

000 001 002 003 004 005 SAINT: ATTENTION-BASED POLICIES FOR DISCRETE 006 COMBINATORIAL ACTION SPACES 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023

ABSTRACT

024 The combinatorial structure of many real-world action spaces leads to exponential
025 growth in the number of possible actions, limiting the effectiveness of conventional
026 reinforcement learning algorithms. Recent approaches for combinatorial
027 action spaces impose factorized or sequential structures over sub-actions, failing
028 to capture complex joint behavior. We introduce the Sub-Action Interaction Network
029 using Transformers (SAINT), a novel policy architecture that represents
030 multi-component actions as unordered sets and models their dependencies via
031 self-attention conditioned on the global state. SAINT is permutation-invariant,
032 sample-efficient, and compatible with standard policy optimization algorithms.
033 In 20 distinct combinatorial environments across three task domains, including
034 environments with nearly 17 million joint actions, SAINT consistently outperforms
035 strong baselines.¹

1 INTRODUCTION

036 Reinforcement learning (RL) has achieved remarkable success across a range of domains, primarily
037 through methods designed for either small, discrete action spaces (Hessel et al., 2018; Mnih et al.,
038 2015; van Hasselt et al., 2015; Mnih et al., 2016) or continuous control (Fujimoto et al., 2018; Haarnoja
039 et al., 2018; Lillicrap et al., 2015; Schulman et al., 2017). Many real-world problems, however,
040 involve action spaces that lie between these extremes. These large discrete combinatorial spaces
041 are defined as Cartesian products of multiple subspaces, where each joint action $\mathbf{a} = (a_1, \dots, a_A)$
042 consists of several coordinated sub-actions. Such settings, which arise in critical applications like
043 traffic signal control (Rasheed et al., 2020) and drug selection (Tang et al., 2022), require learning
044 policies that can effectively represent and reason about exponentially large, structured action spaces.

045 Traditional RL methods model discrete action spaces with a flat categorical policy, but this becomes
046 intractable in combinatorial settings where the number of actions scales as $\prod_{d=1}^A m_d$ for A sub-action
047 dimensions with m_d choices each. To mitigate this combinatorial explosion, existing approaches
048 (Dulac-Arnold et al., 2015; Pierrot et al., 2021; Tavakoli et al., 2018; Zhang et al., 2018) rely
049 on simplifying assumptions that constrain the representational capacity of the policy class. One
050 family of methods (Pierrot et al., 2021; Tavakoli et al., 2018) factorizes the policy as $\pi(\mathbf{a} | s) = \prod_i \pi_i(a_i | s)$, which cannot represent interactions between sub-actions. Another class of approaches
051 (Zhang et al., 2018) imposes a fixed autoregressive order, specifying a policy class of distributions
052 of the form $\pi(\mathbf{a}|s) = \prod_i \pi_i(a_i|s, a_{<i})$. This introduces an arbitrary sequence over sub-actions,
053 breaking permutation invariance and impairing learning when the imposed order misaligns with the
054 true dependency structure. Many real-world tasks violate both the independence and fixed-order
055 assumptions. In healthcare, for example, drug combinations can exhibit complex interaction effects
056 — treatments may be safe individually but harmful together, motivating permutation-invariant models
057 for combinatorial action spaces. **Our work targets precisely these settings: combinatorial action**
058 **spaces wherein sub-action indexing is arbitrary or only weakly meaningful, and the fundamental**
059 **structure lies in sub-action interactions rather than in any prescribed ordering.**

060 We introduce the Sub-Action Interaction Network using Transformers (SAINT), a policy architecture
061 that learns explicit representations of combinatorial actions by treating them as unordered sets of
062 sub-actions. Through self-attention conditioned on the global state, SAINT captures dependencies
063

¹Code is available at <https://anonymous.4open.science/r/SAINT-6BB9>

054 among sub-actions to produce expressive yet tractable policies. SAINT proceeds in three stages.
 055 First, global state information is injected into initial sub-action representations. Next, self-attention
 056 (Vaswani et al., 2017) is applied over the set of state-conditioned representations to capture sub-action
 057 dependencies while preserving permutation equivariance. Finally, the representations are decoded
 058 in parallel, producing action distributions that preserve the modeled interactions while remaining
 059 computationally tractable.

060 We evaluate SAINT on challenging benchmark tasks, which exhibit both state-independent and
 061 state-dependent sub-action dependencies, including traffic light control (Zhang et al., 2019), navi-
 062 gation (Landers et al., 2024), and discretized MuJoCo locomotion tasks (Towers et al., 2024). Our
 063 results demonstrate that by learning a more expressive representation of the action space’s internal
 064 structure, SAINT consistently outperforms strong factorized and autoregressive baselines, scaling
 065 to environments with nearly 17 million discrete actions. Targeted ablations validate the role of
 066 state conditioning and show that the additional cost of modeling dependencies is often offset by
 067 substantial gains in sample efficiency. Together, these findings establish that learning explicit
 068 representations of sub-action interactions is a practical and scalable approach to decision-making in
 069 complex combinatorial domains.

071 2 RELATED WORK

072 **Combinatorial Action Spaces** Combinatorial action spaces arise naturally in sequential decision
 073 problems such as traffic signal control, games, and resource allocation. Prior work has introduced
 074 task-specific architectures, imposed domain-specific assumptions, or exploited problem-specific
 075 structure (Bello et al., 2016; Chen et al., 2023; Delarue et al., 2020; He et al., 2015; 2016; Nazari
 076 et al., 2018; Zahavy et al., 2018; Farquhar et al., 2020). Such methods typically lack generality and
 077 require manual design effort. A parallel body of work addresses continuous control problems by
 078 discretizing the action space (Barth-Maron et al., 2018; Metz et al., 2017; Tang & Agrawal, 2020;
 079 Van de Wiele et al., 2020), which contrasts with our focus on inherently discrete action spaces with
 080 combinatorial structure.

081 A number of general-purpose architectures have been developed to scale RL to large combinatorial
 082 action spaces. One strategy reduces complexity by assuming conditional independence across
 083 sub-actions (Pierrot et al., 2021; Tavakoli et al., 2018), while another imposes an autoregressive
 084 order (Zhang et al., 2018). These approaches improve tractability but either ignore dependencies
 085 among sub-actions or introduce arbitrary orderings that break permutation symmetry. Retrieval-based
 086 methods such as Wolpertinger (Wol-DDPG) (Dulac-Arnold et al., 2015) scale to large discrete spaces
 087 by embedding and pruning candidate actions, but similarly fail to capture the joint structure of
 088 unordered sub-actions (Chen et al., 2023). These limitations motivate architectures that can represent
 089 dependencies across sub-actions while preserving permutation invariance.

090 **Transformers for Action Representation** Efforts to use Transformers for action space modeling
 091 have largely focused on sequential representations. RT-1 (Brohan et al., 2022) and RT-2 (Zitkovich
 092 et al., 2023) tokenize robot control trajectories and decode action tokens autoregressively, while
 093 Q-Transformer (Chebotar et al., 2023) autoregresses across action dimensions within a timestep.
 094 Learned tokenizers such as FAST (Pertsch et al., 2025) compress high-frequency control signals
 095 into vocabularies for vision–language–action (VLA) training. Extensions of trajectory-based models
 096 (Chen et al., 2021; Shang et al., 2022), interleave state and action tokens or design state-aware
 097 tokenizations to handle multi-component actions. Together, these methods establish the efficacy of
 098 Transformers for action encoding, but have been mostly designed for continuous control tasks in
 099 offline RL or VLA settings that are not directly comparable to the combinatorial domains we study.
 100 Moreover, they largely rely on sequential decompositions that impose arbitrary order and obscure
 101 permutation symmetry.

