
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SAINT: ATTENTION-BASED POLICIES FOR DISCRETE
COMBINATORIAL ACTION SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

The combinatorial structure of many real-world action spaces leads to exponential
growth in the number of possible actions, limiting the effectiveness of conven-
tional reinforcement learning algorithms. Recent approaches for combinatorial
action spaces impose factorized or sequential structures over sub-actions, failing
to capture complex joint behavior. We introduce the Sub-Action Interaction Net-
work using Transformers (SAINT), a novel policy architecture that represents
multi-component actions as unordered sets and models their dependencies via
self-attention conditioned on the global state. SAINT is permutation-invariant,
sample-efficient, and compatible with standard policy optimization algorithms.
In 20 distinct combinatorial environments across three task domains, including
environments with nearly 17 million joint actions, SAINT consistently outperforms
strong baselines. 1

1 INTRODUCTION

Reinforcement learning (RL) has achieved remarkable success across a range of domains, primarily
through methods designed for either small, discrete action spaces (Hessel et al., 2018; Mnih et al.,
2015; van Hasselt et al., 2015; Mnih et al., 2016) or continuous control (Fujimoto et al., 2018; Haarnoja
et al., 2018; Lillicrap et al., 2015; Schulman et al., 2017). Many real-world problems, however,
involve action spaces that lie between these extremes. These large discrete combinatorial spaces
are defined as Cartesian products of multiple subspaces, where each joint action a = (a1, . . . , aA)
consists of several coordinated sub-actions. Such settings, which arise in critical applications like
traffic signal control (Rasheed et al., 2020) and drug selection (Tang et al., 2022), require learning
policies that can effectively represent and reason about exponentially large, structured action spaces.

Traditional RL methods model discrete action spaces with a flat categorical policy, but this becomes
intractable in combinatorial settings where the number of actions scales as

∏A
d=1 md for A sub-action

dimensions with md choices each. To mitigate this combinatorial explosion, existing approaches
(Dulac-Arnold et al., 2015; Pierrot et al., 2021; Tavakoli et al., 2018; Zhang et al., 2018) rely
on simplifying assumptions that constrain the representational capacity of the policy class. One
family of methods (Pierrot et al., 2021; Tavakoli et al., 2018) factorizes the policy as π(a | s) =∏

i πi(ai | s), which cannot represent interactions between sub-actions. Another class of approaches
(Zhang et al., 2018) imposes a fixed autoregressive order, specifying a policy class of distributions
of the form π(a|s) =

∏
i πi(ai|s, a<i). This introduces an arbitrary sequence over sub-actions,

breaking permutation invariance and impairing learning when the imposed order misaligns with the
true dependency structure. Many real-world tasks violate both the independence and fixed-order
assumptions. In healthcare, for example, drug combinations can exhibit complex interaction effects
— treatments may be safe individually but harmful together, motivating permutation-invariant models
for combinatorial action spaces. Our work targets precisely these settings: combinatorial action
spaces wherein sub-action indexing is arbitrary or only weakly meaningful, and the fundamental
structure lies in sub-action interactions rather than in any prescribed ordering.

We introduce the Sub-Action Interaction Network using Transformers (SAINT), a policy architecture
that learns explicit representations of combinatorial actions by treating them as unordered sets of
sub-actions. Through self-attention conditioned on the global state, SAINT captures dependencies

1Code is available at https://anonymous.4open.science/r/SAINT-6BB9

1

https://anonymous.4open.science/r/SAINT-6BB9

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

among sub-actions to produce expressive yet tractable policies. SAINT proceeds in three stages.
First, global state information is injected into initial sub-action representations. Next, self-attention
(Vaswani et al., 2017) is applied over the set of state-conditioned representations to capture sub-action
dependencies while preserving permutation equivariance. Finally, the representations are decoded
in parallel, producing action distributions that preserve the modeled interactions while remaining
computationally tractable.

We evaluate SAINT on challenging benchmark tasks, which exhibit both state-independent and
state-dependent sub-action dependencies, including traffic light control (Zhang et al., 2019), navi-
gation (Landers et al., 2024), and discretized MuJoCo locomotion tasks (Towers et al., 2024). Our
results demonstrate that by learning a more expressive representation of the action space’s internal
structure, SAINT consistently outperforms strong factorized and autoregressive baselines, scaling
to environments with nearly 17 million discrete actions. Targeted ablations validate the role of
state conditioning and show that the additional cost of modeling dependencies is often offset by
substantial gains in sample efficiency. Together, these findings establish that learning explicit rep-
resentations of sub-action interactions is a practical and scalable approach to decision-making in
complex combinatorial domains.

2 RELATED WORK

Combinatorial Action Spaces Combinatorial action spaces arise naturally in sequential decision
problems such as traffic signal control, games, and resource allocation. Prior work has introduced
task-specific architectures, imposed domain-specific assumptions, or exploited problem-specific
structure (Bello et al., 2016; Chen et al., 2023; Delarue et al., 2020; He et al., 2015; 2016; Nazari
et al., 2018; Zahavy et al., 2018; Farquhar et al., 2020). Such methods typically lack generality and
require manual design effort. A parallel body of work addresses continuous control problems by
discretizing the action space (Barth-Maron et al., 2018; Metz et al., 2017; Tang & Agrawal, 2020;
Van de Wiele et al., 2020), which contrasts with our focus on inherently discrete action spaces with
combinatorial structure.

A number of general-purpose architectures have been developed to scale RL to large combinatorial
action spaces. One strategy reduces complexity by assuming conditional independence across
sub-actions (Pierrot et al., 2021; Tavakoli et al., 2018), while another imposes an autoregressive
order (Zhang et al., 2018). These approaches improve tractability but either ignore dependencies
among sub-actions or introduce arbitrary orderings that break permutation symmetry. Retrieval-based
methods such as Wolpertinger (Wol-DDPG) (Dulac-Arnold et al., 2015) scale to large discrete spaces
by embedding and pruning candidate actions, but similarly fail to capture the joint structure of
unordered sub-actions (Chen et al., 2023). These limitations motivate architectures that can represent
dependencies across sub-actions while preserving permutation invariance.

Transformers for Action Representation Efforts to use Transformers for action space modeling
have largely focused on sequential representations. RT-1 (Brohan et al., 2022) and RT-2 (Zitkovich
et al., 2023) tokenize robot control trajectories and decode action tokens autoregressively, while
Q-Transformer (Chebotar et al., 2023) autoregresses across action dimensions within a timestep.
Learned tokenizers such as FAST (Pertsch et al., 2025) compress high-frequency control signals
into vocabularies for vision–language–action (VLA) training. Extensions of trajectory-based models
(Chen et al., 2021; Shang et al., 2022), interleave state and action tokens or design state-aware
tokenizations to handle multi-component actions. Together, these methods establish the efficacy of
Transformers for action encoding, but have been mostly designed for continuous control tasks in
offline RL or VLA settings that are not directly comparable to the combinatorial domains we study.
Moreover, they largely rely on sequential decompositions that impose arbitrary order and obscure
permutation symmetry.

