
New Datasets and Controllable Iterative Data Augmentation Method for
Code-switching ASR Error Correction

Zhaohong Wan1,2 and Xiaojun Wan1,2 and Wei Peng3 and Rongjun Li 3

1Wangxuan Institute of Computer Technology, Peking University
2The MOE Key Laboratory of Computational Linguistics, Peking University
3 Artificial Intelligence Application Research Center, Huawei Technologies

{xmwzh,wanxiaojun}@pku.edu.cn

Abstract

With the wide use of automatic speech recog-
nition(ASR) systems, researchers pay more at-
tention to the ASR error correction task to im-
prove the quality of recognition results. In par-
ticular, ASR in bilingual or multilingual set-
tings, namely code-switching ASR, has greater
challenges and research value. In this paper,
we first present code-switching ASR correc-
tion datasets obtained from solid ASR systems
and automatic annotators. The datasets con-
tain Chinese-English code-switching dialogues
of bilingual speakers in Singapore, Malaysia,
and Hong Kong. Based on this task, we pro-
pose a controllable iterative (CI) data augmen-
tation method for improving the performance
of mainstream ASR error correction systems.
With a small amount of training data, our
proposed method has the ability to iteratively
produce abundant pseudo parallel data from
the monolingual corpus for Chinese-English
code-switching ASR correction. Results of
experiments show that our method achieves
the best performance compared with the rule-
based, back-translation-based data augmenta-
tion methods and large language model Chat-
GPT.

1 Introduction

Recently, automatic speech recognition (ASR) sys-
tem has achieved impressive success with the adop-
tion of advanced deep neural network (Moritz et al.,
2020). Learning from training data, the ASR sys-
tem can match human transcribers for some critical
tasks. It has been widely applied in several areas,
such as live captioning, intelligent appliance con-
trol (Aliprandi et al., 2014).

In some bilingual and multilingual societies,
people often speak more than one language in a
conversation. The speech phenomenon of switch-
ing language among sentences is called code-
switching. To explore the code-switching phe-
nomenon, code-switching tasks in many different

Error Type Redundant

Source 我要 start on我的 a essay
(I want to start on my a essay.)

Target 我要 start on我的 essay
(I want to start on my essay.)

Table 1: Examples of Chinese-English code-switching
ASR error correction in our datasets. The contents
in brackets are the translations for non-native Chinese
speakers.

language pairs have been introduced (Dowlagar
and Mamidi, 2023; Seddah et al., 2020), including
the code-switching ASR task.

Employing multilingual ASR systems to solve
code-switching ASR is proposed in recent work
(Lovenia et al., 2021). However, the performance
of systems in many cases is still far from satisfac-
tory. Errors introduced by ASR systems usually
affect the performance of downstream tasks. To
improve the recognition performance, the code-
switching ASR error correction task is necessary.

In this paper, we focus on code-switching ASR
error correction between Chinese and English,
which is common in the Chinese communities of
Asia area. To enable the research and development
of code-switching ASR error correction, we pro-
pose two datasets SEAME-C and ASCEND-C that
are constructed from two Chinese-English code-
switching ASR datasets SEAME (Lyu et al., 2010)
and ASCEND (Lovenia et al., 2021). In Table 1,
we present typical examples of Chinese-English
code-switching ASR error correction.

A challenge for the code-switching ASR error
correction is the lack of a large scale of training
data. Moreover, we can not even collect sufficient
high-quality Chinese-English code-switching data.
Considering these challenges, we propose a control-
lable iterative (CI) data augmentation method that
can iteratively generate abundant code-switching
ASR error correction instances from the monolin-
gual corpus with small-scale labeled training data.

To verify the effectiveness of our proposed
method, we implement two data augmentation base-
lines and evaluate the performance of these meth-
ods on proposed datasets at first. With a similar
scale of augmented data, our proposed controllable
iterative method achieves the best performance
in both MaxMatch (M2) scorer (Dahlmeier and
Ng, 2012) and MER metrics on SEAME-C and
ASCEND-C datasets. It performs well for both
mT5 (Xue et al., 2021) and mBART (Tang et al.,
2020) correction methods. Besides, considering the
strong ability of large language models (LLM), we
compare the performance of our method with the
most powerful LLM ChatGPT. Experiments show
that our method outdistances the ChatGPT method,
which shows the effectiveness of our method in the
Chinese-English code-switching ASR error correc-
tion task. Besides, we find that this task is chal-
lenging, and LLM method is far from achieving
satisfactory results at now.

Our contributions are summarized as follows:
1. We propose two datasets SEAME-C and

ASCEND-C for the challenging Chinese-English
code-switching ASR error correction task.

2. To address the problem of lacking sufficient
training data, we propose the controllable itera-
tive data augmentation method that can iteratively
generate abundant code-switching ASR error cor-
rection instances from the monolingual corpus.

3. Extensive experiments show the superiority of
our proposed controllable iterative method. More-
over, combining the pseudo data produced by the
rule-based and controllable iterative methods can
further improve the performance of error correction
models.

The resources are publicly available1.

2 Related Work

Code-switching ASR, the task aiming to recog-
nize the speech that contains more than one lan-
guage within the sentences, has been increasingly
reported in speech technology and linguistic stud-
ies recently (Su, 2001; Auer, 2013). However, to
our knowledge, there is no research on the code-
switching ASR error correction task at present. In
this section, we introduce two relevant fields: ASR
error correction and data augmentation method in
text error correction.