102 3 PRELIMINARIES

103 **Combinatorial Action Spaces** We consider RL problems formalized as a Markov Decision Process,
 104 defined by the tuple $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, p, r, \gamma, \mu \rangle$. Here, \mathcal{S} denotes the state space, \mathcal{A} the action space,
 105 $p(s' | s, a)$ the transition function, $r(s, a)$ the reward function, $\gamma \in [0, 1]$ the discount factor, and

Figure 1: Overview of SAINT. Initial sub-action embeddings are conditioned on the global state s to produce state-aware representations. Stacked Transformer blocks then model dependencies among sub-actions. The resulting context-aware representations are passed to independent Decision MLPs, which output per-sub-action policy distributions used for factorized sampling.

μ the initial state distribution. A policy π maps states to distributions over actions, $\pi : \mathcal{S} \rightarrow \mathbb{P}(\mathcal{A})$, which defines the agent’s behavior in the environment.

In this work we assume actions have an explicit compositional structure. Specifically, the action space is a product of sub-action domains, $\mathcal{A} = \mathcal{A}_1 \times \dots \times \mathcal{A}_A$, where each sub-action space \mathcal{A}_i is a discrete set. A single action thus comprises A sub-decisions, $\mathbf{a} = (a_1, \dots, a_A)$, with each $a_i \in \mathcal{A}_i$. This representation gives rise to high-dimensional action spaces with potentially complex dependencies among sub-actions.

Attention Attention is a general computational primitive that allows a model to selectively aggregate information from a set of inputs based on learned relevance scores (Vaswani et al., 2017). Formally, given a set of queries $Q \in \mathbb{R}^{n_q \times d}$, keys $K \in \mathbb{R}^{n_k \times d}$, and values $V \in \mathbb{R}^{n_k \times d}$, the scaled dot-product attention computes output $\text{Attn}(Q, K, V) = \text{softmax}(QK^\top / \sqrt{d})V$. Multi-head self-attention extends this by learning multiple independent projections and aggregating their outputs, enabling the model to capture different types of interactions in parallel. Transformers, which stack layers of multi-head self-attention with feedforward components, have been widely adopted in domains requiring flexible modeling of structured dependencies.

4 SUB-ACTION INTERACTION NETWORK USING TRANSFORMERS (SAINT)

We introduce the Sub-Action Interaction Network using Transformers (SAINT), a policy architecture that learns a state-conditioned, permutation-equivariant representation of the action space, enabling efficient computation of expressive action distributions. The SAINT architecture comprises three stages: (1) state conditioning, which injects global state information into sub-action representations; (2) interaction modeling, which applies self-attention to model higher-order relationships among sub-actions while preserving permutation equivariance; and (3) action decoding, which transforms each sub-action representation into a distribution over its discrete choices, with all sub-actions decoded in parallel to maintain tractability. An overview of the SAINT architecture is shown in Figure 1.

4.1 STATE CONDITIONING

SAINT represents each sub-action $i \in \{1, \dots, A\}$ with a learnable embedding vector $\mathbf{e}_i = \text{Embed}(i) \in \mathbb{R}^d$, drawn from a table $\text{Embed} \in \mathbb{R}^{A \times d}$. With d treated as a fixed hyperparameter shared across all sub-actions, each sub-action is represented by a d -dimensional embedding independent of its original cardinality $|\mathcal{A}_i|$, yielding a shared space for uniform processing by the subsequent Transformer layers.

Because sub-action identity alone is insufficient for decision-making, SAINT augments each base embedding \mathbf{e}_i with information from the global state $s \in \mathbb{R}^{d_s}$, enabling dependencies to be modeled in a state-aware manner. While several conditioning mechanisms such as cross-attention or concatenation are possible, we adopt Feature-wise Linear Modulation (FiLM) (Perez et al., 2018), which we found to be effective and parameter-efficient (see Appendix C). Notably, FiLM preserves the

162 **Algorithm 1** Policy Learning with the SAINT Architecture

163
164 1: Initialize SAINT policy π_θ and value network V_ϕ
165 2: **for** each training iteration **do**
166 3: Collect a batch of transitions $(\mathbf{s}_t, \mathbf{a}_t, r_t, \text{done}_t)$ by executing π_θ
167 4: Compute return R_t and weighting term $w_\Phi(\mathbf{s}_t, \mathbf{a}_t, R_t)$ for each transition
168 5: Compute policy log-probabilities $\ell_t \leftarrow \text{LOGPROBS}(\mathbf{s}_t, \mathbf{a}_t)$ ▷ See function below
169 6: Update policy θ by ascending the objective $\mathbb{E}_t[w_\Phi(\mathbf{s}_t, \mathbf{a}_t) \cdot \ell_t]$
170 7: Update value function ϕ by descending the loss $\mathbb{E}_t[(V_\phi(\mathbf{s}_t) - R_t)^2]$
171 8: **end for**
172
173 9: **function** $\text{LOGPROBS}(\mathbf{S}, \mathbf{A}_{\text{taken}})$
174 10: Get sub-action embeddings $\mathbf{E} \leftarrow [\text{Embed}(1), \dots, \text{Embed}(A)]^\top$
175 11: Inject state information $\tilde{\mathbf{E}} \leftarrow \text{StateCondition}(\mathbf{S}, \mathbf{E})$
176 12: Model interactions $\mathbf{X} \leftarrow \text{TransformerBlocks}(\tilde{\mathbf{E}})$
177 13: Get logits for each sub-action $\text{Logits}_i \leftarrow f_i(\mathbf{X}_{[:,i]})$ for $i = 1, \dots, A$
178 14: Compute log-probabilities $\log \mathbf{P}_{[:,i]} \leftarrow \log \pi_i(\mathbf{A}_{\text{taken}[:,i]} \mid \text{Logits}_i)$ for $i = 1, \dots, A$
179 15: **return** $\sum_{i=1}^A \log \mathbf{P}_{[:,i]}$
16: **end function**

180
181
182 **d-dimensional width of each sub-action embedding, introducing no additional projection dimensions.**
183 Its prior success in incorporating state information in RL (Brohan et al., 2022) further supports this
184 choice.