3 PRELIMINARIES

Combinatorial Action Spaces We consider RL problems formalized as a Markov Decision Process,
defined by the tupleM = ⟨S,A, p, r, γ, µ⟩. Here, S denotes the state space, A the action space,
p(s′ | s, a) the transition function, r(s, a) the reward function, γ ∈ [0, 1] the discount factor, and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

S
ta

te
 C

o
n
d
it

io
n
in

g

T
ra

n
sf

o
rm

e
r

B
lo

ck

Decision

MLP

Sample

Sub-Action
Concat

𝑠

Sub-Action

Embedding Table

𝐄

෨𝐄 𝐗 params𝑖 𝑎𝑖
𝒂

× 𝐴

× 𝐿

Figure 1: Overview of SAINT. Initial sub-action embeddings are conditioned on the global state s to produce
state-aware representations. Stacked Transformer blocks then model dependencies among sub-actions. The
resulting context-aware representations are passed to independent Decision MLPs, which output per-sub-action
policy distributions used for factorized sampling.

µ the initial state distribution. A policy π maps states to distributions over actions, π : S → P(A),
which defines the agent’s behavior in the environment.

In this work we assume actions have an explicit compositional structure. Specifically, the action space
is a product of sub-action domains,A = A1×· · ·×AA, where each sub-action spaceAi is a discrete
set. A single action thus comprises A sub-decisions, a = (a1, . . . , aA), with each ai ∈ Ai. This
representation gives rise to high-dimensional action spaces with potentially complex dependencies
among sub-actions.

Attention Attention is a general computational primitive that allows a model to selectively ag-
gregate information from a set of inputs based on learned relevance scores (Vaswani et al., 2017).
Formally, given a set of queries Q ∈ Rnq×d, keys K ∈ Rnk×d, and values V ∈ Rnk×d, the scaled
dot-product attention computes output Attn(Q,K, V) = softmax(QK⊤/

√
d)V . Multi-head self-

attention extends this by learning multiple independent projections and aggregating their outputs,
enabling the model to capture different types of interactions in parallel. Transformers, which stack
layers of multi-head self-attention with feedforward components, have been widely adopted in
domains requiring flexible modeling of structured dependencies.

4 SUB-ACTION INTERACTION NETWORK USING TRANSFORMERS (SAINT)

We introduce the Sub-Action Interaction Network using Transformers (SAINT), a policy architecture
that learns a state-conditioned, permutation-equivariant representation of the action space, enabling
efficient computation of expressive action distributions. The SAINT architecture comprises three
stages: (1) state conditioning, which injects global state information into sub-action representations;
(2) interaction modeling, which applies self-attention to model higher-order relationships among sub-
actions while preserving permutation equivariance; and (3) action decoding, which transforms each
sub-action representation into a distribution over its discrete choices, with all sub-actions decoded in
parallel to maintain tractability. An overview of the SAINT architecture is shown in Figure 1.

4.1 STATE CONDITIONING

SAINT represents each sub-action i ∈ {1, . . . , A} with a learnable embedding vector ei =
Embed(i) ∈ Rd, drawn from a table Embed ∈ RA×d. With d treated as a fixed hyperparame-
ter shared across all sub-actions, each sub-action is represented by a d-dimensional embedding
independent of its original cardinality |Ai|, yielding a shared space for uniform processing by the
subsequent Transformer layers.

Because sub-action identity alone is insufficient for decision-making, SAINT augments each base
embedding ei with information from the global state s ∈ Rds , enabling dependencies to be modeled
in a state-aware manner. While several conditioning mechanisms such as cross-attention or concate-
nation are possible, we adopt Feature-wise Linear Modulation (FiLM) (Perez et al., 2018), which
we found to be effective and parameter-efficient (see Appendix C). Notably, FiLM preserves the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Policy Learning with the SAINT Architecture

1: Initialize SAINT policy πθ and value network Vϕ

2: for each training iteration do
3: Collect a batch of transitions (st,at, rt, donet) by executing πθ

4: Compute return Rt and weighting term wΦ(st,at, Rt) for each transition
5: Compute policy log-probabilities ℓt ← LOGPROBS(st,at) ▷ See function below
6: Update policy θ by ascending the objective Et[wΦ(st,at) · ℓt]
7: Update value function ϕ by descending the loss Et[(Vϕ(st)−Rt)

2]
8: end for

9: function LOGPROBS(S,Ataken)
10: Get sub-action embeddings E← [Embed(1), . . . ,Embed(A)]⊤

11: Inject state information Ẽ← StateCondition(S,E)

12: Model interactions X← TransformerBlocks(Ẽ)
13: Get logits for each sub-action Logitsi ← fi(X[:,i]) for i = 1, . . . , A
14: Compute log-probabilities logP[:,i] ← log πi(Ataken[:,i] | Logitsi) for i = 1, . . . , A

15: return
∑A

i=1 logP[:,i]

16: end function

d-dimensional width of each sub-action embedding, introducing no additional projection dimensions.
Its prior success in incorporating state information in RL (Brohan et al., 2022) further supports this
choice.

An MLP g : Rds → R2d processes the global state s once to produce FiLM parameters (γ,β) = g(s),
which are then applied uniformly to all sub-action embeddings via an affine transformation:

ẽi = γ ⊙ ei + β .

4.2 INTERACTION MODELING

The matrix of state-aware sub-action representations Ẽ ∈ RA×d is then processed by a stack of L
Transformer blocks, with positional encodings omitted to preserve permutation equivariance. Letting
X(0) = Ẽ, each block ℓ = 1, . . . , L performs multi-head self-attention followed by a feed-forward
network (FFN). Specifically, queries, keys, and values are obtained by linear projections of the
previous layer’s output:

Q,K,V = X(ℓ−1)WQ, X(ℓ−1)WK , X(ℓ−1)WV ,

which are then used in scaled dot-product attention to model interactions among sub-actions. The
attention output is then passed through a position-wise FFN applied independently to each sub-action
embedding. This design allows SAINT to model state-conditioned dependencies between sub-actions
while maintaining permutation equivariance.

4.3 ACTION DECODING

In the final stage, each context-aware sub-action representation xi is passed through a sub-action-
specific decision MLP, fi : Rd → RKi , which outputs a vector of Ki logits. These logits are
then transformed into a probability distribution over the Ki discrete choices for sub-action i via the
softmax function. The resulting policy for sub-action i is thus given by:

πi(ai | s) = Categorical(softmax(fi(xi))) .

