i = 1, . . . , A
14: Compute log-probabilities logP[:,i] ← log πi(Ataken[:,i] | Logitsi) for i = 1, . . . , A

15: return
∑A

i=1 logP[:,i]

16: end function

d-dimensional width of each sub-action embedding, introducing no additional projection dimensions.
Its prior success in incorporating state information in RL (Brohan et al., 2022) further supports this
choice.

An MLP g : Rds → R2d processes the global state s once to produce FiLM parameters (γ,β) = g(s),
which are then applied uniformly to all sub-action embeddings via an affine transformation:

ẽi = γ ⊙ ei + β .

4.2 INTERACTION MODELING

The matrix of state-aware sub-action representations Ẽ ∈ RA×d is then processed by a stack of L
Transformer blocks, with positional encodings omitted to preserve permutation equivariance. Letting
X(0) = Ẽ, each block ℓ = 1, . . . , L performs multi-head self-attention followed by a feed-forward
network (FFN). Specifically, queries, keys, and values are obtained by linear projections of the
previous layer’s output:

Q,K,V = X(ℓ−1)WQ, X(ℓ−1)WK , X(ℓ−1)WV ,

which are then used in scaled dot-product attention to model interactions among sub-actions. The
attention output is then passed through a position-wise FFN applied independently to each sub-action
embedding. This design allows SAINT to model state-conditioned dependencies between sub-actions
while maintaining permutation equivariance.

4.3 ACTION DECODING

In the final stage, each context-aware sub-action representation xi is passed through a sub-action-
specific decision MLP, fi : Rd → RKi , which outputs a vector of Ki logits. These logits are
then transformed into a probability distribution over the Ki discrete choices for sub-action i via the
softmax function. The resulting policy for sub-action i is thus given by:

πi(ai | s) = Categorical(softmax(fi(xi))) .

Because each sub-action representation xi from the Interaction Modeling stage is conditioned on
the global state and incorporates information from the other sub-actions, the policy can be expressed
as independent sub-action distributions without loss of modeling capacity, preserving tractability in
combinatorial spaces where representing the full joint distribution would be infeasible.

4
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4.4 COMPATIBILITY WITH RL ALGORITHMS

The SAINT architecture is compatible with any RL algorithm for which the actor objective maximizes
the log-likelihood of sampled joint actions a, weighted by some functional wΦ(s,a):

max
θ

E(s,a)∼µ

[
wΦ(s,a) log πθ(a | s)

]
,

where µ denotes the sampling distribution over (s,a), arising either from an online policy or from a
fixed dataset in the offline setting. The weight wΦ(s,a) ≥ 0 is an algorithm-dependent scalar, such
as an advantage term or a score derived from QΦ.

Compatible methods include standard online algorithms such as PPO (Schulman et al., 2017) and
A2C (Mnih et al., 2016), as well as offline approaches such as IQL (Kostrikov et al., 2021) and
AWAC (Nair et al., 2020). SAINT also supports selection-based actor updates as in BCQ (Fujimoto
et al., 2019), where the policy is trained on candidate joint actions drawn from a dataset or proposal
distribution. SAINT remains compatible even when wΦ(s,a) is computed with a factorized critic,
since the critic is used only to produce a scalar weight for each sampled joint action from µ. The
actor is always updated toward the observed joint action a, not an action reconstructed or optimized
over by the critic.

Incompatibility arises when the actor objective requires global operations over the entire combinatorial
action space, such as Ea′∼π∗θ[QΦ(s,a

′)] or maxa′ QΦ(s,a
′). These operations are computationally

intractable unless QΦ is factorized; however, this changes the structure of the actor target, decom-
posing it into uncoordinated per-dimension terms and discarding cross-dimensional structure. This
breaks alignment with SAINT’s objective of modeling dependencies among sub-actions. SAINT’s
learning procedure is provided in Algorithm 1.

5 EXPERIMENTAL EVALUATION

Our experiments evaluate the efficacy of different action representations for modeling complex
sub-action interactions across three regimes: (1) primarily state-independent interactions, (2) state-
dependent interactions, and (3) weak interactions with complex dynamics. Results are presented
in Sections 5.1, 5.2, and 5.3, respectively. Section 5.4 evaluates SAINT in the offline RL setting.
Section 5.5 analyzes key architectural choices, quantifying the trade-off between representational
power and computational cost, and robustness to Transformer structural parameters.