185 An MLP $g : \mathbb{R}^{d_s} \rightarrow \mathbb{R}^{2d}$ processes the global state \mathbf{s} once to produce FiLM parameters $(\gamma, \beta) = g(\mathbf{s})$,
186 which are then applied uniformly to all sub-action embeddings via an affine transformation:

$$\tilde{\mathbf{e}}_i = \gamma \odot \mathbf{e}_i + \beta .$$

190 4.2 INTERACTION MODELING

192 The matrix of state-aware sub-action representations $\tilde{\mathbf{E}} \in \mathbb{R}^{A \times d}$ is then processed by a stack of L
193 Transformer blocks, with positional encodings omitted to preserve permutation equivariance. Letting
194 $\mathbf{X}^{(0)} = \tilde{\mathbf{E}}$, each block $\ell = 1, \dots, L$ performs multi-head self-attention followed by a feed-forward
195 network (FFN). Specifically, queries, keys, and values are obtained by linear projections of the
196 previous layer’s output:

$$\mathbf{Q}, \mathbf{K}, \mathbf{V} = \mathbf{X}^{(\ell-1)}W^Q, \mathbf{X}^{(\ell-1)}W^K, \mathbf{X}^{(\ell-1)}W^V ,$$

197 which are then used in scaled dot-product attention to model interactions among sub-actions. The
198 attention output is then passed through a position-wise FFN applied independently to each sub-action
199 embedding. This design allows SAINT to model state-conditioned dependencies between sub-actions
200 while maintaining permutation equivariance.

204 4.3 ACTION DECODING

207 In the final stage, each context-aware sub-action representation \mathbf{x}_i is passed through a sub-action-
208 specific decision MLP, $f_i : \mathbb{R}^d \rightarrow \mathbb{R}^{K_i}$, which outputs a vector of K_i logits. These logits are
209 then transformed into a probability distribution over the K_i discrete choices for sub-action i via the
210 softmax function. The resulting policy for sub-action i is thus given by:

$$\pi_i(a_i \mid \mathbf{s}) = \text{Categorical}(\text{softmax}(f_i(\mathbf{x}_i))) .$$

213 Because each sub-action representation \mathbf{x}_i from the Interaction Modeling stage is conditioned on
214 the global state and incorporates information from the other sub-actions, the policy can be expressed
215 as independent sub-action distributions without loss of modeling capacity, preserving tractability in
combinatorial spaces where representing the full joint distribution would be infeasible.

216 4.4 COMPATIBILITY WITH RL ALGORITHMS
217218 The SAINT architecture is compatible with any RL algorithm for which the actor objective maximizes
219 the log-likelihood of sampled joint actions \mathbf{a} , weighted by some functional $w_\Phi(s, \mathbf{a})$:

220
$$\max_{\theta} \mathbb{E}_{(s, \mathbf{a}) \sim \mu} [w_\Phi(s, \mathbf{a}) \log \pi_\theta(\mathbf{a} | s)],$$

221

222 where μ denotes the sampling distribution over (s, \mathbf{a}) , arising either from an online policy or from a
223 fixed dataset in the offline setting. The weight $w_\Phi(s, \mathbf{a}) \geq 0$ is an algorithm-dependent scalar, such
224 as an advantage term or a score derived from Q_Φ .225 Compatible methods include standard online algorithms such as PPO (Schulman et al., 2017) and
226 A2C (Mnih et al., 2016), as well as offline approaches such as IQL (Kostrikov et al., 2021) and
227 AWAC (Nair et al., 2020). SAINT also supports selection-based actor updates as in BCQ (Fujimoto
228 et al., 2019), where the policy is trained on candidate joint actions drawn from a dataset or proposal
229 distribution. SAINT remains compatible even when $w_\Phi(s, \mathbf{a})$ is computed with a factorized critic,
230 since the critic is used only to produce a scalar weight for each sampled joint action from μ . The
231 actor is always updated toward the observed joint action \mathbf{a} , not an action reconstructed or optimized
232 over by the critic.233 Incompatibility arises when the actor objective requires global operations over the entire combinatorial
234 action space, such as $\mathbb{E}_{\mathbf{a}' \sim \pi^* \theta} [Q_\Phi(s, \mathbf{a}')] \text{ or } \max_{\mathbf{a}'} Q_\Phi(s, \mathbf{a}')$. These operations are computationally
235 intractable unless Q_Φ is factorized; however, this changes the structure of the actor target, decom-
236 posing it into uncoordinated per-dimension terms and discarding cross-dimensional structure. This
237 breaks alignment with SAINT’s objective of modeling dependencies among sub-actions. SAINT’s
238 learning procedure is provided in Algorithm 1.239
240 5 EXPERIMENTAL EVALUATION
241242 Our experiments evaluate the efficacy of different action representations for modeling complex
243 sub-action interactions across three regimes: (1) primarily state-independent interactions, (2) state-
244 dependent interactions, and (3) weak interactions with complex dynamics. Results are presented
245 in Sections 5.1, 5.2, and 5.3, respectively. Section 5.4 evaluates SAINT in the offline RL setting.
246 Section 5.5 analyzes key architectural choices, quantifying the trade-off between representational
247 power and computational cost, and robustness to Transformer structural parameters.248 We compare SAINT to four baselines reflecting the standard representational assumptions for com-
249 binatorial action spaces: (1) a factorized policy (Tavakoli et al., 2018), assuming fully independent
250 sub-actions; (2) an autoregressive model (Zhang et al., 2018), imposing a fixed sequential order; (3)
251 Wol-DDPG (Dulac-Arnold et al., 2015), using a continuous embedding; and (4) a flat RL algorithm,
252 which learns a monolithic representation of the full action space without exploiting its combinatorial
253 structure. Results are averaged over five random seeds.254 These four baselines instantiate the dominant structural assumptions used to scale RL to large combi-
255 natorial action spaces. The flat policy corresponds to a monolithic model that ignores compositional
256 structure and treats each joint action as an atomic symbol. The factorized policy enforces independent
257 per-dimension decisions, preventing it from modeling necessary coordination between sub-actions.
258 The autoregressive model imposes a fixed sequential ordering over sub-actions, which can be mis-
259 aligned with the true, permutation-invariant dependency structure. Wol-DDPG embeds each joint
260 action as a single continuous vector, collapsing the internal structure needed to capture interactions
261 among sub-actions. Our experiments in Sections 5.1-5.4 are designed to test whether these structural
262 assumptions remain sufficient when sub-action indexing is arbitrary or only weakly meaningful, or
263 whether a set-based alternative such as SAINT is required.264
265 5.1 STATE-INDEPENDENT SUB-ACTION DEPENDENCIES266 To evaluate SAINT in environments where sub-action dependencies are primarily state-independent,
267 we use the CityFlow traffic control benchmark (Zhang et al., 2019), where each action corresponds
268 to simultaneous phase decisions across multiple intersections. While coordination is necessary to
269 achieve global traffic efficiency, the structure of these dependencies remains largely unchanged across
states.

Figure 2: Learning curves show that SAINT outperforms all baselines in both learning speed and final reward, across both the CityFlow-Linear and CityFlow-Irregular environments.

We consider two configurations: (1) CityFlow-Linear, where three traffic signals are arranged in a row, yielding 729 possible joint signal combinations; and (2) CityFlow-Irregular, with four closely spaced, asymmetric intersections and varying road capacities, resulting in 375 valid joint action combinations. These networks are illustrated in Appendix A.1.

We adopt PPO as the standard RL algorithm in this setting. SAINT, the pure factorized baseline, and the AR baseline, use the same PPO implementation and hyperparameters, isolating the impact of architectural differences. Wol-DDPG performs poorly in this environment and is excluded from the main learning curves; full training curves, including Wol-DDPG, are included in Appendix A.2. Wol-DDPG’s ineffectiveness aligns with prior observations that it is ill-suited to environments with unordered sub-actions (Chen et al., 2023).

