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ABSTRACT

Many complex robotic manipulation tasks can be decomposed as a sequence of
pick and place actions. Training a robotic agent to learn this sequence over many
different starting conditions typically requires many iterations or demonstrations,
especially in 3D environments. In this work, we propose Fourier Transporter
(FOURTRAN), which leverages the two-fold SE(d) × SE(d) symmetry in the
pick-place problem to achieve much higher sample efficiency. FOURTRAN is an
open-loop behavior cloning method trained using expert demonstrations to predict
pick-place actions on new configurations. FOURTRAN is constrained by the sym-
metries of the pick and place actions independently. Our method utilizes a fiber
space Fourier transformation that allows for memory-efficient computation. Tests
on the RLbench benchmark achieve state-of-the-art results across various tasks.

1 INTRODUCTION

Imitation learning for manipulation tasks in SE(3) has emerged as a key topic in robotic learn-
ing. Imitation learning is attractive because of its practicality. In contrast to reinforcement learning
wherein training happens via a period of autonomous interaction with the environment (which can
potentially damage the robot and the environment), imitation learning requires only human demon-
strations of the task to be performed which is often safer and easier to provide. Sample efficiency is
critical here; the robot needs to learn to perform a task without requiring the human to provide an un-
due number of demonstrations. Unfortunately, many current state-of-the-art methods are not sample
efficient. For example, even after training with one hundred demonstrations, methods like PerAct
and RVT still struggle to solve standard RLBench tasks like STACK WINE or STACK CUPS (Shrid-
har et al., 2023; Goyal et al., 2023).

Why is sample efficiency such a challenge in three dimensions? A big reason is that these tasks
are defined over SE(3) action spaces where the policy must output both a 3D position and SO(3)
orientation. The orientation component here is a particular challenge for robot learning because
SO(3) is not Euclidean and standard convolutional layers, which lack geodesic properties, are not
well-adapted for SO(3) convolutions. Discretization of the group SO(3) is also difficult. For exam-
ple, a grid sampling of 1000 different orientations in SO(3) still only realizes an angular resolution
of 36

◦
, which is insufficient for many manipulation tasks. Instead, existing methods, e.g. Shridhar

et al. (2023) or Goyal et al. (2023), often fall back on generic self-attention layers that do not take
advantage of the geometry of SO(3).

One approach to this problem is to leverage neural-network policy models that are symmetric in
SO(2) or SO(3). This has been explored primarily in SO(2) and SE(2) settings, e.g. Wang et al.
(2021) and Jia et al. (2023), where significant gains in sample efficiency have been made using
policy networks that incorporate steerable convolution kernels (Cohen & Welling, 2017). In SO(3),
symmetric models have been mainly applied to pose or descriptor inference, e.g. Klee et al. (2023)
and Ryu et al. (2022), but not directly to policy learning. Moreover, most works do not address the
dual symmetry present in many pick and place problems, sometimes referred to as bi-equivariance
(Ryu et al., 2022), where the pick-place action distribution transforms symmetrically (equivariantly)

Project website: https://haojhuang.github.io/fourtran page

1

https://haojhuang.github.io/fourtran_page/


Published as a conference paper at ICLR 2024

when a transformation is applied independently to either the pick or the place pose. This is illustrated
in Figure 1. Independent rotations of the gear (g1) and the slot (g2) result in a change (a′ = g2ag

−1
1 )

in the requisite action needed to perform the insertion. While bi-equivariance in policy learning
has been studied in SO(2) (Huang et al., 2023a), models for encoding SO(3) bi-equivariance in a
general policy learning setting have not yet been developed.

This paper proposes Fourier Transporter (FOURTRAN), an approach to modeling SE(3) bi-
equivariance using 3D convolutions and a Fourier representation of rotations. Unlike existing meth-
ods, e.g. Equivariant Descriptor Fields (Ryu et al., 2022) and TAX-Pose (Pan et al., 2023), our
method encodes SO(3) bi-equivariance inside a general purpose policy learning model rather than
relying on point descriptors, which often require sample and optimization during inference. Our key
innovation is to parameterize action distributions over SO(3) in the Fourier domain as coefficients
of Wigner D-matrix entries. We embed this representation within a 3D translational convolution,
thereby enabling us to do convolutions directly SE(3) without excessive computational cost and
with minimal memory requirements. The end result is a policy learning model for imitation learning
with high sample efficiency and high angular resolution that can outperform existing SE(3) methods
by significant margins (Table 1). Our contributions are:

• We analyze problems with bi-equivariant symmetry and provide a general theoretical solu-
tion to leverage the coupled symmetries.

• We propose Fourier Transporter (FOURTRAN) for leveraging bi-equivariant structure in
manipulation pick-place problems in 2D and 3D.

• We achieve state-of-the-art performance on several RLbench tasks (James et al. (2020)).
Specifically, FOURTRAN outperforms baselines by a margin of between six percent
(STACK-WINE) and two-hundred percent (STACK-CUPS).

2 RELATED WORK

Action-centric manipulation. Traditionally, vision-based manipulation policies (Zhu et al., 2014;
Zeng et al., 2017; Deng et al., 2020; Wen et al., 2022) often require pretrained vision models to
conduct object detection, segmentation and pose estimation, and may struggle with deformable or
granular objects. Action-centric manipulation associates each pixel, voxel, or point with a target
position of the end-effector, providing an efficient framework that evaluates a large amount of ac-
tion with a dense output map. Transporter Networks (Zeng et al., 2021; Seita et al., 2021; Shridhar
et al., 2022) combine action-centric representations with end-to-end learning, showing fast conver-
gence speed and strong generalization ability. However, these end-to-end learning methods are often
limited to 2D top-down settings and cannot efficiently or accurately solve 3D pick and place tasks.

(a) 2D Bi-Equivariance (b) 3D Bi-Equivariance

Figure 1: Illustration of bi-equivariance in 2D (left) and 3D (right). The place action, a′ = g2ag
−1
1 ,

is symmetric with respect to both the orientation of the object to be picked, g1, and the orientation
of the place target, g2.
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Recent works have made great progress in extending action-centric manipulation to the full SE(3)
action space. Lin et al. (2023) synthesize different views and apply 2D Transporter Networks on
those views to realize 3D pick-place. C2FARM (James et al., 2022) represents the workspace with
multi-resolution voxel grids and infers the translation in a coarse-to-fine fashion. Transformer based
methods like PerAct (Shridhar et al., 2023) first tokenize the voxel grids together with a language
description of the task and learns a language-conditioned policy with Perceiver Transformer (Jaegle
et al., 2021). RVT (Goyal et al., 2023) projects the 3D observation onto orthographic images and
uses the generated dense feature map of each image to generate 3D actions. However, they all require
a large number of expert demonstrations to learn even simple 3D pick and place skills. Compared
with the previous works, our proposed architecture is an end-to-end method that demonstrates a
significant increase in sample efficiency in both 2D and 3D pick-place tasks.