With the successes of ASR systems, the ASR

1https://github.com/chopper2k/Code-switching-ASR-
Error-Correction

error correction has become a prevalent task in
recent years. The idea of regarding the ASR er-
ror correction as the machine translation and ap-
plied advanced neural machine translation models
is adopted in several previous approaches(Mani
et al., 2020; Wang et al., 2020). D’Haro and Banchs
(2016) first introduce machine translation to im-
prove automatic transcription. Considering the ma-
chine translation models require only parallel text
pairs, Guo et al. (2019) propose an approach to uti-
lizing text-only data by training a correction model
to explicitly correct the errors. The joint modeling
method shows great performance in this task(Wang
et al., 2023). Re-ranking ASR n-best hypotheses
is also a popular topic for error recovery (Corona
et al., 2017; Jonson, 2006).

To address the problem of lack of training data,
data augmentation method is widely adopted in
text error correction area. Many works (Grund-
kiewicz et al., 2019; Lichtarge et al., 2019) adopt
pre-defined rules to generate sentences with errors.
Inspired by back-translation procedure for machine
translation (Sennrich et al., 2016), works (Xie et al.,
2018; Kiyono et al., 2019)are proposed to train a
model to generate erroneous sentences. Recently,
researchers focus on the exposure bias problem
of data augmentation method and proposed meth-
ods to utilize the augmented data in more effective
ways (Solyman et al., 2023; Cao et al., 2023).

3 Code-switching ASR Error Correction
Datasets

In this section, we provide details about our two
datasets SEAME-C and ASCEND-C. Specifically,
we give the construction process of our datasets at
first. Then, we do an analysis of our datasets and
show some characteristics of them. In this work,
we adopt the same corpus splitting as the original
ASR datasets. In addition, we remove some bad
cases that are too short and eliminate monolingual
sentences in the validation and test sets to ensure
the quality of evaluation. Our datasets provide
quality resources for the research and development
of code-switching ASR error correction. Table 2
describes the statistics of our proposed datasets.

3.1 Data Construction

In some Asia’s multilingual countries and regions,
speaking a mixture of Chinese and English within
a sentence is common. We collect data from two
Chinese-English code-switching ASR datasets with

SEAME-C ASCEND-C
Train Test Total Train Val Test Total

Dialogues 267 30 297 40 5 4 49
Sentences 48,405 6,293 54,698 9,869 213 373 10,455
Tokens 801,548 99,837 901,385 122,348 3,385 5,538 131,271
Avg. sentences in a dialogue 181.3 209.8 174.2 246.7 53.3 92.3 213.4
Avg. tokens in a sentence 16.6 15.9 16.5 12.4 15.9 14.8 12.6

Table 2: Statistics of our proposed code-switching ASR error correction datasets.

the advanced ASR system and automatic annotator.
In this part, we introduce the main components of
the data construction. Details of processing and
implementation are shown in the Appendix A.
ASR Corpus We build the error correction in-
stances from two Chinese-English code-switching
ASR datasets: SEAME and ASCEND. SEAME
is a large Chinese-English code-switching spon-
taneous speech corpus, collected from residents
of Malaysia and Singapore. The corpus contains
30 hours of word-level transcribed code-switching
speech data. ASCEND is a high-quality Chinese-
English code-switching corpus built on sponta-
neous multi-turn conversation collected in Hong
Kong. It comprises 10.62 hours of clean speech
data collected from dialogues.
ASR System With code-switching ASR datasets,
we adopt the ASR system to obtain recognition re-
sults. For being close to the real recognition setups,
we employ an advanced ASR model architecture,
namely XLSR-53 (Xu et al., 2021). We fine-tune
the XLSR-53 model and obtain the recognition re-
sults for datasets. The code-switching ASR error
correction instances in our datasets are built by
the pairs of manually annotated transcriptions and
corresponding recognition results.
Annotator We develop an automatic annota-
tor for the Chinese-English code-switching cor-
pus, based on prior works in English and Chinese
(Bryant et al., 2017; Hinson et al., 2020). It takes
three steps, tokenization, alignment, and merging,
to generate annotations that are suitable for Max-
Match (M2) evaluation metrics. Besides, the auto-
matic annotator is able to classify errors into four
types: redundant (R), missing (M), word selection
(S), and word ordering (W). It allows researchers
to conduct more detailed experiments and analyses
with different error types.

3.2 Analysis

3.2.1 Language Distribution
As the code-switching datasets contain multiple
languages, the observation of language distribu-

SEAME-C ASCEND-C
At dialogue level
Code-switching dialogues 100% 100%
At sentence level
Code-switching sentences 76.6% 27.8%
Chinese sentences 14.3% 48.6%
English sentences 9.1% 23.6%
At token level
Chinese tokens 83.7% 92.5%
English tokens 16.3% 7.5%

Table 3: Proportion of languages used in datasets at
dialogue, sentence and token levels.

tion is important for the analysis. We calculate the
proportion of languages used in the datasets at dia-
logue, utterance, and token levels. Table 3 presents
the details.

From the table, we can find that the sentence-
level language distribution of two datasets is quite
different. In the SEAME-C dataset, the code-
switching sentences take the main proportion, ac-
counting for 76.6%. As for the ASCEND-C dataset,
the Chinese sentences account for the largest pro-
portion, while the code-switching instances only ac-
count for 27.8%. In terms of token-level language
distribution, both two datasets are dominated by
Chinese tokens. It shows that the code-switching
phenomenon in Asia area mainly occurs by mixing
a few English words into Chinese speech. Consid-
ering that, we generate pseudo data from Chinese
sentences in our data augmentation method in the
following sections.

3.2.2 Error Distribution
With the proposed automatic annotator, the errors
in datasets are classified into four types. To ana-
lyze the characteristic of ASR errors in proposed
datasets, we calculate the error distributions on the
test sets of SEAME-C and ASCEND-C datasets.
The results are presented in Table 4.

