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ABSTRACT

Autoregressive (AR) diffusion models have recently attracted significant atten-
tion for their ability to generate high-quality, diverse samples across various tasks
involving text, image, and video generation. Despite this surge of interest, the the-
oretical underpinnings of AR diffusion remain largely unexplored. This work,
for the first time, investigates the inference complexity and underlying mech-
anisms behind AR diffusion’s strong performance. Building on the sequential
patch-by-patch generation paradigm, we formalize the inference process as a se-
ries of stage-wise conditional distribution samplings. This formulation yields that,
when conditional components are learned accurately, the resulting approximation
to the full joint distribution becomes highly precise. Our theoretical analysis es-
tablishes the AR diffusion inference complexity bound for a general number of
stages K, requiring only minimal smoothness assumptions on the score functions
and their estimation error. The complexity includes an additional factor propor-
tional to the number of stages, reflecting the model’s sequential architecture. On
the other hand, we show that this stage-wise design can be advantageous for learn-
ing specific conditional dependencies between patches, which may be overlooked
by conventional diffusion models that focus primarily on joint distributions. Sub-
sequent experiments on synthetic data validate this theoretical insight.

1 INTRODUCTION

Autoregressive (AR) diffusion models have recently garnered considerable attention in various do-
mains, including image generation (L1 et al., 2024d; Sun et al., 2024; Tian et al., 2024a), video
synthesis (Weng et al.|[2023; |Liu et al.,2024; [Sun et al.; 2025)), and text generation (Wu et al., [ 2023;
Tian et al.,[2024b). AR diffusion can be viewed as a hybrid approach combines techniques from au-
toregressive modeling and diffusion-based methods (Dhariwal & Nicholl 2021; |Austin et al.| 2021}
Ramesh et al., 2022} |[Saharia et al.| 2022} |Gupta et al.| [2024; [Luo et al.| [2023)). Specially, AR dif-
fusion generates image patches sequentially according to a predetermined (e.g., raster-scan) order,
while employing standard diffusion methods to approximate distribution of each patch.

Alongside the rapid advancement of diffusion-based applications, diffusion models’ correspond-
ing theoretical foundations have also made significant progress |(Chen et al.[ (2023bja)); |Benton et al.
(2024); L1 & Yan|(2025)). The sampling error of diffusion models primarily stems from three sources:
(1) initialization error arising from the distributional mismatch between the terminal distribution af-
ter forward noising, and the initial distribution of the reverse process; (2) score estimation error
representing the discrepancy between learned and true score; and (3) discretization error from ap-
proximating continuous sampling dynamics with discrete-time steps. Recent work (Chen et al.,
2023b; |Lee et al., 2022) demonstrate that with accurate score estimation, diffusion models can
achieve polynomial-time convergence under minimal smoothness assumptions, without requiring
structural conditions like log-concavity on the data distribution.

Compared to diffusion models, while AR diffusion models have been applied with great success
in various domains (L1 et al., 2024d; [Sun et al., 2024; [Tian et al., 2024a; [Wu et al., [2023; Tian
et al., [2024b; Weng et al.l 2023 [Liu et al.| [2024; |Sun et al., [2025)), their theoretical foundations
remain comparatively underexplored. In this paper, we aim to narrow this gap by investigating
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the theoretical properties of AR diffusion models, examining in particular whether they can offer
convergence guarantees under the general assumptions commonly adopted by standard diffusion
models. In addition, AR diffusion is designed to learns conditional probability distributions along
a predefined order (e.g., raster scan order), whereas standard diffusion models focus on modeling
the joint distribution. An intuitive consideration is that when data exhibit dependencies, such as
linear constraints among image patches (Han et al., |2025bj |Lu et al.| 2025; |Wang et al., 2025), AR
diffusion, by emphasizing conditional probabilities, can more effectively capture such dependencies.
We aim to provide theoretical insights into the above two questions.

To address these questions, we present the first theoretical analysis of the inference complexity of
AR diffusion models. We begin by interpreting the existing AR inference process as the reverse
of a stage-wise Ornstein—Uhlenbeck (OU) process, where the initial distribution coincides with a
particular conditional data distribution. Compared to convergence analysis in conventional diffu-
sion, two key challenges emerge in AR diffusion: (1) The global training loss only minimizes the
average diffusion loss across stages [Li et al.|(2024c), providing no guarantee of uniformly small
score estimation error for each stage. We must ensure this global objective can effectively miti-
gate error accumulation during multi-stage inference; and (2) extending the second-moment and
smoothness assumptions from standard diffusion analysis to every conditional distribution—a re-
quirement that may be too restrictive in AR settings. We resolve these issues by developing a more
refined characterization of the sampling error propagation in AR diffusion models and show that,
under appropriately bounded score estimation errors, the total number of score evaluations needed
to achieve an e-accurate sample in terms of KL divergence is on the order of O(K de~2). Beyond
the general regime, we further conduct the comparison between AR diffusion and standard diffusion
models through the lens of capturing the conditional dependencies among patches. Intuitively, the
stage-wise learning of AR diffusion may inherently promote the recovery of conditional distribu-
tions, whereas standard diffusion models focus primarily on the joint distribution. This suggests a
potential advantage for AR diffusion in learning certain fine-grained details of the data distribution.

Contributions. We provide the first rigorous theoretical analysis of AR diffusion models. Using a
stage-wise forward Ornstein-Uhlenbeck (OU) process, we show that: (1) the global AR diffusion ob-
jective, derived from local denoising score entropy, matches the expected loss in empirical studies |Li
et al.[ (2024c)), and (2) it effectively controls accumulation of inference errors. Under assumptions
nearly as mild as those for standard diffusion (Benton et al.,|2024), our analysis establishes that AR
diffusion requires a gradient complexity of O(K de~2) to achieve O(¢) sampling error, provided
the score estimation error is at most O(e/+/K ), a result consistent with empirical observations (i.e.,
smaller training loss yet lower efficiency compared to conventional diffusion). Moreover, we prove
that, in certain regimes , AR diffusion can better capture some conditional dependencies among
patches compared to standard diffusion. We show that the AR diffusion model can always achieve
a vanishing sampling error bound for conditional distributions, whereas standard diffusion may suf-
fer from an unbounded KL divergence error in these conditionals, even when its error in the joint
distribution remains well-controlled. Numerical experiments on synthetic data corroborate these
theoretical findings.

2 PRELIMINARIES

In this section, we first introduce the notation used in subsequent sections and then adapt the algo-
rithm presented in L1 et al.| (2024c)) to our chosen notation system.

Conditional Distribution Decomposition. Suppose we divide the vector & € R? into K patches
(x1,x2,...,xK) following predefined order (e.g., raster scan); thus, a general distribution on R¢

can be viewed as a joint distribution p(x1, @2, ..., Tx ) where &3 € R% and Zszl dy, = d. Given
an index set S, it can deduce a vector s = (x;);cs from the joint x, and a distribution also from
a joint distribution:
ps@s)= [ plerma o) di(@)igs).
(xi)igs

In what follows, we focus on sets with consecutive indexes denoted as [l : ] = {I,{+1,...,r} and
deduce the corresponding distribution

Pl (®07) = ppy (T, T2, .. 20) :/ p(xp.x)) d(®pa—1), Tri1k7)- (1)
L[1:1—-1]5 [r+1,K]
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Ifk & [l:r]and (x,...,x,) is given, the conditional probability on xy, is defined as

Pli:riu{k} (m[l:r] ) .’Bk)
Pli:r) (x[l:r])

2

Pk|[i:r] (mk|.’Bl, ) xr) =

In addition, the density function of the Gaussian-type distribution A'(0, 02 ) is abbreviated as .

After the general definition, we consider some notations related to diffusion models. Specifically,
the data density function is denoted as p, o exp(—f.): Ré+dzF-+dx 4 R 5o the marginal and
conditional distributions derived from any index set are p. s and py g|[i:r]-

AR Diffusion Models. Following |Li et al.| (2024c)), we briefly revisit AR diffusion models, which
usually divide the generated data into several patches, e.g., X = [X1, X2, ...,Xk] and then predict
the next patch, e.g., X1 in a sequence based on the previous ones e.g., &1.; or a compressed repre-
sentation, e.g., z := g, (£1.1). The prediction is usually to draw X from a specific distribution
qo(-|[1:4)) inspired by typical diffusion models. Then, considering a OU process initialized by

qo(-|®[1:0)), i€
dy: = —y:dt + V2dBy, yi ~ q:(|zpx), t € (0,7, (3)

drawing sample from g (-|@(1.4]) is equivalent to obtain yq by reversing SDE. [3|and run
dyi = (vi +2VIngr—o(y: |op)) dt + V2dBy, )

where y;~ follows distribution ¢;~ = ¢r_;. Previous work approximately solves the above SDE as
Ay = (yt + 80ur (Ve | T — tr, z)) dt + V2dB.. )

In this formulation, the score estimator sg,, ,.,(-|T" — ¢, z) depending on z is parameterized by
Odm,+1 and used to approximate V In gy, (-|2[1.x)). Besides, ¢, denotes the timestamps belong-
ing to the set {t,.}[* ;, which partitions the mixing time T of the forward process {y;}7_, into R
segments of lengths {nr}f":_ol. Given these definitions, if we set

o(ylt,z) = —(1— e*Qt)*l/2 - se(ylt, z),
and the loss at 7" — ¢ to be
2
Lio1,t(@am o+1, O T(1:1) = Eygmgo(apng), e~N(0.1) [Hf — Loy (Y-t | T — ¢, go, (2p1))) || }7

then |Li et al.|(2024c) proposes the following objective for training Ogm x+1 and O

L(Ogm k11, Oucl®p1:0)) = Bt {Lkﬂ,t (Bam,k+1, Our | $[1:k])] (6)

In the subsequent discussion, for simplicity, we do not explicitly distinguish different learnable pa-
rameters (€.€., Oam,1, - - -, Oam, i, @) and use O to represent all relevant parameters instead. More-
over, in handling SDEs within Alg. 2| for some fixed k and z = g, (T[1:x)), We abbreviate the
underlying distribution g (:|@[1.x]) by ¢:(-).

General Assumptions. To study convergence and the gradient complexity required for achieving
small total variation (TV) distance or Kullback-Leibler (KL) divergence, we assume p,. satisfies:

[A1] The second moment of p, is bounded, i.e.,
Exp. [I%[P] = /p*(a:) ||| dz < mo.

[A2] The energy function of p, has a bounded Hessian and bounded gradient, namely
[V2Inp,| <L and |Vinp.| < VL.