The results in Figure 2, demonstrate the advantage of SAINT’s set-based action representation. In both environments, SAINT learns faster and achieves higher final performance. The factorized approach is structurally incapable of modeling coordination between intersections and thus performs poorly. The autoregressive model is restricted by its fixed sequential prior, which is misaligned with the unordered nature of traffic-signal control. The flat PPO baseline, forced to learn a monolithic representation without exploiting combinatorial structure, fails to learn an effective policy.

5.2 STATE-DEPENDENT SUB-ACTION DEPENDENCIES

Next, we evaluate SAINT in environments where sub-action dependencies are strongly state-dependent. In these domains, the relationships among sub-actions vary significantly with the environment state, requiring policies to model context-sensitive joint decisions. To study this setting, we use the Combinatorial Navigation Environment (CoNE) (Landers et al., 2024), a configurable high-dimensional control domain designed to evaluate policy architectures under large, discrete, and structured action spaces.

The agent begins at a fixed origin s_0 and must reach a predefined goal g . At each timestep, it selects a joint action by activating multiple discrete sub-actions, each corresponding to movement along a distinct dimension of the environment. These sub-actions are executed in parallel to produce a single composite transition. The agent receives a reward $r = -\rho(s, g)$ at each step based on the Euclidean distance to the goal. Episodes terminate either upon reaching the goal (reward +10) or entering a terminal failure state (pit), which incurs a penalty of $r = -10 \cdot \rho(s_0, g)$ to discourage reward hacking through early failure.

In CoNE, both the action and state spaces grow exponentially with dimensionality: the number of joint actions scales as $|\mathcal{A}| = 2^{2D}$, and the number of states as $|\mathcal{S}| = M^D$ in a D -dimensional environment with M positions per axis. In our largest setting, the environment comprises over 200 million states and nearly 17 million joint actions per state. Beyond scale, CoNE introduces strong sub-action dependencies — some combinations enable efficient movement, others cancel out, and some lead to catastrophic failure. Crucially, these sub-action interactions are highly state-dependent; a combination that is optimal in one state may lead to a pit in another, making effective decision-making

$ \mathcal{A} $	SAINT	Factored	AR	Wol-DDPG	A2C
~16k	-8.3 ± 0.0	-11.9 ± 1.0	-8.3 ± 0.0	-586.2 ± 62.4	-593.7 ± 51.7
~65k	-9.9 ± 0.6	-45.8 ± 16.7	-22.3 ± 8.1	-691.5 ± 51.3	-641.0 ± 78.0
~260k	-12.5 ± 1.6	-51.6 ± 23.0	-20.4 ± 2.6	-712.0 ± 64.0	-756.3 ± 37.2
~1M	-12.2 ± 1.3	-50.9 ± 20.7	-28.6 ± 3.1	-674.5 ± 25.3	-801.1 ± 14.4
~4M	-14.4 ± 0.8	-36.6 ± 6.0	-28.0 ± 2.7	-929.3 ± 43.3	-846.6 ± 4.2
~17M	-13.4 ± 2.6	-44.1 ± 16.2	-33.9 ± 10.8	-873.2 ± 59.7	-

Table 1: Performance in CoNE as action dimensionality increases. SAINT consistently achieves the highest reward across all action space sizes. Factorized and autoregressive baselines plateau at substantially lower reward levels, while Wol-DDPG and A2C fail to learn viable policies.

highly sensitive to global context. CoNE is highly configurable, allowing us to systematically vary the number of dimensions and pit density to assess the impact of increasing action space size and sub-action dependence.

We adopt A2C as the standard RL algorithm in this setting. SAINT, the pure factorized baseline, and the AR baseline use identical A2C implementations to ensure a controlled comparison.

Varying Dimensionality To evaluate SAINT’s effectiveness as the number of possible actions increases, we scale the dimensionality of CoNE from 7 (yielding over 16 thousand possible action combinations) to 12 (with nearly 17 million combinations). In CoNE environments without pits, the agent can learn a trivial policy, as the optimal solution involves selecting the same action in every state. Thus, to introduce meaningful complexity and prevent this degenerate behavior, we place pits in 25% of interior states.

The results in Table 1 show that SAINT maintains strong performance as action dimensionality increases, significantly outperforming all baselines at every scale. While the factorized and autoregressive baselines achieve modest performance in lower dimensions, their performance degrades or plateaus as the number of sub-actions grows. This suggests their fixed representational priors — assuming either complete independence or a single fixed order — are insufficient to capture the complex interactions that emerge at scale. SAINT’s relative advantage increases in the largest settings, where it maintains low variance and stable performance. Wol-DDPG and A2C perform poorly throughout, highlighting their inability to form a tractable and meaningful representation of large, unordered action spaces. Note that A2C is omitted at the highest dimensionality due to the computational intractability of modeling the full joint action space with a flat categorical policy. Full learning curves are provided in Appendix B.2.

Varying Dependence To assess SAINT’s robustness to different levels of sub-action dependence, we incrementally increased the number of pits in the 12-dimensional CoNE environment. Higher pit densities impose stronger coordination requirements, as more sub-action combinations must be carefully selected to avoid pits. To ensure that a valid path from the start state to the goal always exists, pits were placed only in interior (non-boundary) states. We generate environments with 10%, 25%, 50%, 75%, and 100% of interior states occupied by pits. Note that even in the 100% setting, all boundary states remain pit-free, guaranteeing the existence of at least one (possibly inefficient) path to the goal region. We exclude A2C from this experiment due to the computational intractability of modeling such a large discrete action space (nearly 17 million actions) with a flat categorical distribution.

The results in Table 2 demonstrate that SAINT is more robust to increasing sub-action dependence than all baselines. As pit density increases from 10% to 100%, SAINT maintains high performance with low variance, while the factorized and autoregressive baselines generally degrade. Wol-DDPG was unable to learn meaningful policies at any pit density. These results highlight SAINT’s ability to capture complex, context-sensitive dependencies between sub-actions that are critical in many real-world combinatorial environments. Full learning curves for these results are provided in Appendix B.3.

Pit %	SAINT	Factored	AR	Wol-DDPG
10	-13.5 \pm 2.7	-44.1 \pm 16.2	-33.9 \pm 10.8	-873.2 \pm 59.7
25	-15.5 \pm 2.6	-33.3 \pm 4.1	-42.2 \pm 10.7	-822.3 \pm 36.8
50	-18.4 \pm 1.2	-78.6 \pm 29.7	-38.8 \pm 4.4	-863.0 \pm 22.9
75	-19.7 \pm 0.0	-58.0 \pm 11.9	-27.8 \pm 3.1	-841.1 \pm 39.5
100	-19.7 \pm 0.0	-54.8 \pm 7.1	-28.6 \pm 4.1	-879.5 \pm 33.4

Table 2: Performance in 12-D CoNE (~ 17 M actions) as sub-action dependence increases (controlled via pit density). SAINT consistently achieves the highest rewards across all settings and remains robust even as the sub-actions become highly dependent. Other methods degrade more rapidly, especially the factorized baseline. Wol-DDPG failed to learn meaningful policies in this setting.