Symmetries and Robot Learning. Robot learning methods can benefit significantly by leveraging
the underlying symmetry in the task. (Zeng et al., 2018; Morrison et al., 2018) show the transla-
tional equivariance of Fully Convolutional Network can improve learning efficiency for manipula-
tion tasks. Recent works explore the use of equivariant networks (Cohen & Welling, 2016; 2017;
Weiler et al., 2018; Weiler & Cesa, 2019; Cesa et al., 2021) to embed 2D rotational symmetries, re-
sulting in a dramatic improvement in sample efficiency. Wang et al. (2021); Zhu et al. (2022) encode
SO(2) rotational symmetry in manipulation policies and demonstrate better on-robot grasp learning.
(Wang et al., 2022b;a; Jia et al., 2023; Nguyen et al., 2023) exploit SO(2) and O(2) symmetries to
solve multi-step manipulation tasks with a closed-loop policies. (Huang et al., 2022; 2023a) analyze
the bi-equivariant symmetry of pick and place on the 2D rotation groups. However, they are limited
to 2D action spaces.

Several works have attempted to utilize SO(3) symmetry in robot learning. Neural Descriptor
Fields (NDF) (Simeonov et al., 2022) uses Vector Neurons (Deng et al., 2021) to generate SO(3)-
equivariant key point descriptors to define the object’s pose for pick and place tasks. However, NDF
and its variations (Chun et al., 2023; Huang et al., 2023b) require well-segmented point clouds and
pre-trained descriptor networks. TAX-Pose (Pan et al., 2023) generates SO(3)-invariant dense corre-
spondences for pick-place tasks, but is limited to reasoning over two objects. Equivariant Descriptor
Field (Ryu et al., 2022) achieves bi-equivariance by encoding the SO(3)-equivariant point features
with Tensor Field Network (Thomas et al., 2018) and SE(3) Transformer (Fuchs et al., 2020). How-
ever, it requires many samples in SE(3) to train and test the energy-based model. In comparison,
our proposed method generalizes bi-equvariance to both 2D and 3D manipulation pick-and-place
problems, infers the pick-and-place distribution over the entire action space with a single pass, and
utilizes convolution in Fourier space to improve computation efficiency.

3 BACKGROUND

We provide some background on symmetry and groups, which are used in our method. Please see
Appendix C for a more thorough mathematical introduction.

Groups and Representations. In this work, we are primarily interested in the special Euclidean
group SE(d) = SO(d) ⋉ Rd which includes all rotations and translations of Rd. The discrete
SO(2) subgroup Cn = {Rotθ : θ = 2πi/n, 0 ≤ i < n} contains rotations by angles which are
multiples of 2π/n. The icosahedral rotation group I60 and octohedral rotation group O24 are finite
subgroups of the group SO(3) which give the orientation preserving symmetries of the icosohedron
and octohedron and contain 60 rotations and 24 rotations, respectively.

An n-dimensional representation ρ : G → GLn of a group G assigns to each element g ∈ G
an invertible n×n-matrix ρ(g) where for all g, g′ ∈ G the matrices satisfy ρ(gg′) = ρ(g)ρ(g′).
Different representations of SO(d) or its subgroups describe how different signals are transformed
under rotations. We consider several examples. The trivial representation ρ0 : SO(d) → GL1

assigns ρ0(g) = 1 for all g ∈ G, i.e. there is no transformation under rotation. The standard
representation ρ1 of SO(d) assigns each group element its standard d× d rotation matrix. For finite
groups G, the regular representation ρreg acts on R|G|. Label a basis of R|G| by {eg : g ∈ G}, then
ρreg(g)(eh) = egh. Both SO(2) and SO(3) have irreducible representations, i.e. representations
with no non-trivial fixed subspaces, indexed by non-negative integers k ∈ Z≥0. The irreducible
representations of SO(3) are known as Wigner D-matrices, have dimension (2k + 1) × (2k + 1)
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and are denoted Dk. The irreducible representation ρk of SO(2) is given by 2× 2 rotation matrices
ρk(θ) = Rotkθ.

Steerable Feature Maps. We consider all features to be steerable feature vector fields f : Rd → Rc,
which assign a feature vector f(x) ∈ Rc to each position x ∈ Rd. An element g ∈ SO(d) acts on
a steerable ρ-field f by acting on both the base space Rd by rotating the pixel or voxel positions
and on the fiber space Rc (a.k.a., channel space) by some representation ρ. We define the action of
g via ρ on f by Indρ(g)(f)(x) = ρ(g) · f(ρ1(g)−1x). We denote the base space action alone by
(β(g)f)(x) = f(ρ1(g)

−1x). Note that β = Indρ0 .

GGG-Equivariant Mappings. A mapping F : X → Y is equivariant to a group G acting
on X by IndρX

and Y by IndρY
if it intertwines the two group actions IndρY

(g)F [f ] =
F [IndρX

(g)f ], ∀g ∈ G, f ∈ X. Equivariant linear mappings, i.e. intertwiners, between
spaces of steerable feature fields are given by convolution with G-steerable kernels (Weiler et al.,
2018; Jenner & Weiler, 2021). Assume the input field type transforms as Indρin and the out-
put field type as Indρout . Then by Cohen et al. (2019), Theorem 3.3, convolution with the ker-
nel K : Rd → Rdout×din is G-equivariant if and only if its satisfies the steerability constraint,
K(g · x) = ρout(g)K(x)ρin(g)

−1. A complete characterization and explicit parametrization of
steerable kernels is given in Lang & Weiler (2021).

SO(d)SO(d)SO(d) Fourier Transformation. Signals defined over the group SO(d) can be decomposed as
limits of linear combinations of complex exponential functions (for SO(2)) or Wigner D-matrices
(for SO(3)). We refer to the Fourier transform that maps SO(d)-signals to the coefficients of the
basis functions as F+ and the inverse Fourier transform as F−1. For a more in depth discussion of
the Fourier transform, we refer the reader to Appendix A.3.

4 METHOD

4.1 PROBLEM STATEMENT

This paper focuses on behavior cloning for robotic pick-and-place problems. Given a set of expert
demonstrations that contain a sequence of one or more observation-action pairs (ot, at), the objective
is to learn a policy p(at|ot) where the action at = (apick, aplace) has pick and place components and
the observation ot describes the current state of the workspace. In 2D manipulation tasks, ot is in
the format of a top-down image, and in 3D manipulation tasks, ot is a voxel grid. Our model factors
the policy p(at, ot) as

p(at|ot) = p(aplace|ot, apick)p(apick|ot)

where p(apick|ot) and p(aplace|ot, apick) are parameterized as the output of two separate neural
networks. The pick action apick ∈ SE(d) and place action aplace ∈ SE(d) are decomposed in
terms of translation and orientation (T,R) ∈ SE(d), where T is pixel coordinates (u, v) in 2D or
voxel coordinates (i, j, k) in 3D1. The rotational part of the action R ∈ SO(d) denotes the gripper
orientation, which is a planar rotation Rotθ in 2D tasks and a three-dimensional rotationR ∈ SO(3)
in 3D tasks. The pick rotation Rpick ∈ SO(d) is defined with respect to the world frame and
Rplace ∈ SO(d) is the relative rotation between the pick pose and place pose.

4.2 SE(d)-EQUIVARIANT PICK

We first analyze the symmetry of the robotic pick task in SE(d), where d = {2, 3} indicates 2D or
3D picking. Then, we present our pick network which realizes this symmetry.