Because each sub-action representation xi from the Interaction Modeling stage is conditioned on
the global state and incorporates information from the other sub-actions, the policy can be expressed
as independent sub-action distributions without loss of modeling capacity, preserving tractability in
combinatorial spaces where representing the full joint distribution would be infeasible.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.4 COMPATIBILITY WITH RL ALGORITHMS

The SAINT architecture is compatible with any RL algorithm for which the actor objective maximizes
the log-likelihood of sampled joint actions a, weighted by some functional wΦ(s,a):

max
θ

E(s,a)∼µ

[
wΦ(s,a) log πθ(a | s)

]
,

where µ denotes the sampling distribution over (s,a), arising either from an online policy or from a
fixed dataset in the offline setting. The weight wΦ(s,a) ≥ 0 is an algorithm-dependent scalar, such
as an advantage term or a score derived from QΦ.

Compatible methods include standard online algorithms such as PPO (Schulman et al., 2017) and
A2C (Mnih et al., 2016), as well as offline approaches such as IQL (Kostrikov et al., 2021) and
AWAC (Nair et al., 2020). SAINT also supports selection-based actor updates as in BCQ (Fujimoto
et al., 2019), where the policy is trained on candidate joint actions drawn from a dataset or proposal
distribution. SAINT remains compatible even when wΦ(s,a) is computed with a factorized critic,
since the critic is used only to produce a scalar weight for each sampled joint action from µ. The
actor is always updated toward the observed joint action a, not an action reconstructed or optimized
over by the critic.

Incompatibility arises when the actor objective requires global operations over the entire combinatorial
action space, such as Ea′∼π∗θ[QΦ(s,a

′)] or maxa′ QΦ(s,a
′). These operations are computationally

intractable unless QΦ is factorized; however, this changes the structure of the actor target, decom-
posing it into uncoordinated per-dimension terms and discarding cross-dimensional structure. This
breaks alignment with SAINT’s objective of modeling dependencies among sub-actions. SAINT’s
learning procedure is provided in Algorithm 1.

5 EXPERIMENTAL EVALUATION

Our experiments evaluate the efficacy of different action representations for modeling complex
sub-action interactions across three regimes: (1) primarily state-independent interactions, (2) state-
dependent interactions, and (3) weak interactions with complex dynamics. Results are presented
in Sections 5.1, 5.2, and 5.3, respectively. Section 5.4 evaluates SAINT in the offline RL setting.
Section 5.5 analyzes key architectural choices, quantifying the trade-off between representational
power and computational cost, and robustness to Transformer structural parameters.

We compare SAINT to four baselines reflecting the standard representational assumptions for com-
binatorial action spaces: (1) a factorized policy (Tavakoli et al., 2018), assuming fully independent
sub-actions; (2) an autoregressive model (Zhang et al., 2018), imposing a fixed sequential order; (3)
Wol-DDPG (Dulac-Arnold et al., 2015), using a continuous embedding; and (4) a flat RL algorithm,
which learns a monolithic representation of the full action space without exploiting its combinatorial
structure. Results are averaged over five random seeds.

These four baselines instantiate the dominant structural assumptions used to scale RL to large combi-
natorial action spaces. The flat policy corresponds to a monolithic model that ignores compositional
structure and treats each joint action as an atomic symbol. The factorized policy enforces independent
per-dimension decisions, preventing it from modeling necessary coordination between sub-actions.
The autoregressive model imposes a fixed sequential ordering over sub-actions, which can be mis-
aligned with the true, permutation-invariant dependency structure. Wol-DDPG embeds each joint
action as a single continuous vector, collapsing the internal structure needed to capture interactions
among sub-actions. Our experiments in Sections 5.1-5.4 are designed to test whether these structural
assumptions remain sufficient when sub-action indexing is arbitrary or only weakly meaningful, or
whether a set-based alternative such as SAINT is required.

5.1 STATE-INDEPENDENT SUB-ACTION DEPENDENCIES

To evaluate SAINT in environments where sub-action dependencies are primarily state-independent,
we use the CityFlow traffic control benchmark (Zhang et al., 2019), where each action corresponds
to simultaneous phase decisions across multiple intersections. While coordination is necessary to
achieve global traffic efficiency, the structure of these dependencies remains largely unchanged across
states.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

SAINT Factored AR PPO

0 100 k 200 k 300 k 400 k 500 k
Environment Steps

45000

40000

35000

30000

25000

20000

15000

Ep
is

od
e

R
ew

ar
d

(a) CityFlow-Linear

0 100 k 200 k 300 k 400 k 500 k
Environment Steps

19000

18000

17000

16000

15000

14000

13000

Ep
is

od
e

R
ew

ar
d

(b) CityFlow-Irregular

Figure 2: Learning curves show that SAINT outperforms all baselines in both learning speed and final reward,
across both the CityFlow-Linear and CityFlow-Irregular environments.

We consider two configurations: (1) CityFlow-Linear, where three traffic signals are arranged in a
row, yielding 729 possible joint signal combinations; and (2) CityFlow-Irregular, with four closely
spaced, asymmetric intersections and varying road capacities, resulting in 375 valid joint action
combinations. These networks are illustrated in Appendix A.1.

We adopt PPO as the standard RL algorithm in this setting. SAINT, the pure factorized baseline,
and the AR baseline, use the same PPO implementation and hyperparameters, isolating the impact
of architectural differences. Wol-DDPG performs poorly in this environment and is excluded from
the main learning curves; full training curves, including Wol-DDPG, are included in Appendix A.2.
Wol-DDPG’s ineffectiveness aligns with prior observations that it is ill-suited to environments with
unordered sub-actions (Chen et al., 2023).

The results in Figure 2, demonstrate the advantage of SAINT’s set-based action representation. In
both environments, SAINT learns faster and achieves higher final performance. The factorized
approach is structurally incapable of modeling coordination between intersections and thus performs
poorly. The autoregressive model is restricted by its fixed sequential prior, which is misaligned with
the unordered nature of traffic-signal control. The flat PPO baseline, forced to learn a monolithic
representation without exploiting combinatorial structure, fails to learn an effective policy.

5.2 STATE-DEPENDENT SUB-ACTION DEPENDENCIES

Next, we evaluate SAINT in environments where sub-action dependencies are strongly state-
dependent. In these domains, the relationships among sub-actions vary significantly with the envi-
ronment state, requiring policies to model context-sensitive joint decisions. To study this setting,
we use the Combinatorial Navigation Environment (CoNE) (Landers et al., 2024), a configurable
high-dimensional control domain designed to evaluate policy architectures under large, discrete, and
structured action spaces.