We compare SAINT to four baselines reflecting the standard representational assumptions for com-
binatorial action spaces: (1) a factorized policy (Tavakoli et al., 2018), assuming fully independent
sub-actions; (2) an autoregressive model (Zhang et al., 2018), imposing a fixed sequential order; (3)
Wol-DDPG (Dulac-Arnold et al., 2015), using a continuous embedding; and (4) a flat RL algorithm,
which learns a monolithic representation of the full action space without exploiting its combinatorial
structure. Results are averaged over five random seeds.

These four baselines instantiate the dominant structural assumptions used to scale RL to large combi-
natorial action spaces. The flat policy corresponds to a monolithic model that ignores compositional
structure and treats each joint action as an atomic symbol. The factorized policy enforces independent
per-dimension decisions, preventing it from modeling necessary coordination between sub-actions.
The autoregressive model imposes a fixed sequential ordering over sub-actions, which can be mis-
aligned with the true, permutation-invariant dependency structure. Wol-DDPG embeds each joint
action as a single continuous vector, collapsing the internal structure needed to capture interactions
among sub-actions. Our experiments in Sections 5.1-5.4 are designed to test whether these structural
assumptions remain sufficient when sub-action indexing is arbitrary or only weakly meaningful, or
whether a set-based alternative such as SAINT is required.

5.1 STATE-INDEPENDENT SUB-ACTION DEPENDENCIES

To evaluate SAINT in environments where sub-action dependencies are primarily state-independent,
we use the CityFlow traffic control benchmark (Zhang et al., 2019), where each action corresponds
to simultaneous phase decisions across multiple intersections. While coordination is necessary to
achieve global traffic efficiency, the structure of these dependencies remains largely unchanged across
states.

5
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(b) CityFlow-Irregular

Figure 2: Learning curves show that SAINT outperforms all baselines in both learning speed and final reward,
across both the CityFlow-Linear and CityFlow-Irregular environments.

We consider two configurations: (1) CityFlow-Linear, where three traffic signals are arranged in a
row, yielding 729 possible joint signal combinations; and (2) CityFlow-Irregular, with four closely
spaced, asymmetric intersections and varying road capacities, resulting in 375 valid joint action
combinations. These networks are illustrated in Appendix A.1.

We adopt PPO as the standard RL algorithm in this setting. SAINT, the pure factorized baseline,
and the AR baseline, use the same PPO implementation and hyperparameters, isolating the impact
of architectural differences. Wol-DDPG performs poorly in this environment and is excluded from
the main learning curves; full training curves, including Wol-DDPG, are included in Appendix A.2.
Wol-DDPG’s ineffectiveness aligns with prior observations that it is ill-suited to environments with
unordered sub-actions (Chen et al., 2023).

The results in Figure 2, demonstrate the advantage of SAINT’s set-based action representation. In
both environments, SAINT learns faster and achieves higher final performance. The factorized
approach is structurally incapable of modeling coordination between intersections and thus performs
poorly. The autoregressive model is restricted by its fixed sequential prior, which is misaligned with
the unordered nature of traffic-signal control. The flat PPO baseline, forced to learn a monolithic
representation without exploiting combinatorial structure, fails to learn an effective policy.

5.2 STATE-DEPENDENT SUB-ACTION DEPENDENCIES

Next, we evaluate SAINT in environments where sub-action dependencies are strongly state-
dependent. In these domains, the relationships among sub-actions vary significantly with the envi-
ronment state, requiring policies to model context-sensitive joint decisions. To study this setting,
we use the Combinatorial Navigation Environment (CoNE) (Landers et al., 2024), a configurable
high-dimensional control domain designed to evaluate policy architectures under large, discrete, and
structured action spaces.

The agent begins at a fixed origin s0 and must reach a predefined goal g. At each timestep, it selects
a joint action by activating multiple discrete sub-actions, each corresponding to movement along a
distinct dimension of the environment. These sub-actions are executed in parallel to produce a single
composite transition. The agent receives a reward r = −ρ(s, g) at each step based on the Euclidean
distance to the goal. Episodes terminate either upon reaching the goal (reward +10) or entering a
terminal failure state (pit), which incurs a penalty of r = −10 · ρ(s0, g) to discourage reward hacking
through early failure.