Assumption [AT]|is prevalent across most works on diffusion analysis. Assumption [[AZ] only im-
poses the Hessian upper bound on the data distribution’s energy function, which is often often re-
ferred to as a minimal smoothness requirement (Chen et al.| (2023a)). Although, compared with
previous works, an additional gradient norm upper bound is only required, it does not have any con-
straint on the isoperimetric property, which means the data distribution is still allowed to be general
non-log-concave.
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Algorithm 1 SIMPLIFIED AUTOREGRESSIVE DIFFUSION GENERATION
1: Input: Number of patches K, mixing time T for each patch, number of iterations R per patch,
score estimator sg, condition generator gg,,
2: For the mixing time 7', define two sequences:

{t 3y, to=0, tr=T, t;<t;Vi<j

_ (7
{ﬂr}f:ol, Nr = try1 — tp.

w

Generate 1 by calling Alg. 0, 0, R, {t.}E ,, s6).
fork=1to K —1do
5:  Acquire the condition for the next patch:

B

z = go,(Tk)) = o. (&1, T2,..., &) (3

6:  Generate the next patch &1 conditioned on z by calling Alg. k, z, R, {t.} 1, s0).
end for
8: return The concatenated patches [Z1, &2, ..., Tk].

~

3 STAGE-WISE FORMULATION OF AR DIFFUSION

In this section, we formalize the AR diffusion framework from a theoretical perspective by decom-
posing it into two stages: an autoregressive stage, where the next patch is predicted, and a diffusion
stage, where the inference for each patch is viewed as the reverse of a stage-wise OU process. This
stage-wise theoretical formulation provides the necessary foundation for the convergence results
presented in Section 4}

Understanding of the inference. In Algorithm (I} we summarize the inference procedure for AR
diffusion where Step show the most essential characteristics of AR diffusion. At each iteration,
we generate the next patch, @1, by conditioning on the previously generated patches, &[;.x), or
their compressed representations, z = ge, ([1.x]). The specific process for sampling £ 1, shown
in Algorithm 2} is analogous to typical diffusion-based inference that aims to recover qo(-|[y:x))-
However, Algorithm distinguishes itself by introducing a non-uniform partition {¢,}2 ; in Eq.
for the reverse process (Eq. ), thereby offering additional flexibility compared to standard diffusion
approaches. Under this condition, we argue that such a procedure can be understood as the reverse
of a stage-wise OU process by setting the initial distribution of each stage to satisfy

qo (| [1:1]) = Peet1)1:k) ClE128))- ©)

Specifically, the forward OU process with K (patch number) stages can be described as follows
1. For Stage k, we consider a random process initialized by the distribution
Px[1:K—k+1] = P [1:K—k] " P+, K —k+1|[1: K —k]-
2. Given the random variable y; implemented as in Eq. [3] we have
(X =), Yo} ~ Puic—k) - @ Where  qo = Py g —py1|[1:K—k]-

3. Since gqr — MN(0,I) as T — oo, we can approximate the underlying distribution of
{[X[lzK—k]vyT]} by
Ps,[1:K—K] " 4T = Px,[1:K—k] * P1-

After K recursions, the entire forward process converges to a product of standard Gaussians with
different dimensions. Correspondingly, the underlying mechanism of Alg. [T|proceeds as follows.

1. For Stage k, suppose we have sample X1, 1 with underlying distribution (1. x 1) = Ps [1:K —1]-
2. Alg.[2]can approximately reverse Eq.[3|and obtain a random variable y satisfying

Y ~ Du k-1 (1X1k—1) = D1k (12 1:6-17)
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Algorithm 2 PATCH INFERENCE PROCESS UNDER GIVEN CONDITIONS
1: Input: Patch index k, latent vector z (conditions), number of iterations R, time sequence
{t,.} £, score estimator sg
2: Draw an initial sample yo ~ N (0, I, . , ).
for » = R — 1 downto 0 do
4:  Suppose & ~ N(0, I), use an exponential integrator to simulate the SDE:

S’tr+1 = enTytT + (em‘ - 1) . 289df,k-+1 (ytr ‘ tr —tr, Z) + v e —1.- £ (10)

o

5. end for
6: returny;,.

3. Concat all variables, i.e., X[1.x) = [X1:x—1, ] and use it as the conditioning of the next stage.

Derivation of the global training objective. To implement Alg. 2] the core step Eq.[I0]is based
on the well-trained neural score estimator, i.e., g, ., (- | tr — t, z) for any k and r. Following
from the stage-wise forward and reverse process mentioned before, we deduce a global objective
accounting for distributions over k, z (or Z[1:1]), ¢, and yo from Eq. @

* A convenient choice for the distribution of k is uniform sampling from {1,2,..., K}.

* To estimate the expectation of L(6um k1, 0ar|X[1:1)) With the random variable z (or x[y.x)), we
can let x[1.x] ~ P [1:4]- In practice, the underlying distribution can be approximated by

P11 (T[1:8]) 25 ©, -’L'[1 k) (11)

where u(?) is a ground-truth sample from the training set of size U, and J denotes a Dirac measure.

* To build Liy1:(0ame+1,0u | @) in Eq. @ we need samples y; for each t € [0,7].
Since {y:}{—, follows an OU process, it suffices to draw yo when we set qo(-|zp.p) =
P, k+1|[1:k] (-|[1:%]) and approximate RHS of the equation with

U
die 15“{1) 1](w[1:k]7mk+1)

S0, (@)
[1:k]

p*,k+1|[1:k](€8k+1\$[1;k]) ~

* We set the distribution of ¢ to be uniform over the set {T' — to, T — t1,...,T — tg_1} for ease of
implementation.

Under these settings, let the conditional denoising score-matching loss be written as

Lgﬁs-ll\/lr(e‘m[lik]) = EYONP*,k+1\[1:k]("w[lzk])v5"“-/\/’(0’1) [H§ — 8o (yT*tr | T —tr, go (m[lik])) ||2]7 (12)

then the global objective becomes

-

—1

K
1 /
LPN(6) = 2 303 By [LEE}I(O\XM_H)]. (13)

k=1nr

I
o

Here, we slightly abuse notation because @[y.q; is undefined. In fact, Alg. E] shows that generating xl
is unconditional, so we do not need py;.g}, and p, A[1:0] only needs to match p, 1. Actually, Eq.|l
and Eq. [T3] are formulated to implement the training by fitting the noise. While in analysis, the
conditional score-matching loss formulated as follows

SM 2
Lyt (Olzpr) = EyUNP*,Hu[Lk]('\m[hk]%€~N(0»I) [HSB (yl‘ T- t“g@(m[lik])) = Vingr—, (yl| m[ltk]) H ]’

will be more concerned about where y’ satisfies

y =e Tt yg 4 /1 — e 2(T—t) . £,
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Corresponding to Eq.[T3] we consider a global score-matching loss formulated as

K R-1

s
LM KRZZEka 1]~Px,[1:k—1] '[(176 2 )) L (0|X1k 1])] (14)
k=1 =0
Compared with with Eq. (13| we may note the weight of L (6]x[1.,—1;) is not uniformed. While

the additional factor (1 — e~2(T—*")) will be canceled by a different choice of #’s distribution. For
example, we can sample from {7,.} defined as

. 1— e 2t
t R ={T -}, with Pr(r)= —
e = (T~ 1} ") =57
Under these settings, AR diffusions follows the lemma below (proof is deferred to Appendix [A).
Lemma 1. For any 6 € dom(LPSM), it holds that

Vo LP™M(9) = Vo LM (6).

Remark 1. This lemma explicitly shows that minimizing the global objective and the global score
matching in AR diffusion with a gradient-based optimizer is equivalent. When the objective, i.e.,
Eq. is well optimized, we can expect to have a highly accurate score estimation. Then, it is
reasonable for us to propose the following assumption.

[A3] The score training error satisfies

K R-1

1
Kiz [1:k—1] [LE}\;I(0|X[1:;€,1])] < 682001‘6'
k=1 r=0

Initial distribution requirements for inference convergence. Consider that AR diffusion mod-
els use p*,k+1‘[1:k](-|m[1:k]) as the initial distribution at each stage of forward process, we expect
D k-1 [1:] (~\a:[1: k]) to exhibit the same theoretical properties typically assumed for data distribu-
tions in standard diffusion models.
Lemma 2. Suppose Assumptionholds. Then, for any K > k' > 1, we have

k/

2 2
Z]Ex[l:k]"’p*.[l:k][Eywp*,k+1|[1:k]('|x[1:k])|:”y|| ]] < mo and Ex X(1:k/] P, [1: k/[Hxlzk'H ] < mg.

Lemma 3. Suppose Assumption holds. For any k > 1, any =, € R%, and any y €
Rértdet-tde1 o haye

< 2L|x— 2’|

P k| [1:k—1] (zly) H

Vin
H P [k [1:k—17] (2| Y)

Moreover, we have ||V? Inp, (1.4)(-)|| < 2L.

Remark 2. Compared with the second-moment bound assumed in typical diffusion analyses (e.g.,
Chen et al.|(2023b}al))), there is no uniform second-moment bound on the initial distributions for all
stages in the AR diffusion setting. Hence, we require adaptive convergence for different p, j1|[1:x),
then removing particle dependence by taking the expectation. Moreover, the score smoothness con-
dition (Lemma |3) is satisfied by the initial distributions for all stages, which aligns with the score
smoothness requirements on data distributions in|Chen et al.|(2023al).

4 THEORETICAL GUARANTEES FOR AR DIFFUSION

In this section, we provide the theoretical results of the AR diffusion models. We first analyze in
general the inference and training performance of AR diffusion. We demonstrate that, compared
with typical DDPM, its gradient complexity increases by a factor of K (the number of data patches)
during the inference time, but it is practical for large-scale applications. We then theoretically ana-
lyze AR diffusion’s property for capturing conditional dependence structures within data, formally
demonstrating its advantages in learning feature dependencies compared to typical diffusion models.
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4.1 INFERENCE PERFORMANCES OF AR DIFFUSION

Building upon Lemma (4 we deliver the theoretical result on the sampling error of AR diffusion
model on the joint distributions over all the random variables @ ;. .