As shown in the table, the error distributions on
the test sets of two datasets are similar. The word
selection errors account for the largest proportion,
with 85.7% in SEAME-C and 81.3% in ASCEND-
C. This type of error is caused by mistakes in the

Figure 1: An example of the process of generating pseudo data in our controllable iterative method. We highlight
the edited parts of sentences in each iteration. The controllable iterative method produces pseudo training instances
by iteratively generating outputs from input sentences. We apply the sequence editing model to generate synthetic
data and build training pairs with iterations.

Error Type SEAME-C ASCEND-C
% # %

Redundant (R) 908 5.6 134 11.2
Missing (M) 1,381 8.6 86 7.2
Word Selection (S) 13,831 85.7 972 81.3
Word Ordering (W) 15 0.1 4 0.3

Table 4: Error distribution on the test sets of SEAME-C
and ASCEND-C datasets. The # columns present the
amounts of specific error.

recognition of words or phrases with similar pro-
nunciation. Besides, there are a number of missing
and redundant errors, which is challenging to cor-
rect for requiring to change the length of the input.
Additionally, the frequency of word ordering errors
is very few. We can find that the code-switching
ASR error correction is a task with imbalanced er-
ror distribution, and we need to consider it when
designing the correction method.

4 Controllable Iterative Data
Augmentation Method

To address the problem of lacking sufficient train-
ing data, we propose the controllable iterative data
augmentation method. Due to the shortage of
high-quality Chinese-English code-switching cor-
pus, our method is designed to directly generate
training instances from monolingual texts. Our
method consists of two parts: sequence editing
model and pseudo data generation algorithm.

Sequence editing model is the fundamental struc-
ture of our method. It adopts the Transformer archi-
tecture and the predefined editing operations called
transformations to generate raw augmented data
from seed corpus. Pseudo data generation algo-

rithm plays a crucial role in the proposed method.
It adopts the sequence editing model to iteratively
produce pseudo training data under the control of
confidence bias. With our designed transforma-
tions, the sequence editing model is able to directly
generate training instances from monolingual texts.
Figure 1 shows an example of the process of gen-
erating pseudo data in our controllable iterative
method.

4.1 Sequence Editing Model

The data augmentation method for the code-
switching ASR error correction task aims to gen-
erate instances with errors as pseudo training data.
Error generation can be treated as the process of
noising the correct source input with edit opera-
tions. Based on this idea, we adopt the sequence
editing model to obtain the editing sequence re-
quired to produce output with errors.

4.1.1 Predefined Transformations
The sequence editing method requires predefined
editing operations called transformations. In this
work, we adopt the custom token-level transforma-
tions developed in GECToR (Omelianchuk et al.,
2020), the details are shown in Appendix B. These
transformations are originally designed for En-
glish texts. We denote these transformations ex-
cept $TRANSLATION$ as noising transforma-
tions. For generating code-switching sentences
from monolingual sources, we introduce cross-
lingual transformations into original ones. Firstly,
we add the translation transformation ($TRANS-
LATION$) that replaces the current token with
the most common translation in a Chinese-English

dictionary. Secondly, to cover the specific cases
that the most common translation can not fit, we
insert additional Chinese characters to the vocabu-
lary of $APPEND$ and $REPLACE$ operations.
With predefined transformations, we can get the
target sentence by applying the sequential outputs
of transformations to the tokens in the source sen-
tence.

4.1.2 Model Architecture
The sequence editing model is an encoder made
up of Transformer architecture stacked with two
linear layers with softmax layers. Considering the
strong performance of pre-trained model, the Trans-
former architecture is initiated with multilingual
pre-trained model m-BERT (Devlin et al., 2019).
The model is able to generate an editing operation
sequence from the source input, and then apply the
operations on the source to obtain the target output.

To make the generation process of the model
controllable, we add a confidence bias to the de-
coding process. The confidence bias is a parame-
ter applied to change the generation probability of
transformations. For example, adding a positive
confidence bias to $KEEP$ can increase the proba-
bility of generating the $KEEP$. By adjusting the
confidence bias, the decoding process of sequence
editing model is under control.

4.1.3 Training Process
To generate pseudo data, we need to train the se-
quence editing model to generate noisy sentences
from correct ones at first.

Given a pair of a monolingual sentence x with-
out noise and a code-switching sentence with noise
y. Then we convert the sentence y to a sequence
of transformations z. Let ϵ denote the preset con-
fidence bias and Θ denote all trainable parameters
of the sequence editing model ϕ. Our objective is
to find the optimal parameter set Θ̂ that minimizes
the following negative log-likelihood function:

L = − logP (z|x, ϵ,Θ) (1)

where P (z|x, ϵ,Θ) denotes the conditional proba-
bility.

After training on constructed instances, our
model can not only learn the editing operations
to apply errors to sentences but also the transforma-
tions to generate English-Chinese code-switching
texts. Some details of training are shown in Ap-
pendix C.

Algorithm 1 Generating pseudo data
Input: Monolingual Sentence x0; Number of it-

erations T ; Sequence editing model ϕ; Confidence
bias ϵ; Similarity Discriminator ψ; Hyper parame-
ter λ, ϵ0, ϵ1
Output: Synthetic erroneous samples set S
Function: Gen(x0, T, λ, ϵ0, ϵ1):
1: for t← 1 to T do
2: if t = 1 then
3: ϵ← ϵ0
4: else
5: ϵ← ϵ1
6: xt ← ϕ(xt−1, ϵ)
7: if t ≥ 2 then
8: p← ψ(x1, xt)
9: if p ≥ λ then

10: S.add(x1, xt)
return S

4.2 Pseudo Data Generation Algorithm

To generate pseudo training data from the mono-
lingual corpus for code-switching ASR error cor-
rection, we have to generate both code-switching
target sentences and source sentences with ASR
errors. For this objective, we propose an iterative
generation approach to obtain pseudo training pairs
for code-switching ASR error correction with only
one model in multiple iterations. The algorithm for
generating pseudo training data is summarized in
Algorithm 1.