5.3 WEAK SUB-ACTION DEPENDENCIES WITH COMPLEX DYNAMICS

To evaluate SAINT in environments where sub-action dependencies are relatively weak but the underlying dynamics are complex, we consider discretized variants of the HalfCheetah, Hopper, and Walker2D MuJoCo locomotion tasks (Towers et al., 2024). In these environments, each continuous joint control signal is discretized into 11 bins, yielding large, structured action spaces while retaining the rich temporal and physical dynamics of the original tasks. Although the discretized action spaces are combinatorially large, prior work (Beeson et al., 2024) suggests that the dependencies among sub-actions are relatively weak in these domains. **This setting thus provides a useful test of SAINT’s generality, elucidating whether the architectural overhead of self-attention remains beneficial when sub-action dependencies are weak or whether simpler factorized policies suffice.**

Given the limitations of PPO and Wol-DDPG identified in Sections 5.1 and 5.2, we restrict our comparison to the pure factorized and autoregressive baselines, using identical PPO implementations to ensure a controlled evaluation.

As shown in Figure 3, SAINT matches baseline performance in HalfCheetah and achieves faster learning and higher returns in Hopper and Walker2D. This demonstrates that even when sub-action dependencies are weak, learning a set-based representation of the action space gives an advantage over the rigid assumptions of factorization or a fixed autoregressive order.

5.4 OFFLINE RL

Finally, we evaluate whether SAINT can be used effectively as a policy architecture in offline RL. Specifically, we use the medium-expert datasets from the discretized DM Control tasks cheetah run, finger spin, humanoid stand, quadruped walk, and dog trot introduced by Beeson et al. (2024). Across these environments, the number of sub-actions ranges from six to 39.

Figure 3: Performance in discretized MuJoCo environments. While results are similar across methods in HalfCheetah, SAINT outperforms factorized and autoregressive baselines in Hopper and Walker2D, demonstrating its ability to handle complex action spaces even when sub-action dependencies are relatively weak.

Task	SAINT	Factored	AR
cheetah	676.1 \pm 30.9	629.6 \pm 36.5	629.6 \pm 38.8
finger	809.6 \pm 29.0	692.3 \pm 71.7	762.1 \pm 50.9
humanoid	676.5 \pm 48.2	594.1 \pm 47.7	592.4 \pm 58.5
quadruped	851.5 \pm 32.5	835.2 \pm 52.0	692.2 \pm 99.7
dog	586.1 \pm 30.5	415.2 \pm 40.4	423.3 \pm 72.6
Average	720.0	633.3	619.9

Table 3: Mean \pm std performance on offline DM Control tasks with BCQ variants.

In this section, we report results using Batch-Constrained Q-learning (BCQ) (Fujimoto et al., 2019) as the offline RL objective. Additional offline evaluations with AWAC and IQL are provided in Appendix C. As in Section 5.3, we limit our comparison to the pure factorized and autoregressive baselines.

As shown in Table 3, SAINT-BCQ achieves the strongest performance across all domains, demonstrating that explicitly modeling sub-action interactions improves policy quality even when learning is restricted to logged trajectories.

5.5 ANALYSES AND ABLATIONS

To evaluate SAINT’s design choices and robustness, we conduct three analyses. First, we compare FiLM-based state conditioning to alternative mechanisms. Second, we assess the trade-off between representational power and computational cost, quantifying how modeling sub-action interactions affects sample efficiency. These evaluations are performed in the CityFlow-Irregular environment and in the 10-dimensional CoNE setting with pits occupying 25% of interior states. Finally, we test SAINT’s robustness to architectural hyperparameters using the CityFlow-Irregular environment.

State Conditioning We compare SAINT’s FiLM-based state conditioning to four alternatives: (1) applying cross-attention to the state before self-attention, (2) applying cross-attention to the state after self-attention, (3) interleaving cross-attention and self-attention layers, and (4) appending the state as an additional token within the sub-action self-attention block. As shown in Appendix C, FiLM achieves higher final performance and more stable training in CityFlow, and performs at least as well as the alternatives in CoNE. These results indicate that while multiple conditioning mechanisms are effective, FiLM provides a consistent performance advantage and stabilizes training.

Representational Power vs. Sample Efficiency To isolate the computational overhead of modeling sub-action dependencies via self-attention, we compare SAINT’s runtime to that of the pure factorization baseline. We also evaluate a variant of SAINT, called SAINT-IP, that replaces standard self-attention with an inducing point mechanism (Lee et al., 2019), which approximates full attention using a fixed set of learned summary vectors. This technique reduces the quadratic cost of attention by attending first from the inducing points to the inputs, and then from the inputs back to the summaries. All experiments were conducted on a single NVIDIA A40 GPU using Python 3.9 and PyTorch 2.6. We report wall-clock time per training episode in seconds, averaged over 5 runs.

As shown in Table 4, SAINT requires more training time than the pure factorization baseline, reflecting the added cost of modeling sub-action dependencies with self-attention. SAINT-IP incurs further overhead from the Induced Set Attention Block (ISAB), which performs two attention passes per layer, compared to one in standard self-attention. While the number of sub-actions in our environments is nontrivial, it remains small relative to domains such as large language modeling or 3-D vision, for which inducing points were introduced (Lee et al., 2019). Consequently, the quadratic cost of full self-attention is not prohibitive, and ISAB’s asymptotic advantage does not yield runtime benefits in practice.

However, in practical settings efficiency is better measured by wall-clock time to reach a target return. The “time to factored performance” metric shows that SAINT and SAINT-IP reach the factorized baseline’s asymptotic return in less than one-third of the time in CityFlow and about 30% faster in CoNE. This indicates that the added computation of explicit action representations is outweighed by

	SAINT	SAINT-IP	Factored
CityFlow			
Total training time	5204.2	5412.4	3936.2
Time to factored performance	1088.53	1087.49	3936.2
CoNE			
Total training time	966.5	980.9	535.9
Time to factored performance	395.76	504.97	535.9

Table 4: Total wall-clock training time and time to reach the factored baseline’s final performance, both measured in seconds. “Total training time” reflects the full duration of training, while “time to factored performance” measures how quickly each method reaches that baseline.

faster learning — by modeling the true dependency structure, SAINT achieves stronger policies in less time.

Robustness to Architectural Hyperparameters We evaluated SAINT’s sensitivity to architectural hyperparameters by sweeping the number of self-attention blocks $\{1, 3, 5\}$ and attention heads $\{1, 2, 4, 8\}$, for a total of twelve configurations. As shown in Appendix F, performance varied within a narrow range — the best setting (3 blocks \times 1 head) outperformed the weakest (1 block \times 8 heads) by only $\sim 7\%$. Even the weakest configuration exceeded all baselines, underscoring SAINT’s robustness to attention depth and head count.

6 DISCUSSION AND CONCLUSION

We introduce SAINT, a policy architecture that treats learning in large discrete action spaces as a representation learning problem. Instead of assuming conditional independence or a fixed ordering, SAINT learns a state-conditioned, permutation-equivariant set representation of the combinatorial action space. Self-attention models the interactions within this set, yielding expressive and tractable policies for combinatorial domains.

