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Abstract

Efficient KV cache management in LLMs is001
crucial for long-context tasks like RAG and002
summarization. Existing KV cache compres-003
sion methods enforce a fixed pattern, neglecting004
task-specific characteristics and reducing the005
retention of essential information. However,006
we observe distinct activation patterns across007
layers in various tasks, highlighting the need008
for adaptive strategies tailored to each task’s009
unique demands. Based on this insight, we pro-010
pose DynamicKV, a method that dynamically011
optimizes token retention by adjusting the num-012
ber of tokens retained at each layer to adapt013
to the specific task. DynamicKV establishes014
global and per-layer maximum KV cache bud-015
gets, temporarily retaining the maximum bud-016
get for the current layer, and periodically updat-017
ing the KV cache sizes of all preceding layers018
during inference. Our method retains only019
1.7% of the KV cache size while achieving020
∼ 90% of the Full KV cache performance021
on LongBench. Notably, even under extreme022
compression (0.9%), DynamicKV surpasses023
state-of-the-art (SOTA) methods by 11% in024
the Needle-in-a-Haystack test using Mistral-025
7B-Instruct-v0.2. The code will be released.026

1 Introduction027

Large Language Models (LLMs) (Achiam et al.,028

2023) are exerting a considerable influence in the029

field of natural language processing (NLP), driving030

advancements in summarization, translation, code031

generation, etc. (Chiang et al., 2023; Zhong et al.,032

2023; Peng et al., 2023; Lu et al., 2024; Wang et al.,033

2024). Recent developments in LLMs (Liu et al.,034

2024b) have been scaled up to handle long contexts,035

with LlaMA3 (Dubey et al., 2024) processing up036

to 32K tokens and InternLM (Cai et al., 2024) han-037

dling 1M tokens. Scaling LLMs to longer contexts038

introduces significant latency due to the quadratic039

complexity of attention. A common solution is to040

cache key and value (KV) status (Waddington et al.,041

2013), reducing computation. However, this comes 042

at a high memory cost – for example, caching 100K 043

tokens in LLaMA2-7B (Touvron et al., 2023) still 044

requires over 50GB of memory. 045

To address this issue, recent studies have ex- 046

plored the optimization of KV caching, including 047

KV cache quantization (Kang et al., 2024; Hooper 048

et al., 2024), token dropping (Zhang et al., 2024b; 049

Xiao et al., 2023), architectural improvements to 050

Transformers (Sun et al., 2024), KV cache fusion 051

(Nawrot et al., 2024), and hierarchical sharing and 052

constraints(Liu et al., 2024a; Brandon et al., 2024). 053

Existing KV cache compression methods enforce a 054

fixed pattern (as shown in Figure 1), such as a hi- 055

erarchical pyramid structure (Zhang et al., 2024a) 056

or a structure similar to FastGen’s fixed internal 057

pattern (Ge et al., 2023), or they fix the length of 058

the KV cache to selectively retain tokens across dif- 059

ferent layers (Zhang et al., 2024b; Li et al., 2024). 060

However, LLMs require different numbers of layers 061

when handling different types of tasks. For exam- 062

ple, for knowledge-based question-answering tasks, 063

only the first few layers are needed to achieve high 064

accuracy, while for complex reasoning tasks (e.g., 065

mathematics and code generation), more layers are 066

often required to achieve higher accuracy (Elhoushi 067

et al., 2024). Thus, we raise a question: Do differ- 068

ent types of tasks all follow a fixed pattern? 069

To examine this question, we aim to systemat- 070

ically investigate the design principles of the KV 071

cache compression across different tasks. Inspired 072

by Zhang et al. (2024a), we first investigate how 073

information flow is aggregated through attention 074

mechanisms across different layers in four types of 075

tasks, including single- and multi-document QA, 076

summarization, synthetic tasks and code comple- 077

tion. We find that the attention distribution varies 078

for different types of tasks. For example, in summa- 079

rization tasks, the upper layers require a small KV 080

cache size, while code completion tasks need larger 081

KV cache sizes in the upper layers. This implies 082
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Figure 1: Comparison of DynamicKV with traditional methods in maintaining KV cache size across layers.
Left: the structure difference: (a) Retain all KV cache. (b) Fixed KV cache for each layer (e.g., StreamingLLM,
H2O, SnapKV). (c) Hierarchically decreasing pyramid KV cache retention. (d) Ours DynamicKV: layer-aware
adaptive KV cache retention. Right: average accuracy on different KV cache retention.