In CoNE, both the action and state spaces grow exponentially with dimensionality: the number
of joint actions scales as |A| = 22D, and the number of states as |S| = MD in a D-dimensional
environment with M positions per axis. In our largest setting, the environment comprises over 200
million states and nearly 17 million joint actions per state. Beyond scale, CoNE introduces strong
sub-action dependencies — some combinations enable efficient movement, others cancel out, and
some lead to catastrophic failure. Crucially, these sub-action interactions are highly state-dependent; a
combination that is optimal in one state may lead to a pit in another, making effective decision-making

6
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|A| SAINT Factored AR Wol-DDPG A2C

∼16k -8.3 ± 0.0 −11.9± 1.0 -8.3 ± 0.0 −586.2± 62.4 −593.7± 51.7

∼65k -9.9 ± 0.6 −45.8± 16.7 −22.3± 8.1 −691.5± 51.3 −641.0± 78.0

∼260k -12.5 ± 1.6 −51.6± 23.0 −20.4± 2.6 −712.0± 64.0 −756.3± 37.2

∼1M -12.2 ± 1.3 −50.9± 20.7 −28.6± 3.1 −674.5± 25.3 −801.1± 14.4

∼4M -14.4 ± 0.8 −36.6± 6.0 −28.0± 2.7 −929.3± 43.3 −846.6± 4.2

∼17M -13.4 ± 2.6 −44.1± 16.2 −33.9± 10.8 −873.2± 59.7 –

Table 1: Performance in CoNE as action dimensionality increases. SAINT consistently achieves the highest
reward across all action space sizes. Factorized and autoregressive baselines plateau at substantially lower reward
levels, while Wol-DDPG and A2C fail to learn viable policies.

highly sensitive to global context. CoNE is highly configurable, allowing us to systematically vary
the number of dimensions and pit density to assess the impact of increasing action space size and
sub-action dependence.

We adopt A2C as the standard RL algorithm in this setting. SAINT, the pure factorized baseline, and
the AR baseline use identical A2C implementations to ensure a controlled comparison.

Varying Dimensionality To evaluate SAINT’s effectiveness as the number of possible actions
increases, we scale the dimensionality of CoNE from 7 (yielding over 16 thousand possible action
combinations) to 12 (with nearly 17 million combinations). In CoNE environments without pits, the
agent can learn a trivial policy, as the optimal solution involves selecting the same action in every
state. Thus, to introduce meaningful complexity and prevent this degenerate behavior, we place pits
in 25% of interior states.

The results in Table 1 show that SAINT maintains strong performance as action dimensionality
increases, significantly outperforming all baselines at every scale. While the factorized and autore-
gressive baselines achieve modest performance in lower dimensions, their performance degrades
or plateaus as the number of sub-actions grows. This suggests their fixed representational priors
— assuming either complete independence or a single fixed order — are insufficient to capture
the complex interactions that emerge at scale. SAINT’s relative advantage increases in the largest
settings, where it maintains low variance and stable performance. Wol-DDPG and A2C perform
poorly throughout, highlighting their inability to form a tractable and meaningful representation of
large, unordered action spaces. Note that A2C is omitted at the highest dimensionality due to the
computational intractability of modeling the full joint action space with a flat categorical policy. Full
learning curves are provided in Appendix B.2.

Varying Dependence To assess SAINT’s robustness to different levels of sub-action dependence,
we incrementally increased the number of pits in the 12-dimensional CoNE environment. Higher
pit densities impose stronger coordination requirements, as more sub-action combinations must be
carefully selected to avoid pits. To ensure that a valid path from the start state to the goal always
exists, pits were placed only in interior (non-boundary) states. We generate environments with 10%,
25%, 50%, 75%, and 100% of interior states occupied by pits. Note that even in the 100% setting,
all boundary states remain pit-free, guaranteeing the existence of at least one (possibly inefficient)
path to the goal region. We exclude A2C from this experiment due to the computational intractability
of modeling such a large discrete action space (nearly 17 million actions) with a flat categorical
distribution.

The results in Table 2 demonstrate that SAINT is more robust to increasing sub-action dependence
than all baselines. As pit density increases from 10% to 100%, SAINT maintains high performance
with low variance, while the factorized and autoregressive baselines generally degrade. Wol-DDPG
was unable to learn meaningful policies at any pit density. These results highlight SAINT’s ability
to capture complex, context-sensitive dependencies between sub-actions that are critical in many
real-world combinatorial environments. Full learning curves for these results are provided in Ap-
pendix B.3.
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Pit % SAINT Factored AR Wol-DDPG