Given a monolingual sentence from seed corpus
x0. We apply T times of iterations to the sequence
editing model ϕ to generate data.

In the first iteration, we adjust the confidence
bias to ϵ0 that limits the noising transformations
and makes the model use cross-lingual transfor-
mations and $KEEP$ to generate code-switching
sentence x1. This process can be formulated as:

x1 ← ϕ(x0, ϵ0) (2)

In the t-th (1<t ≤ T) iteration, the confidence
bias is set to ϵ1 that balances the generation proba-
bility of each transformation. It makes the model
apply diverse noises to the output of the (t-1)-th
iteration xt−1 and obtain the pseudo instances with
errors xt. This process can be formulated as:

xt ← ϕ(xt−1, ϵ1) (3)

where 1 < t ≤ T .

With above pseudo instances x1, . . . , xT , we
treat the output in the first iteration as the correct
target sentence and the output in the later turn as
noised source sentence to get the sentence pairs.

In order to improve the quality of synthetic sam-
ples, we use BERTScore (Zhang et al., 2019) as
the similarity discriminator to filter sentence pairs
with low similarity. Given a sentence pair (x1, xt)
(1 < t ≤ T), we use similarity discriminator ψ to
get a score p ∈ [0, 1] that presents the semantic
similarity between sentences x1 and xt. We set a
threshold λ that if the score p of a sentence pair is
greater than the threshold, the pair can be selected
as an augmented training sample.

5 Experimental Setup

In this section, we present our experimental setup
including datasets, ASR error correction model,
and data augmentation baseline. More details of
implementation are presented in Appendix D.

5.1 Dataset for Experiment

Training and Test Data Firstly, we train the
model on pseudo training instances generated from
data augmentation method. Then, we fine-tune
the code-switching ASR error correction model
on our proposed Chinese-English code-switching
ASR error correction datasets: SEAME-C and
ASCEND-C. We take M2 scorer and mixed er-
ror rate (MER)(Adel et al., 2013) as evaluation
metrics.
Seed Corpus for Pseudo Training Data Genera-
tion For data augmentation methods, we need to
generate pseudo training instances from a seed cor-
pus. Considering proposed datasets were mainly
collected from dialogues, we pick the OpenSubti-
tles dataset (Lison and Tiedemann, 2016), which is
a large collection of subtitles in various languages
for movies and TV programs, as the seed corpus.

5.2 ASR Error Correction Model

In multilingual grammatical error correction task,
the adoption of multilingual version of pre-trained
model has achieved great success (Rothe et al.,
2021). So we pick two strong multilingual pre-
trained models mT5 and mBART as the code-
switching ASR error correction models to verify
the effectiveness of our data augmentation method.

Considering that large language models (LLM)
have made significant advancements in various
NLP tasks. We adopt the most powerful LLM

ChatGPT as the baseline. In our experiment, we
test the performance of the GPT-3.5-turbo model
on the code-switching ASR error correction task
with zero-shot and few-shot settings. The prompt
templates for ChatGPT are shown in Appendix F.

5.3 Data Augmentation Baseline

There are other ways to generate pseudo code-
switching ASR error correction training instances.
In our experiment, we implement two data aug-
mentation baselines to compare with our control-
lable iterative data augmentation method. Firstly,
we apply a code-switching text generation ap-
proach to get the Chinese-English code-switching
texts from a parallel seed corpus. With the code-
switching texts, we implement the rule-based and
back-translation-based data augmentation methods
to improve the ASR error correction models.

Code-switching Text Generation Following pre-
vious work (Hussein et al., 2022), we apply the EC
theory (Pratapa et al., 2018) to generate Chinese-
English code-switching texts. By taking the pairs
of parallel sentences in seed corpus as input, the
method generates the code-switching texts by re-
placing the token in the parse tree with its word-
level alignments. In our experiment, we adopt the
fast-align tool (Dyer et al., 2013) to get the word-
level alignments and parse the sentences with a
neural graph-based parser(Dozat and Manning).

Rule-based Method The rule-based method is a
simple way to generate errors efficiently. We de-
sign a rule-based method that generates synthetic
training data with five rules: delete, add, replace,
shuffle, spelling error. The details of the rules are
introduced in Appendix E. With above rules, we
can get synthetic training samples with various er-
rors. These synthetic training samples can be used
to improve the performance of the code-switching
ASR error correction system.

Back-translation Method Inspired by the use of
back-translation in downstream tasks (Xie et al.,
2018), we train a seq2seq noisy model (like the
back-translation model) to generate noisy sentences
from correct ones. Then the output of the noising
model is paired with the input and the sentence
pairs are then used as pseudo data. In our experi-
ment, we consider adopting a base mT5 model as
the noising model for our baseline.

Correction Model Augmentation
Method

Augmented
Data Size

SEAME-C ASCEND-C
P↑ R↑ F0.5↑ MER ↓ P↑ R↑ F0.5↑ MER↓

mT5

- - 26.2 18.7 24.3 21.14 20.7 15.3 19.3 40.31
Rules 5M 27.4 19.9 25.4 20.74 23.9 17.8 22.4 37.57
Back-translation 4.1M 27.1 20.5 25.5 20.70 23.3 17.4 21.8 38.21
CI 3.3M 28.5 20.7 26.5 20.45 25.0 19.6 23.7 36.35

mBART

- - 23.8 17.1 22.1 21.65 19.6 14.9 18.4 40.12
Rules 5M 25.4 18.9 23.8 21.18 22.5 17.2 21.2 38.63
Back-translation 4.1M 25.7 19.1 24.0 21.03 22.8 18.0 21.7 38.44
CI 3.3M 26.9 21.0 25.5 20.73 24.1 18.3 22.7 37.50

GPT-3.5-turbo(zero-shot) - - 7.5 8.1 7.6 40.01 5.7 3.9 5.2 71.28
GPT-3.5-turbo(3-shot) - - 13.3 12.6 13.1 35.44 7.2 4.8 6.5 65.62

Table 5: Comparison results of each method. Augmented data sizes show the amounts of additional training
sentences used in each method.