that for code completion tasks, upper layers require083

maintaining a larger KV cache size, in contrast to084

PyramidKV (Zhang et al., 2024a), where the KV085

cache size decreases as the layer depth increases.086

Building on this insight, we propose a task-aware087

adaptive KV cache compression method, named088

DynamicKV. Specifically, we first calculate an at-089

tention score for the most recent few tokens and090

all other tokens, which in RAG (Lewis et al., 2020)091

can be viewed as calculating the relevance of the092

most recent query to the retrieved text. Then, we093

preset a temporary storage to hold the temporary094

KV cache states and gradually calculate the size of095

the final retained temporary storage at each k layer096

by calculating the size of the correlation mean. It097

should be noted that at each update, the value is098

gradually normalized, and the retained temporary099

storage at each layer is always smaller than the pre-100

vious one. This temporary storage is determined by101

the number of tokens that need to be retained, and102

its size is much smaller than the original cache, thus103

imposing minimal memory overhead. Experiments104

demonstrate that our DynamicKV can retain full105

performance while utilizing only 6.9% of the to-106

kens, and in extreme scenarios, it preserves 90% of107

the performance with just 1.7% of the tokens. Fur-108

thermore, experiments on the Needle in a Haystack109

benchmark revealed that DynamicKV significantly110

outperforms state-of-the-art (SOTA) methods.111

Contributions. Our main contributions are:112

• We explore the impact of different task types113

on token retention at each layer of the LLM.114

Our findings highlight that for different tasks,115

token retention varies at each layer, and there-116

fore, dynamic selection of token retention at117

each layer is necessary for different tasks.118

• Given our observation, we propose a novel119

KV cache compression method – DynamicKV 120

to dynamically adjusts token retention during 121

prefill phase. 122

• Experimental results on the widely used 123

long-context understanding benchmark, Long- 124

Bench, demonstrate that our approach main- 125

tains full performance while using only 6.9% 126

of the tokens. 127

2 Related Work 128

Potential patterns of attention in LLMs. The 129

Transformer architecture (Vaswani, 2017) has 130

driven progress in NLP through layered refinement 131

of inputs. BERT (Devlin, 2018) reveals a hierar- 132

chical structure in intermediate layers via Jawahar 133

et al. (2019): surface features dominate lower lay- 134

ers, evolving into syntactic and semantic represen- 135

tations toward the top. This underscores the capa- 136

bility of LLMs to encode both lexical and complex 137

linguistic information across layers. 138

For decoder-only models, Fan et al. (2024) 139

demonstrate that intermediate layers suffice for sim- 140

ple tasks, challenging the necessity of full-depth 141

inference. Training strategies like (Elhoushi et al., 142

2024) further optimize efficiency by introducing 143

layer-wise dropout, enabling early computation 144

exit. Concurrently, KV cache optimization has 145

emerged as a critical direction. Brandon et al. 146

(2024) propose Cross-Layer Attention (CLA) to 147

halve cache size via cross-layer attention sharing, 148

while Feng et al. (2024) (Ada-KV) dynamically 149

optimize eviction policies by analyzing cross-layer 150

attention patterns. These works highlight the in- 151

terplay between attention dynamics (Feng et al., 152

2024) and memory-efficient computation. 153

Token drop strategies in KV cache compression. 154

Token drop strategies for KV cache compression 155
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(a) Statistics on token retention rates across layers for four different types of tasks

(b) Visualization of the distribution of token retention across layers on four different types of tasks
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Figure 2: Analyzing the distribution of token retention across layers in LlaMA for different tasks, including
Document QA, Summarization, Synthetic Task and Code Completion. (a) Each boxplot shows the distribution
of token retention rates on different types of tasks across different layers. Results for different layers show that
the token retention rates vary significantly across different tasks. (b) We visualize the token retention rates across
different layers for four tasks, showing that the token retention rates exhibit different patterns across tasks.