Symmetry of the Pick Action fpickfpickfpick. The pick network takes an input observation ot and outputs the
pick pose probability distribution over SE(d), i.e., fpick : ot 7→ p(apick|ot). We represent p(apick|ot)
as a steerable field Rd → {SO(3) → R} in which the base space determines the pick location and
the fiber space (a.k.a., channel space) encodes the distribution over pick orientations. The distri-
bution p : SO(3) → R transforms by (ρL(g)p)(h) = p(g−1h) where the subscript L denotes the
left-action of g−1 corresponding to post-composing with the rotation. A consistent pick network

1Each pixel or voxel corresponds to a unique (x, y, z) spatial coordinate in the workspace
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Figure 2: Architecture of FOURTRAN. fpick first detects a task-appropriate pick pose. The crop
c centered at the pick location is fed to network ψ. The lift operation generates a stack of rotated
features and Fourier transformation F+ is applied to the channel space of the feature to output the
dynamic kernel κ(c). The cross correlation is conducted in Fourier space.

should satisfy the pick symmetry relation,

∀g ∈ SE(d), fpick(g · ot) = IndρL
(g)fpick(ot) (1)

Equation 1 illustrates the underlying symmetry of robotic picking problem, i.e., if there is a trans-
formation g ∈ SE(d) on ot (RHS of Equation 1), the pick pose distribution ppick should transform
accordingly by IndρL

. Specifically, the action β(g) on the base space rotates the pick location and
the fiber action ρ(g) transforms the pick orientation.

Pick Symmetry Constraints. To construct fpick satisfying Equation 1, we parameterize it with
equivariant convolutional layers. The pick network fpick takes the input observation ot as a ρ0 field
and outputs a ρirrep field where ρirrep represents the direct sum of irreducible representations giving
the truncated Fourier space representation of functions over SO(d) . To be specific, fpick can be
encoded as an equivariant U-Net that takes the observation and generates the coefficients of SO(d)
basis functions. As a result, fpick generates an un-normalized distribution over SO(3) above each
voxel coordinate or over SO(2) above each pixel coordinate. The pick pose distribution over SE(d)
is calculated by jointly normalizing the signal on translation and orientation. The best pick pose
āpick can be evaluate by āpick = argmax p(apick|ot).

4.3 SE(d)× SE(d)-EQUIVARIANT PLACE

We first clarify the coupled symmetries inside place tasks. Then, we present how FOURTRAN
realizes the solution.

Symmetry of the Place Action fplacefplacefplace. After the pick action āpick is determined, the place network
fplace infers the place action aplace to transport the object to be grasped to the target placement.
We assume the object does not move or deform during grasping so that apick may be geometrically
represented by an image or voxel patch centered on the pick location2, as shown in Figure 2. Our
place network is described

fplace : (c, ot) 7→ p(aplace|ot, apick) (2)
where p(aplace|ot, apick) denotes the probability that the object grasped at apick in scene ot should
be placed at aplace.

Since the place action is conditioned on the pick action, a consistent place network fplace should sat-
isfy the following bi-equivariance constraint. For f : SO(3) → R, denote (ρR(g)f)(h) = f(hg−1)
the right action on orientation distributions corresponding to pre-rotation by g−1. The place network
fplace should be SE(d)× SE(d)-equivariant:

∀g1, g2 ∈ SE(d), fplace(g1 · c, g2 · ot) = IndρL
(g2)ρR(g

−1
1 )fplace(c, ot) (3)

Equation 3 states that if g1 ∈ SE(d) acts on the picked object and g2 ∈ SE(d) acts on the observa-
tion ot that contains the placement of interest3, the desired place action will transform accordingly.

2The pick pose can also be geometrically represented by occupied voxel.
3Strictly, g2 acts on ot\c, the observation excluding the patch, since the picked object is transformed by g1.
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Recalling IndρL
acts on the location and orientation, the place orientationRplace will be transformed

to ρ1(g2)Rplaceρ1(g
−1
1 ), and the place location Tplace will be transformed to ρ1(g2)Tplace.

Realizing place symmetry: Solution. In order to design a network architecture fplace which
satisfies Equation 2, we follow the previous works (Zeng et al., 2021; Huang et al., 2022) which
treat the placing as a template matching problem and encode fplace with two separate functions ϕ
and κ to process ot and c respectively. Then p(aplace|ot, apick) is computed as the cross-correlation
between κ(c) and ϕ(ot),

fplace(c, ot) = κ(c) ⋆ ϕ(ot) (4)

where ⋆ denotes the cross correlation. Specifically, κ(c) : Rd → Rdout×din is a dynamic kernel and
ϕ(ot) : Rd → Rdin is a feature map generated from the workspace observation ot.

A schematic of our proposed method FOURTRAN is shown in Figure 2. In the top branch, an
encoder ϕ uses convolutional layers to map the input observation ot to a dense feature map. Both ot
and ϕ(ot) are considered ρ0-fields. In the bottom branch, the crop c is processed by ψ, which has
the same architecture as ϕ, to generate a dense feature map. Then, we lift ψ(c) with a finite number
of rotations G̃ = {gi |gi ∈ SO(d)}mi=1 to generate a stack of rotated feature maps. Specifically, we
define L↑G̃ as

∀x ∈ Rn, gi ∈ G̃ L↑[f ](x) = {f(g−1
1 x), f(g−1

2 x) · · · , f(g−1
m x)} (5)

a stack of fully rotated signals above each pixel or voxel. We then apply a Fourier transform to the
channel-space. Our dynamic kernel generator κ is summarized as

κ(c) = F+[L↑(ψ(c))] (6)

where F+ denotes the Fourier transform in the channel space. Finally, the cross-correlation between
κ(c) and ϕ(ot) is performed in the Fourier space. Appendix.A.1 shows the pseudocode of the
inference step of FOURTRAN.

Representing SO(d) rotations in Fourier space can achieve high angular resolution and enormously
save the computation load. In contrast, directly cross-correlating between a number of rotated ψ(c)
and ϕ(ot) independently is impossible when the action space contains a large number of rotations,
especially in 3D. For example, 10

◦
discretization along each axis in 3D will result in 363 rotations,

which is 46,656 in total.

Realizing place symmetry: Theory. We present a general solution to achieve the bi-equivariant
symmetries of Equation 3 and analyze how our porposed FOURTRAN satisfies it.

Proposition 1 Equation 4 satisfies the bi-equivariant symmetry stated in Equation 3 if the following
constraints hold:

1. ψ(c) satisfies the equivariant property that ψ(g · c) = β(g)ψ(c),

2. ϕ(ot) satisfies the equivariant property that ϕ(g · ot) = β(g)ϕ(ot),

3. κ(c) : Rd → Rdout×dtrivial is a steerable convolutional kernel with ρ0-type input.

The full proof of Proposition 1 is in Appendix A.2. Intuitively, rotations on the crop c and the
placement ot result in consistent transformations of the kernel κ(c) and feature map ϕ(ot). The
steerability of the kernel bridges the two transformations during the cross-correlation.

FOURTRAN satisfies the three constraints listed in Proposition 1. The first and the second constraints
hold since ψ and ϕ are implemented using equivariant convolution layers Cesa et al. (2021). The
third constraint is shown in Proposition 2.

Proposition 2 Let f : R3 → Rk be an SO(3)-steerable feature field. Then, the lifting operator
L↑I60(f) generates a I60-steerable kernel with regular-type output and trivial input. The fiber space
Fourier transformation F+[L↑(f)] is approximately an SO(3)-steerable kernel with trivial input
and output type

⊕ℓmax

ℓ=0 (2ℓ+ 1)Dℓ.