10 -13.5 ± 2.7 −44.1± 16.2 −33.9± 10.8 −873.2± 59.7

25 -15.5 ± 2.6 −33.3± 4.1 −42.2± 10.7 −822.3± 36.8

50 -18.4 ± 1.2 −78.6± 29.7 −38.8± 4.4 −863.0± 22.9

75 -19.7 ± 0.0 −58.0± 11.9 −27.8± 3.1 −841.1± 39.5

100 -19.7 ± 0.0 −54.8± 7.1 −28.6± 4.1 −879.5± 33.4

Table 2: Performance in 12-D CoNE (∼ 17M actions) as sub-action dependence increases (controlled via pit
density). SAINT consistently achieves the highest rewards across all settings and remains robust even as the
sub-actions become highly dependent. Other methods degrade more rapidly, especially the factorized baseline.
Wol-DDPG failed to learn meaningful policies in this setting.

5.3 WEAK SUB-ACTION DEPENDENCIES WITH COMPLEX DYNAMICS

To evaluate SAINT in environments where sub-action dependencies are relatively weak but the
underlying dynamics are complex, we consider discretized variants of the HalfCheetah, Hopper, and
Walker2D MuJoCo locomotion tasks (Towers et al., 2024). In these environments, each continuous
joint control signal is discretized into 11 bins, yielding large, structured action spaces while retaining
the rich temporal and physical dynamics of the original tasks. Although the discretized action spaces
are combinatorially large, prior work (Beeson et al., 2024) suggests that the dependencies among
sub-actions are relatively weak in these domains. This setting thus provides a useful test of SAINT’s
generality, elucidating whether the architectural overhead of self-attention remains beneficial when
sub-action dependencies are weak or whether simpler factorized policies suffice.

Given the limitations of PPO and Wol-DDPG identified in Sections 5.1 and 5.2, we restrict our
comparison to the pure factorized and autoregressive baselines, using identical PPO implementations
to ensure a controlled evaluation.

As shown in Figure 3, SAINT matches baseline performance in HalfCheetah and achieves faster
learning and higher returns in Hopper and Walker2D. This demonstrates that even when sub-action
dependencies are weak, learning a set-based representation of the action space gives an advantage
over the rigid assumptions of factorization or a fixed autoregressive order.

5.4 OFFLINE RL

Finally, we evaluate whether SAINT can be used effectively as a policy architecture in offline RL.
Specifically, we use the medium-expert datasets from the discretized DM Control tasks cheetah
run, finger spin, humanoid stand, quadruped walk, and dog trot introduced by Beeson et al. (2024).
Across these environments, the number of sub-actions ranges from six to 39.
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(a) HalfCheetah

0 200 k 400 k 600 k 800 k 1 M
Environment Steps

0

250

500

750

1000

1250

1500

Ep
is

od
e 

R
ew

ar
d

(b) Hopper
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(c) Walker2D

Figure 3: Performance in discretized MuJoCo environments. While results are similar across methods in
HalfCheetah, SAINT outperforms factorized and autoregressive baselines in Hopper and Walker2D, demonstrat-
ing its ability to handle complex action spaces even when sub-action dependencies are relatively weak.
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Task SAINT Factored AR

cheetah 676.1 ± 30.9 629.6± 36.5 629.6± 38.8

finger 809.6 ± 29.0 692.3± 71.7 762.1± 50.9

humanoid 676.5 ± 48.2 594.1± 47.7 592.4± 58.5

quadruped 851.5 ± 32.5 835.2± 52.0 692.2± 99.7

dog 586.1 ± 30.5 415.2± 40.4 423.3± 72.6

Average 720.0 633.3 619.9

Table 3: Mean ± std performance on offline DM Control tasks with BCQ variants.

In this section, we report results using Batch-Constrained Q-learning (BCQ) (Fujimoto et al., 2019)
as the offline RL objective. Additional offline evaluations with AWAC and IQL are provided in
Appendix C. As in Section 5.3, we limit our comparison to the pure factorized and autoregressive
baselines.

As shown in Table 3, SAINT-BCQ achieves the strongest performance across all domains, demon-
strating that explicitly modeling sub-action interactions improves policy quality even when learning
is restricted to logged trajectories.

5.5 ANALYSES AND ABLATIONS

To evaluate SAINT’s design choices and robustness, we conduct three analyses. First, we compare
FiLM-based state conditioning to alternative mechanisms. Second, we assess the trade-off between
representational power and computational cost, quantifying how modeling sub-action interactions
affects sample efficiency. These evaluations are performed in the CityFlow-Irregular environment
and in the 10-dimensional CoNE setting with pits occupying 25% of interior states. Finally, we test
SAINT’s robustness to architectural hyperparameters using the CityFlow-Irregular environment.