While SAINT achieves strong performance, several limitations remain. Self-attention introduces a higher per-step computational cost than purely factorized baselines. Section 5.5 shows that this cost is often offset by improved sample efficiency, but lighter-weight attention variants such as sparse attention (Child et al., 2019) could benefit resource-constrained settings. Our analyses also validate FiLM as an effective state-conditioning mechanism, yet performance in new domains may depend on the capacity of this network, motivating exploration of more expressive state-injection methods such as those proposed in multi-agent RL (Iqbal & Sha, 2019). **Next, SAINT is designed for domains wherein a joint action is naturally represented as a set of parallel sub-actions for which indexing is arbitrary or weakly structured. In settings with highly structured and known priors, a fully permutation-equivariant prior may not be the most effective representation. In such settings hybrid architectures that combine structured embeddings with partial equivariance are a promising direction for future work.** Finally, although our experiments assume a fixed set of sub-actions, many real-world domains, such as road closures or reconfigurable network topologies, involve dynamically changing action sets. Because SAINT represents actions as an unordered set, it naturally supports such variability via masking. **Systematically evaluating this capability is an important research direction.**

In this work we show that learning explicit representations of sub-action interactions is an effective and practical approach for control in combinatorial action spaces. SAINT represents actions as unordered sets and applies self-attention to capture sub-action dependencies, yielding expressive yet tractable policies. This modeling delivers substantial gains in sample efficiency, accelerating convergence to high-performing policies. In environments with up to 17 million joint actions, SAINT consistently outperforms baselines that assume independence, impose ordering, or learn flat policies, demonstrating the effectiveness of modeling sub-action interactions for scalable combinatorial control.

540 REFERENCES
541

542 Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva Tb,
543 Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
544 policy gradients. *arXiv preprint arXiv:1804.08617*, 2018.

545 Alex Beeson, David Ireland, and Giovanni Montana. An investigation of offline reinforcement
546 learning in factorisable action spaces. *arXiv preprint arXiv:2411.11088*, 2024.

547 Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
548 optimization with reinforcement learning. *arXiv preprint arXiv:1611.09940*, 2016.

549 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
550 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
551 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

552 Yevgen Chebotar, Quan Vuong, Karol Hausman, Fei Xia, Yao Lu, Alex Irpan, Aviral Kumar, Tianhe
553 Yu, Alexander Herzog, Karl Pertsch, et al. Q-transformer: Scalable offline reinforcement learning
554 via autoregressive q-functions. In *Conference on Robot Learning*, pp. 3909–3928. PMLR, 2023.

555 Changyu Chen, Ramesha Karunasena, Thanh Nguyen, Arunesh Sinha, and Pradeep Varakantham.
556 Generative modelling of stochastic actions with arbitrary constraints in reinforcement learning.
557 *Advances in Neural Information Processing Systems*, 36:39842–39854, 2023.

558 Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
559 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
560 modeling. *Advances in neural information processing systems*, 34:15084–15097, 2021.

561 Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
562 transformers. *arXiv preprint arXiv:1904.10509*, 2019.

563 Arthur Delarue, Ross Anderson, and Christian Tjandraatmadja. Reinforcement learning with combi-
564 natorial actions: An application to vehicle routing. *Advances in Neural Information Processing
565 Systems*, 33:609–620, 2020.

566 Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan
567 Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement
568 learning in large discrete action spaces. *arXiv preprint arXiv:1512.07679*, 2015.

569 Gregory Farquhar, Laura Gustafson, Zeming Lin, Shimon Whiteson, Nicolas Usunier, and Gabriel
570 Synnaeve. Growing action spaces. In *International Conference on Machine Learning*, pp. 3040–
571 3051. PMLR, 2020.

572 Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
573 critic methods. In *International conference on machine learning*, pp. 1587–1596. PMLR, 2018.

574 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
575 exploration. In *International conference on machine learning*, pp. 2052–2062. PMLR, 2019.

576 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
577 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference
578 on machine learning*, pp. 1861–1870. Pmlr, 2018.

579 Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf. Deep
580 reinforcement learning with a natural language action space. *arXiv preprint arXiv:1511.04636*,
581 2015.

582 Ji He, Mari Ostendorf, Xiaodong He, Jianshu Chen, Jianfeng Gao, Lihong Li, and Li Deng. Deep
583 reinforcement learning with a combinatorial action space for predicting popular reddit threads.
584 *arXiv preprint arXiv:1606.03667*, 2016.

585 Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
586 Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
587 deep reinforcement learning. In *Proceedings of the AAAI conference on artificial intelligence*,
588 volume 32, 2018.

594 Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In *International*
 595 *conference on machine learning*, pp. 2961–2970. PMLR, 2019.
 596

597 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
 598 q-learning. *arXiv preprint arXiv:2110.06169*, 2021.

599 Matthew Landers, Taylor W Killian, Hugo Barnes, Thomas Hartvigsen, and Afsaneh Doryab. Offline
 600 reinforcement learning with combinatorial action spaces. *arXiv preprint arXiv:2410.21151*, 2024.
 601

602 Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh. Set trans-
 603 former: A framework for attention-based permutation-invariant neural networks. In *International*
 604 *conference on machine learning*, pp. 3744–3753. PMLR, 2019.

605 Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
 606 David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. *arXiv*
 607 *preprint arXiv:1509.02971*, 2015.
 608

609 Jennie Lioris, Alex Kurzhanskiy, and Pravin Varaiya. Adaptive max pressure control of network of
 610 signalized intersections. *IFAC-PapersOnLine*, 49(22):19–24, 2016.

611 Luke Metz, Julian Ibarz, Navdeep Jaitly, and James Davidson. Discrete sequential prediction of
 612 continuous actions for deep rl. *arXiv preprint arXiv:1705.05035*, 2017.
 613

614 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 615 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
 616 through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

617 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
 618 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
 619 learning. In *International conference on machine learning*, pp. 1928–1937. PmLR, 2016.
 620

621 Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
 622 reinforcement learning with offline datasets. *arXiv preprint arXiv:2006.09359*, 2020.

623 Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takáć. Reinforcement
 624 learning for solving the vehicle routing problem. *Advances in neural information processing*
 625 *systems*, 31, 2018.

626 Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film: Visual
 627 reasoning with a general conditioning layer. In *Proceedings of the AAAI conference on artificial*
 628 *intelligence*, volume 32, 2018.

629 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 630 Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
 631 models. *arXiv preprint arXiv:2501.09747*, 2025.
 632

633 Thomas Pierrot, Valentin Macé, Jean-Baptiste Sevestre, Louis Monier, Alexandre Laterre, Nicolas
 634 Perrin, Karim Beguir, and Olivier Sigaud. Factored action spaces in deep reinforcement learning.
 635 2021.

636 Faizan Rasheed, Kok-Lim Alvin Yau, Rafidah Md Noor, Celimuge Wu, and Yeh-Ching Low. Deep
 637 reinforcement learning for traffic signal control: A review. *IEEE Access*, 8:208016–208044, 2020.
 638

639 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 640 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 641

642 Jinghuan Shang, Kumara Kahatapitiya, Xiang Li, and Michael S Ryoo. Starformer: Transformer
 643 with state-action-reward representations for visual reinforcement learning. In *European conference*
 644 *on computer vision*, pp. 462–479. Springer, 2022.
 645

646 Shengpu Tang, Maggie Makar, Michael Sjoding, Finale Doshi-Velez, and Jenna Wiens. Leveraging
 647 factored action spaces for efficient offline reinforcement learning in healthcare. *Advances in Neural*
Information Processing Systems, 35:34272–34286, 2022.