6 Results and Analysis

6.1 Comparison Results

We evaluate the performance of our controllable
iterative data augmentation method on proposed
datasets. Table 5 shows the results.

Firstly, we compare our method with the two
data augmentation baselines. For the fairness of
comparison, we train the correction models with
the similar scale of augmentation data. Here we
use pseudo data generated from the controllable
iterative method with three iterations to train the
correction model.

As we can see from the table, our proposed
controllable iterative data augmentation method
achieves the best performance in both M2 scorer
and MER metrics on SEAME-C and ASCEND-
C datasets. It outperforms the two baselines for
both mT5 and mBART correction methods, which
shows the effectiveness and robustness of our con-
trollable iterative method in Chinese-English code-
switching ASR error correction task.

Besides, we test ChatGPT (GPT-3.5-turbo) on
the proposed dataset. From the table, we can find
that the performance of ChatGPT is poor in this
task. Under the zero-shot setting, it can only correct
a few errors. By learning from examples in the
prompt, the performance of ChatGPT under few-
shot setting has significantly improved, but still far
from the performance of mT5 and mBART models.

The experiment results show that the code-
switching ASR error correction task is challeng-
ing at present. Due to the scarcity of data and the
complexity of code-switching text, LLM method
is far from achieving satisfactory results in this
task. We present that our data augmentation is an
effective method to improve the performance of
Chinese-English code-switching ASR error correc-

tion models.

Figure 2: Results of the mT5 correction model on
SEAME-C when trained with outputs collected from
different iterations of our controllable iterative method.

6.2 Iteration of Proposed Method

We build the pseudo training pairs with the outputs
of the controllable iterative method in multiple iter-
ations. In this section, we try to explore the influ-
ence of the iteration number on the generation of
augmented data. Figure 2 shows the results of the
mT5 correction model on the SEAME-C dataset
when it is trained with outputs collected from dif-
ferent iterations. The details of results are shown
in Appendix G.

As the iteration progresses, controllable itera-
tive method continuously generates noisy code-
switching data. By collecting the outputs in it-
erations, we can obtain more pseudo training pairs
at each new iteration. In general, using a larger
scale of training data may achieve better perfor-
mance. However, the experimental results show
the bottleneck of the data augmentation method
that further increasing augmented training data at
the 3-th iteration even has a negative impact on per-
formance. This bottleneck might be caused by the
quality reduction of the generated data after a few
iterations. Considering the balance between perfor-

Dataset Augmentation
Method

P↑ R↑ F0.5↑MER↓

SEAME-C
Rules 27.4 19.9 25.4 20.74
CI 28.5 20.7 26.5 20.45
Rules+CI 29.2 21.3 27.2 20.15

ASCEND-C
Rules 23.9 17.8 22.4 37.57
CI 25.0 19.6 23.7 36.35
Rules+CI 25.6 20.8 24.5 35.46

Table 6: Results of the mT5 correction model on
datasets when trained with the combination of pseudo
data generated by controllable iterative (CI) and ruled-
based methods.

mance and computing costs, we select the outputs
generated in the third iteration as the augmented
data used for Chinese-English code-switching ASR
error correction task.

6.3 Combination of Augmented Data

Rule-based and model-based data augmentation
methods are two different approaches to pseudo
training data generation. Therefore, the distribu-
tions of errors generated by these two types of data
augmentation methods might be different in gen-
eral. In this section, we try to explore the effect
of combining the data generated by rule-based and
our methods.

In our experiments, we pick the mT5 model that
achieves higher evaluation scores in previous exper-
iments as the error correction model. The results
of using the combined pseudo data are shown in
Table 6. From the results, we can find that training
mT5 with the combined pseudo data achieves the
best scores on our datasets. The use of the data
generated by the rule-based method can further
improve the performance of the error correction
model.

We further analyze the results of different error
types. With the automatic annotator, we evaluate
the performance in four types: redundant (R), miss-
ing (M), word selection (S), and word ordering
(W). We conduct the experiment on our SEAME-
C dataset with mT5 as the error correction model.
The results are shown in Table 7.

Error Type R M S W
Augmentation Method F0.5 F0.5 F0.5 F0.5

- 8.1 16.3 21.1 9.8
Rules 10.8 25.6 26.1 11.1
CI 17.1 20.5 28.7 14.7
Rules+CI 18.7 21.1 29.1 7.9

Table 7: Results of mT5 correction model on SEAME-C
with different augmentation methods on different error
types.

As can be seen from the results, data augmen-
tation methods affect the performance of the cor-
rection model with respect to different error types.
Compared with the controllable iterative method,
the rule-based method achieves higher scores on
missing errors. The correction model benefits from
the operations such as adding and deleting tokens
defined in the rules that provide sufficient instances
with missing errors. Generally, combining control-
lable iterative and rule-based data augmentation
methods can cover most error types and generate
samples with high diversity. It enables the correc-
tion model to achieve better performance.

7 Conclusion

In this paper, we explore the code-switching ASR
error correction task. To enable the research, we
first propose two Chinese-English code-switching
ASR correction datasets. To address the problem of
lacking sufficient training data, we propose the con-
trollable iterative data augmentation method that
can generate code-switching ASR error correction
instances from the monolingual corpus iteratively.
Experiment results show that our method achieves
the best performance compared with the rule-based
augmentation method, back-translation augmenta-
tion method, and ChatGPT method. We further
find that combining the data generated by both rule-
based method and controllable iterative method can
further improve the performance of the error cor-
rection model. In future work, we will apply our
data augmentation method to other code-switching
tasks and also test our method in other language
pairs.