State Conditioning We compare SAINT’s FiLM-based state conditioning to four alternatives: (1)
applying cross-attention to the state before self-attention, (2) applying cross-attention to the state after
self-attention, (3) interleaving cross-attention and self-attention layers, and (4) appending the state
as an additional token within the sub-action self-attention block. As shown in Appendix C, FiLM
achieves higher final performance and more stable training in CityFlow, and performs at least as well
as the alternatives in CoNE. These results indicate that while multiple conditioning mechanisms are
effective, FiLM provides a consistent performance advantage and stabilizes training.

Representational Power vs. Sample Efficiency To isolate the computational overhead of mod-
eling sub-action dependencies via self-attention, we compare SAINT’s runtime to that of the pure
factorization baseline. We also evaluate a variant of SAINT, called SAINT-IP, that replaces standard
self-attention with an inducing point mechanism (Lee et al., 2019), which approximates full attention
using a fixed set of learned summary vectors. This technique reduces the quadratic cost of attention by
attending first from the inducing points to the inputs, and then from the inputs back to the summaries.
All experiments were conducted on a single NVIDIA A40 GPU using Python 3.9 and PyTorch 2.6.
We report wall-clock time per training episode in seconds, averaged over 5 runs.

As shown in Table 4, SAINT requires more training time than the pure factorization baseline, reflecting
the added cost of modeling sub-action dependencies with self-attention. SAINT-IP incurs further
overhead from the Induced Set Attention Block (ISAB), which performs two attention passes per layer,
compared to one in standard self-attention. While the number of sub-actions in our environments is
nontrivial, it remains small relative to domains such as large language modeling or 3-D vision, for
which inducing points were introduced (Lee et al., 2019). Consequently, the quadratic cost of full
self-attention is not prohibitive, and ISAB’s asymptotic advantage does not yield runtime benefits in
practice.

However, in practical settings efficiency is better measured by wall-clock time to reach a target return.
The ”time to factored performance” metric shows that SAINT and SAINT-IP reach the factorized
baseline’s asymptotic return in less than one-third of the time in CityFlow and about 30% faster in
CoNE. This indicates that the added computation of explicit action representations is outweighed by
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SAINT SAINT-IP Factored

CityFlow
Total training time 5204.2 5412.4 3936.2
Time to factored performance 1088.53 1087.49 3936.2

CoNE
Total training time 966.5 980.9 535.9
Time to factored performance 395.76 504.97 535.9

Table 4: Total wall-clock training time and time to reach the factored baseline’s final performance, both measured
in seconds. “Total training time” reflects the full duration of training, while “time to factored performance”
measures how quickly each method reaches that baseline.

faster learning — by modeling the true dependency structure, SAINT achieves stronger policies in
less time.

Robustness to Architectural Hyperparameters We evaluated SAINT’s sensitivity to architectural
hyperparameters by sweeping the number of self-attention blocks {1, 3, 5} and attention heads
{1, 2, 4, 8}, for a total of twelve configurations. As shown in Appendix F, performance varied within
a narrow range — the best setting (3 blocks × 1 head) outperformed the weakest (1 block × 8
heads) by only ∼ 7%. Even the weakest configuration exceeded all baselines, underscoring SAINT’s
robustness to attention depth and head count.

6 DISCUSSION AND CONCLUSION

We introduce SAINT, a policy architecture that treats learning in large discrete action spaces as a
representation learning problem. Instead of assuming conditional independence or a fixed ordering,
SAINT learns a state-conditioned, permutation-equivariant set representation of the combinatorial
action space. Self-attention models the interactions within this set, yielding expressive and tractable
policies for combinatorial domains.

While SAINT achieves strong performance, several limitations remain. Self-attention introduces
a higher per-step computational cost than purely factorized baselines. Section 5.5 shows that this
cost is often offset by improved sample efficiency, but lighter-weight attention variants such as
sparse attention (Child et al., 2019) could benefit resource-constrained settings. Our analyses also
validate FiLM as an effective state-conditioning mechanism, yet performance in new domains may
depend on the capacity of this network, motivating exploration of more expressive state-injection
methods such as those proposed in multi-agent RL (Iqbal & Sha, 2019). Next, SAINT is designed
for domains wherein a joint action is naturally represented as a set of parallel sub-actions for which
indexing is arbitrary or weakly structured. In settings with highly structured and known priors, a
fully permutation-equivariant prior may not be the most effective representation. In such settings
hybrid architectures that combine structured embeddings with partial equivariance are a promising
direction for future work. Finally, although our experiments assume a fixed set of sub-actions, many
real-world domains, such as road closures or reconfigurable network topologies, involve dynamically
changing action sets. Because SAINT represents actions as an unordered set, it naturally supports
such variability via masking. Systematically evaluating this capability is an important research
direction.