Theorem 1. Suppose Assumptionhald, and § < (0, In\/(4L)"2 + 1+(4L)71], ifAlg.

chooses the time sequence {n, fz_ol as
n when 0<r <M
Ny = 77/(1—i—77)7’_Mle when M <r < N
n when N <r<R
where
M:%7 N:M—i—w, and R:N—i—%,
then, the generated samples [X1,Xa, . .., X x| follows the distribution p.., which satisfies

KL (p.||p+) < 2¢7*"L- (mo +d) + (L*Rn” + Tn) - d+nmo + nKR - €

score”

Remark. To achieve the KL convergence, e.g., KL, (p*

13*) < €2 for the generated data, we require
the hyper-parameters to satisfy 7' = O(1),

n=0(L2d % ?) and egore = O(K Y 2%).
Under these conditions on the learning rate and score estimation error, the total gradient complexity
of the inference process will be at an O(K L?de~?) level. Compared with typical DDPM (corre-
sponding to the special case K = 1 in our setting), this complexity will have an additional factor of

K, which means AR diffusion usually requires more inference steps to achieve the same generation
quality and matches people’s general perception in empirical studies.

The theorem above implies that if the score estimation error scales as O(K ~'/2), an Autoregressive
(AR) diffusion model with a large K cannot outperform the standard (X = 1) model. However,
in scenarios where image patches exhibit strong correlations, partitioning the image and training
multiple conditional score functions can be significantly easier than modeling the full joint distribu-
tion. Consequently, for a well-chosen patch decomposition and a sufficiently large K, the training
loss of the AR diffusion model may satisfy egeore(K) < K'/?€geore(1), allowing it to surpass the
performance of the standard model.

4.2 AR DIFFUSION CAPTURES CONDITIONAL DEPENDENCE

We first provide a lemma on the convergence of the AR diffusion-generated conditional distributions
towards the ground truth data distribution. We then provide another lemma to contrast it against the
distributions generated by vanilla diffusion models.

Lemma 4. For any k > 1, for any k-tuples x|y, € R¥T92T+dx ye consider the SDE. |10 to

simulate the reverse process of SDE.|3| with a proper design of the time sequence {t, }E_,, we have

KL (pa o118 Cle ) [P 107 Gl na))
R—1
5 6_2T : (ZLdk+1 + EP*,k+1\[1:k](-\w[1:k]) “|YH2}> +n- Z Lz{\&-/ll,r(a‘:n[l:k]) + dk+1L2Rn2
r=0
+ dk+1T77 + nEP*,k+1|[1:k1('|w[1:k]) [||y||2] :
(15)

The above means given the data patch x[y.;; that is being conditioned upon, we can always choose a
small enough step size n and a large enough convergence time 7', so that the conditional distribution
converges to any desired accuracy : KL (.. 115 (|2 (1:0)) | Py (1 1n)) < e

On the other hand, if one only performs score matching over the joint distributions g7 ¢ (. 1), the

convergence of the diffusion model is in terms of KL (p* (x[1:K7) Hﬁ* (ZE[LK] )), while the conditional
distributions can remain arbitrarily large.
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Lemma 5. Consider random vectors X1 € R¥+1 and ., € RU+dt+de  For any error
threshold € € (0,1/2] and for any M € R, there exists a pair of Gaussian probability densities
Py Do R Hde 3 R such that KL (p* Hﬁ*) < &, while

KL (pa s 1018 (2| s i) > M2 - |21k

Detailed proof of Lemma [3]is provided in Appendix [Cl By constructing a special case where both
the target and sampling distributions are Gaussian, Lemma [5demonstrates that for vanilla diffusion
models, which aim to learn the joint distribution, even when the KL divergence between the tar-
get and sampling joint distributions is constrained, the KL divergence between the corresponding
conditional distributions remains lower-bounded by a constant-level value.

5 EXPERIMENT

Based on Section .2} the conditional KL in AR diffusion remains bounded (Lemma [4)), whereas
in diffusion it can diverge even when the joint KL between generated and data distributions are
arbitrarily close (Lemma 3)). Consequently, with an appropriate patch partition, AR diffusion guar-
antees a smaller conditional KL than non-AR diffusion, demonstrating its superior ability to cap-
ture conditional data structures. To support this claim, we design two experiments on synthetic
datasets where data dependencies are clearly defined. First, we demonstrate a carefully designed
patch partition enables AR diffusion to achieve a lower conditional KL than non-AR diffusion.
This observation underscores the importance of appropriate patch partitioning, consistent with
Lemmald] Specially, the conditional KL upper bound in (I5) depends on both the second moment of
P k+1|[1:k] (-|2[1:%]) and the score-matching loss LEI}fLT(H | Z[1.x)), both explicitly tied to the patch

partition ;.5 € Ré++dk  Second, we compare AR and non-AR diffusion under varying patch
partitions, showing how partitioning choices affect model performance.

Conditional KL divergence experimental settings.
We conduct our experiments on MNIST by construct-
ing training samples in the following manner. First, we
concatenate four MNIST digits to form 2 x 2 image
grids, ensuring they follow one of three arithmetic se-
quences, including [0, 1,2, 3], [0, 2,4, 6], or [0, 3,6, 9]
in Figure [I(a)l We label patches in raster-scan order
(see Figure[I(b)). In all samples, patch O consistently -
contains the same MNIST digit “0”, while non-zero (a) Training Data (b) Patch Index
dlglts (e.g., “2”) are drawn from different MNIST in- Figure 1: Experimental Settings of the con-
stances of that digit. We synthesize 3000 training sam- ditional KL comparison experiment. Fig-
ples (1:1:1 ratio across three arithmetic sequences) us- ure[T(a)] shows the arithmetic sequence setting
ing 32x32-pixel images. For AR diffusion, we use a based on MNIST. Figure [[(b)| shows the patch
patch size of 16 with the same raster-scan order as in index of the training data.

training. For both models, we generate 1000 samples

and verify whether they form the predefined arithmetic sequence using a pre-trained MNIST classi-
fier. More details are in Appendix

Patch 1 Patch 2

Patch 3 Patch 4

Results. Table [I]shows the arithmetic sequence ratios

generated by both models. Given the known uniform Sequences  Proar(-'07)  Prononar(['07)

target distribution for the specific ”0” digit, the dis- [0,1,2,3] 0.387 0.218
crete KL divergence yields a conditional KL of 0.163  [0,2,4,6] 0.260 0.111
for AR diffusion versus 0.890 for non-AR diffusion. [0,3,6,9] 0.226 0.106
These results align with our theoretical analysis: with Total 0.873 0.435

appropriate patch partitioning, AR diffusion achieves a
smaller conditional KL divergence due to its bounded
conditional KL (Lemma@]), unlike unbounded conven-
tional diffusion (Lemma5)).

Table 1: Conditional KL Comparison Results

Conditional data capturing experimental settings. In the second experiment, we design two
geometric tasks: (1) Task 1: A square (side length [;) in the upper half and a rectangle (side length
l2) in the lower half, with the constraint [y = 1.50;; (2) Task 2: Two rectangles with side lengths [,
(upper) and [y (lower), satisfying l5 = 5l;. In Task 1 with 32 x 32 images, Figure [3(a)|uses patch
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Figure 2: Comparison between AR Diffusion with different patch sizes and DDPM shows patch par-
titioning preserving data dependencies (as in Task 1) encourages AR Diffusion to generate samples
closely aligned with target values (e.g., ratio = 1.5 in Task 1) and yields lower training losses.

size 16, placing the square in patch 1 and rectangle in patch 4. This spatial separation creates explicit
patch dependence for the constraint [o = 1.50;. In contrast, Figure [3(b)| uses patch size 8, where
both shapes may occupy the same patch (e.g., patch 9), making the dependence implicit and harder
to learn. For each task, we train AR Diffusion and DDPM on 2000 synthetic 32 x 32 pixel-space
samples. Object masks are extracted using pre-defiend color (e.g., red for squares, blue for rectangles
in Task 1), enabling computation of side length ratios R = l5/l; with target values R = 1.5 (Task 1)
and R = 5 (Task 2). Additional implementation details are provided in Appendix

Results. Figures 2(a)] and show the ratio dis-

tributions and training losses for both models. In 1121314
Task 1, where object separation makes feature corre- - 2
lations easier to learn, AR Diffusion achieves supe- 516171 s

rior generation quality: its ratio distribution is sharply

concentrated around the target 1.5, accompanied by olll 10 | 11 | 12
lower training loss compared to DDPM. In Task 2, 3 4 ;
where object relationships are less amenable to au- 13114 |15 116

toregressive 'queling, AR D'iffusion L'lnde{rpe{rfor'ms (a) Task 1 (b) Task 2
DDPM, exhibiting a more uniform ratio distribution ) ] ] i

(vs. DDPM’s sharp peak at the target 5) and higher ~ Figure 3: Various patch sizes setting.
training loss. These results confirm that when the

patch partition aligns with the data structure (e.g., Task 1), AR diffusion more effectively cap-
tures conditional dependencies, yielding the smaller conditional KL established in Lemma []
However, suboptimal patch partitioning, e.g., Task 2, increases training loss, indicating a larger
Lil_\fl,r (0 | x[1.4)) in the conditional KL upper bound of LemmadEl Under these conditions, AR

diffusion provides minimal or even negative gains in modeling conditional dependencies.

6 CONCLUSION AND LIMITATION

We present a novel theoretical and practical exploration of AR diffusion models. By formulating AR
diffusion as a stage-wise auto-regressive structure, we show it can retain near-minimal assumptions
on data distribution and score smoothness and converge in terms of the KL divergence for each con-
ditional distribution, whereas vanilla diffusion models fail to preserve these conditional distributions
even when the joint distribution converges.

One limitation is that we only consider the SDE-based inference, while various ODE-based infer-
ence methods have been extensively studied in typical DDPM (Li et al., [20244a; |Chen et al., [2024b;
Li et al.| [2024b). It will be intriguing to investigate whether the Fokker-Planck equivalence can be
adapted to auto-regressive settings and whether ODE-based inference can retain its convergence.
Besides, the theoretical properties of some high-order ODE or SDE-based inference algorithms (Wu
et al. |2024; Lu et al.| 2022)) are not covered in our paper, which can be left as an interesting future
direction. Moreover, we directly make assumptions on the quality of the learned score function
rather than proving them. Note that various works (Han et al., [2024; (Chen et al.||2024a; Han et al.|
2025a)) have investigated the optimization, generalization properties and explore how the features
are learned via denoising score matching, which can be potentially integrated with our results.
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.1 TRAINING BEHAVIOR OF AR DIFFUSION MODEL

In order to better illustrate the difference in learning behavior of AR diffusion model, we consider a
toy Gaussian model as follows:

x = [x[1), T[2)] € R24, where x) ~ N(0,1),and ®[5) = 2y + &, § ~ N(0,0°T).
Clearly, we can immediately obtain that x satisfies the Gaussian distribution & ~ N (0, X), where

> = B (1+;2).1}

Then, as the optimal score function for the noisy version of x is a linear function, we follow the
previous works (?) and consider the learnable linear function f(®, z;) = ©z;, where z; = S +

/1 — B2€. Then, regarding the standard diffusion model, let {x1,...,®,} be the training data
points, the training objective regarding the noisy data at time ¢ is given as follows:

1 n
LPV(@) = 03 e |
i=1

Taking the formula of the score function into the above loss function, we can then derive that

£(©, B + [1 — B2]1/28) — &3],

LPM(©) = 3 e, (OB + [1 - 571776 - &}
1=1

LS stlowt (- 510 1) (1 - 0 )
=1

— (070 - [825(2) + (1 - BAT)) — 2[1 — 52)/2x(O) + tx(1),

where 3(z) = LS L@z, denotes the empirical covariance matrix of the data.