Proposition 2 states that κ(c) in Equation 6 is a dynamic steerable kernel generator, which satisfies
the third constraint in Proposition 1. The proof of Proposition 2 is derived in Appendix B.
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4.4 SAMPLING ROTATIONS IN A COARSE-TO-FINE FASHION

Coarse to fine sampling methods (James et al., 2022) are numerically efficient importance sampling
schemes that only sample in regions of dense signal. The pick network fpick and place network fplace
output the SO(d) distribution for each pixel or voxel in the format of coefficients of SO(d) basis
functions. When taking the inverse Fourier transform, we can sample a finite number of rotations for
each element. However, the memory requirements for the voxel grid are cubic in the resolution of
the grid and therefore limit the the number of sampled rotations for each voxel. To solve this, we first
sample a small number of rotations and evaluate the best coarse pick action (Tpick, Rpick) and best
place action (Tplace, Rplace). Then, we locate the best pick and place location Tpick and Tplace and
generate higher-order fourier signals with equivariant layers from the corresponding hidden features.
Finally, we conduct a second sampling to generate a large number of fine SO(3) rotations for Tpick
and Tplace and calculate the best fine orientation R⋆

pick and R⋆
pick. The robot will receive commands

of (Tpick, R⋆
pick), (Tplace, R

⋆
place) in the same time step and execute the actions.

5 EXPERIMENTS

5.1 MODEL ARCHITECTURE DETAILS

In FOURTRAN, fpick is a single convolutional network and fplace is composed of two equivariant
convolutional networks, ϕ and ψ. We implement them as 18-layer residual networks with a U-
Net (Ronneberger et al., 2015b) as the backbone. The U-Net has 8 residual blocks and each block
contains two equivariant convolution layers and one skip connection. The first layer maps the trivial-
representation ot to regular representation, and the last equivariant layer transforms the ρreg-type
feature to trivial representation for ψ and ϕ and to a direct sum of irreducible representations for
fpick. We use pointwise ReLU activations (Nair & Hinton, 2010) inside the network.

For 3D FOURTRAN, we use O24 regular representations in the hidden layers and lift the 3D crop
features with a set of 384 approximately uniformly sampled rotations of SO(3). We show that this
random lifting approximately generates a steerable kernel in the Appendix B.3. To decode the ρirrep
feature, we first coarsely sample 384 rotations for every voxel and later conduct a finer sampling of
26244 rotations on a subregion. The maximum order ℓmax of the Winger-D matrices in the coarse
and fine sampling levels is ℓmax = 2 and ℓmax = 4, respectively. In 2D FOURTRAN, we select the
C4 group in the intermediate layers of the three 2D convolution networks and use the C90 group to
lift ψ(c). After the Fourier transform, the frequency is truncated with the max order of 37.

5.2 3D PICK-PLACE

3D pick-place tasks are difficult due to the large observation and action spaces. We conduct our
primary experiments on five tasks shown in Figure 3 from RLbench (James et al., 2020) and compare
with three strong baselines (James et al., 2022; Shridhar et al., 2023; Goyal et al., 2023).

3D Task Description. We choose the five most difficult tasks from James et al. (2020) to test our
proposed method. Stack-blocks: It consists of stacking two blocks of the red color on the green
platform. Stack-cups: In stack-cups, the agent must stack two blue cups on top of the red color
cup. Stack-wine: The agent must grab the wine bottle and put it on the wooden rack at one of three
specified locations. Place-cups: The agent must place one mug on the mug holder. This is a very
high precision task where the handle of the mug has to be exactly aligned with the spoke of the
holder for the placement to succeed. Put-plate: The agent is asked to pick up the plate and insert it
between the red spokes on the dish rack. This is also a high-precision task. The different 3D tasks
are shown graphically in Figure 3. Note that the object poses are randomly sampled at the beginning
of each episode and the agent needs to learn to generalize to novel object poses.

3D Baselines. Our method is compared against three state-of-the-art baselines: C2FARM-BC
(James et al., 2022) represents the scene with multi-resolution voxels and infers the next key-frame
action using a coarse-to-fine scheme. PerAct (Shridhar et al., 2023) is the state-of-the-art multi-task
behavior cloning agent that tokenizes the voxel grids together with a language description of the
task and learns a language-conditioned policy with Perceiver Transformer (Jaegle et al., 2021). RVT
(Goyal et al., 2023) projects the 3D observation onto five orthographic images and uses the dense
feature map of each image to generate 3D actions.
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Figure 3: 3D pick and place tasks. From left to right the tasks are: Stack-blocks, Stack-Cups, Stack-
Wine, Place-Cups, and Put-Plate. The top row shows the initial scene and the bottom row shows the
completion state.

Model # demos stack-blocks stack-cups stack-wine place-cups put-plate
FOURTRAN (ours) 1 4 2.6 89.3 8 16
FOURTRAN (ours) 5 76 88 100 10.6 32
FOURTRAN (ours) 10 80 92 100 26.6 66.6

RVT-Single 10 9.3 13.3 33.3 1.3 54.6
PerAct-Single 10 52 1.3 12 1.3 8

C2FARM-BC-Single 10 36 0 1.3 0 1.3
RVT-Multi 100 28.8 26.4 91.0 4.0 -

PerAct-Multi 100 36 0 12 0 -
C2FARM-BC-Multi 100 0 0 8 0 -

Discrete Expert - 100 92 100 90.6 65.3

Table 1: Performance comparisons on RL benchmark. Success rate (%) on 25 tests v.s. the number
of demonstration episodes (1, 5, 10) used in training. Even with only 5 demos, our method is able
to outperform existing baselines by a significant margin.

Training and Metrics. We train our method with {1, 5, 10} demonstrations and train the baselines
with 10 demonstrations on each task individually. The single-task versions of the baselines are
denoted as ‘-Single’. All methods are trained for 15K SGD steps, and we evaluate them on 25
unseen configurations every 5K steps. Each evaluation is averaged over 3 evaluation seeds, and we
report the best evaluation across the training process. In favor of the baselines, we also include the
results of multi-task versions of the baselines trained on 16 different tasks of RLbench with 100
demonstrations per task from Goyal et al. (2023), denoted as ‘-Multi’. Please note put-plate task is
not covered in Goyal et al. (2023). To measure the effects of discretization error and path planning,
we also report the expert performance in the discrete action space used by our method.

3D Results. We report the results of all methods in Table 1. Several conclusions can be drawn
from Table 1: 1) FOURTRAN significantly outperforms all baselines trained with 10 demos on all
the tasks. 2) For tasks with a high-precision requirement, e.g., stack-cups, FOURTRAN keeps a high
success rate while all the baselines fail to learn a good policy. 3) FOURTRAN achieves better sample
efficiency, and with {1, 5} demonstrations, it can outperform baselines trained with hundreds of
demonstrations.

5.3 2D PICK-PLACE

We further evaluate the ability of FOURTRAN to solve precise pick-place tasks in 2D where the
action space is (u, v, θ), i.e., x, y translations and top-down rotation. We adopt three tasks shown in
Figure 4 from the Ravens Benchmark (Zeng et al., 2021).