In this work we show that learning explicit representations of sub-action interactions is an effective
and practical approach for control in combinatorial action spaces. SAINT represents actions as
unordered sets and applies self-attention to capture sub-action dependencies, yielding expressive
yet tractable policies. This modeling delivers substantial gains in sample efficiency, accelerating
convergence to high-performing policies. In environments with up to 17 million joint actions, SAINT
consistently outperforms baselines that assume independence, impose ordering, or learn flat policies,
demonstrating the effectiveness of modeling sub-action interactions for scalable combinatorial control.
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A LEARNING IN CITYFLOW

A.1 ENVIRONMENTAL SETUP

(a) CityFlow-Linear

(b) CityFlow-Irregular

Figure 4: Visualizations of the two CityFlow traffic control configurations used in our experiments. CityFlow-
Linear (Figure 4a) has three intersections arranged in a row, yielding 729 possible joint actions. CityFlow-
Irregular (Figure 4b) has 375 joint actions but exhibits greater coordination demands and more diverse traffic
interactions.

In both CityFlow-Linear (Figure 4a) and CityFlow-Irregular (Figure 4b), the state is represented as a
flat integer vector, in which each value indicates the number of waiting vehicles on an incoming lane
and its paired outgoing lane. The reward at each step is the negative of the average ”pressure” across
intersections, where an intersection’s pressure is defined as the absolute difference between its total
incoming and outgoing vehicle counts. Pressure is a standard metric in traffic signal control literature,
commonly used to quantify imbalance in intersection flow Lioris et al. (2016); Varaiya (2013).
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A.2 LEARNING CURVES INCLUDING WOL-DDPG

SAINT Factored AR Wol-DDPG PPO
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(a) CityFlow-Linear
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(b) CityFlow-Irregular

Figure 5: Full learning curves for all baselines in CityFlow, including Wol-DDPG. Wol-DDPG performs poorly,
consistent with its known limitations in environments with unordered sub-actions.

Figure 5 presents the full training curves for all methods in the CityFlow environments, including Wol-
DDPG. As noted in Section 5.1, Wol-DDPG consistently underperforms relative to other methods.
This poor performance is consistent with prior findings Chen et al. (2023), which show that Wol-
DDPG is ill-suited to settings with unordered sub-actions. Learning curves excluding Wol-DDPG are
presented in Figure 2.
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B CONE LEARNING CURVES

B.1 ENVIRONMENTAL SETUP

The Combinatorial Navigation Environment (CoNE) Landers et al. (2024) is designed to evaluate RL
algorithms in settings with high-dimensional, combinatorial action spaces and strong, state-dependent
sub-action dependencies. In CoNE, actions are formed by simultaneously selecting discrete sub-
actions, each specifying movement along a different dimension. These sub-actions are executed in
parallel to produce a composite transition, which may advance the agent toward the goal or result in
failure by entering a pit.

CoNE supports scaling along two axes, action dimensionality and pit density. As the number of
dimensions increases, both the state and action spaces grow exponentially; our largest configuration
contains over 200 million states and nearly 17 million discrete joint actions per state. In CoNE,
sub-action interactions are complex: some combinations are efficient, others cancel each other
out, and many must be avoided. These dependencies are highly state-sensitive, requiring effective
decision-making to account for both structure and context.

To our knowledge, no other existing benchmarks offer the combination of large-scale action spaces
and tunable sub-action dependencies found in CoNE. Popular environments such as the DeepMind
Control Suite Tassa et al. (2018), for example, lack meaningful sub-action interactions Beeson et al.
(2024).

B.2 VARYING DIMENSIONALITY

SAINT Factored AR Wol-DDPG PPO
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Figure 6: Learning curves in CoNE environments as the number of sub-action dimensions increases from 7 to
12 (corresponding to joint action spaces ranging from ∼ 16k to ∼ 17M actions). SAINT consistently achieves
higher final rewards than all baselines, with its advantage widening in higher-dimensional settings. Factorized
and autoregressive baselines struggle to scale beyond moderate dimensions, while Wol-DDPG and A2C fail
to learn meaningful policies across all tasks. Results are averaged over 5 seeds; shaded regions indicate one
standard deviation.