Clearly, by minimizing the above loss function for diffusion model, we can obtain that the optimal
model parameter ® satisfies

© = [1—F7]"2 - (8% (@) + (1= B0~
Accordingly, we can obtain that the learned score function is $(©, z;) = [1 — 82]71/2. £(©, z;) =
[1— 32712 . ©z.

Besides, the ground-truth score function can be also derived as s(©*, z;) = [1 — 7]~ 1/? - @*z,
where

©" = [1-57)"? (B () + (1 - s
Then, the corresponding score estimation error can be formulated as
A~ A * 2
LM(©) =E.,|s(0,2) — s(07, 2|,

r[(© — ©%) "E[z] 2](© - ©)]

1
T1-57
= 1_1*53 tr[(6 - %) (578 (x) + (1 - £,)1) (6 - ©%)]

= tr[(B72 (=) + (1 - B)0) [ %(2) + (1 - BHY ! = [B78(=) + (1 - sHN]7].

For AR diffusion model, we can set the learner functions as s1(61,z;) = @Izt and
89(02,2¢,%x1) = Oy (2; — Byx1). Then, the training loss functions for learning two score func-
tions V Inp;(z¢|0) and V In p; (z;|x};)) take the form:

LR (@) = %ZEgl,...,gn [HS1(@1, Brxipy + [1 — BHM2¢) — &H;L

i=1

= tr(©] ©, - [B7(xp)) + (1 - B)I)) —2[1 — 57]"*0x(©1) + tr(D),

13
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L2A (@2, ZB[l] ZEgl ..... ||32 8275tw1[2] + []- - Bt]l/QEW - El”i]

= tr(ez ©, - [B7 (e — @p)) + (1= BDT]) — 2[1 — 57" %tx(®s) + tr(T),

A NOTATIONS IN APPENDIX

Remark 3. With the OU (Eq. B) and reverse OU process (Eq. H)), standard Gaussian and
Dk 1|[1:k] (- \:c 1. k]) can be transformed into each other. According to the closed form of Eq I
ie.,

yi=e ' yo+ V1 —e 2 where &~ N(0,1),

Training loss and conditional score estimation. Here, we note that the trainable parameters in
the autoregressive model include

0 = [0ar, Oat,1, - - -, Oar i -
To simplify the notations, we will not distinguish them strictly and only use 6 to present the trainable

parameters we are concerned with. For simplicity, we take the training loss of the k-th random
variable as an example. We first denote that

se(ylt,z) = —/1— e 2*eq(ylt, 2)

well-trained in the learning stage, where eg is directly used to present the training loss provided in|Li
et al.[|(2024¢), i.e.,

argmein L(0)
1 S 1 —(T—tr) 2(T 2
S IS ke coston [ (e - VT st ) €]

where we consider the undefined gg(x[1.)) = Nome to simplify the formulation. Suppose the
training loss is sufficiently small for specific 0., i.e., L(0) < €xore, We have the following lemma

Lemma 6. Under the previous notation, we have

K R—-1
. .1 1 -
argngn L(0) = arg e K ];]Ex[l:k—l]'vp*,[l:kfl] R Z—O (1—e” T)) ’ Lk7r(0|x[1ik—1])]

where
I~ 2
Liy1,0(0l21:0)) = Eyonp. )0 G, 6N (0,1) U’Se(yl|(T —tr), 9o(xk))) — VIngr—e, (y'|2p.n)|| ]

andy' = e~ (T—tr) yo + V1 — e—2(T—#) . I3

Proof. For the training loss L(8), we consider the summation component for each pair (k, ), i.e.,

2

Ex[l:K]"’P*aﬁva(O,Idk) |:H§0 <8_(T_t")xk -v1- 6_2(T_tr)€’T - tr7 f@(x[lzkfl])) - gH :|
2

= Expymiy~pe i) [Exwm,km:k1]»E~N(0Jdk) U"E@ (e_(T_tr)Xk -Vi- e_Q(T_t*)g‘m,fo(X[1:k71])) - EH H .

14
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For any given X[y.;,_1] = ®[1.4—1), we consider the SDE. E], then we have

2
]EyONqO,gNN(o,Idk) [Hﬁe(e—(T_tr)yO +1— e 2T=tr)¢|rn, z) — gH }
so(e~T=tyo + v/1— e—2@—IE|T — 1. 2) + §

= (1= ) By [ Wi
(1—6_2(T tr) [Hse —(T—tr )y + V1 —e2T-t)¢|T — t,., 2) H

T

2
t <89(67(T7t"')}’0 + V1= e 2T — t'r’az)vf> +C.
vV1-—e— —lr

Term1
(16)

Suppose ¢, to be the density function of (0, 2I), considering Term 1 in Eq. we have

Tty 4 /1= e 20 0g|(T qO(yo)dyo)' [()de
g + V1= e BT ET — 1, 2) - wl(i)dé) dyo

Terml =

\/m /E (/

:W'/QO(ZJO)~</VE.39(6 (
I _ o= (T—tr)

=2 [t ([ o017~ 10200 (L= ) ay )

=2 /Vy/ -89y [T —tr,2)  qr—s, (y')dy' = —2- /Se(y/|T —tp,2) VIngr—, (y') - qr—, (y')dy’
where the first equation follows from
[tev@ e = [ (-Tman©,00) w1 =~ [ (Tor(6)0©)d = [ Veu(@rpa(ehae,

the second equation follows from introducing 3y’ = e~ (7=t gy + /1 — e=2(T—t-)¢, and the last
equation follows from integral by part. Plugging the above equation into Eq.[I6] we have

2
EYON(]U,fNN(OJdk) |: 69(3_(T_tr)y0 +4/1 - e*Q(Tftr)ﬂT_tT’z) _ EH :|
— (1= e 2Tt (yo,&[”st‘) ~(T=t)yo 1+ /1 — e—2@=t)g|(T tr,Z’” a7

—2Eysqr,, [(80(y'|T = tr,2)-, VIngr_, ) (y'))] + C)

= (1= 2T (Byrgr, [Is0(y|(T = 1), 2) = Vingr., ()|*] +C') .

Here, we do not care about the explicit form of C” since it is 1ndependent with @ and will finally
vanish with arg min functions. According to Eq. l we know {y}~_, is an OU process. Suppose

2
L1001 1:0) = Bygp. 1 Cleim). E~A(0.D) [HSe(y (T —t,), g0(01)) — VIngr s, (¥ |2 p) || ]

(18)
andy’ = e (T=t) .y 4+ /1 — e=2(T—%) . £, then we have

KZ]E [1:k—1]~Px,[1:k—1] R Z 72(T br ) Ek,7'(0|x[1:k1])]

Since there is L(8) = L(8) 4 C, hence the proof is completed. O

Lemma 7. Suppose that we have[[A2]) then for any k > 1, &, &' € R% and y € RO+d2+Fdi1,
we have

|V 10 p gae—1)(®|y) — VInp, e (@|y)|| < 2L - [|o — 2] .
Besides, we have ||V Inp, 1. 1] H <2L

15
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Proof. For any K > k > 1, suppose the random variable
[X1, X2, .« Xk, X1y - - XK | ~ Dsy, X = [X1,X2,...,Xg], and y=[Xp41,...,XK].
According to the definition Eq.[I] the marginal distribution of x is

D [1:4) (T) = /p*(wyy)dy,

which implies

v, lnp*,[l;k](w) _ vmp*,[lzk](a:) . amf@(p (—fe(z,y))dy _ ffamf*(xvy) - €Xp ({;((;; y))dy

T
Pepin)(@)  [exp(—fu(z,y))dy [exp(—fu(z,y
Furthermore, if we check its Hessian matrix, it has
2 o [0Sz, y) - exp (— fu(z,y)) dy
Vo lnpo i (®) = O [ Jexp (—fu(z,y))dy ]
_ S0, y) + Oafu (2, y)0y fu(@,y)] - exp (—fu(2,y)) dy
Jexp (—fu(e,y)) dy
B {f&cf*(w,y) -eXp(—f*(w,y))dy] _ [famf*(w,y) -eXp(—f*(%y))dy]T
Jexp (—fu(z,y)) dy Jexp (—fu(z,y)) dy
= Ey"’p*‘[kﬁ-l:K]\[l:k]("m) [_8923f*(w’y)] + Vary"’p*‘[lc-f-l:K]\[l:k]("m) [8a:f*(33,Y)] .
Then, such a matrix can be relaxed to

||Vi lnp*,[l k || HE)’NP* [k+1:K]|[1:k] (+|=) [a f* H + HV&I‘pr* [k+1:K]|[1:k] (|=) [a f*(ill y)]H
EYNP* (kt1:K]|[1:k] (-] 2) |:[I, 0] - VQf*(:l:,}’) ) [ :|:| ‘

HEYNP* (b+1:K]([1:k) (-|®) [V f* 44 y H + HEyNP* het1:k]([1:4] () {Ha f*(.’L’ y : }H <2L,
(19)

S ‘

+ HE)’NP*.[k+1:K]\[1:k]('\m) [8mf*(m7y)a;—f*(w’y)] H

where the last inequality follows from[[A2]]
Then, suppose k& > 1, we have

Do 18] (Z[1:7)
fp*,[l:k] (1317-’327 ceey fBlc)dek:

For notation simplicity, we define y := (21, @2, ..., Tk_1), then it has

P | [1:k—1) (k| T[1:0—1]) = = Pu, k) (®[121]) - Z(X[10—17)-

|V 10 ps av—1)(®]y) — VInp, gpe—1) (@' [9)|] = ||02 Inpegjpn—1) (¥, @) — O I ps g1y (. ') |
= ||[0, 1] [VInp, yk—1)(y, ®) = VInp, gps—1y(y, z')]|| < 2L |z — 2|

where the last inequality follows from the Hessian upper bound of marginal p(*), i.e., Eq. Hence,
the proof is completed.