2D Task Description. block-insertion: The agent must pick up an L-shape block and place it into
an L-shaped fixture; assembling-kits: The agent needs to pick 5 shaped objects (randomly sampled
with replacement from a set of 20) and fit them to corresponding silhouettes on a board. sweeping-
piles: The agent must push piles of small objects (randomly initialized) into a desired target goal

8



Published as a conference paper at ICLR 2024

block-insertion-10 assembling-kits-10 sweeping-piles-10

Model 15
◦

7.5
◦

15
◦

7.5
◦

FOURTRAN (ours) 100 100 86.2 78.0 99.8
Equivariant Transporter 100 98.0 85.0 76.0 100
Transporter Net 100 88.0 80.0 64.0 90.4

Table 2: Performance comparisons on 2D tasks. Success rate (%) on 100 tests. Results for both
low-resolution (15

◦
) reward and high-resolution reward (7.5

◦
).

zone on the tabletop marked with green boundaries. Detailed task settings and descriptions can be
found in Appendix A.8.

Figure 4: 2D pick and place task descriptions. Left: Block-insertion
task. Center: Assembling kits task. Right: Sweeping-piles task.

2D Baselines. We com-
pare our method against two
strong baselines. Trans-
porter Net (Zeng et al., 2021)
implements ϕ and ψ with
ResNet-43 without equivari-
ant convolutional layers. It
lifts the image crop c to Cn

before feeding it to the ψ net-
work. Equivariant Transporter (Huang et al., 2022) may be considered a variation of our proposed
method with a ρ0-input and ρreg-output steerable kernel. It is Cn × Cn equivariant. Since tasks of
Ravens Benchmark use a symmetric suction gripper, all outputs of picking angle θ are equivalent.
The picking angle θ is thus a nuisance variable and our pick network outputs trivial-type features
(instead of regular or higher-order irreducible features).

Training and Metrics. We train each model with 10 expert demonstrations and measure the per-
formance with the two reward functions. The low-resolution reward function credits the agent for
translation and rotation errors relative to the target pose within τ = 1cm and ω = 15

◦
and the

high-resolution reward function tightens the threshold to τ = 0.5cm and ω = 7.5
◦
.

Results. Table 2 shows the performance of all models trained with 10 demonstrations for 10K
steps. All tests are evaluated on 100 unseen configurations. First, FOURTRAN and Equivariant
Transporter realize bi-equivariance and achieve a higher success rate than Transporter Net on single-
step tasks and multi-step tasks. Second, as the criteria tightens from a 15

◦
rotation threshold to a

7.5
◦

rotation threshold, FOURTRAN maintains performance better than others. This indicates that
the SO(2)× SO(2) equivariance of FOURTRAN is more precise.

6 CONCLUSION

In this work, we propose the FOURTRAN architecture for pick and place problems. Similar to
previous pick and place methods (Ryu et al., 2022; Huang et al., 2023a), FOURTRAN leverages the
coupled SE(d) × SE(d)-symmetries inherent in pick-place tasks. FOURTRAN uses a novel fiber
space Fourier transform method to construct a bi-equivarient architecture in a memory efficient
manner. The use of Fourier space convolutions allows our architecture to process high resolution
features without the need for extensive sampling. We evaluate our proposed architecture on various
tasks and empirically demonstrate that our method significantly improves sample efficiency and
success rate. Specifically, in the two-dimensional case, FOURTRAN achieves better performance
than existing SOTA methods (Huang et al., 2023a; Zeng et al., 2021) on the Ravens benchmark.
For three-dimensional pick and place, our method achieves SOTA results on a subset of tasks in the
James et al. (2019) benchmark by a significant (in some cases up to two-hundred percent) margin.
This empirical success establishes FOURTRAN as a powerful architecture for pick-place tasks.

One limitation of the formulation of manipulation tasks in this paper is that it relies on open-loop
control and does not take path planning and collision awareness into account. Moreover, the cur-
rent model is limited to a single-task setting, and extending it to a multi-task, language-conditioned
equivariant agent is an important future direction. Lastly, this paper considers only robotic ma-
nipulation problems, while the bi-equivariant architecture proposed here may have uses outside of
robotic manipulation. Specifically, various binding tasks in biochemistry, like rigid protein-ligand
interaction (Ganea et al., 2022), and point cloud registration (Huang et al., 2021) have the same
bi-equivariant symmetry as pick-place problems.
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A APPENDIX

A.1 PSEUDOCODE

Algorithm 1 FourTran inference
1: Given the observation ot, pick neural network fpick, observation and crop encoder ϕ, ψ, coarse

discrete SO(3) rotations Gc, fine discrete SO(3) rotations Gf

2: if SE(d)-equivariant pick then
3: Calculate pick logits in Fourier space: f̃pick = fpick(ot)

4: Calculate coarse pick distribution in spacial: pc(apick|ot) = F−
Gc

[f̃pick]
5: The coarse pick pose ācpick = (T,Rc) can be evaluated by ācpick = argmax pc(apick)

6: The fine pick orientation Rf can be evaluated at T by Rf = argmaxF−
Gf

[f̃pick[T ]]

7: āpick = (T,Rf )
8: end if
9: if SE(d)× SE(d)-equivariant place then

10: Crop the observation at pick location: c = crop(ot, āpick)
11: Encode observation and crop: ϕ(ot), ψ(c)
12: Calculate lifted crop encoding in Fourier domain: κ(c) = F+[L↑

Gc
(ψ(c))]

13: Calculate place logits in fourier: f̃place = κ(c) ⋆ ϕ(ot)

14: Calculate coarse place distribution in spacial: pc(aplace|ot) = F−
Gc

[f̃place]
15: The coarse place pose ācplace = (T,Rc) can be evaluate by ācplace = argmax pc(aplace)

16: The fine place orientation Rf can be evaluated at T by Rf = argmaxF−
Gf

[f̃place[T ]]

17: āplace = (T,Rf )
18: end if
19: return (āpick, āplace)

A.2 PROOF OF PROPOSITION 1

To prove proposition 1, we begin with 2 lemmas.

Lemma 1 A steerable kernel K : Rn → Rdout×dtrivial satisfies

β(g)K(x) = ρout(g
−1)K(x) (7)

proof 1 Recall that ρ0(g) is an identity mapping. Substituting ρin with ρ0(g) and g−1 with g in the
steerability constraint K(g · x) = ρout(g)K(x)ρin(g)

−1 completes the proof.

β(g)K(x) = K(g−1x)

= ρout(g
−1)K(x)ρin(g)

= ρout(g
−1)K(x)

Lemma 2 cross correlation satisfies that

(β(g)(K ⋆ f))(v⃗) = ((β(g)K) ⋆ (β(g)f))(v⃗) (8)

proof 2 We evaluate the left-hand side of Equation 8:

β(g)(K ⋆ f)(v⃗) =
∑
w⃗∈Z2

f(g−1v⃗ + w⃗)K(w⃗).

Re-indexing the sum with y⃗ = gw⃗,

=
∑
y⃗∈Z2

f(g−1v⃗ + g−1y⃗)K(g−1y⃗)
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is by definition

=
∑
y⃗∈Z2

(β(g)f)(v⃗ + y⃗)(β(g)K)(y⃗)

= ((β(g)K) ⋆ (β(g)f))(v⃗)

as desired.

We first prove that if there is a rotation u acting on the observation ot, we have κ(c) ∗ ϕ(u · ot) =
IndρL

(u)κ(c) ∗ ϕ(ot) and the desired place location is changed from T to ρ1(u)T and the action of
orientation is changed from a to ua.