Figure 6 provides the full learning curves corresponding to the results in Table 1, which reports
performance in CoNE as the number of sub-action dimensions increases. As dimensionality grows,
the joint action space expands exponentially — from roughly 16 thousand to nearly 17 million
possible joint actions.

Across all settings, SAINT consistently outperforms baselines. Notably, SAINT maintains stable
learning dynamics and low variance even at the largest scales, whereas factorized and autoregressive
baselines generally plateau. Wol-DDPG and A2C fail to learn viable policies in any configuration,
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highlighting their inability to handle large, unordered combinatorial action spaces. These results
underscore SAINT’s scalability and its robustness to increasing combinatorial complexity.

B.3 VARYING DEPENDENCE

SAINT Factored AR Wol-DDPG

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e 

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

40

20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e 

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

40

20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e 

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k
60

40

20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e 

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k
60

40

20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e 

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

60

40

20

Figure 7: Learning curves in the 12-D CoNE environment as pit density increases from 10% to 100%, inducing
progressively stronger sub-action dependencies. SAINT consistently outperforms all baselines, maintaining
stable performance even as coordination requirements become increasingly stringent. Factored and autoregressive
baselines generally plateau, while Wol-DDPG fails to learn meaningful policies. Results are averaged over 5
seeds; shaded regions denote one standard deviation.

Figure 7 shows the full learning curves corresponding to the results in Table 2, which reports
performance in the 12-D CoNE environment as sub-action dependence increases via pit density. As
more interior states are occupied by pits, successful navigation requires greater coordination among
sub-actions to avoid failure states.

SAINT maintains stable learning and strong final performance across all pit densities, even as
coordination requirements grow substantially. Factorized policies degrade, while autoregressive
policies consistently underperform relative to SAINT. Wol-DDPG fails to make progress in any
environment. A2C was excluded from this experiment due to the computational intractability
of modeling such a large discrete action space (nearly 17 million actions) with a flat categorical
distribution. These results highlight SAINT’s robustness to state-dependent sub-action dependencies.
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C STATE CONDITIONING

We compare SAINT’s pre-attention FiLM-based state conditioning to four alternative mechanisms:
(1) applying cross-attention to the state before self-attention, (2) applying cross-attention to the state
after self-attention, (3) interleaving cross-attention and self-attention layers, and (4) appending the
state as an additional token within the sub-action self-attention block.

FiLM Cross Before Cross After Interleaved Token
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(a) CityFlow
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(b) 10-D CoNE with 25% pits

Figure 8: Comparison of state conditioning strategies in CityFlow (left) and 10-D CoNE (right). SAINT’s
pre-attention FiLM-based conditioning outperforms alternatives more clearly in CityFlow, while all strategies
perform similarly in CoNE. Results are averaged over 5 seeds; shaded regions indicate one standard deviation.

As shown in Figure 8, FiLM achieves higher final reward and exhibits more stable learning than the
alternatives in CityFlow. In the 10-dimensional CoNE environment, all state conditioning strategies
perform comparably, with pre-attention FiLM-based conditioning achieving slightly better final
performance. These results suggest that while multiple conditioning mechanisms are viable, FiLM
offers an advantage and may contribute to more stable training dynamics.
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D ROBUSTNESS TO OFFLINE RL TRAINING OBJECTIVE

The results in Section 5.4 show that SAINT’s set-based, permutation-invariant architecture learns
effective representations for offline RL in combinatorial action spaces when trained with an BCQ
objective. To assess whether these advantages persist across different offline RL methods, we also
evaluate SAINT with two additional objectives, Advantage Weighted Actor Critic (AWAC) (Nair
et al., 2020) and Implicit Q-learning (IQL) (Kostrikov et al., 2021). These experiments use the same
medium-expert datasets considered in Section 5.4 and follow an identical controlled protocol: for
each algorithm, we instantiate factorized, autoregressive, and SAINT-based policy parameterizations
while keeping the critic, training procedure, and hyperparameters fixed.