Lemma 8 (Bounded Second Moments). Suppose we have[AT]| then for any K > k' > 1, we have

Exu;k’]NP*,u;m [||X1:k’H2] <my

and

2
ZEx[lzk]Np*,[lzk] {]EYNP*,ICJAHLIC]('|x[1:k]) [H}’” ]:|

Proof. For the second moment of p, and K > k > 1, we have
Ex[lzk,]'\/p*,[l:k] [HXLkHQ} = / Hw[lzk] ||2 D [1:K] (w[lzk]>dw[1:k]
= / Hx[lzk] ||2 ) /p*(w[lzk]a w[kJrl:K])dm[lzk]dw[kJrl:K]

S/H(ﬁclam[z:Kfl])H2p*(m1:k7x[k+1:K])dx1:kd$[k+l:K] =my.

16
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Besides, we have

K—1
2
Ex[l:k]’\’p*,[l:k] [EyNP*,kH\[l;k]('\X[l;k]) [”y” H
k=0
K—1
= Z/||xk+lH2'p*,[l:k+l](m[1:k}»$k+1)d(1’1:k7$k+1)
k=0
K-1 K—1
= /||€L‘k+1\\21’*(3’3[1«1)(137[1:}(] = / Z Hmk—&-l||2p*(m[1:K])dm[1:K] = mo.
k=0 k=0
Hence, the proof is completed. O

B INFERENCE COMPLEXITY

In this section, the notation of the inference process follows from those defined in Section [A]
Theorem 2. Suppose Assumption hold,

5 < (o, In /(L) 2 +1+ (4L)_1}

if Alg. |1|chooses the time sequence {n, }F= as

n when 0<r<M
nr=<n/(L+n)""M ywhen M<r<N
n when N <r <R
where
T-1 2In(1/0 1)
Y A S N VAL VL) I S
n n n
then, the generated samples [X1,Xa, . .., X | follows the distribution p., which satisfies
KL (p.||p+) S 2¢7*TL - (mo +d)
+ (L2R772 + TW) d+ nmo + UKR Eacore
Proof. Suppose the inference process generate the sample X = (X ..., X ) with density function
Ps Which satisfies
K
Pe(@pr)) = Den (@1) - [ [ Deppron—ny (@il -1)- (20)
k=2

We expect to have TV (p., ps) < e or KL (p* H]ﬁ*) < 262, which can be relaxed to

KL (pu||p+) < KL (pu.f1:—1) || P j1:—17)
+ B sy rseny KL (-1 (X —1)|

Do |1k —1) (1% x—1)) |

following from the chain rule of TV distance, i.e., Lemma[T9 Within a recursive manner, we have

D ket1|[1:4] (- |X 1: k]))]
21

K-1
(p*Hp*> < KL p* 1||P* 1 + Z Ex[l k] ~Px, [1:k] [KL (P* k+1|[1:k] ( |X 1: k])|
k=1

17
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According to Lemma(9]and Remark 4] Eq. 21 can further be relaxed to

R—

KL (pu||ps) S e " - (2Ldy + By, [[ly]1?] Z )+ di >R + di Ty + By, , [[ly]?]
r=0
K-1
+ Z EX[Lk]NP*,[l;k] [ — (2Ldk+1 +EP*,k+1\[1:k]("m[1:k]) UMH)}
k=1

Term 1

-
—

+ Z Ex[lzk]'\’p*,[lzk] [n ! i’k+177‘(0|w[11]€}) + dk+1L2Rn2 + dk""lTn + 77EP*,I€+1|[1:1¢]('lw[l:k,]) [||Y||2]

Il
=)

T

] |

Term 2
(22)
For Term 1 of Eq.[22] we have

K-1

27 2

Term 1 =e¢ : <2L E dk+1 +EX[1;k]NP*,[1:k] EP*,kJrlI[l:k]('lw[l:k‘]) [HYH H) ’ 23)
k=1

For Term 2 of Eq. with the same technique, we have

K—-1R-1 K-1
Term 2 =n- Z Z Ex [1:6] ~DPx,[1:k] [LkJrl r(0|w[1 :k )} + (LZR’UZ + T77) : Z dk:+1
k=1 r=0 k=1

(24)

K
2
+ UN Z]Exl k] ™~Px,[1:k] I:]Ep*,k+1\[1:k]("m[1:k]) [HYH H :
=1

Plugging Eq.[23]and Eq. [24]into Eq.[22] we have

K-1
2T
KL (p* <2€ L- Z (dk+1 + Ex[l:k]"’p*‘[l:k] [Eywp*,k+1|[1:k](‘|x[1 k] ”yH ])
k=0
K—1R-1 K—1
+n- Ex[l:k]"‘p*‘[l:k] [Lk+117"(0|m[1:k])] (L Rn +Tn) - di+1
k=0 r=0 k=0

2
+n- Z X([1:k] ~Px,[1:k] [IEZ,* k1) [1:k] Cle[s)) [Hy” H
=0

0 r=0

nKR K—-1R-1
2TL <m0 + Z dk) Z ]Ex[l k] ™~Px,[1:k] |:Lk+1 r(9|$ 1: k:]):|
k=
K-1
+ (L2R,,72 + TW) . Z korl + nmo
k=0
K K-1
§26_2TL . <mo + Z dk> + (LQRT]2 + T77) . Z dk+1 +nmo +nKR- €§C0re
= k=0

where the second inequality follows from Lemma (8| and the last inequality follows from a small
training error, i.e.,[[A3]] Without loss of generality, we suppose L > 1,

K /L+4+L
d:de and c:lnu
k=1

<1
2 )

18



Under review as a conference paper at ICLR 2026

then by requiring
L 16L
T:@<1n8(m2+d)>, Ryp=O(T+1In1/c) = - 6L(mo+d) )
€
L2 Jr 4 + 2L
—1/2
€ € 16L(mg + d)
€score = @ () = @ . ln (25)
2K -R
7 WK €\ iz Jr 4 + 3z
2 2 16L
1= (iztmma) = | w70 | s ’
1 1
n 62 . L2 + 4 + oL

we will have KL ( « H 13*) < e2and TV (ps, Px) < e. To calculate the gradient complexity, which is

K 16L d 4L2d 16L d
O(KR):()(R”) 0K MLmord) AL 16L0mo ¥ )
" gz +d+s € /1 +4+ 5
2
:O(K[;d-lnL(m0+d)>.
€ €
(26)
Hence, the proof is completed. O

Lemma 9. For any k > 1, for any k-tuples x|y, € R¥ T4+ ye consider the SDE. |10 to
simulate the reverse process of SDE. 3] then we have

KL (pu s 1)1k (%107 |
R-1

- Z Zk+17r(0|$[1;k]) + dk+1L2Rn2 + dp1Tn + T’IEP*,kJrl\[l:k]("w[l:k]) [”sz} .
r=0

ﬁ*,k+1\[1:k]('|x[1:k]>) 5 6_2T : (2Ldk¢+1 + Ep*7k+1‘[1;k](-|ﬂi[1:k]) [Hy||2])

Proof. Similar as Benton et al. (2024) and |Chen et al.|(2023a), we consider the step size satisfying
N < pmin(1,T — ¢,41). n is the parameter for controlling the maximum step size. We denote
the conditional variance of y; given y as ait := 1 — e~ 2(*=%) and the conditional expectation as

ast = E(yilys) = e~ (=5 where 0 < s < t < T. And we denote the posterior mean as p; :=
qu‘t(yo) and posterior variance as 3; := Covqo‘t(yo). Suppose ﬁ*7k+1|[1:k}(~|m[1:k]) = q4r(), we
have

KL (P o118 G || P ey 1o C1X1:87))
= KL (g5 [lar) <KL (g7, Jdencs ) +Byerary | [KL (a2, Cy Olldinin CyO) |

R—-1
< KL (g5 [ld0) + 3= By [KL (67,10, G191, 01, (19) )
r=0

reverse transition error 5
(27)
where the first inequality follows from the chain rule, i.e., Lemma of KL divergence, and the
second one follows from the recursive manner. Besides, we have ¢, = ¢ which denotes the density
function of (0, I).

Initialization Error. We first consider to upper bound TV (¢r, 1). Due to Lemma we have

KL (g5 ||do) = KL (qr||¢1) < e > - KL (Pﬁuu:k],o('\%:k)||<P1>

2T 2 (28)
Se 7 <2Ldk+1 + EP* e[k Clepe) [”y” ]) :

19
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Reverse Transition Error. According to Lemma|IT] the reverse transition error can be relaxed as

R—1
> By [KL (657,10, () e, (1y ) |

r=0
R-1 toi _ o

< 2 Ey[ﬁT]NQﬁT] [/L |‘39(ytr |T —t,2) — Vingr_:(y; )H dt}
R-1

<> By 50017 = t,2) = Vinar, (vi)|[] (29)
r=0

score estimation error

S . v 5, ) — V1 5|2 dt
+ Z Yo~ | J, IVIngr—e, (ye,) = VIngr—(y4)|
r=0 r

discretization error

Since we have ¢7_, = ¢; with Eq. EI, the score estimation error satisfies
)

<0 Eyinans, |80 1T = tr2) = Vingr—e, (vi)|[]

R—1
> e Byge [||89(YZ|T —tr,2) = Vingr—, ()
r=0

=

5
Il
=]

=

I
N

2
]Ex/"’p;:r”[l;k],tr('lw[l:k]) |:H89(X/|T - tThgg(m[l:k}])) - VlanFlHl:k],T—tr(X/|m[1:k])H :|

<
Il
=]

=

=1 ik+1,r(0\w[1:k1)

\3
Il
<

(30)
where the second inequality follows from the definition ¢ = ¢_, and the last equation follows
from the definition Eq.[I8]in Lemmal6] Considering the discretization error, we have

R—1 trg1 )
Z EyEE:T]NQEE:T] |:/t HV In qr—t, (y:) —Vin qT_t(yZ_)H dt
r=0 T

(31
S dpy1 LRy + dg 1 T+ nE [y °]
~ Gk+1 n k14 T Nhp, oy Claepe) LY
due to Lemma|[I2] Therefore, plugging Eq.[30/and Eq. 31]into Eq.[29] we have
R—1
> By, (KL (750, Oy e (v ) )|
r=0
A1 32)

S, n : I~/k‘+1,’l"(0|w[1:k]) + dk‘+1L2Rn2 + dk+1T77 + nEP*,k+1|[1;k](-|m[1;k]) [||y||2] .