648 Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
 649 In *Proceedings of the aaai conference on artificial intelligence*, volume 34, pp. 5981–5988, 2020.
 650

651 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
 652 Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. *arXiv preprint*
 653 *arXiv:1801.00690*, 2018.

654 Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching architectures for deep rein-
 655 forcement learning. In *Proceedings of the aaai conference on artificial intelligence*, volume 32,
 656 2018.

657 Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
 658 Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
 659 interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.

660

661 Tom Van de Wiele, David Warde-Farley, Andriy Mnih, and Volodymyr Mnih. Q-learning in enormous
 662 action spaces via amortized approximate maximization. *arXiv preprint arXiv:2001.08116*, 2020.

663 Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
 664 learning, 2015. URL <https://arxiv.org/abs/1509.06461>.

665

666 Pravin Varaiya. Max pressure control of a network of signalized intersections. *Transportation
 667 Research Part C: Emerging Technologies*, 36:177–195, 2013.

668

669 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 670 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 671 systems*, 30, 2017.

672 Tom Zahavy, Matan Haroush, Nadav Merlis, Daniel J Mankowitz, and Shie Mannor. Learn what not
 673 to learn: Action elimination with deep reinforcement learning. *Advances in neural information
 674 processing systems*, 31, 2018.

675

676 Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong
 677 Yu, Haiming Jin, and Zhenhui Li. Cityflow: A multi-agent reinforcement learning environment for
 678 large scale city traffic scenario. In *The world wide web conference*, pp. 3620–3624, 2019.

679

680 Yiming Zhang, Quan Ho Vuong, Kenny Song, Xiao-Yue Gong, and Keith W Ross. Efficient entropy
 681 for policy gradient with multidimensional action space. *arXiv preprint arXiv:1806.00589*, 2018.

682

683 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
 684 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
 685 to robotic control. In *Conference on Robot Learning*, pp. 2165–2183. PMLR, 2023.

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703
A LEARNING IN CITYFLOW704
705
A.1 ENVIRONMENTAL SETUP

Figure 4: Visualizations of the two CityFlow traffic control configurations used in our experiments. CityFlow-Linear (Figure 4a) has three intersections arranged in a row, yielding 729 possible joint actions. CityFlow-Irregular (Figure 4b) has 375 joint actions but exhibits greater coordination demands and more diverse traffic interactions.

In both CityFlow-Linear (Figure 4a) and CityFlow-Irregular (Figure 4b), the state is represented as a flat integer vector, in which each value indicates the number of waiting vehicles on an incoming lane and its paired outgoing lane. The reward at each step is the negative of the average "pressure" across intersections, where an intersection's pressure is defined as the absolute difference between its total incoming and outgoing vehicle counts. Pressure is a standard metric in traffic signal control literature, commonly used to quantify imbalance in intersection flow Lioris et al. (2016); Varaiya (2013).

756 A.2 LEARNING CURVES INCLUDING WOL-DDPG
757
758

Figure 5: Full learning curves for all baselines in CityFlow, including Wol-DDPG. Wol-DDPG performs poorly, consistent with its known limitations in environments with unordered sub-actions.

Figure 5 presents the full training curves for all methods in the CityFlow environments, including Wol-DDPG. As noted in Section 5.1, Wol-DDPG consistently underperforms relative to other methods. This poor performance is consistent with prior findings Chen et al. (2023), which show that Wol-DDPG is ill-suited to settings with unordered sub-actions. Learning curves excluding Wol-DDPG are presented in Figure 2.

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 B CONE LEARNING CURVES
811812 B.1 ENVIRONMENTAL SETUP
813

814 The Combinatorial Navigation Environment (CoNE) Landers et al. (2024) is designed to evaluate RL
815 algorithms in settings with high-dimensional, combinatorial action spaces and strong, state-dependent
816 sub-action dependencies. In CoNE, actions are formed by simultaneously selecting discrete sub-
817 actions, each specifying movement along a different dimension. These sub-actions are executed in
818 parallel to produce a composite transition, which may advance the agent toward the goal or result in
819 failure by entering a pit.

820 CoNE supports scaling along two axes, action dimensionality and pit density. As the number of
821 dimensions increases, both the state and action spaces grow exponentially; our largest configuration
822 contains over 200 million states and nearly 17 million discrete joint actions per state. In CoNE,
823 sub-action interactions are complex: some combinations are efficient, others cancel each other
824 out, and many must be avoided. These dependencies are highly state-sensitive, requiring effective
825 decision-making to account for both structure and context.

826 To our knowledge, no other existing benchmarks offer the combination of large-scale action spaces
827 and tunable sub-action dependencies found in CoNE. Popular environments such as the DeepMind
828 Control Suite Tassa et al. (2018), for example, lack meaningful sub-action interactions Beeson et al.
829 (2024).

830
831 B.2 VARYING DIMENSIONALITY
832
833

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851 Figure 6: Learning curves in CoNE environments as the number of sub-action dimensions increases from 7 to
852 12 (corresponding to joint action spaces ranging from $\sim 16k$ to $\sim 17M$ actions). SAINT consistently achieves
853 higher final rewards than all baselines, with its advantage widening in higher-dimensional settings. Factorized
854 and autoregressive baselines struggle to scale beyond moderate dimensions, while Wol-DDPG and A2C fail
855 to learn meaningful policies across all tasks. Results are averaged over 5 seeds; shaded regions indicate one
856 standard deviation.
857

858 Figure 6 provides the full learning curves corresponding to the results in Table 1, which reports
859 performance in CoNE as the number of sub-action dimensions increases. As dimensionality grows,
860 the joint action space expands exponentially — from roughly 16 thousand to nearly 17 million
861 possible joint actions.

862 Across all settings, SAINT consistently outperforms baselines. Notably, SAINT maintains stable
863 learning dynamics and low variance even at the largest scales, whereas factorized and autoregressive
864 baselines generally plateau. Wol-DDPG and A2C fail to learn viable policies in any configuration,

864 highlighting their inability to handle large, unordered combinatorial action spaces. These results
 865 underscore SAINT’s scalability and its robustness to increasing combinatorial complexity.
 866

867 B.3 VARYING DEPENDENCE

887 Figure 7: Learning curves in the 12-D CoNE environment as pit density increases from 10% to 100%, inducing
 888 progressively stronger sub-action dependencies. SAINT consistently outperforms all baselines, maintaining
 889 stable performance even as coordination requirements become increasingly stringent. Factored and autoregressive
 890 baselines generally plateau, while Wol-DDPG fails to learn meaningful policies. Results are averaged over 5
 891 seeds; shaded regions denote one standard deviation.

892 Figure 7 shows the full learning curves corresponding to the results in Table 2, which reports
 893 performance in the 12-D CoNE environment as sub-action dependence increases via pit density. As
 894 more interior states are occupied by pits, successful navigation requires greater coordination among
 895 sub-actions to avoid failure states.