The agent begins at a fixed origin s0 and must reach a predefined goal g. At each timestep, it selects
a joint action by activating multiple discrete sub-actions, each corresponding to movement along a
distinct dimension of the environment. These sub-actions are executed in parallel to produce a single
composite transition. The agent receives a reward r = −ρ(s, g) at each step based on the Euclidean
distance to the goal. Episodes terminate either upon reaching the goal (reward +10) or entering a
terminal failure state (pit), which incurs a penalty of r = −10 · ρ(s0, g) to discourage reward hacking
through early failure.

In CoNE, both the action and state spaces grow exponentially with dimensionality: the number
of joint actions scales as |A| = 22D, and the number of states as |S| = MD in a D-dimensional
environment with M positions per axis. In our largest setting, the environment comprises over 200
million states and nearly 17 million joint actions per state. Beyond scale, CoNE introduces strong
sub-action dependencies — some combinations enable efficient movement, others cancel out, and
some lead to catastrophic failure. Crucially, these sub-action interactions are highly state-dependent; a
combination that is optimal in one state may lead to a pit in another, making effective decision-making

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

|A| SAINT Factored AR Wol-DDPG A2C

∼16k -8.3 ± 0.0 −11.9± 1.0 -8.3 ± 0.0 −586.2± 62.4 −593.7± 51.7

∼65k -9.9 ± 0.6 −45.8± 16.7 −22.3± 8.1 −691.5± 51.3 −641.0± 78.0

∼260k -12.5 ± 1.6 −51.6± 23.0 −20.4± 2.6 −712.0± 64.0 −756.3± 37.2

∼1M -12.2 ± 1.3 −50.9± 20.7 −28.6± 3.1 −674.5± 25.3 −801.1± 14.4

∼4M -14.4 ± 0.8 −36.6± 6.0 −28.0± 2.7 −929.3± 43.3 −846.6± 4.2

∼17M -13.4 ± 2.6 −44.1± 16.2 −33.9± 10.8 −873.2± 59.7 –

Table 1: Performance in CoNE as action dimensionality increases. SAINT consistently achieves the highest
reward across all action space sizes. Factorized and autoregressive baselines plateau at substantially lower reward
levels, while Wol-DDPG and A2C fail to learn viable policies.

highly sensitive to global context. CoNE is highly configurable, allowing us to systematically vary
the number of dimensions and pit density to assess the impact of increasing action space size and
sub-action dependence.

We adopt A2C as the standard RL algorithm in this setting. SAINT, the pure factorized baseline, and
the AR baseline use identical A2C implementations to ensure a controlled comparison.

Varying Dimensionality To evaluate SAINT’s effectiveness as the number of possible actions
increases, we scale the dimensionality of CoNE from 7 (yielding over 16 thousand possible action
combinations) to 12 (with nearly 17 million combinations). In CoNE environments without pits, the
agent can learn a trivial policy, as the optimal solution involves selecting the same action in every
state. Thus, to introduce meaningful complexity and prevent this degenerate behavior, we place pits
in 25% of interior states.

The results in Table 1 show that SAINT maintains strong performance as action dimensionality
increases, significantly outperforming all baselines at every scale. While the factorized and autore-
gressive baselines achieve modest performance in lower dimensions, their performance degrades
or plateaus as the number of sub-actions grows. This suggests their fixed representational priors
— assuming either complete independence or a single fixed order — are insufficient to capture
the complex interactions that emerge at scale. SAINT’s relative advantage increases in the largest
settings, where it maintains low variance and stable performance. Wol-DDPG and A2C perform
poorly throughout, highlighting their inability to form a tractable and meaningful representation of
large, unordered action spaces. Note that A2C is omitted at the highest dimensionality due to the
computational intractability of modeling the full joint action space with a flat categorical policy. Full
learning curves are provided in Appendix B.2.

Varying Dependence To assess SAINT’s robustness to different levels of sub-action dependence,
we incrementally increased the number of pits in the 12-dimensional CoNE environment. Higher
pit densities impose stronger coordination requirements, as more sub-action combinations must be
carefully selected to avoid pits. To ensure that a valid path from the start state to the goal always
exists, pits were placed only in interior (non-boundary) states. We generate environments with 10%,
25%, 50%, 75%, and 100% of interior states occupied by pits. Note that even in the 100% setting,
all boundary states remain pit-free, guaranteeing the existence of at least one (possibly inefficient)
path to the goal region. We exclude A2C from this experiment due to the computational intractability
of modeling such a large discrete action space (nearly 17 million actions) with a flat categorical
distribution.

The results in Table 2 demonstrate that SAINT is more robust to increasing sub-action dependence
than all baselines. As pit density increases from 10% to 100%, SAINT maintains high performance
with low variance, while the factorized and autoregressive baselines generally degrade. Wol-DDPG
was unable to learn meaningful policies at any pit density. These results highlight SAINT’s ability
to capture complex, context-sensitive dependencies between sub-actions that are critical in many
real-world combinatorial environments. Full learning curves for these results are provided in Ap-
pendix B.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Pit % SAINT Factored AR Wol-DDPG

10 -13.5 ± 2.7 −44.1± 16.2 −33.9± 10.8 −873.2± 59.7

25 -15.5 ± 2.6 −33.3± 4.1 −42.2± 10.7 −822.3± 36.8

50 -18.4 ± 1.2 −78.6± 29.7 −38.8± 4.4 −863.0± 22.9

75 -19.7 ± 0.0 −58.0± 11.9 −27.8± 3.1 −841.1± 39.5

100 -19.7 ± 0.0 −54.8± 7.1 −28.6± 4.1 −879.5± 33.4

Table 2: Performance in 12-D CoNE (∼ 17M actions) as sub-action dependence increases (controlled via pit
density). SAINT consistently achieves the highest rewards across all settings and remains robust even as the
sub-actions become highly dependent. Other methods degrade more rapidly, especially the factorized baseline.
Wol-DDPG failed to learn meaningful policies in this setting.

5.3 WEAK SUB-ACTION DEPENDENCIES WITH COMPLEX DYNAMICS

To evaluate SAINT in environments where sub-action dependencies are relatively weak but the
underlying dynamics are complex, we consider discretized variants of the HalfCheetah, Hopper, and
Walker2D MuJoCo locomotion tasks (Towers et al., 2024). In these environments, each continuous
joint control signal is discretized into 11 bins, yielding large, structured action spaces while retaining
the rich temporal and physical dynamics of the original tasks. Although the discretized action spaces
are combinatorially large, prior work (Beeson et al., 2024) suggests that the dependencies among
sub-actions are relatively weak in these domains. This setting thus provides a useful test of SAINT’s
generality, elucidating whether the architectural overhead of self-attention remains beneficial when
sub-action dependencies are weak or whether simpler factorized policies suffice.