First, consider the no-rotation case without the channel-space Fourier transform.

κ̂(c) ∗ ϕ(ot) = [β(g1)ψ(c), β(g2)ψ(c), · · · , β(gm)ψ(c)] ∗ ϕ(ot)

where κ̂(c) = L↑(ψ(c)), each rotated crop feature is cross-correlated with ϕ(ot) independently and
the entire output can be considered as an m-channel feature map. Assume that the best place action
is found in i-th channel, i.e., β(gi)ψ(c) matches the dense feature map of the placement best and
thus a = gi.

proof 3 Then, consider a rotation u acting on ot and assume the new best place action is found in
the k-th channel

κ̂(c) ∗ ϕ(u · ot) = κ̂(c) ∗ (β(u)ϕ(ot)) Equiv. of ϕ

= β(u)β(u−1)κ̂(c) ∗ β(u)ϕ(ot)
= β(u)(β(u−1)κ̂(c) ∗ ϕ(ot)) lemma 2

= β(g)([β(u−1)β(g1)ψ(c), β(u
−1)β(g2)ψ(c), · · · , β(u−1)β(gm)ψ(c)] ∗ ϕ(ot))

= β(g)(β(u−1)κ̂(c) ∗ ϕ(ot))
= β(g)(ρL(u)κ̂(c) ∗ ϕ(ot)) lemma 1
= β(g)ρL(u)(κ̂(c) ∗ ϕ(ot))
= IndρL

(u)(κ̂(c) ∗ ϕ(ot))
Note β(·) acting on the base domain while ρ(g) acting on the fiber space. Assume that m is infinite
and the best place action is found in the k-th channel, i.e, β(u−1)β(gk)ψ(c) produces the best match.
We have β(u−1)β(gk)ψ(c) = β(gi)ψ(c) and we can get:

u−1gk = gi = a since β(·) is a bijective mapping

Multiplying u from the left realizes that gk = ua. It shows that after a rotation u on the crop, the
orientation component of the best place action is changed to gk = ua.

Then, we prove that if a rotation h acting on the crop c, the desired place action to is changed from
a to ah−1.

proof 4 Consider a rotation h acting on the crop and assume the the best place action is found in
the j-th channel. The place network can be evaluated as

κ̂(β(h)c) ∗ ϕ(ot) = [β(g1)ψ(β(h)c), β(g2)ψ(β(h)c), · · · , β(gm)ψ(β(h)c)] ∗ ϕ(ot)
= [β(g1)β(h)ψ(c), β(g2)β(h)ψ(c), · · · , β(gm)β(h)ψ(c)] ∗ ϕ(ot) equiv. of ψ

= ρR(g
−1)κ̂(c) ∗ ϕ(ot) lemma 1 and definition of ρR(g)

Assume that m is infinite and the best place action is found in the j-th channel, i.e, β(gj)β(h)ψ(c)
produces the best match. We have β(gj)β(h)ψ(c) = β(gi)ψ(c) and since β(·) is a bijective map-
ping, we can get:

gjh = gi = a

Multiplying h−1 from the right realizes that gj = ah−1. It shows after a rotation h on the crop, the
best place action is changed to gj = ah−1.

Combining proof 4 and proof 3 finishes the proofs of proposition 1.
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A.3 SO(3)-FOURIER TRANSFORM

Let f : SO(3) → R be a real valued function defined on SO(3). Then, by the Peter-Weyl theorem
f can be decomposed as

∀g ∈ SO(3), f(g) =

∞∑
ℓ=0

ℓ∑
k,k′=−ℓ

f̂ ℓkk′Dℓ
kk′(g)

where Dℓ are the Wigner D-matrices. Wigner D-matrices of order ℓ are irreducible representations
of dimension 2ℓ+ 1. The Fourier transform over SO(3) is defined F(f) = (f̂ ℓ)∞ℓ=0, where each of
the f̂ ℓ is a matrix of size (2ℓ+1)× (2ℓ+1). The inverse Fourier transform can be computed using
the orthogonality of the Wigner D-matrices,

f̂ ℓkk′ =

∫
g∈SO(3)

dg f(g)Dℓ
kk′(g−1)

where dg denotes the SO(3) Haar measure. In practice, we will truncate the ℓ index at some maxi-
mum value ℓmax.

A.4 TRAINING DETAILS

We evaluate our method on both 2D and 3D manipulation pick-place tasks. Specifically, we train a
single-task policy for each task with a dataset of n experiment demonstrations. Each demonstration
contains one or more observation-action pairs (ot, ãpickãplace), where ãpick denotes the expert pick
action and ãplace is the expert place action. We use expert actions to generate one-hot maps as the
ground-truth labels for our picking model and placing model. Due to the computation load of equiv-
ariant convolutional layers on 3D voxel grids, we slightly lift the second constraint of Proposition 1
by encoding our ϕ with a traditional U-net (Ronneberger et al., 2015a). U-net with the long skip
connection also maintains a certain amount of the ρ0 7→ ρ0 equivariance. Both models are trained
end to end using a cross-entropy loss. The model is trained using the Adam optimizer with fixed
learning rate=1e−4. We report the training time and GPU memory requirement of 3D FOURTRAN
in Table 4.

A.5 ABLATION STUDIES

We perform two ablation studies to explore the functionality of our proposed architecture. We
first replace the equivariant U-net of ψ with a traditional U-net. This modification reduces the
architecture to satisfy the first constraint in Proposition 1. The second ablated version of our model
is that we remove the lifting and Fourier transform and directly generate the irreducible features
for each element, i.e., the model is forced to learn the third constraint of Proposition 1 without
prior knowledge. Table 3 shows the performances of all ablations. Comparing the first row with
the second row, we find that the results are consistent. We hypothesize that the reasons are: 1)
traditional U-net with the skip connections also captures the trivial 7→ trival equivariance and the
equivariant constraints of the equivariant layers with O24 group in FOURTRAN is not strong. 2)
Data augmentation is applied to both models to learn the equivariance. Comparing the first row to
the third row, the ablated model attempting to learn the coefficients of the basis function is not as
well as our proposal to generate a dynamic steerable kernel. On the other hand, given the fact that
lifting with a fixed number of SO(3) rotations approximates the steerability of a 3D kernel, this
ablated version avoids lifting to reduce the computation load. However, without representing SO(3)
rotations in Fourier space, it is way more expensive to evaluate a fine discrete SO(3) distribution.

A.6 MODEL COMPARISONS

We train a single-task agent for each 3D baseline on the five tasks shown in Figure 3 with the same
settings presented in their paper. Note that we have {pre-pick, pick, post-pick} and {pre-place,
place, post-place} where the pre-action and post-action are defined as relative to the pick and place
action while the baseline predicts the action for the next keyframe without a clear line between pick
and place.
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Model stack-blocks stack-wine phone-on-base put-plate

FOURTRAN (ours) 76 100 96 32

Fourier Transporter w.o equiv. of ψ 76 96 96 24
Fourier Transporter w.o lifting 72 88 96 28

Table 3: Ablation Study: Performance of three variants of FOURTRAN on different RLbench tasks
James et al. (2019) Each model is trained with 5 demonstrations and evaluated on 25 tests. Best
performances are highlighted in bold.