Limitations

In this paper, we only conduct experiments
on Chinese-English datasets. There are code-
switching phenomena that occur in other languages,
for example, the Spanish-English and French-
Italian code-switching in America. The empiri-
cal conclusions we draw in this study might be
changed under different language settings. An-
other limitation of our study is the lack of man-
ual evaluation. Considering the challenge of the
code-switching ASR error correction task, manual
evaluation can cover the cases that are evaluated
inaccurately by automatic metrics. More interest-
ing conclusions might be drawn by conducting the
manual evaluation.

Acknowledgements

This work was supported by National Key R & D
Program of China (2021YFF0901502), National
Science Foundation of China (No. 62161160339),
State Key Laboratory of Media Convergence Pro-
duction Technology and Systems and Key Lab-
oratory of Science, Technology and Standard in
Press Industry (Key Laboratory of Intelligent Press
Media Technology). We appreciate the anonymous
reviewers for their helpful comments. Xiaojun Wan
is the corresponding author.

References
Heike Adel, Ngoc Thang Vu, Franziska Kraus, Tim

Schlippe, Haizhou Li, and Tanja Schultz. 2013. Re-
current neural network language modeling for code
switching conversational speech. In 2013 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing, pages 8411–8415. IEEE.

Carlo Aliprandi, Cristina Scudellari, Isabella Gallucci,
Nicola Piccinini, Matteo Raffaelli, Arantza del Pozo,
Aitor Álvarez, Haritz Arzelus, Renato Cassaca, Tiago
Luis, et al. 2014. Automatic live subtitling: state
of the art, expectations and current trends. In Pro-
ceedings of NAB Broadcast Engineering Conference:
Papers on Advanced Media Technologies, Las Vegas,
volume 13.

Peter Auer. 2013. Code-switching in conversation: Lan-
guage, interaction and identity. Routledge.

Christopher Bryant, Mariano Felice, and Edward
Briscoe. 2017. Automatic annotation and evalua-
tion of error types for grammatical error correction.
Association for Computational Linguistics.

Hannan Cao, Wenmian Yang, and Hwee Tou Ng. 2023.
Mitigating exposure bias in grammatical error cor-
rection with data augmentation and reweighting. In
Proceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 2115–2127.

Rodolfo Corona, Jesse Thomason, and Raymond
Mooney. 2017. Improving black-box speech recog-
nition using semantic parsing. In Proceedings of
the Eighth International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 122–127.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better
evaluation for grammatical error correction. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
568–572.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep

bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Suman Dowlagar and Radhika Mamidi. 2023. A code-
mixed task-oriented dialog dataset for medical do-
main. Computer Speech & Language, 78:101449.

Timothy Dozat and Christopher D Manning. Deep bi-
affine attention for neural dependency parsing.

Chris Dyer, Victor Chahuneau, and Noah A Smith. 2013.
A simple, fast, and effective reparameterization of
ibm model 2. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 644–648.

Luis Fernando D’Haro and Rafael E Banchs. 2016. Au-
tomatic correction of asr outputs by using machine
translation. In Interspeech, volume 2016, pages
3469–3473.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Kenneth Heafield. 2019. Neural grammatical error
correction systems with unsupervised pre-training
on synthetic data. In Proceedings of the Fourteenth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 252–263.

Jinxi Guo, Tara N Sainath, and Ron J Weiss. 2019.
A spelling correction model for end-to-end speech
recognition. In ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5651–5655. IEEE.

Charles Hinson, Hen-Hsen Huang, and Hsin-Hsi Chen.
2020. Heterogeneous recycle generation for chinese
grammatical error correction. In Proceedings of the
28th International Conference on Computational Lin-
guistics, pages 2191–2201.

Amir Hussein, Shammur Absar Chowdhury, Ahmed
Abdelali, Najim Dehak, and Ahmed Ali. 2022. Code-
switching text augmentation for multilingual speech
processing. arXiv e-prints, pages arXiv–2201.

Yunqi Gao Jiaju Mei, Yiming Zhu. 1996. Tongyici cilin.
In Shanghai Lexicographical Publishing House.

Rebecca Jonson. 2006. Dialogue context-based re-
ranking of asr hypotheses. In 2006 IEEE Spoken Lan-
guage Technology Workshop, pages 174–177. IEEE.

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu-
moto, and Kentaro Inui. 2019. An empirical study of
incorporating pseudo data into grammatical error cor-
rection. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
1236–1242.

Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam
Shazeer, Niki Parmar, and Simon Tong. 2019. Cor-
pora generation for grammatical error correction. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3291–3301.

Pierre Lison and Jörg Tiedemann. 2016. Opensub-
titles2016: Extracting large parallel corpora from
movie and tv subtitles.

Holy Lovenia, Samuel Cahyawijaya, Genta Indra
Winata, Peng Xu, Xu Yan, Zihan Liu, Rita Frieske,
Tiezheng Yu, Wenliang Dai, Elham J Barezi, et al.
2021. Ascend: A spontaneous chinese-english
dataset for code-switching in multi-turn conversation.
arXiv preprint arXiv:2112.06223.

Dau-Cheng Lyu, Tien-Ping Tan, Eng Siong Chng, and
Haizhou Li. 2010. Seame: a mandarin-english
code-switching speech corpus in south-east asia. In
Eleventh Annual Conference of the International
Speech Communication Association.

Anirudh Mani, Shruti Palaskar, Nimshi Venkat Meripo,
Sandeep Konam, and Florian Metze. 2020. Asr er-
ror correction and domain adaptation using machine
translation. In ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6344–6348. IEEE.

Niko Moritz, Takaaki Hori, and Jonathan Le. 2020.
Streaming automatic speech recognition with the
transformer model. In ICASSP 2020-2020 IEEE In-
ternational Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 6074–6078. IEEE.