Given the limitations of PPO and Wol-DDPG identified in Sections 5.1 and 5.2, we restrict our
comparison to the pure factorized and autoregressive baselines, using identical PPO implementations
to ensure a controlled evaluation.

As shown in Figure 3, SAINT matches baseline performance in HalfCheetah and achieves faster
learning and higher returns in Hopper and Walker2D. This demonstrates that even when sub-action
dependencies are weak, learning a set-based representation of the action space gives an advantage
over the rigid assumptions of factorization or a fixed autoregressive order.

5.4 OFFLINE RL

Finally, we evaluate whether SAINT can be used effectively as a policy architecture in offline RL.
Specifically, we use the medium-expert datasets from the discretized DM Control tasks cheetah
run, finger spin, humanoid stand, quadruped walk, and dog trot introduced by Beeson et al. (2024).
Across these environments, the number of sub-actions ranges from six to 39.

SAINT Factored AR

0 200 k 400 k 600 k 800 k 1 M
Environment Steps

250

0

250

500

750

1000

1250

Ep
is

od
e

R
ew

ar
d

(a) HalfCheetah

0 200 k 400 k 600 k 800 k 1 M
Environment Steps

0

250

500

750

1000

1250

1500

Ep
is

od
e

R
ew

ar
d

(b) Hopper

0 200 k 400 k 600 k 800 k 1 M
Environment Steps

0

200

400

600

800

1000

Ep
is

od
e

R
ew

ar
d

(c) Walker2D

Figure 3: Performance in discretized MuJoCo environments. While results are similar across methods in
HalfCheetah, SAINT outperforms factorized and autoregressive baselines in Hopper and Walker2D, demonstrat-
ing its ability to handle complex action spaces even when sub-action dependencies are relatively weak.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Task SAINT Factored AR

cheetah 676.1 ± 30.9 629.6± 36.5 629.6± 38.8

finger 809.6 ± 29.0 692.3± 71.7 762.1± 50.9

humanoid 676.5 ± 48.2 594.1± 47.7 592.4± 58.5

quadruped 851.5 ± 32.5 835.2± 52.0 692.2± 99.7

dog 586.1 ± 30.5 415.2± 40.4 423.3± 72.6

Average 720.0 633.3 619.9

Table 3: Mean ± std performance on offline DM Control tasks with BCQ variants.

In this section, we report results using Batch-Constrained Q-learning (BCQ) (Fujimoto et al., 2019)
as the offline RL objective. Additional offline evaluations with AWAC and IQL are provided in
Appendix C. As in Section 5.3, we limit our comparison to the pure factorized and autoregressive
baselines.

As shown in Table 3, SAINT-BCQ achieves the strongest performance across all domains, demon-
strating that explicitly modeling sub-action interactions improves policy quality even when learning
is restricted to logged trajectories.

5.5 ANALYSES AND ABLATIONS

To evaluate SAINT’s design choices and robustness, we conduct three analyses. First, we compare
FiLM-based state conditioning to alternative mechanisms. Second, we assess the trade-off between
representational power and computational cost, quantifying how modeling sub-action interactions
affects sample efficiency. These evaluations are performed in the CityFlow-Irregular environment
and in the 10-dimensional CoNE setting with pits occupying 25% of interior states. Finally, we test
SAINT’s robustness to architectural hyperparameters using the CityFlow-Irregular environment.

State Conditioning We compare SAINT’s FiLM-based state conditioning to four alternatives: (1)
applying cross-attention to the state before self-attention, (2) applying cross-attention to the state after
self-attention, (3) interleaving cross-attention and self-attention layers, and (4) appending the state
as an additional token within the sub-action self-attention block. As shown in Appendix C, FiLM
achieves higher final performance and more stable training in CityFlow, and performs at least as well
as the alternatives in CoNE. These results indicate that while multiple conditioning mechanisms are
effective, FiLM provides a consistent performance advantage and stabilizes training.

Representational Power vs. Sample Efficiency To isolate the computational overhead of mod-
eling sub-action dependencies via self-attention, we compare SAINT’s runtime to that of the pure
factorization baseline. We also evaluate a variant of SAINT, called SAINT-IP, that replaces standard
self-attention with an inducing point mechanism (Lee et al., 2019), which approximates full attention
using a fixed set of learned summary vectors. This technique reduces the quadratic cost of attention by
attending first from the inducing points to the inputs, and then from the inputs back to the summaries.
All experiments were conducted on a single NVIDIA A40 GPU using Python 3.9 and PyTorch 2.6.
We report wall-clock time per training episode in seconds, averaged over 5 runs.

As shown in Table 4, SAINT requires more training time than the pure factorization baseline, reflecting
the added cost of modeling sub-action dependencies with self-attention. SAINT-IP incurs further
overhead from the Induced Set Attention Block (ISAB), which performs two attention passes per layer,
compared to one in standard self-attention. While the number of sub-actions in our environments is
nontrivial, it remains small relative to domains such as large language modeling or 3-D vision, for
which inducing points were introduced (Lee et al., 2019). Consequently, the quadratic cost of full
self-attention is not prohibitive, and ISAB’s asymptotic advantage does not yield runtime benefits in
practice.

However, in practical settings efficiency is better measured by wall-clock time to reach a target return.
The ”time to factored performance” metric shows that SAINT and SAINT-IP reach the factorized
baseline’s asymptotic return in less than one-third of the time in CityFlow and about 30% faster in
CoNE. This indicates that the added computation of explicit action representations is outweighed by

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

SAINT SAINT-IP Factored

CityFlow
Total training time 5204.2 5412.4 3936.2
Time to factored performance 1088.53 1087.49 3936.2

CoNE
Total training time 966.5 980.9 535.9
Time to factored performance 395.76 504.97 535.9

Table 4: Total wall-clock training time and time to reach the factored baseline’s final performance, both measured
in seconds. “Total training time” reflects the full duration of training, while “time to factored performance”
measures how quickly each method reaches that baseline.

faster learning — by modeling the true dependency structure, SAINT achieves stronger policies in
less time.

Robustness to Architectural Hyperparameters We evaluated SAINT’s sensitivity to architectural
hyperparameters by sweeping the number of self-attention blocks {1, 3, 5} and attention heads
{1, 2, 4, 8}, for a total of twelve configurations. As shown in Appendix F, performance varied within
a narrow range — the best setting (3 blocks × 1 head) outperformed the weakest (1 block × 8
heads) by only ∼ 7%. Even the weakest configuration exceeded all baselines, underscoring SAINT’s
robustness to attention depth and head count.

6 DISCUSSION AND CONCLUSION

We introduce SAINT, a policy architecture that treats learning in large discrete action spaces as a
representation learning problem. Instead of assuming conditional independence or a fixed ordering,
SAINT learns a state-conditioned, permutation-equivariant set representation of the combinatorial
action space. Self-attention models the interactions within this set, yielding expressive and tractable
policies for combinatorial domains.