Model Parameters (M) Memory(Gb) Training Time (secs/sgd step)
FOURTRAN-pick 3.1 M 8.5 1.5
FOURTRAN-place 1.6 M 13.6 1.6
RVT 36 M 12.5 0.46
PerAct 33 M 12 1.5
C2FARM 3.6 M 2 0.07

Table 4: Comparison of FOURTRAN (ours) architecture and existing pick-place methods. Tests were
performed on NVIDIA 3090 GPU.

Table 4 compares FOURTRAN with the baseline architectures. Note that our model has about the
same number of parameters as C2FARM James et al. (2020) significantly fewer parameters than
the transformer-based methods PerActJaegle et al. (2021) (33 M) and RVTGoyal et al. (2023) (36
M). The equivariant 3D convolution implemented in FOURTRAN requires a relatively large GPU
memory. However, FOURTRAN can produce the action distribution over the entire action space
directly instead of a set of discrete rotations along each axis. As a result, FOURTRAN can easily
query the backup actions if the action selected cannot be reached.

A.7 DETAILED 3D TASK SETTINGS AND METRICS

The RLbench James et al. (2020) is implemented in CoppelaSim (Rohmer et al., 2013) and inter-
faced through PyRep (James et al., 2019). All experiments of RLbencg use a Franka Panda robot
with a parallel gripper. Our input observations are captured from four RGB-D cameras. The cap-
tured point could is parameterized as 72× 96× 56 voxel grid and each voxel represents a 0.94cm3

cube in our settings.

Figure 5 shows the expert SO(3) rotation action distributions in stack-wine and put-plate tasks. The
agent needs to reason about the SO(3) rotation space to finish the tasks. For more information of
plotting elements of SO(3), please see Murphy et al. (2022).

A.8 DETAILED 2D TASK SETTINGS AND METRICS

At the beginning of each episode, the poses of objects and placements in each task are randomly
sampled in the workspace without collision. The visual observation ot is a top-down projection
of the workspace with 3 simulated RGB-D cameras pointing towards the workspace. Our pixel
resolution is 320×160 for the 1m × 0.5m workspace. We measure performance in the same way as
it was measured in Transporter Net Zeng et al. (2021) – using a metric in the range of 0 (failure) to
100 (success). Partial scores are assigned to multiple-action tasks. For example, in the assembling
kit task where the agent needs to assemble 5 objects, each successful rearrangement is credited with
a score of 0.2. We report the highest validation performance during training, averaging over 100
unseen tests for each task.
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Figure 5: Visualization of expert SO(3) actions from 10 demonstrations. First column: expert pick
action. Second column: expert place action. First row: stack-wine. Second row: put-plate. The
orientation visualization follows “YXY” convention. For more detail on plot formatting, please see
Murphy et al. (2022)

B PROOF OF PROPOSITION 2

B.1 THE I60-LIFTING MAP IS A STEERABLE KERNEL WITH TRIVIAL INPUT TYPE AND
REGULAR OUTPUT TYPE

The lifting map L↑(f) generates a I60-steerable kernel with regular-type output. To see this, note
that, by the definition of L↑,

∀x ∈ Rd, L↑(f(x)) = {g1 · f(x), g2 · f(x), ..., gm · f(x)}
where each gi are elements of I60. Thus, ∀g ∈ I60, we have that
L↑(f(g · x)) = {g1 · f(gx), g2 · f(gx), ..., gm · f(gx)} = {f(g−1

1 gx), f(g−1
2 gx), ..., f(g−1

m gx)}

Now, let g be a fixed element of the icosahedral group. Left multiplication by an element of g is a
group homeomorphism of I60. Let us define gg(i) to be the element of the sampled set gi so that

gg(i) = g · gi
Let 1 be the identity element on SO(d). Then, note that

g1(i) = gi

The map gg(i) satisfies an additional composition property. Let g, g′ be elements of SO(d), then,
g(gg′)(i) = gg(g′(i))

holds exactly. Thus, the map g(·) ∈ The expression for L↑(f) can be rewritten as

L↑(f(g · x)) = ρ(g){f(g−1
1 x), f(g−1

2 x)...f(g−1
m x)} = ρ(g)L↑(f(x))

where the matrix ρ has elements given by
ρ(g)ij = δig(j)

Using g1(i) = gi, we have that the matrix ρ satisfies,
ρ(1) = I60

where I60 is the identity matrix in 60 dimensions. Using the identity g(gg′)(i) = gg(g′(i)) the matrix
ρ satisfies the relation

ρ(g)ρ(g′) = ρ(gg′)

which is the definition of a group representation. Thus, the matrix ρ is exactly the permutation
representation of I60. Thus, the lifting operator L↑(f) is an I60-steerable kernel with trivial input
type and regular output type.
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B.2 FIBER SPACE FOURIER TRANSFORM

Let us suppose that the map L↑(f) is exactly a I60-steerable kernel with trivial input type and regular
output type. We can then compute the fiber space SO(3)-Fourier transform of L↑(f)

ρout(g) =

ℓmax⊕
ℓ=0

mℓD
ℓ(g)

where Dℓ is the ℓ-th irreducible of SO(3).

Let F+ be the Fourier transform in the fiber space given by

F+(L↑(f)) =

ℓmax∑
ℓ=0

Cℓ(x)Dℓ

where the irreducible coefficients are given by the fiber space Fourier transform

Cℓ(x) =

∫
R∈SO(3)

dR Dℓ(R−1)ρ(R)L↑(f)(R−1x)

B.3 THE STOCHASTICALLY SAMPLED LIFTING MAP IS APPROXIMATELY A
SO(3)-STEERABLE KERNEL

The stochastically sampled lifting map L↑(f) approximately generates a steerable kernel with
regular-type output. To see this, note that, by the definition of L↑,

∀x ∈ Rn, L↑(f(x)) = {g1 · f(x), g2 · f(x), ..., gm · f(x)}

where each gi is sampled iid from SO(d). Thus, ∀g ∈ SO(d), we have that

L↑(f(g · x)) = {g1 · f(gx), g2 · f(gx), ..., gm · f(gx)} = {f(gg−1
1 x), f(g−1

2 gx), ..., f(g−1
m gx)}

Now, let g be a fixed element of SO(d). Left multiplication by an element of g is a group homeo-
morphism of SO(d). Let us define gg(i) to be the closest element of the sampled set gi so that

gg(i) = argmaxj=1,2,...m||g · gi − gj ||

where the norm is the geodesic distance on SO(d). Let us assume that we work in the regime where
the number of samples m is large and

maxj=1,2,...m||g · gi − gj || ≤
ϵ

m

For iid uniform gi, this property holds generically for large values of m. This can be proved rigor-
ously using concentration of measure phenomena.

Let 1 be the identity element on SO(d). Then, note that

g1(i) = argmaxj=1,2,...m||gi − gj || = gi

The map gg(i) satisfies an additional composition property. Let g, g′ be elements of SO(d), then,

g(gg′)(i) = argmaxj=1,2,...m||(gg′) · gi − gj || = argmaxj=1,2,...m||g(g′ · gi)− gj ||

Thus,

g(gg′)(i) = gg(g′(i))

holds approximately.