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem
Chernodub, and Oleksandr Skurzhanskyi. 2020.
Gector–grammatical error correction: Tag, not
rewrite. In Proceedings of the Fifteenth Workshop
on Innovative Use of NLP for Building Educational
Applications, pages 163–170.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
Sunayana Sitaram, Sandipan Dandapat, and Kalika
Bali. 2018. Language modeling for code-mixing:
The role of linguistic theory based synthetic data. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1543–1553.

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas-
tian Krause, and Aliaksei Severyn. 2021. A simple
recipe for multilingual grammatical error correction.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the

11th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
702–707.

Djamé Seddah, Farah Essaidi, Amal Fethi, Matthieu
Futeral, Benjamin Muller, Pedro Ortiz Suarez, Benoît
Sagot, and Abhishek Srivastava. 2020. Building a
user-generated content north-african arabizi treebank:
Tackling hell. In Proceedings of the 58th annual
meeting of the Association for Computational Lin-
guistics, pages 1139–1150.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96.

Aiman Solyman, Marco Zappatore, Wang Zhenyu,
Zeinab Mahmoud, Ali Alfatemi, Ashraf Osman
Ibrahim, and Lubna Abdelkareim Gabralla. 2023.
Optimizing the impact of data augmentation for low-
resource grammatical error correction. Journal of
King Saud University-Computer and Information Sci-
ences, 35(6):101572.

Hsi-Yao Su. 2001. Code-switching between man-
darin and taiwanese in three telephone conversation:
The negotiation of interpersonal relationships among
bilingual speakers in taiwan. In Proc. of the Sympo-
sium about Language and Society.

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na-
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An-
gela Fan. 2020. Multilingual translation with exten-
sible multilingual pretraining and finetuning. arXiv
preprint arXiv:2008.00401.

Jörg Tiedemann and Santhosh Thottingal. 2020. Opus-
mt–building open translation services for the world.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation.
European Association for Machine Translation.

Deyuan Wang, Tiantian Zhang, Caixia Yuan, and Xiao-
jie Wang. 2023. Joint modeling for asr correction and
dialog state tracking. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 1–5. IEEE.

Haoyu Wang, Shuyan Dong, Yue Liu, James Logan,
Ashish Kumar Agrawal, and Yang Liu. 2020. Asr er-
ror correction with augmented transformer for entity
retrieval. In Interspeech, pages 1550–1554.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Y
Ng, and Dan Jurafsky. 2018. Noising and denois-
ing natural language: Diverse backtranslation for

grammar correction. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 619–628.

Qiantong Xu, Alexei Baevski, and Michael Auli. 2021.
Simple and effective zero-shot cross-lingual phoneme
recognition. arXiv preprint arXiv:2109.11680.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mt5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2019. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

A Processing for Data Construction

A.1 ASR System
Here is the process we use XLSR-53 model to
generate code-switching ASR error correction in-
stances. Firstly, we build the vocabulary from the
transcription in the datasets. Based on the vocab-
ulary of 26 English letters, we add all Chinese
characters appearing in the transcriptions to the vo-
cabulary for the generation of Chinese. Then, we
fine-tune the XLSR-53 model on the training data
from SEAME and ASCEND datasets. We pick the
parameters with the best performance in the valida-
tion set as our code-switching ASR system for next
recognition step. With the fine-tuned XLSR-53
model, we can initially obtain the recognition re-
sults required for building the code-switching ASR
error correction corpus. As the datasets are sponta-
neous speeches, the corpus is mainly informal and
non-speech sounds often occur, such as laughing
and coughing. Given that, we design some sim-
ple rules to polish the corpus, such as removing
non-speech sounds and repeated words.

A.2 Annotator
The annotator takes three steps: tokenization, align-
ment, and merging. For tokenization, we use
character-level tokenization for Chinese and word-
level tokenization for English. Alignment works
by computing the alignment score for each pair
of tokens in the source and target sentences. In
particular, the Cilin thesaurus (Jiaju Mei, 1996) is
leveraged to give a similarity score between Chi-
nese characters. Once the alignment score matrix

is computed, the sequence with the lowest score is
returned. At last, we use a simple merging strategy
that merges consecutive sequences of edits of the
same type.

B Transformations in GECToR

GECToR proposed the token-level transformations
for the sequence editing grammatical error correc-
tion model. Transformations increase the coverage
of grammatical error corrections for limited output
vocabulary size for the most common types of er-
rors. The work divided transformations into two
types: basic transformations and g-transformations.

Basic transformations perform the most com-
mon token-level edit operations, such as: keep the
current token unchanged (tag $KEEP$), delete cur-
rent token (tag $DELETE$), append new token t1
next to the current token (tag $APPEND t1 $) or
replace the current token with another token t2 (tag
$REPLACE t2 $).

G-transformations perform task-specific opera-
tions such as: change the case of the current to-
ken ($CASE$ tags), merge the current token and
the next token into a single one ($MERGE$ tags)
and split the current token into two new tokens
($SPLIT$ tags). Moreover, tags from $NOUN
NUMBER$ and $VERB FORM$ transformations
encode grammatical properties for tokens.

C Processing for Sequence Editing Model

C.1 Processing for Transformations

It takes a three-step pre-processing algorithm to
convert a sentence to a sequence of transformations.
Firstly, it maps each token from source sentence to
sub-sequence of tokens from target sentence. For
this purpose, it detects the minimal spans of tokens
which define differences between source tokens
and target tokens. Thus, such a span is a pair of
selected source tokens and corresponding target
tokens. To get tags on the token level, it searches
for the best-fitting sub-sequence of target tokens by
minimizing the modified Levenshtein distance for
each source token. Secondly, for each mapping in
the list, it finds token-level transformations which
convert source token to the target sub-sequence.
Finally, it leaves only one transformation for each
source token. Through the above three steps, we
map the tag to each single source token.