5
Il
=)

Combining with Eq. 28] Eq.[27]can be written as

KL (pa o118 C1xpm) [ Do om Clxper)) S e (2Ldk+1 + B, o Clepon) [HY||2])

R—1
+n- Z Lk+1,r(0|w[1:k]) + dk?+1L2R772 +dg1Tn + nEP*,kJrl\[l:k](“m[l:k]) [”yHQ} :
r=0
and the proof is completed. O

Remark 4. In Lemmal9, we require k > 1 and calculate the upper bound between the conditional
transition kernel when X[.;; = @[1.5). While this lemma can easily be adapted to the case for the
unconditional generation of the distribution p. 1. In the process to generate X1, we should only

20
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consider Eq. E|— Eq. as qo = @7 = Dx,1 rather than qo = Gr = Py p1|(1:k) ([T (1) Then,
suppose Py 1(x) = Gr(x), we have

KL (p*>1Hp*11) KL( ) <KL (qtR 1||Qt1? 1) +E Y~ {KL (qtn|tR 1 |y HqtthR 1( |y ))}

R-1
< KL (65 [[do) + 3 By mais [KL (07,0, (YOl oo, (v )|
r=0

reverse transition error

due to Lemma The control of KL H(Io lS similar to Eq.\28| and have

KL (g5 [a0) = KL (ar 1) < e - KL (hayagoClzinor) < e - (20 +E,., [IvIP))

where the last inequality follows from Lemmal8| Additionally, the control of the expected conditional
KL divergence gap is similar to Eq.[32} which satisfies

R—1
Y Eyengs {KL (qtfmtr( M, ate, Cly )} <n- Z L1,(0) + diL*Ri* + dy T+ nE,., [Ily]1*] -
r=0

Here, with a little abuse of notation, we have
L.,(0) = I~/17T(0|w[110]) and x[.0) = none

in the training loss. Therefore, in summary, we have

KL (p*,l!

Pan) < e?T-(2Ldy + By, [IyI%])+n- Z Ly +(0)+di L* Ry +d, Tn+nE,, , [lly]*] -

(33)
Lemma 10 (Adapted from Theorem 4 inVempala & Wibisono|(2019)). Along the Langevin dynam-

ics SDE. for anyt € [0,T] and k > 1, we have
KL (pk+1l[1 K], Tk H‘Pl) e (2Ld+Ep*,k+ll[lik]('|w[1!k]) [||Y||2])

Proof. The Fokker-Planck equation of SDE.[3] i.e.,

P11k, (Yl 1R
+1][1 8];‘ =V- (plal\[lzk].t(y|w1:k) . y) + AszHl:k],t(y'xl:k)
pk+1|[1 K], (ylz1x)
=V <Pk+1| 14, (YlT1:) VI YYD

denotes its stationary distribution follows from the standard Gaussian A/(0, I') with density function
1. Due to Lemma[I7] the 1-strongly log-concave standard Gaussian satisfies LSI with a constant
1, which means for any distribution with density function p, we have

Llalen) <P allo) =§  ato) |70 22,

which implies

2
dKL (p,ﬁl\[l;k],t(ylwm)H%) / N (] yvi p;-1|[1:k],t(y|m1:k) q
=— . Ty n
ar D) [1:],6\ Y11k o1(9) Y
< 2KL (5 g o Wl 1)
According to Gronwall’s inequality, it has
KL (pz&-1|[1:k],t('|m1:k)H@l) <e KL (Pk+1|[1 K], o1k Hsol) (34)

21



Under review as a conference paper at ICLR 2026

where the RHS satisfies

KL (pk+1|[1 k01T 1k H%) =KL (ps o110 Cloepng) | 01) < FI(papsan ()| 1)
P k|[1:k] (y\iﬂ[hk])

= P« k :k (y|33 ik ) ’ HVIH
/ +1][1:k] (Y12 [1:k] exp(—|yl?/2)
S 2Ld+Ep*,k+1\[1:k]("w[1¢k]) |:||YH2} .

o

(35)
The last inequality follows from the combination of Lemma [7] and Lemma [I8] Then, combining
Eq. and Eq.[35] for any ¢ € [0, T, we have

KL (pk+1|[1 K], ( |Z1:%) H@1> <e 2 (2Ld+EP*,A:+1|[1:k]('|m[1:k]) [HYHQ])

and the proof is completed. O

Lemma 11. With the same notation in Lemma B.2, we have
N 1 [t 2
By, [KL (a5, (Wl ()] <5 [ B [IV 0 67) = s0y1 .2/
t,

Proof. Let’s consider the process 4| I and. by Lemma n and . fort € (t,,t,41] and y;. = v,
we have

) )
KL (g, (1), (1) (36)
(v'ly) ) 45, Y'ly)
Ry vai’ F By (. Ving (y') — se(y|T — tr, z), ViIn i =7
aii,, Cly) ) ‘ v/ ~aif,, (1) 4 (y') = 30yl ) G )
1 2
< 5Eyrnass, ) |V G () = so(yIT = tr.2)|F°] - (37)

The last inequality holds by the fact that (w, v) < 1|w||?+ 1||v||%. Integrating both sides of Eq.
and utilizing Lemma [22] we obtain

1 [ 2
KL (4, o, C)][@ate, () < 5 / Byt () IV () = s0(ulT 1, 2)[°] at
Then, integrating on the both sides w.r.t. g;, yields

Eyeic [KL (67,0, (9]0, (1)) |

1

tri (38)
— (o 2
S5/ Bowra [IVRG6) — sIT 6, 2)]

Lemma 12. Assume L > 1, for step sizesatisfies

N < min{lv m, U(T - tr+1)}’

the discretization error in Eq.[29)can be bounded as

R—1 tri1

2
> Byt || IV (68) - Vinar- (v
r=0 T
S dLQRn2 +dT'n+ ]EP*,kJrl\[l:k']("m[l:k]) [”sz} n

Proof. Following |Benton et al.| (2024) and [Chen et al.|(2023a)), we divide our time period into three
intervals: [0,T7 — 1], (T — 1,T — 6], and (T 0, T] and treat each interval separately. Here, § is

. Vo 4+
a positive constant, and we set 6 < In % to satisfy the condition of Lemma [23| which
ensures the Lipschitz property of the score function, thereby allowing the discretization error to be
bounded near the end of the data distribution.
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Similar as Benton et al.| (2024) and (Chen et al.| (2023a)), we consider the step size satisfying 7, <
nmin(1,T — t,41). 0 is the parameters for controlling the maximum step size. We also assume
there is an index M and N with ¢ty = T — 1 and t;y = T — § as the work [Benton et al.| (2024).
This assumption is purely for presentation clarity and our argument works similarly without it. To
guarantee 7, < nmin(1,T — ¢.41), following the setting [Benton et al.| (2024)), we first assume
M = aR and N = BR for convenience and further have

* At the time interval [0, — 1] where t,-- -, tps are linearly spaced on [0,7 — 1], n >

% = % which can be satisfied by taking n = €2 ( %

* At the time interval [T — 1,T — 0] where tp; 41, - ,ty are exponentially decaying from

to erﬂ% This condition can be satisfied with > (% )N M — 1. Assume (8 —

ln—

@)R >log 5 and e =R SR <1+ (e 1)(/3 )R,Wecantaken Q(m&).

n
1+n

* At the time interval (7" — §, T, the Lipschitz property of the score function at this time

[ Lo 444 L
interval can be satisfied if we take § € (0, In #} .

\ 1z At 1
Therefore, if we choose the constant ¢ = In # andnp = 0O (LII;C) we can have 7, <
nmin(1,T — t,41) forr = 0,--- , R — 1 at time interval [0, T]. Then, we split the discretization

error into three parts as

tri1
2
By | IV i)~ Vina )]

M— trg1 T
2
Z e | [ IV i) - Vinar )| a
tr J
term I
N-—1 tri1 ) q
+ ) Eye o ~asy, Ut |VIng (yf,) — Ving (y{)||" dt
r=M s -
term II
R-1 trq1
e — |12
+ Y By ~onn M [Ving (vi)) — Ving™ (v )| dt] : (39)
r=N i

term ITI

Term I and Term II. Following the proof of Lemma 2 in|Benton et al.| (2024)). We first define our
target as

2
Bou =By, wqiy, [IV G (v1) = Vings (v
where 0 < s <t <T.

By Lemma|[I4] we obtain
dFE; d
dt’t = 3 Be-lIVing” (v - 24 EQFWIH% (i) Viny (y)]

= 2Eq-[|[V? Ing~ (yi~ )||F]_2EQ‘_[HV1H% (yiOIP] + 2B [IVIng™ (3¢) - VIngs (y5)]
Using Young’s inequality, we further have
dE; -
— = oIV Ingi (3)F] — 2B (IV g™ (vi)|*) + 2Bo-[|VIngi (yi7) - Vings (y{)]
< Eq-[IVIngd (yi)l?] + 2Eq- [V Ing™ (v;) 7] (40)

Term 1 Term 2

23
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For Term 1, by Lemma|[T3] we can further bound Eq.[40]as

EY[U:T]NQ[O:T] [”V In QTfs(YTfs)H?]
= o7t EQlllyr—s|*] — 2072 ;e TEqlyr—s - pr—s] + e 2TVt Eolllpr-—s|
= ot Eqllle’ Tyo + or—sa|®] — 2072 & TEqlyo - Elyr—slyo]] + € ot Eqlllpr—s||’]

< o7t By [I¥1°] + 072 d = 2072 207 DBy, [[ly[7] + €27 Dozt Eolllpr—|?)