While SAINT achieves strong performance, several limitations remain. Self-attention introduces
a higher per-step computational cost than purely factorized baselines. Section 5.5 shows that this
cost is often offset by improved sample efficiency, but lighter-weight attention variants such as
sparse attention (Child et al., 2019) could benefit resource-constrained settings. Our analyses also
validate FiLM as an effective state-conditioning mechanism, yet performance in new domains may
depend on the capacity of this network, motivating exploration of more expressive state-injection
methods such as those proposed in multi-agent RL (Iqbal & Sha, 2019). Next, SAINT is designed
for domains wherein a joint action is naturally represented as a set of parallel sub-actions for which
indexing is arbitrary or weakly structured. In settings with highly structured and known priors, a
fully permutation-equivariant prior may not be the most effective representation. In such settings
hybrid architectures that combine structured embeddings with partial equivariance are a promising
direction for future work. Finally, although our experiments assume a fixed set of sub-actions, many
real-world domains, such as road closures or reconfigurable network topologies, involve dynamically
changing action sets. Because SAINT represents actions as an unordered set, it naturally supports
such variability via masking. Systematically evaluating this capability is an important research
direction.

In this work we show that learning explicit representations of sub-action interactions is an effective
and practical approach for control in combinatorial action spaces. SAINT represents actions as
unordered sets and applies self-attention to capture sub-action dependencies, yielding expressive
yet tractable policies. This modeling delivers substantial gains in sample efficiency, accelerating
convergence to high-performing policies. In environments with up to 17 million joint actions, SAINT
consistently outperforms baselines that assume independence, impose ordering, or learn flat policies,
demonstrating the effectiveness of modeling sub-action interactions for scalable combinatorial control.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. arXiv preprint arXiv:1804.08617, 2018.

Alex Beeson, David Ireland, and Giovanni Montana. An investigation of offline reinforcement
learning in factorisable action spaces. arXiv preprint arXiv:2411.11088, 2024.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
via autoregressive q-functions. In Conference on Robot Learning, pp. 3909–3928. PMLR, 2023.

Changyu Chen, Ramesha Karunasena, Thanh Nguyen, Arunesh Sinha, and Pradeep Varakantham.
Generative modelling of stochastic actions with arbitrary constraints in reinforcement learning.
Advances in Neural Information Processing Systems, 36:39842–39854, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Arthur Delarue, Ross Anderson, and Christian Tjandraatmadja. Reinforcement learning with combi-
natorial actions: An application to vehicle routing. Advances in Neural Information Processing
Systems, 33:609–620, 2020.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan
Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement
learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, and Gabriel
Synnaeve. Growing action spaces. In International Conference on Machine Learning, pp. 3040–
3051. PMLR, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf. Deep
reinforcement learning with a natural language action space. arXiv preprint arXiv:1511.04636,
2015.

Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen, Jianfeng Gao, Lihong Li, and Li Deng. Deep
reinforcement learning with a combinatorial action space for predicting popular reddit threads.
arXiv preprint arXiv:1606.03667, 2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In Interna-
tional conference on machine learning, pp. 2961–2970. PMLR, 2019.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Matthew Landers, Taylor W Killian, Hugo Barnes, Thomas Hartvigsen, and Afsaneh Doryab. Offline
reinforcement learning with combinatorial action spaces. arXiv preprint arXiv:2410.21151, 2024.

Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
former: A framework for attention-based permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR, 2019.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Jennie Lioris, Alex Kurzhanskiy, and Pravin Varaiya. Adaptive max pressure control of network of
signalized intersections. IFAC-PapersOnLine, 49(22):19–24, 2016.

Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction of
continuous actions for deep rl. arXiv preprint arXiv:1705.05035, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PmLR, 2016.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models. arXiv preprint arXiv:2501.09747, 2025.

Thomas Pierrot, Valentin Macé, Jean-Baptiste Sevestre, Louis Monier, Alexandre Laterre, Nicolas
Perrin, Karim Beguir, and Olivier Sigaud. Factored action spaces in deep reinforcement learning.
2021.

Faizan Rasheed, Kok-Lim Alvin Yau, Rafidah Md Noor, Celimuge Wu, and Yeh-Ching Low. Deep
reinforcement learning for traffic signal control: A review. IEEE Access, 8:208016–208044, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jinghuan Shang, Kumara Kahatapitiya, Xiang Li, and Michael S Ryoo. Starformer: Transformer
with state-action-reward representations for visual reinforcement learning. In European conference
on computer vision, pp. 462–479. Springer, 2022.

Shengpu Tang, Maggie Makar, Michael Sjoding, Finale Doshi-Velez, and Jenna Wiens. Leveraging
factored action spaces for efficient offline reinforcement learning in healthcare. Advances in Neural
Information Processing Systems, 35:34272–34286, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
In Proceedings of the aaai conference on artificial intelligence, volume 34, pp. 5981–5988, 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching architectures for deep rein-
forcement learning. In Proceedings of the aaai conference on artificial intelligence, volume 32,
2018.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Tom Van de Wiele, David Warde-Farley, Andriy Mnih, and Volodymyr Mnih. Q-learning in enormous
action spaces via amortized approximate maximization. arXiv preprint arXiv:2001.08116, 2020.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning, 2015. URL https://arxiv.org/abs/1509.06461.

Pravin Varaiya. Max pressure control of a network of signalized intersections. Transportation
Research Part C: Emerging Technologies, 36:177–195, 2013.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J Mankowitz, and Shie Mannor. Learn what not
to learn: Action elimination with deep reinforcement learning. Advances in neural information
processing systems, 31, 2018.

Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong
Yu, Haiming Jin, and Zhenhui Li. Cityflow: A multi-agent reinforcement learning environment for
large scale city traffic scenario. In The world wide web conference, pp. 3620–3624, 2019.

Yiming Zhang, Quan Ho Vuong, Kenny Song, Xiao-Yue Gong, and Keith W Ross. Efficient entropy
for policy gradient with multidimensional action space. arXiv preprint arXiv:1806.00589, 2018.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

13

https://arxiv.org/abs/1509.06461

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LEARNING IN CITYFLOW

A.1 ENVIRONMENTAL SETUP

(a) CityFlow-Linear

(b) CityFlow-Irregular

Figure 4: Visualizations of the two CityFlow traffic control configurations used in our experiments. CityFlow-
Linear (Figure 4a) has three intersections arranged in a row, yielding 729 possible joint actions. CityFlow-
Irregular (Figure 4b) has 375 joint actions but exhibits greater coordination demands and more diverse traffic
interactions.