D.1 AWAC

Task SAINT Factored AR

cheetah 668.5 ± 21.9 657.5± 25.9 646.6± 22.4

finger 638.6 ± 324.7 1.0± 1.0 1.1± 1.4

humanoid 694.7 ± 29.1 639.4± 29.2 682.9± 36.3

quadruped 837.0 ± 34.9 834.2 ± 37.6 822.3± 46.1

dog 543.9 ± 60.3 423.0± 51.7 449.5± 43.3

Average 676.5 511.0 520.5

Table 5: Mean ± std performance on offline DM Control tasks with AWAC variants.

D.2 IQL

Task SAINT Factored AR

cheetah 627.5 ± 39.6 588.7± 48.0 615.9± 37.8

finger 847.0 ± 13.6 841.2 ± 16.2 843.5 ± 16.1

humanoid 613.1 ± 58.9 589.9± 40.8 568.2± 55.5

quadruped 863.7 ± 30.5 863.2 ± 36.5 857.0 ± 30.8

dog 596.1 ± 53.2 497.8± 35.9 539.8± 33.6

Average Return 709.5 676.2 684.9

Table 6: Mean ± std performance on offline DM Control tasks with IQL variants.

Tables 5 and 6 show that SAINT achieves the strongest performance across all domains under both
AWAC and IQL, consistent with the BCQ results in the main text. This indicates that the benefits of
modeling sub-action interactions extend across offline RL objectives and are not tied to a specific
learning algorithm.
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E SAINT’S COMPUTATION COST

SAINT SAINT-IP Factored
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(a) CityFlow
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(b) CoNE

Figure 9: Learning curves comparing SAINT, SAINT with inducing points (SAINT-IP), and the pure factorized
baseline in CityFlow and CoNE. Despite higher per-step computation cost, both SAINT and SAINT-IP reach the
factored baseline’s final performance much faster and achieve higher final rewards. In CityFlow, SAINT-IP’s
policy is worse than SAINT’s, but still outperforms the baseline. Results are averaged over 5 seeds; shaded
regions denote one standard deviation.

Figure 9 shows training curves for SAINT, SAINT with inducing points (SAINT-IP), and the factor-
ized baseline in the CityFlow and CoNE environments. While SAINT and SAINT-IP incur higher
per-step computational costs due to the Transformer blocks, both methods achieve the factorized
baseline’s final performance in less total training time. This reflects their ability to reach performant
policies with fewer training episodes. In CityFlow, SAINT-IP exhibits a degradation in asymptotic
reward relative to SAINT, but still outperforms the factorized baseline. These results illustrate that
the overhead of modeling sub-action dependencies can be offset by more efficient use of training
experience.
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F ROBUSTNESS TO ARCHITECTURAL HYPERPARAMETERS

We systematically evaluated SAINT’s sensitivity to architectural hyperparameters by sweeping
over the number of self-attention blocks {1, 3, 5} and attention heads {1, 2, 4, 8}, yielding twelve
configurations.

Configuration Mean Return

1 block × 1 head −13376.6± 973.3
1 block × 2 heads −13416.6± 1003.6
1 block × 4 heads −13058.6± 725.5
1 block × 8 heads −13744 .5 ± 900 .6
3 blocks × 1 head −12834.6± 499.8
3 blocks × 2 heads −13195.0± 618.8
3 blocks × 4 heads −13209.5± 778.8
3 blocks × 8 heads −13156.5± 581.9
5 blocks × 1 head −13320.7± 831.7
5 blocks × 2 heads −13658.8± 855.6
5 blocks × 4 heads −13664.3± 961.5
5 blocks × 8 heads −13664.8± 822.3

Factored PPO −14200.5± 1127.4
AR PPO −13995.9± 789.4
Standard PPO −14442.5± 1180.0

Table 7: Mean episodic return ± standard error on CityFlow Irregular. We varied the number of
attention blocks {1, 3, 5} and the number of attention heads {1, 2, 4, 8}, for a total of 12 configurations.
All SAINT variants outperform Factored, AR, and PPO baselines. The best SAINT configuration is
in bold, the worst is in italics.

A consistent pattern emerges in Table 7. Moderate depth (3 blocks) with 2–4 heads yields strong
and stable performance, while very high head counts (8) tend to degrade results. Crucially, every
SAINT variant outperforms all baselines, including Factored PPO, AR-PPO, and standard PPO.
This robustness implies that SAINT’s architectural advantages are not narrowly tied to a specific
hyperparameter regime but instead generalize across a broad design space. Careful tuning can yield
an additional 5–10% improvement, yet even suboptimal choices consistently achieve better outcomes
than state of the art methods.
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