896 SAINT maintains stable learning and strong final performance across all pit densities, even as
 897 coordination requirements grow substantially. Factorized policies degrade, while autoregressive
 898 policies consistently underperform relative to SAINT. Wol-DDPG fails to make progress in any
 899 environment. A2C was excluded from this experiment due to the computational intractability
 900 of modeling such a large discrete action space (nearly 17 million actions) with a flat categorical
 901 distribution. These results highlight SAINT’s robustness to state-dependent sub-action dependencies.

918 C STATE CONDITIONING
919

920 We compare SAINT’s pre-attention FiLM-based state conditioning to four alternative mechanisms:
921 (1) applying cross-attention to the state before self-attention, (2) applying cross-attention to the state
922 after self-attention, (3) interleaving cross-attention and self-attention layers, and (4) appending the
923 state as an additional token within the sub-action self-attention block.

924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 8: Comparison of state conditioning strategies in CityFlow (left) and 10-D CoNE (right). SAINT’s pre-attention FiLM-based conditioning outperforms alternatives more clearly in CityFlow, while all strategies perform similarly in CoNE. Results are averaged over 5 seeds; shaded regions indicate one standard deviation.

As shown in Figure 8, FiLM achieves higher final reward and exhibits more stable learning than the alternatives in CityFlow. In the 10-dimensional CoNE environment, all state conditioning strategies perform comparably, with pre-attention FiLM-based conditioning achieving slightly better final performance. These results suggest that while multiple conditioning mechanisms are viable, FiLM offers an advantage and may contribute to more stable training dynamics.

972

973

974

D ROBUSTNESS TO OFFLINE RL TRAINING OBJECTIVE

975

The results in Section 5.4 show that SAINT’s set-based, permutation-invariant architecture learns effective representations for offline RL in combinatorial action spaces when trained with an BCQ objective. To assess whether these advantages persist across different offline RL methods, we also evaluate SAINT with two additional objectives, Advantage Weighted Actor Critic (AWAC) (Nair et al., 2020) and Implicit Q-learning (IQL) (Kostrikov et al., 2021). These experiments use the same medium-expert datasets considered in Section 5.4 and follow an identical controlled protocol: for each algorithm, we instantiate factorized, autoregressive, and SAINT-based policy parameterizations while keeping the critic, training procedure, and hyperparameters fixed.

984

985

D.1 AWAC

986

Task	SAINT	Factored	AR
cheetah	668.5 \pm 21.9	657.5 \pm 25.9	646.6 \pm 22.4
finger	638.6 \pm 324.7	1.0 \pm 1.0	1.1 \pm 1.4
humanoid	694.7 \pm 29.1	639.4 \pm 29.2	682.9 \pm 36.3
quadruped	837.0 \pm 34.9	834.2 \pm 37.6	822.3 \pm 46.1
dog	543.9 \pm 60.3	423.0 \pm 51.7	449.5 \pm 43.3
Average	676.5	511.0	520.5

Table 5: Mean \pm std performance on offline DM Control tasks with AWAC variants.

990

991

992

993

994

995

996

997

D.2 IQL

998

999

1000

1001

1002

1003

Task	SAINT	Factored	AR
cheetah	627.5 \pm 39.6	588.7 \pm 48.0	615.9 \pm 37.8
finger	847.0 \pm 13.6	841.2 \pm 16.2	843.5 \pm 16.1
humanoid	613.1 \pm 58.9	589.9 \pm 40.8	568.2 \pm 55.5
quadruped	863.7 \pm 30.5	863.2 \pm 36.5	857.0 \pm 30.8
dog	596.1 \pm 53.2	497.8 \pm 35.9	539.8 \pm 33.6
<i>Average Return</i>	709.5	676.2	684.9

Table 6: Mean \pm std performance on offline DM Control tasks with IQL variants.

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026 **E SAINT’S COMPUTATION COST**
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 9: Learning curves comparing SAINT, SAINT with inducing points (SAINT-IP), and the pure factorized baseline in CityFlow and CoNE. Despite higher per-step computation cost, both SAINT and SAINT-IP reach the factorized baseline’s final performance much faster and achieve higher final rewards. In CityFlow, SAINT-IP’s policy is worse than SAINT’s, but still outperforms the baseline. Results are averaged over 5 seeds; shaded regions denote one standard deviation.

Figure 9 shows training curves for SAINT, SAINT with inducing points (SAINT-IP), and the factorized baseline in the CityFlow and CoNE environments. While SAINT and SAINT-IP incur higher per-step computational costs due to the Transformer blocks, both methods achieve the factorized baseline’s final performance in less total training time. This reflects their ability to reach performant policies with fewer training episodes. In CityFlow, SAINT-IP exhibits a degradation in asymptotic reward relative to SAINT, but still outperforms the factorized baseline. These results illustrate that the overhead of modeling sub-action dependencies can be offset by more efficient use of training experience.

1080 F ROBUSTNESS TO ARCHITECTURAL HYPERPARAMETERS
10811082 We systematically evaluated SAINT’s sensitivity to architectural hyperparameters by sweeping
1083 over the number of self-attention blocks $\{1, 3, 5\}$ and attention heads $\{1, 2, 4, 8\}$, yielding twelve
1084 configurations.
1085

1086 Configuration	1087 Mean Return
1088 1 block \times 1 head	1089 -13376.6 ± 973.3
1090 1 block \times 2 heads	1091 -13416.6 ± 1003.6
1092 1 block \times 4 heads	1093 -13058.6 ± 725.5
1094 1 block \times 8 heads	1095 -13744.5 ± 900.6
1096 3 blocks \times 1 head	1097 -12834.6 ± 499.8
1098 3 blocks \times 2 heads	1099 -13195.0 ± 618.8
1100 3 blocks \times 4 heads	1101 -13209.5 ± 778.8
1102 3 blocks \times 8 heads	1103 -13156.5 ± 581.9
1104 5 blocks \times 1 head	1105 -13320.7 ± 831.7
1106 5 blocks \times 2 heads	1107 -13658.8 ± 855.6
1108 5 blocks \times 4 heads	1109 -13664.3 ± 961.5
1110 5 blocks \times 8 heads	1111 -13664.8 ± 822.3
1112 Factored PPO	1113 -14200.5 ± 1127.4
1114 AR PPO	1115 -13995.9 ± 789.4
1116 Standard PPO	1117 -14442.5 ± 1180.0

1103 Table 7: Mean episodic return \pm standard error on CityFlow Irregular. We varied the number of
1104 attention blocks $\{1, 3, 5\}$ and the number of attention heads $\{1, 2, 4, 8\}$, for a total of 12 configurations.
1105 All SAINT variants outperform Factored, AR, and PPO baselines. The best SAINT configuration is
1106 in **bold**, the worst is in *italics*.
11071108 A consistent pattern emerges in Table 7. Moderate depth (3 blocks) with 2–4 heads yields strong
1109 and stable performance, while very high head counts (8) tend to degrade results. Crucially, every
1110 SAINT variant outperforms all baselines, including Factored PPO, AR-PPO, and standard PPO.
1111 This robustness implies that SAINT’s architectural advantages are not narrowly tied to a specific
1112 hyperparameter regime but instead generalize across a broad design space. Careful tuning can yield
1113 an additional 5–10% improvement, yet even suboptimal choices consistently achieve better outcomes
1114 than state of the art methods.
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133