vary in approach but share a focus on identifying156

influential tokens. Attention-based methods like157

FastGen (Ge et al., 2023) and Scissorhands (Liu158

et al., 2024c) use attention patterns for pruning.159

Memory-aware approaches include StreamingLLM160

(Xiao et al., 2023), which prioritizes streaming via161

attention sinks, and H2O (Zhang et al., 2024b),162

which employs cumulative attention scoring for163

greedy eviction. Hierarchical methods like Pyra-164

midKV (Zhang et al., 2024a) adapt by layer but165

lack generalizability. SnapKV (Li et al., 2024) of-166

fers task-agnostic compression by selecting key167

positions per head. Dynamic frameworks such as168

LazyLLM (Fu et al., 2024) enable flexible token169

revival, and Ada-KV (Feng et al., 2024) improves170

overall performance by optimizing eviction loss171

bounds over uniform strategies.172

Existing methods use fixed patterns across tasks,173

yet LLMs engage varying layers depending on the174

task (Elhoushi et al., 2024). This suggests token175

retention during KV cache compression may also176

differ by task – an area largely unexplored. This177

paper examines how task type influences KV cache178

compression.179

3 Preliminary Studies 180

To systematically investigate the attention mecha- 181

nism across layers in LLMs for long-context inputs, 182

we conduct a fine-grained analysis on four different 183

types of tasks: single- and multi-document ques- 184

tion answering (QA), summarization, synthetic 185

tasks, and code completion. 186

Experimental setting. In particular, we focus 187

our analysis on LlaMA (Dubey et al., 2024), visu- 188

alizing the distribution and behavior of attention 189

across layers to gain deeper insights into its inter- 190

nal mechanisms. Inspired by Zhang et al. (2024a), 191

we calculate the average attention scores between 192

the most recent tokens and all other tokens. Based 193

on these scores, we then identify the top-k (128 194

multiplied by the number of layers) tokens with the 195

highest attention across all layers. 196

Observations. As shown in Figure 2 (a), we use 197

boxplot to visually present the distribution of four 198

different types of tasks across different layers. We 199

find that different tasks show significantly different 200

token retention rates at a fixed layer. For example, 201

at early layers, the spread is wide, indicating large 202

task-specific variation. To further understand the 203
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distribution of token retention rates across different204