In both CityFlow-Linear (Figure 4a) and CityFlow-Irregular (Figure 4b), the state is represented as a
flat integer vector, in which each value indicates the number of waiting vehicles on an incoming lane
and its paired outgoing lane. The reward at each step is the negative of the average ”pressure” across
intersections, where an intersection’s pressure is defined as the absolute difference between its total
incoming and outgoing vehicle counts. Pressure is a standard metric in traffic signal control literature,
commonly used to quantify imbalance in intersection flow Lioris et al. (2016); Varaiya (2013).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 LEARNING CURVES INCLUDING WOL-DDPG

SAINT Factored AR Wol-DDPG PPO

0 100 k 200 k 300 k 400 k 500 k
Environment Steps

150000

125000

100000

75000

50000

25000

Ep
is

od
e

R
ew

ar
d

(a) CityFlow-Linear

0 100 k 200 k 300 k 400 k 500 k
Environment Steps

35000

30000

25000

20000

15000

Ep
is

od
e

R
ew

ar
d

(b) CityFlow-Irregular

Figure 5: Full learning curves for all baselines in CityFlow, including Wol-DDPG. Wol-DDPG performs poorly,
consistent with its known limitations in environments with unordered sub-actions.

Figure 5 presents the full training curves for all methods in the CityFlow environments, including Wol-
DDPG. As noted in Section 5.1, Wol-DDPG consistently underperforms relative to other methods.
This poor performance is consistent with prior findings Chen et al. (2023), which show that Wol-
DDPG is ill-suited to settings with unordered sub-actions. Learning curves excluding Wol-DDPG are
presented in Figure 2.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B CONE LEARNING CURVES

B.1 ENVIRONMENTAL SETUP

The Combinatorial Navigation Environment (CoNE) Landers et al. (2024) is designed to evaluate RL
algorithms in settings with high-dimensional, combinatorial action spaces and strong, state-dependent
sub-action dependencies. In CoNE, actions are formed by simultaneously selecting discrete sub-
actions, each specifying movement along a different dimension. These sub-actions are executed in
parallel to produce a composite transition, which may advance the agent toward the goal or result in
failure by entering a pit.

CoNE supports scaling along two axes, action dimensionality and pit density. As the number of
dimensions increases, both the state and action spaces grow exponentially; our largest configuration
contains over 200 million states and nearly 17 million discrete joint actions per state. In CoNE,
sub-action interactions are complex: some combinations are efficient, others cancel each other
out, and many must be avoided. These dependencies are highly state-sensitive, requiring effective
decision-making to account for both structure and context.

To our knowledge, no other existing benchmarks offer the combination of large-scale action spaces
and tunable sub-action dependencies found in CoNE. Popular environments such as the DeepMind
Control Suite Tassa et al. (2018), for example, lack meaningful sub-action interactions Beeson et al.
(2024).

B.2 VARYING DIMENSIONALITY

SAINT Factored AR Wol-DDPG PPO

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

700

600

500

400

300

200

100

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k
20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

40

20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

40

20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

40

20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

1000

800

600

400

200

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

40

20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

40

20

Figure 6: Learning curves in CoNE environments as the number of sub-action dimensions increases from 7 to
12 (corresponding to joint action spaces ranging from ∼ 16k to ∼ 17M actions). SAINT consistently achieves
higher final rewards than all baselines, with its advantage widening in higher-dimensional settings. Factorized
and autoregressive baselines struggle to scale beyond moderate dimensions, while Wol-DDPG and A2C fail
to learn meaningful policies across all tasks. Results are averaged over 5 seeds; shaded regions indicate one
standard deviation.

Figure 6 provides the full learning curves corresponding to the results in Table 1, which reports
performance in CoNE as the number of sub-action dimensions increases. As dimensionality grows,
the joint action space expands exponentially — from roughly 16 thousand to nearly 17 million
possible joint actions.

Across all settings, SAINT consistently outperforms baselines. Notably, SAINT maintains stable
learning dynamics and low variance even at the largest scales, whereas factorized and autoregressive
baselines generally plateau. Wol-DDPG and A2C fail to learn viable policies in any configuration,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

highlighting their inability to handle large, unordered combinatorial action spaces. These results
underscore SAINT’s scalability and its robustness to increasing combinatorial complexity.

B.3 VARYING DEPENDENCE

SAINT Factored AR Wol-DDPG

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

40

20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

40

20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k
60

40

20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k
60

40

20

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

60

40

20

Figure 7: Learning curves in the 12-D CoNE environment as pit density increases from 10% to 100%, inducing
progressively stronger sub-action dependencies. SAINT consistently outperforms all baselines, maintaining
stable performance even as coordination requirements become increasingly stringent. Factored and autoregressive
baselines generally plateau, while Wol-DDPG fails to learn meaningful policies. Results are averaged over 5
seeds; shaded regions denote one standard deviation.

Figure 7 shows the full learning curves corresponding to the results in Table 2, which reports
performance in the 12-D CoNE environment as sub-action dependence increases via pit density. As
more interior states are occupied by pits, successful navigation requires greater coordination among
sub-actions to avoid failure states.

SAINT maintains stable learning and strong final performance across all pit densities, even as
coordination requirements grow substantially. Factorized policies degrade, while autoregressive
policies consistently underperform relative to SAINT. Wol-DDPG fails to make progress in any
environment. A2C was excluded from this experiment due to the computational intractability
of modeling such a large discrete action space (nearly 17 million actions) with a flat categorical
distribution. These results highlight SAINT’s robustness to state-dependent sub-action dependencies.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C STATE CONDITIONING

We compare SAINT’s pre-attention FiLM-based state conditioning to four alternative mechanisms:
(1) applying cross-attention to the state before self-attention, (2) applying cross-attention to the state
after self-attention, (3) interleaving cross-attention and self-attention layers, and (4) appending the
state as an additional token within the sub-action self-attention block.

FiLM Cross Before Cross After Interleaved Token

0 100 k 200 k 300 k 400 k 500 k
Environment Steps

19000

18000

17000

16000

15000

14000

13000

Ep
is

od
e

R
ew

ar
d

(a) CityFlow

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

40

20

(b) 10-D CoNE with 25% pits

Figure 8: Comparison of state conditioning strategies in CityFlow (left) and 10-D CoNE (right). SAINT’s
pre-attention FiLM-based conditioning outperforms alternatives more clearly in CityFlow, while all strategies
perform similarly in CoNE. Results are averaged over 5 seeds; shaded regions indicate one standard deviation.