@ _ 4 2 )
= o2, d+ T Dart By g, [IVIIP] — 2072, DBy, [I¥I°] + €2 D orl [Eyng, [lyl*]

where z is the standard Gaussian noise and Step (a) holds by the fact that Tr(2;) = E[||yol|?|y:] —
Ei[yo\yt] = E[llyollPlye] — llpell” and Eg[Te(B0)] = Ep, Gl V17— Eqe [[lrel?]-
That is

EQ-[IVIngT (vl = ElIVIngr—s(yr—s)|%] < 072,d

For Term 2, by Lemma|[I3] we expand Eq. [40]as

Eq-[IV?Ing (v:)|7] 41
=07t d—2078 e 2T OEG [Tr(Br_o)] + e T Vo8 Eoe [Tr(Zr_, Sr_4)]
!
= o7t d— 2075 ,e 2T VEqe [Tr(Zr_y)] - ie*ﬂT*t)gTi@Ew [Tr(Zr4)]
1d
<0'T d— dtO'T tEQe[TI’(ET t)] (42)

The second equality holds by Lemma. 25| The third inequality holds by the fact that e=2(T—%) < 1
and $£E; 5[Tr(E7—¢)] < 0 inferred by Lemma

So, we can have the upper bound combined with two parts E; ( t) and E( t) as follows

dEs,t

_ _ d _
dt Tzsd + QUTitd “ar (UT:EQ‘— [Tr(Zr—r)])|r=¢

E(‘l) 2
)

Therefore, when s = t,., by Lemma[I6] we have the upper bound of summation of term I and term
IT in Eq.[39)as

41 N-1 try1 t
O ATNED o A o A
—o Jtr tr
SAND? +dTn+EBy Gl DY 2 (43)

Finally, we have

N-1 trt1
2
Term I+ Term I = Y Eyo oo Ut [VIng (vi)) — Ving (v;7)|| dt]
r=0 "‘

SAND +dTn+ By Gl Y170 (44)
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Term III. Since at this time interval, the corresponding forward process satisfies Ug,t < %, for
t € (ty,try1], by Lemma we have

Eq [||V1n qr—+(yr—¢) — VIn QT—t,.(YT—t)Hﬂ
’2

(a)
< 4Eq HV log qr—¢(yr—+) — Vlogqr_+(azl, 7y yr-+,)
2
+2Bq | Vioggro(yr—o)l” (1- a7l 1)
® ., o ) 2 -1 2
< 16L%arZ Eqllyr—¢ — aT—t,T—tTyT—tr” +2Eq ||V log qr—¢(yr—)|l (1 - aT—t,T—n)
2
< 16AL3 (20 — 1) + 28q |Vlogar (yr-)l” (1 - a7tz )
(e)
< 32e%dL3(t — t,) + 2Eq | V1og gr—i(yr—o)|| (t — t.)?
The first inequality (a) holds by Lemma[24] and the second inequality (b) holds by Lemma[23] Step
(¢) holds by the assumption that the step size at the given time interval ¢ — ¢, < 7, < 1. Since
Vlog ¢ is 2Lay L_Lipschitz, we obtain
Eq | Viogar—i(yr—: )| (45)
= /QT—t(YT—t) IV 10g gr—+(yr—o)II* dyr—:
= /<VQT—t(YT—t)aVIOg qr—t(yr—t))dyr—¢
= /QT—t(YT—t)A log g7 —+(yr—¢)dyr—¢
< 2dL. (46)
That is, we have
Eq- [[Ving (vi) = Vings (vi0)|*] < 326202 — 1) + 4Lt = 1,)% (47)
Then, plug Eq. #3]into Eq.[#7] for step sizesatisfies

ny < min{1,n,9(T — t,11)},

we have

R—1 [
~ ~ ~ [~ 2
Term Il = > Eg 6., [ / IV1nG, (¥:,) — VIng(y:)| dt]
r=N tr
R—1

<AL Y hi S dLPRi. (48)
r=N

Finally, combine Eq. 44 with[48] assume L > 1, the discretization error can be bounded as

R—-1 trga 9
By amoiin || IV 050 — Vi (v el

0
5 dL2R772 + dT’I7 + Ep*,k+1|[1:k]('|w[l:k]) [||y”2] 1.

Lemma 13. Ify; is the solution to SDE Equation {), then for all t € [0,T), we have

d(Ving (yi)) = V2Viing{ (y{)dB; — Viog g (yi )dt (49)
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Proof. Since VIng; (y; ) in processis smooth for ¢ € [0, T, by It6 lemma, we expand

d(Ving (yi))
d(Ving (yi))

= V2Ing (v )dys - dt + 1 5 (V2?A(VIng (yi))dt
= {V2 1DQf(Yf) : ((Yf + 2V lnCIT—t(Yf)) "‘A(VIH% (yi ))}dt+ V2v? IHQt (Yt )dB;
(50)
+d(Ving (vi)). D
By Fokker—Planck Eq. for the forward process 3} we have
d
WO 9 (yan(y) + Aaye)

We define f(y:) = log ¢:(y+) and ¢:(y:) = exp(f), thus

dg:(y+) df(y:)
at = qi(yt) dt
=V (yiau(yr) + Aai(y)

= (y)(d+y:V(ye) + a(y) IV F(y)l* + Af(ye)

= q(ye)(d+ y:Viog qi(ye) + a:(ye) (|| V1og a:(yo) I” + Alog qi(ye))
So, back to the reverse process E|where t—T —t

dVilog gr—i(yr—t)
=-V (d +yr-t - Viogar—i(yr—i) + |Vlog gr—i(yr—¢)||* + Alog QT—t(yT—t))

- (V 108 qr—t(yr—1) + yr—t - V2108 qr—i(yr—1) + 2V 10g qr—i (yr—1) - V*log qr—i(yr—¢)

+ V(Alog qT,t(yT,t))) dt.

It means, for the reverse process, we have

dVlog g (y{") (52)
~(Viogai (vi) + i - VPlog i (i) + 2V (vi) - V241 (vi) + V(Ag (vi)) )dt.
(53)

Plugging Eq.[52]into[50] we have

d(Ving (yi) = V2V Ing{ (v )dB, — Vg (yi)dt
The proof is complete. O
Lemma 14. Iy is the solution to SDE Equation {), then for all t € [0,T), we have

dEq-[|IVIngf (yi)IP] _
dt

2Eq- [V Ing™ (yi)IIP] + 2Eq-[[V*Ing; (vi)IE].

Proof. By Lemma[I3] we have

d(e'Ving (y{)) = V2e'V? Ing (y; )dB;.
By Eq. 41} we know fj Eq—[V?Ing (y;)] < oo which is square integrability and then applying
16 isometry, for 0 < s < t < T, we obtain

d

G Ee- e Ving (vi7) —e'VingT (yI)IPP] = 2¢*Eq- [V Ing; (v (54

where ||A||%2 = Tr(A T A) is squared Frobenius norm of a matrix. We further expand Eq. as

dEg [ VIng™ (yi7)I’]
dt

. d
=2 B [Ving (yi7) - Ving (yI)] = 2Eq-[|IV* Ing™ (y7)II7). (55)

2Eq- [||V Ing{™ (y{7)I1°] + —2¢""Eq-[VIng{ (y{) - Ving (yi)]

26



Under review as a conference paper at ICLR 2026

Given any s, we have t > s,
d(VingS (y&) - Ving (yi)) = vV2Vingd (yi) - VIng (yi)dB,
—Ving (ys) - Viegg (y;)dt.

And by Eq. we know fj Eqg—[V?Ingi (yi)] < oo which is square integrability, applying 1td
isometry take the expectation at both side, we take

d
e [Ving (yo) - Ving” (vi7)] = ~Eq- [VIng (yo7) - Vieg g (vi)l-

Therefore, Eq. 55| can be simplified as
dE& [V In g (yi)I1%]
dt

2Eq-[||VIngf (y7)II°] + = 2Eq- [|V* Ing{™ (y7)II7].

Lemma 15. Forallt > 0, we have
Viegqi (yi) =Viegar—i(yr—t) = or2yi — e Tor2 wr—y,

VZlog a (yi)= VZlog qr—+(yr—+) = —OEEJ + 6_2(T_t)077ft2T7t-
Proof. For the forward process[3] we have

1
Ving(y:) = 7)/VIOthlo(Yt|YO)QO,t(YOvYt)dYO

a(yt
= _qu‘t[U;Q(Yt — @0,tY0)]
= -0,y te o
where the last equality holds by the forward process qyo(y:|yo) = N(y¢; o,:y0,071) and
Vlog 4ijo(y:|yo) = —0; *(y: — 0,e¥0)-
Then, the second-order derivative is

v? log q:(y+)

1

= a2 /V2 log q410(y¢|y0)q0,¢(¥0,¥¢)dyo

+

1
e /(Vlog t(0(y¢y0) (V10g 410 (y¢yo)) " 0.t (yo, y¢)dyo

1 T
T a? (/VIOthO(YtlyO)QO,t(ym}’t)dyo) </VIOth|0(YtYO)QO,t(YOaYt)dYO)
1

- _072] + qu\t(-\yt)[azf_4(}’t —vyoe Yy —yoe )]

— Eapo(lyo =00 2 (vt = Yo NEqyy, (v (=07 2(ye — yoe )]
=0, 2T+ 0[4C0Vq0|t(.|yt)(yt )
= —0; 1 +e %o, '3,
Therefore,
Viegq (yi ) =Vliogar—i(yr—t) = 072,35t — e oz ur—,

V2log g (yi) = V21og gr—i(yr—t) = —o72  + e 2T ot Bp .

Lemma 16. Define

dEs,t — — d —
dr < O—Tisd + 20Titd *@(UT:EQ (Tr(Z7—)])|r=t -

1)
2
By E®)
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The error terms E 5}2 and Eg?t) satisfies

N-1 .y gt
> / / E" drdt < dNv?,
ot te

N=1 .4y st @ , ,
Z /t /t Etr,rdrdt S nEP*,k+1\[1:k]('|m[1:k]) [Hy” ] + dN7

Proof. We first define

dE,, _ _ d ., _
3 Sortd+ 200t d—— (07 Bg[Tr(Sr )] =
N—— —
B 5
For ESt), consider the time interval s,¢ € [0,7 — 1] and 0%_, > 02._, =1 — e 2T~ > £ we
derive

M-—1 try1 t k=M
3 / / BN drdt Sd > hE < ndT
k=0 7 tr tr k=0

Consider the time interval (T'— 1,7 — 8], (T —t) < 0%._, < 0., < 2(T — s), we derive

N-—1 trg1 t

3 / B drdt

k=M "tr e
N—1 trt1 t

gdz/ /(T—r) 2dr
k=M “tr tr

<d -
=M (T - tr+1)

< dNp?

The last inequality holds by the setting 7, < nmin(1,7 — t,41).

For E(Q) we first have

s,t
N-—1 tri1 + ) N-1 trg1
3 / / EZdrdt =Y / (0721, Eq-[Te(Sr-1,)] - 07 B [Tr(Sr-0)] )dt
—0 Jtr tr —0 Jtr
(a) N-1
< 3" mort, (Bqe [Te(Srs,)] — Eqe [T(Tr-1,,.)])
r=0

Step (a) holds by the fact that O';ft is increasing with ¢ and Eq« [Tr(X7_,)] is decreasing with ¢
(%EQ [Tr(X7-¢)] < 0 inferred from Lemma .