tasks, we visualize the token retention rates across205

all layers for each task, as shown in Figure 1 (b).206

We find that ❶ Synthetic Task shows higher reten-207

tion rates in earlier layers, ❷ Code Completion208

shows higher retention rates in the earlier layers209

as well as the last three layers, and ❸ Document210

QA and Summarization exhibit different retention211

dynamics compared to others.212

Insight. The tokens to retain at each layer should213

adapt dynamically based on the task type.214

4 DynamicKV215

Previous work on KV cache compression (Zhang216

et al., 2024a; Li et al., 2024) often allocaates a fixed217

KV cache size across LLM layers. However, as our218

analysis in § 3 demonstrates, attention patterns are219

not identical across different layers with different220

types of tasks. Therefore, using fixed KV cache221

size across layers on different tasks may lead to222

suboptimal performance. Thus, we propose Dy-223

namicKV— a dynamic layer-adaptive KV cache224

compression method. DynamicKV consists of two225

steps: (1) Dynamic Budget Allocation and (2) Pro-226

gressive Cache Update.227

4.1 Dynamic Budget Allocation228

Traditional token drop methods often prioritize the229

most recent tokens, as these typically carry the most230

relevant context for generating the next output. We231

refer to this set of tokens as the current window,232

denoted by a window size ws. Tokens within this233

window are given the highest priority for retention.234

To manage memory efficiently, we first define a235

maximum KV cache retention budge per layer, de-236

noted Bl, calculated as Bl = (wt − ws) × rmax,237

where rmax is a scaling ratio and wt is the total238

number of tokens considered.239

Following the approach of Li et al. (2024), we240

guide the selection of remaining tokens (outside241

the current window) based on their attention scores242

with respect to the instruction tokens. Tokens with243

higher attention scores are considered more rele-244

vant and are thus prioritized for retention in the245

GPU cache.246

In a standard LLM, attention is computed as:247

A = softmax(Q ·KT /
√
dk), (1)248

where Q ∈ RM×dk and K ∈ RM×dk are the query249

and key matrics, respectively, dk is the dimension-250

ality of the key/queries, and M is the sequence251

length. Inspired by Li et al. (2024); Zhang et al. 252

(2024a), we compute per-layer attention scores Al 253

over the current window using a multi-head pooling 254

operation: 255

Al = Pooling(A[:, ws]). (2) 256

We then select the top Bl tokens based on the 257

highest values in Al. The corresponding KV states 258

at these positions are retained to form a compressed 259

cache: 260

KV l
retained = KV l[arg topK(Al, Bl)]. (3) 261

4.2 Progressive Cache Update 262

To further reduce KV cache usage in the middle lay- 263

ers, we partition the model into blocks of m consec- 264

utive layers. For each such block, we dynamically 265

determine the minimal initial retention threshold 266

required to meet cumulative retention demands, 267

while also refreshing the historical KV cache. At 268

the end of each m-layer block, we normalize the 269

retention scores to prioritize operationally critical 270

tokens. This process yields a layer-specific bud- 271

get allocation Z ′, which facilitates an efficient and 272

adaptive distribution of the cache budget across 273

layers. Specifically, we apply a top-K selection to 274

retain the most relevant tokens across these layers, 275

and the compute the retention count per layer using 276

a counting function Φ: 277

C l = Norm(
1

n
·Φ(TopK(A, (wt−ws)×n), (4) 278

where n is the number of progressive update layers 279

processed so far, and (wt−ws) denotes the number 280

of tokens outside the current window. 281

Next, we compute a provisional budget Z by 282

scaling each layer’s retention score relative to the 283

maximum: 284

Z =

[
Bl × t

max(C l)
| t ∈ C l

]
, (5) 285

where Bl is the per-layer retention budget. This is 286

then normalized across layers to ensure the total 287

budget B = (wt− ws)× L is respected: 288

Z ′ = [k · B∑
Z
|k ∈ Z]. (6) 289

In practice, during the progressive update of the 290

first m layers, the mechanism uses the attention 291

scores A to estimate the optimal number of tokens 292

to retain per layer. The function Φ counts the top-K 293
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Figure 3: Overview of our DynamicKV structure and KV cache compression comparison. Left: Layer-
wise KV cache retention mechanism in transformer architectures. Right: Our proposed DynamicKV framework
employs stage-wise dynamic updating to maintain KV cache within predefined memory budgets, with task-specific
visualization showing KV cache preservation patterns across layers.

attention entries assigned to each layer, forming294

C l, which is then normalized into Z. Finally, the295

budget Z ′ governs how the KV cache is refined296

for each layer, enabling an adaptive and effective297

compression strategy across the different layers.298

The above process can be expressed as Algo-299

rithm 1.300

4.3 Implementation Details301

Durint the inference, the process is divided into two302

phases, the prefilling phase and the decoding phase,303

consistent with existing inference engines (Kwon304

et al., 2023). Our DynamicKV, while potentially en-305

countering sample-specific attention patterns when306

determining the optimal KV cache size per layer,307

performs this step during the prefilling phase. Dur-308

ing the decoding phase, no modifications are ap-309

plied.310

Q1: Does the DynamicKV handles batched in-311

ference? A1: Yes. In fact, modern LLM in-312

ference and serving engines (e.g., vLLM Kwon313

et al. (2023)) generally process samples individu-314

ally (i.e., batch size=1) in prefilling phase, while315

decoding allows for efficient parallel computation316

in batches. Since our DynamicKV introduces no317

modifications during decoding, our method aligns318

seamlessly with existing inference engines, ensur-319

ing that the decoding phase remains fully compat- 320

ible with batched execution for high-throughput 321

generation. 322

Q2: How does the DynamicKV compatible with 323

FlashAttention? A2: Our DynamicKV can com- 324

patible with FlashAttention during the decoding 325

phase. Although our DynamicKV modifies the 326

computation of attention scores during the prefill- 327

ing phase, which limits compatibility with FlashAt- 328

tention, it remains highly efficient. This is because 329

attention is computed only within a small widow 330

size ws, where ws ≪ M , keeping the overhead 331

minimal even without FlashAttention. In contrast, 332

no modifications are applied in decoding phase, 333

where we take advantage of FlashAttention to sig- 334

nificantly improve computational efficiency. 335

5 Experiments 336

We conduct comprehensive comparative and ab- 337

lation experiments to verify the effectiveness of 338

our DynamicKV. In § 5.1, we introduce the mod- 339

els, datasets and baselines used in our experiments. 340

§ 5.2 provides a performance comparison between 341

DynamicKV and baseline approaches. Next, in 342

§ 5.3, we conduct an ablation study on the param- 343

eters of our method to validate its feasibility. We 344

presnet the computational overhead in § 5.4. Fi- 345
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nally, in § 5.5, we present the results of Dynam-346