As shown in Figure 8, FiLM achieves higher final reward and exhibits more stable learning than the
alternatives in CityFlow. In the 10-dimensional CoNE environment, all state conditioning strategies
perform comparably, with pre-attention FiLM-based conditioning achieving slightly better final
performance. These results suggest that while multiple conditioning mechanisms are viable, FiLM
offers an advantage and may contribute to more stable training dynamics.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D ROBUSTNESS TO OFFLINE RL TRAINING OBJECTIVE

The results in Section 5.4 show that SAINT’s set-based, permutation-invariant architecture learns
effective representations for offline RL in combinatorial action spaces when trained with an BCQ
objective. To assess whether these advantages persist across different offline RL methods, we also
evaluate SAINT with two additional objectives, Advantage Weighted Actor Critic (AWAC) (Nair
et al., 2020) and Implicit Q-learning (IQL) (Kostrikov et al., 2021). These experiments use the same
medium-expert datasets considered in Section 5.4 and follow an identical controlled protocol: for
each algorithm, we instantiate factorized, autoregressive, and SAINT-based policy parameterizations
while keeping the critic, training procedure, and hyperparameters fixed.

D.1 AWAC

Task SAINT Factored AR

cheetah 668.5 ± 21.9 657.5± 25.9 646.6± 22.4

finger 638.6 ± 324.7 1.0± 1.0 1.1± 1.4

humanoid 694.7 ± 29.1 639.4± 29.2 682.9± 36.3

quadruped 837.0 ± 34.9 834.2 ± 37.6 822.3± 46.1

dog 543.9 ± 60.3 423.0± 51.7 449.5± 43.3

Average 676.5 511.0 520.5

Table 5: Mean ± std performance on offline DM Control tasks with AWAC variants.

D.2 IQL

Task SAINT Factored AR

cheetah 627.5 ± 39.6 588.7± 48.0 615.9± 37.8

finger 847.0 ± 13.6 841.2 ± 16.2 843.5 ± 16.1

humanoid 613.1 ± 58.9 589.9± 40.8 568.2± 55.5

quadruped 863.7 ± 30.5 863.2 ± 36.5 857.0 ± 30.8

dog 596.1 ± 53.2 497.8± 35.9 539.8± 33.6

Average Return 709.5 676.2 684.9

Table 6: Mean ± std performance on offline DM Control tasks with IQL variants.

Tables 5 and 6 show that SAINT achieves the strongest performance across all domains under both
AWAC and IQL, consistent with the BCQ results in the main text. This indicates that the benefits of
modeling sub-action interactions extend across offline RL objectives and are not tied to a specific
learning algorithm.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E SAINT’S COMPUTATION COST

SAINT SAINT-IP Factored

0 100 k 200 k 300 k 400 k 500 k
Environment Steps

19000

18000

17000

16000

15000

14000

13000

Ep
is

od
e

R
ew

ar
d

(a) CityFlow

0 10 k 20 k 30 k 40 k 50 k
Environment Steps

800

600

400

200

0

Ep
is

od
e

R
ew

ar
d

20 k 25 k 30 k 35 k 40 k 45 k 50 k

40

20

(b) CoNE

Figure 9: Learning curves comparing SAINT, SAINT with inducing points (SAINT-IP), and the pure factorized
baseline in CityFlow and CoNE. Despite higher per-step computation cost, both SAINT and SAINT-IP reach the
factored baseline’s final performance much faster and achieve higher final rewards. In CityFlow, SAINT-IP’s
policy is worse than SAINT’s, but still outperforms the baseline. Results are averaged over 5 seeds; shaded
regions denote one standard deviation.

Figure 9 shows training curves for SAINT, SAINT with inducing points (SAINT-IP), and the factor-
ized baseline in the CityFlow and CoNE environments. While SAINT and SAINT-IP incur higher
per-step computational costs due to the Transformer blocks, both methods achieve the factorized
baseline’s final performance in less total training time. This reflects their ability to reach performant
policies with fewer training episodes. In CityFlow, SAINT-IP exhibits a degradation in asymptotic
reward relative to SAINT, but still outperforms the factorized baseline. These results illustrate that
the overhead of modeling sub-action dependencies can be offset by more efficient use of training
experience.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

F ROBUSTNESS TO ARCHITECTURAL HYPERPARAMETERS

We systematically evaluated SAINT’s sensitivity to architectural hyperparameters by sweeping
over the number of self-attention blocks {1, 3, 5} and attention heads {1, 2, 4, 8}, yielding twelve
configurations.

Configuration Mean Return

1 block × 1 head −13376.6± 973.3
1 block × 2 heads −13416.6± 1003.6
1 block × 4 heads −13058.6± 725.5
1 block × 8 heads −13744 .5 ± 900 .6
3 blocks × 1 head −12834.6± 499.8
3 blocks × 2 heads −13195.0± 618.8
3 blocks × 4 heads −13209.5± 778.8
3 blocks × 8 heads −13156.5± 581.9
5 blocks × 1 head −13320.7± 831.7
5 blocks × 2 heads −13658.8± 855.6
5 blocks × 4 heads −13664.3± 961.5
5 blocks × 8 heads −13664.8± 822.3

Factored PPO −14200.5± 1127.4
AR PPO −13995.9± 789.4
Standard PPO −14442.5± 1180.0

Table 7: Mean episodic return ± standard error on CityFlow Irregular. We varied the number of
attention blocks {1, 3, 5} and the number of attention heads {1, 2, 4, 8}, for a total of 12 configurations.
All SAINT variants outperform Factored, AR, and PPO baselines. The best SAINT configuration is
in bold, the worst is in italics.

A consistent pattern emerges in Table 7. Moderate depth (3 blocks) with 2–4 heads yields strong
and stable performance, while very high head counts (8) tend to degrade results. Crucially, every
SAINT variant outperforms all baselines, including Factored PPO, AR-PPO, and standard PPO.
This robustness implies that SAINT’s architectural advantages are not narrowly tied to a specific
hyperparameter regime but instead generalize across a broad design space. Careful tuning can yield
an additional 5–10% improvement, yet even suboptimal choices consistently achieve better outcomes
than state of the art methods.

21

	Introduction
	Related Work
	Preliminaries
	Sub-Action Interaction Network using Transformers (SAINT)
	State Conditioning
	Interaction Modeling
	Action Decoding
	Compatibility with RL Algorithms

	Experimental Evaluation
	State-Independent Sub-Action Dependencies
	State-Dependent Sub-Action Dependencies
	Weak Sub-Action Dependencies with Complex Dynamics
	Offline RL
	Analyses and Ablations

	Discussion and Conclusion
	Learning in CityFlow
	Environmental Setup
	Learning Curves Including Wol-DDPG

	CoNE Learning Curves
	Environmental Setup
	Varying Dimensionality
	Varying Dependence

	State Conditioning
	Robustness to Offline RL Training Objective
	AWAC
	IQL

	SAINT's Computation Cost
	Robustness to Architectural Hyperparameters