Then, consider the time interval [0,7" — 1] and nra;ftr < %nr < %277, thus

M-—1
> oz, (Bae [Tr(Sr-s,)] — Eqe [Tr(Sr-,.,)])
k=0

25
16"

25
EWEQH [Tr(X7)]

S NEy~qo [HYHQ} .

M-1

(Bq- [Tr(Er—s,)] — Eqe [Te(Tr-s,..,)])
k=0

<

<
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The last inequality holds by Eq« [Tr(E7)] < Eqg« [E[|[yol*[ye]] € Ey~g [l¥l?]-

Similarly, consider the time interval (7' — 1,7 — 4], nrJT . (Tff 32 < (T%5t 570> then

N-1
> mort,, (Eo- [(Sr,)] - Eq- [Tr(Sr-,.,)]) (56)
k=M
N-1
25 1
< 76" 2 7 (Bo-[T(ro)] - Eo- [Tr(szl)])
k=M
< Bokoo ez, + Z Eoe [Te(Sr_1)]
< Tge 77 —tk71) Q- T—t,
k= M+1
25 25 , " 1
< ZnEq« [Tr(Z =’ ——Eq- [Tr(Zr—
< g [Tr(E)] + 11 gﬂptm Q- [Tr(Zr ) 57

For the interval ¢ € (T' — 1,T — §], we have

Eq« [Tr(Br4)] = B« [Tr(Cov(e” "'yr_t — yolyr—+))]
= 2T DE o [Tr(Cov(yr_s — e Tyolyr_i))]
< T DEqe [Elllyr—: — e Tyol*lyr—d]
< d(eXTH )
< 2de*(T —t) (58)

Then, plugging Eq.[58]into Eq.[56] we have

N-1
> o7ty (Bqe [Tr(Br—s,)] — Eqe [Tr(Sr-,., )
k=M
25 ) 25de
< EUEP*,kJrl\[l:k]("m[lzk]) [”yH } Z T— tk: |

k=M+1
2 2
S nEp*,k+1|[1:k]('|m[1:k]) [Hy” ] + dN7

~

Therefore, we obtain

tri1 t
2
Z /t /t Et(r?Tdrdt fs nEP*,k+1\[1:k]("w[hk]) [HYHﬂ + dan

C LOWER BOUND FOR VANILLA DIFFUSION MODELS

ProofofLemmaEI Denote dy, = dy+do+- - -+dy, and dy = dp1, and derlote d = dg+dy. Choose

Ta, xa —1a xd,
p«(y, ) to be the density function of A | 0, . v 2 aM ig,x , and
<1 2 (— | I
dM “daz X dy =izt #ar ) ldoxda

I <1
P« (y, x) the density function of N/ (O, ( dy X dy dpf “dy X de >>

T ldoxd, 2557 Lde xda

p«(y|z) corresponds to N (ZLT; 4 @, 114 4,), and p.(yl®) corresponds to
N (% 1ieidyxdm$7 1 (1 + ﬁé) Idyxdy). Hence KL (p*(y\w)H;ﬁ*(y\:v)) >

M 2 2 M 2
() Mg raaell” = (7ra)” @an o™
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On the other hand,

I | -
( dy x dy ang Ly xda >
Tt ldexdy 277z lde xda

2172 2
_ d ];4 ( 2—d2€k—12_1dy><dy dMlId Xda )
€
€ — 5 doxd,  3ldexde T 5ldexd, Ldy xds

Hence KL (p.(y, @)||p« (v, ©)) < €(dy + dy) = ed.
Choosing € = ed, and noting that d > 2 and that e < 1/2 finishes the proof. O

D AUXILIARY LEMMAS

Lemma 17 (Variant of Lemma 10 in [Cheng & Bartlett| (2018)). Suppose —log p. is m-strongly
convex function, for any distribution with density function p, we have
2
’Vlog p(@) H dx.

KL (o) < 5= [ @) V10 22

By choosing p(x) = g*(x)p.(x)/E,. [9(x)] for the test function g: R — R and E,,_ [¢*(x)] <
00, we have

2
Ey. [¢°og 9%] ~ Ey. [¢°] 10gE,. [¢°] < —E,. [IVgl] .
which implies p, satisfies m-log-Sobolev inequality.

Lemma 18 (Lemma 11 in Vempala & Wibisono|(2019)). Suppose a density function p x exp(—f)
and ||V2 f| < L. Then, it has

Exep IV ()] < Ld
where d is the dimension number of x.

Lemma 19 (Lemma B.1 in|{Huang et al.|(2024))). Consider four random variables, x,z,X, Z, whose
underlying distributions are denoted as p;,p., 4z, q.. Suppose p, . and q, . denotes the densities
of joint distributions of (x,z) and (X, z), which we write in terms of the conditionals and marginals
as

pz,z(mv Z) = p‘L‘Z(w|z) * Pz (Z) = pz|¢(z|$) : Pz(-’”)

Qo2 (%, 2) = @u)2(%]2) - ¢2(2) = @212 (2]T) - gz ().
then we have
TV (p.L 254z, z) < min {TV Dz, QZ) + Ezr\/pz [TV (pa:|z( |Z) qx|z( |Z))] )
TV (paca Qm) + EprT [TV (pz\x |X QZ\JU |X )]}
Besides, we have
TV P2y Gz) < TV (P22, Ga,z) -

Lemma 20 (Lemma B.4 inHuang et al.|(2024)). Consider four random variables, x, z, X, z, whose
underlying distributions are denoted as py,pz, 4z, q.. Suppose p,, . and q . denotes the densities
of joint distributions of (x,z) and (X, %), which we write in terms of the conditionals and marginals
as

Pe,2 (T, 2) = D)z (2]2) - p2(2) = P22 (2]2) - Po(2)

Qz,z(iE, z) = quZ(m|Z) q:(2) = QZ\m(z|w) “qz ().
then we have
=KL (pIqu) + Exwpw [KL (pz\w(|x)||QZ\z(|x))]

where the latter equation implies

KL (pacHQx) <KL (px,qugr,z) .
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Lemma 21 (Lemma C.1 in Chen et al.| (2023a)). Consider the following two Itd processes

dX; = Fi(Xy, t)dt + g(t) dWe, Xo =a,

4Y, = Fy(Y, ) dt + g(t)dW,, Yo =a, 9

where Fy, Fy, g are continuous functions and may depend on a. We assume the uniqueness and
regularity condition:

* The two SDEs have unique solutions.
» X;,Y; admit densities p;, q; € C*(R?) fort > 0.

Define the relative Fisher information between p; and q; by

Ptﬁf)‘2 d
x. (60)
q¢(z)

J(prllae) = / pi(z)

‘Vlog

Then for any t > 0, the evolution of KL (pt HQt) is given by

2

9 g9(t)
aKL (pellar) = - 2 at(Xt)

Lemma 22 (Lemma C.2 in|Chen et al.[(2023a)). For 0 < k < N — 1, consider the reverse SDE
starting from Ty = a

J(pillg) +E KFl(Xt,t) ~ Fy(X, 1),V log YY) >] . 6D

1
di’t = |:2‘it + VIOgﬁt(i't):| dt + th, jf;c =a (62)
and its discrete approximation:
1
dy = [21% +s(a,t — t%)] dt + dWr, Yy, =a (63)

for time t € (t),,t), 1] Let Pyje; be the density of Ty given Ty, and Gy, be density of Gy given Jy .
Then we have

1. For any a € R?, the two processes satisfy the uniqueness and regularity condition stated in
Lemma|21| that is, and have unique solution and pyy; (-|a), G|, (-la) € C%(R?) for
t> .

2. Fora.e. a € R (with respect to the Lebesgue measure), we have

tim KL (ye; (1) e, (o)) = 0. (64)

t—t)

Lemma 23 (Lemma C.9 in|Chen et al.| (2023a)). Suppose that Assumption 3 holds. If o7 < 55, we
have V log py is 2Lat_1-Lipschitz on R

Lemma 24 (Lemma C.6 in (Chen et al.| (2023a)). For any 0 < t < s < T, the forward process
satisfies,

_ 2

E||Vlogq:(x:) — Vlog qs(a:s)H2 < 4E HVIog qi(xy) — Vog qt(at,:azs)H (65)
N2

+2E ||V log qt(xt)\|2 (1 — at’g) . (66)

Lemma 25 (Lemma | in Benton et al.{(2024)). Forallt > 0, %%E[Et] = E[ZZ].

E MORE DETAILS ON EXPERIMENTS

In this section, we add more detailed experimental settings omitted in Section 5]
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E.1 ADDITIONAL DETAILS OF CONDITIONAL KLL COMPARISON EXPERIMENTS.

Setup and evaluation. For each task, we synthesize 3000 samples and use them to train both AR
diffusion and DDPM. To ensure a fair comparison, both AR diffusion and DDPM are trained directly
in pixel space without a VAE, and are configured identically with the same backbone (U-Net), total
parameter count, and a training schedule of 500 epochs. To ensure a fair comparison, both AR
diffusion and DDPM are trained directly in pixel space without a VAE. We adopt a unified learning
rate of 3e-4, and both models have approximately 23M parameters. Training is conducted for 500
epochs on a single NVIDIA A800 GPU.

In the evaluation phase, we first pretrain a CNN on the MNIST dataset, achieving a test accuracy of
99.23%. For the generated data, we first divide the image into four sub-images along the vertical and
horizontal midlines. Then, we use the pretrained CNN to predict the labels of the sub-images. We
evaluate whether the sub-image labels satisfy the predefined dependencies, i.e., formning arithmetic
sequences. If the predefined dependencies are satisfied, the sample is labeled as a correct sample.

E.2 ADDITIONAL DETAILS OF CONDITIONAL DATA CAPTURING EXPERIMENTS.

Setup and evaluation. For each task, we synthesize 2000 samples and use them to train both AR
Diffusion and DDPM. We follow the same experimental setup as Appendix [E.T| such as both AR
diffusion and DDPM are trained in pixel space. Training is carried out on a single NVIDIA A800
GPU for 200 epochs (Task 1) and 600 epochs (Task 2), respectively.

For the generated images, we can directly obtain image masks using predefined colors (e.g., red or
blue for the square and rectangle in Task 1) during image generation. Using these masks, we can
directly extract the variables of interest, such as the square’s side length [; and the rectangle’s side
length [5, and calculate their ratio R = % For Task 1, the target ratio is R = 1.5, while for Task 2,
the target ratio is R = 5.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

In writing, we used LLMs for grammar checking and sentence polishing.
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