icKV on the Needle in Haystack Task.347

5.1 Experimental Settings348

Models and Context Length. We utilize349

the official checkpoints of recently released350

models from huggingface including LlaMA-3-351

8B-Instruct (Dubey et al., 2024), Qwen-2-7B-352

Instruct (Yang et al., 2024), Mistral-7B-Instruct-353

v0.2 (Jiang et al., 2023), and InternLM-2.5-7B-354

Chat-1M (Cai et al., 2024) as our base models,355

which support context lengths of 8k, 32k, 32k, and356

1M tokens respectively.357

Datasets. LongBench is a comprehensive bench-358

mark for evaluating the contextual understanding359

capabilities of LLMs. For our comparative experi-360

ments, we use 16 English datasets from this bench-361

mark, specifically NarrativeQA (Kočiskỳ et al.,362

2018), Qasper (Dasigi et al., 2021), MultiFieldQA-363

en, HotpotQA (Yang et al., 2018), 2WikiMul-364

tihopQA (Ho et al., 2020), MuSiQue (Trivedi365

et al., 2022), GovReport (Huang et al., 2021), QM-366

Sum (Zhong et al., 2021), MultiNews (Fabbri et al.,367

2019), TREC (Li and Roth, 2002), TriviaQA (Joshi368

et al., 2017), SAMSum (Gliwa et al., 2019), Pas-369

sageCount, PassageRetrieval-en, LCC (Guo et al.,370

2023), and RepoBench-P (Liu et al., 2023).371

Baselines. We evaluate the recent fixed-372

pattern token-dropping methods, including: (1)373

StreamingLLM (Xiao et al., 2023), which utilizes374

attention sinks and rolling KV caches to retain the375

most recent tokens. (2) H2O (Zhang et al., 2024b),376

which employs a Heavy Hitter Oracle for KV cache377

eviction. (3) SnapKV (Li et al., 2024), which378

selects important tokens for each attention head379

through clustering. (4) PyramidKV (Zhang et al.,380

2024a), which introduces a pyramid pattern where381

layers select important tokens in a monotonically382

decreasing manner.383

5.2 Comparative Experiments on LongBench384

With the total KV cache size constrained to just385

512, we evaluate the performance retention of386

StreamingLLM, H2O, SnapKV, PyramidKV, and387

our proposed approach, DynamicKV, relative to388

the FullKV. As shown in Table 1, DynamicKV389

consistently outperforms existing methods, enven390

when operating with an exceptionally low cache-to-391

context ratio of only 6.9%. Notably, DynamicKV392

exceeds the best-performing baseline by 0.43%,393

0.19%, 0.69%, and 0.53% across comparable mod- 394

els – retaining 97%, 96%, 96%, and 89% of Ful- 395

lKV’s performance, respectively. These results 396

underscore DynamicKV’s remarkable ability to 397

preserve near FullKV-level performance under ex- 398

treme memory constraints. Further more, Dynam- 399

icKV not only matches but enhances PyramidKV’s 400

capabilities on complex tasks such as code com- 401

pletion, significantly extending the performance 402

ceiling at lower cache capacities. In addition, we 403

also compared the performance with a KV cache 404

size of 128. The detailed results can be found in 405

Appendix A.5. 406

5.3 Ablation Study 407

In this study, we investigate the performance of the 408

DynamicKV mechanism across varying key-value 409

cache sizes. The results, as shown in Figure 4, 410

reveal a consistent improvement in performance 411

with an increase in the cache size for all evaluated 412

models. For the LlaMA-3-8B-Instruct, the perfor- 413

mance metric improved from 34.93 to 41.22 as 414

the key-value cache size was increased from 64 415

to 1024. This improvement is also applicable to 416

other models. These findings underscore the ef- 417

fectiveness of the DynamicKV cache in leveraging 418

KV cache compression to maintain the capabilities 419

of long context. Notably, a larger cache capacity 420

is generally associated with superior performance. 421

Nonetheless, it is essential to strike a balance when 422

selecting the cache size, taking into account the 423

practical constraints related to storage and compu- 424

tational resources.