C.2 Processing for Translation

Our model is aimed to generate code-switching sen-
tences with errors from correct monolingual sen-
tences, but the training pairs in datasets only con-
sist of code-switching texts. Considering that, we
adopt an open translation tool OPUS-MT (Tiede-
mann and Thottingal, 2020) to translate the code-
switching ASR transcriptions into monolingual sen-
tences. Specifically, we translate the spans of En-
glish texts to Chinese and get the Chinese sentences.
With regarding the translated monolingual sentence
as source and the code-switching sentence with er-
rors from error correction datasets as target, we
train the sequence editing model.

D Implementation Details

In our work, we adopt PyTorch (Paszke et al., 2019)
framework and HuggingFace (Wolf et al., 2020)
tool to implement all deep neural models. Each
model is trained on four NVIDIA A40 GPUs. The
details of each model are described as follows.

D.1 ASR Error Correction Model

Considering that mT5 and mBART have achieved
strong performance in many multilingual tasks, we
adopt these pre-trained models to correct ASR er-
rors. In the experiments, we use the base version of
mT5 and fine-tune it by using the Adam optimiza-
tion method with learning rate 5e-4, weight decay
parameter 0.01, dropout rate 0.1, and batch size
24. Besides, we use the large version of mBART,
and fine-tune it by using the Adam optimization
method with learning rate 2e-5, dropout rate 0.1,
and batch size 16. Beam search with beam size of
5 is used for decoding.

D.2 Sequence Editing Model

The sequence editing model is an encoder made
up of Transformer architecture stacked with two
linear layers with softmax layers. We adopt the
base version of m-BERT to initialize the encoder.
Our model consists of 12 Transformer layers and
two linear layers. We train the model with learning
rate 1e-5, weight decay parameter 0.01, dropout
rate 0, and batch size 32. The size of the vocabulary
is 12229. It consists of 4971 basic transformations,
29 token-independent g-transformations and 7229
cross-lingual transformations.

D.3 Pseudo Data Generation Algorithm

We add a confidence bias to control the decod-
ing process. In our experiments, the confidence
bias ϵ0 is to add -1.0 to the generation probability
of all transformations except $KEEP$, $TRANS-
LATION$ and other cross-lingual transformations.
The confidence bias ϵ1 is set to keep the original
generation probability of all transformations. The
threshold λ is set to 0.85.

Method Prompt Template

Zero-shot

"role": "system", "content": "You are a
Chinese-English code-switching ASR error
correction tool that can identify and correct
errors in the text. Especially, code-switching
is a linguistic phenomenon where a speaker
alternates between two or more languages or
language varieties within a single conversa-
tion or even within a single sentence."
"role": "user", "content": "Please identify
and correct any errors in the following sen-
tence indicated by <input> ERROR </input>
tag, you need to comprehend the sentence
as a whole before gradually identifying and
correcting any errors while keeping the orig-
inal sentence structure unchanged as much
as possible. Remember to format your cor-
rected output results with the tag <output>
Your Corrected Version </output>. Please
start: <input> Input Sentence </input>:"

Few-shot

"role": "system", "content": "You are a
Chinese-English code-switching ASR error
correction tool that can identify and correct
errors in the text. Especially, code-switching
is a linguistic phenomenon where a speaker
alternates between two or more languages or
language varieties within a single conversa-
tion or even within a single sentence."
"role": "user", "content": "Please identify
and correct any errors in the following sen-
tence indicated by <input> ERROR </input>
tag, you need to comprehend the sentence
as a whole before gradually identifying and
correcting any errors while keeping the orig-
inal sentence structure unchanged as much
as possible.Here are some in-context exam-
ples:
(1), <input> SRC-1 </input>: <output>
TGT-1 </output>;
(2), <input> SRC-1 </input>: <output>
TGT-1 </output>;
...
(n), <input> SRC-n </input>: <output>
TGT-n </output>;
Please feel free to refer to these examples.
Remember to format your corrected output
results with the tag <output> Your Corrected
Version </output>. Please start: <input> In-
put Sentence </input>:"

Table 8: Zero-shot and few-shot prompt template for
Chinese-English code-switching ASR error correction.

E Rule-based Method

The details of the five rules adopted in our proposed
rule-based method are introduced in the following.

Delete. Randomly delete a token with a proba-
bility.

Add. Firstly, randomly select a word or Chinese
character from the vocabulary of the ASR datasets,
and then add the selected word or character to a
random position.

Replace. Randomly replace a token with a word
or Chinese character from the vocabulary of the
ASR datasets. In particular, if the selected token
is a Chinese character, we select the replacement
from the homophones with a probability.

Shuffle. Shuffle the tokens by adding a normal
distribution bias to the positions of the tokens.

Spell Error. Randomly apply spell error to an
English word. We randomly perturb letters with
operations, i.e. substitution, deletion, insertion or
transposition of letters.

F Prompt Template

Zero-shot and few-shot prompt templates for
Chinese-English code-switching ASR error correc-
tion are shown in Table 8.

G Additional Experiment Results

Results of the mT5 correction model on SEAME-C,
when trained with outputs collected from different
iterations of our method, are shown in Table 9.

Iteration Augmented
Data Size

P↑ R↑ F0.5↑ MER↓

Iteration 1 1.8M 28.0 20.3 26.1 20.54
Iteration 2 2.6M 28.2 20.6 26.3 20.49
Iteration 3 3.3M 28.5 20.7 26.5 20.45
Iteration 4 3.6M 28.3 20.8 26.4 20.51
Iteration 5 3.8M 28.3 21.1 26.5 20.40

Table 9: Results of the mT5 correction model on
SEAME-C when trained with outputs collected from
different iterations of our method.