We may decompose the expression for L↑(f)(gx) as

L↑(f(g · x)) = {f(g−1
g(1)x), f(g

−1
g(2)x)...f(g

−1
g(m)x)}+ error
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where the error term can be written as

error = {f(g−1
1 gx)− f(g−1

g(1)x), f(g
−1
2 gx)− f(g−1

g(2)x), ..., f(g
−1
m gx)− f(g−1

g(m)x)}

if we assume that the function f is L-Lipschitz continuous, then,

||f(g−1
k gx)− f(g−1

g(k)x)|| ≤ L||g−1
k g − g−1

g(k)|| ≤
Lϵ

m

and so as long as m is large, the error term is small (roughly O( L
m )). Ignoring the error term, the

expression for L↑(f) can be rewritten as

L↑(f(g · x)) = ρ(g){f(g−1
1 x), f(g−1

2 x)...f(g−1
m x)} = ρ(g)L↑(f(x))

where the matrix ρ (which implicitly depends on the sampled gi) has elements given by

ρ(g)ij = δig(j)

Using g1(i) = gi, we have that the matrix ρ satisfies,

ρ(1) = Im

where Im is the m-dimensional identify matrix. Using the identity g(gg′)(i) = gg(g′(i)) the matrix ρ
approximately satisfies the relation

ρ(g)ρ(g′) = ρ(gg′)

which is the definition of a group representation. Thus, up to approximation, the matrix ρ is the
permutation representation of SO(d). The gi are sampled at some numerical resolution with corre-
sponding bandwidth ℓmax. Ergo, for large m, the matrix ρ is a good approximation to the SO(d)
permutation representation at bandwidth ℓmax.

C MATHEMATICAL BACKGROUND

We establish some notations and review some elements of group theory and representation theory.
For a comprehensive review of representation theory, please see Zee (2016); Ceccherini-Silberstein
et al. (2008).

C.1 GROUP THEORY

At a high level, a group is the mathematical description of a symmetry. Formally, a group G is
a non-empty set combined with a associative binary operation · : G × G → G that satisfies the
following properties

existence of identity: e ∈ G, s.t. ∀g ∈ G, e · g = g · e = g

existence of inverse: ∀g ∈ G,∃g−1 ∈ G, g · g−1 = g−1 · g = e

The identity element of any group G will be denoted as e. Note that the set consisting of just the
identity element e is a group.

C.2 REPRESENTATION THEORY

Let V be a vector space over the field C. A representation (ρ, V ) of a group G consists of V and a
group homomorphism ρ : G→ Hom[V, V ]. By definition, the ρ map satisfies

∀g, g′ ∈ G, ∀v ∈ V, ρ(g)ρ(g′)v = ρ(gg′)v

Two representations (ρ, V ) and (σ,W ) are said to be equivalent representations if there exists an
invertable matrix U

∀g ∈ G, Uρ(g) = σ(g)U
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The linear map U is said to be a G-intertwiner of the (ρ, V ) and (σ,W ) representations. A repre-
sentation is said to be reducible if it breaks into a direct sum of smaller representations. Specifically,
a unitary representation ρ is reducible if there exists an unitary matrix U such that

∀g ∈ G, ρ(g) = U [

k⊕
i=1

σi(g)]U
†

where k ≥ 2 and σi are smaller irreducible representations of G. The set of all non-equivalent
representations of a group G will be denoted as Ĝ. All representations of compact groups G
can be decomposed into direct sums of irreducible representations. Specifically, if (σ, V ) is a G-
representation,

(σ, V ) = U [
⊕
ρ∈Ĝ

mρ
σ(ρ, Vρ)]U

†

where U is a unitary matrix and the integers mρ
σ denote the number of copies of the irreducible

(ρ, Vρ) in the representation (σ, V ).

C.3 WIGNER D-MATRICES

The fundamental representation of the rotation group in three-dimensions is given by

SO(3) = { R | R ∈ R3×3, RTR = I3, det(R) = 1 }.
It should be noted that a group is an abstract mathematical object and that the standard parameteri-
zation is a choice. There are multiple non-equivalent representations of the group SO(3). The irre-
ducible representations of SO(3) are known as Wigner D-matrices (Dℓ, V ℓ). The Wigner D-matrix
of order ℓ is a real representation of dimension (2ℓ + 1) × (2ℓ + 1). Although Wigner D-matrices
are difficult to visualize, the ℓ = 1 representation is just the standard 3× 3 matrix representation of
SO(3).

C.4 PETER-WEYL THEOREM AND FIBER SPACE FOURIER TRANSFORM

The Peter-Weyl theorem (Ceccherini-Silberstein et al., 2008) states that all representations of com-
pact groups can be decomposed into a countably infinite sets of irreducible representations. Consider
the set of functions

F = { f | f : G→ C }
of all complex valued function defined on G. The set F forms a vector space over the field C. The
group G acts on vector space F . Specifically, define the group action λ : G×F → F as

∀f ∈ F , ∀g, g′ ∈ G, (λg · f)(g′) = f(g−1g) ∈ F
The action satisfies λgλg′ = λgg′ and is a group homeomorphism. The left-regular representation
of a group is defined as (λ,F). The Peter-Weyl theorem Ceccherini-Silberstein et al. (2008) states
that

(λ,F) = U [
⊕
ρ∈Ĝ

dρ(ρ, Vρ)]U
†

where U is the unitary matrix. Thus, the left-regular representation decomposes into dρ copies of
each (ρ, Vρ) irreducible. In other words, the Peter-Weyl theorem states that matrix elements of
irreducible G-representations form an orthonormal base of the space of square-integrable functions
on G.

C.5 IRREDUCIBLE REPRESENTATION ORTHOGONALITY RELATIONS

Matrix elements of irreducible representations satisfy a set of orthogonality relations Zee (2016).
Specifically, let ρ and σ be irreducible representations of the group G. Then,∑

g∈G

ρkk′(g)σ(g)†nn′ =
|G|
dρ
δρ,σδknδk′n′
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where |G| is the cardinality of the group. The orthogonality relations of different irreducible repre-
sentations is an analogue of harmonics of different frequencies in Fourier analysis. As an example,
consider the case with G = SO(2). Irreducible representations of SO(2) are all one dimensional
and labeled by an integer. They are all of the form

ρk(ϕ) = exp(ikϕ)

The orthogonality relations applied to G = SO(2) then state that∫ 2π

0

dϕρk(ϕ)ρ(ϕ)
†
k′ =

∫ 2π

0

dϕ exp(i(k − k′)ϕ) = 2πδkk′

which is the standard orthogonality relation for different Fourier harmonics.

C.6 INDUCED REPRESENTATIONS

The induced representation is a way to construct representations of a larger group G out of repre-
sentations of a subgroup H ⊆ G. Let (ρ, V ) be a representation of H . The induced representation
of (ρ, V ) from H to G is denoted as IndGH [(ρ, V )]. Define the space of functions

F = { f | f : G→ V, ∀h ∈ H, f(gh) = ρ(h−1)f(g) }

Then the induced representation is defined as (π,F) = IndGH [(ρ, V )] where the induced action π
acts on the function space F via

∀g, g′ ∈ G, ∀f ∈ F , (π(g) · f)(g′) = f(g−1g′)

The induced representation was originally used in Cohen & Welling (2017) to design networks that
are equivariant with respect to both rotations and translations. Induced representations can be used
to change the underling group equivariance Cesa et al. (2021); Weiler & Cesa (2019); Howell et al.
(2023). Specifically, induced representations can be used to design SE(3)-equivariant maps from
SO(3)-equivariant maps.
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