Figure 4: Performance of DynamicKV with different
KV cache size on LongBench. The evaluation metrics
are the average score of LongBench across datasets. 425

5.4 Computational Overhead 426

To better understand the overhead of our Dynam- 427

icKV, we compare the computational overhead with 428
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SnapKV 16.86 23.28 36.24 32.14 19.89 23.21 17.69 23.18 22.44 71.00 84.05 34.34 1.00 96.50 50.32 53.34 37.84
PyramidKV 17.62 21.08 37.52 32.21 21.31 22.03 19.37 24.06 22.22 73.00 83.94 34.61 1.05 95.50 50.45 49.72 37.86

Ours 17.77 23.87 37.74 32.98 21.13 20.85 19.13 23.49 22.48 75.00 84.89 36.70 0.91 95.50 50.70 51.08 38.39

Table 1: Performance comparison on the LongBench dataset for full KV cache, previous methods
(StreamingLLM, H2O, SnapKV, PyramidKV), and our DynamicKV method, with KV cache sizes of 512, using
models including LLaMA3-8B-Instruct, Mistral-7B-Instruct-v0.2, QWen2-7B-Instruct, and InternLM-2.5-Chat-1M.
Bold indicates the best performance.

the FullKV using Llama on LongBench. The eval-429

uation metrics are Time-to-First-Token (TTFT),430

Time-Per-Output-Token (TPOT), end-to-end la-431

tency, and GPU memory usage (GB). We present432

the result in Table 2.433

We can observe that DynamicKV deliver 129%434

higher TPOT, 56% lower latency comparison with435

FullKV. Experimental results show that our Dy-436

namicKV offers significant advantages in both437

computational efficiency and memory usage.438

More efficient experimental results can be found in439

Appendix A.4.440

Method TTFT↑ TPOT↑ Latency↓ Memory↓
FullKV 3.52 11.65 706.56 30.48
DynamicKV 3.58 26.69 310.56 27.06

Table 2: Efficiency comparison between FullKV and
DynamicKV. We conduct experiments with a fixed con-
text window (m = 128), the input length is 32K and
output length is 8K.

5.5 Visualization on Needle-in-Haystack Task441

We evaluate the in-context retrieval capabilities of442

LLMs using the “Fact Retrieval Across Context443

Lengths” benchmark (also known as Needle In A444

Haystack) – a challenging dataset designed to as-445

sess whether a model can accurately extract key 446

information from long input sequences. To this 447

end, we adopt Mistral as the base model and extend 448

the context length up to 32K tokens. We compare 449

multiple KV cache compression strategies, includ- 450

ing StreamingLLM, PyramidKV, and our proposed 451

DynamicKV, at cache sized of 64 and the FullKV 452

baseline. The results, shown in Figure 5, high- 453

light that DynamicKV retains 90% of the model’s 454

original performance even under aggressive com- 455

pression – achieving accuracy gains of 57%, 37%, 456

41% and 11% over competing methods. 457

Moreover, the results demonstrate that at con- 458

text lengths up to 7K tokens, DynamicKV’s ex- 459

treme compression nearly achieves full accuracy. 460

Beyond this range, it continues to significantly out- 461

perform all baselines. These results underscore 462

DynamicKV’s superior capability in hierarchical 463

token selection, and validate our hypothesis that 464

the distribution of critical tokens across layers is 465

inherently dynamic. 466

☞ A Note on More Details in the Appendix 467

See Appendix A.1 and A.2 for a more detailed 468

description of the experimental settings, Ap- 469

pendix A.3 for additional results from Need in 470
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(a) FullKV
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(b) StreamingLLM
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(c) PyramidKV
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(d) DynamicKV

Figure 5: Performance Comparison on the Needle in a Haystack Task using Mistral-7B-Instruct-v0.2 with 32k
context size in 64 KV cache size. The vertical axis of the table represents the depth percentage, and the horizontal
axis represents the length.

a HayStack, Appendix A.4 for efficiency exper-471

iments and Appendix A.5 for result of KV cache472

size of 128 on the LongBench dataset.473

6 Conclusion474

We investigate task-specific attention patterns in475

LLMs processing long-context inputs and find dis-476

tinct attention distributions across tasks. To address477

this, we propose DynamicKV, a layer-adaptive KV478

cache compression framework that dynamically op-479

timizes KV cache allocation per layer. We evaluate480

the effectiveness and generalizability of Dynam-481

icKV through experiments on 16 datasets from the482

LongBench benchmark, demonstrating its broad483

applicability and performance benefits. From the 484

results, we mainly conclude that: (1) a wave-like 485

pattern is followed in complex reasoning tasks (e.g., 486

code completion tasks); (2) a pyramid-like pat- 487

tern is followed in Synthetic and Summarization 488

tasks; (3) The dynamic hierarchical adaptive Dy- 489

namicKV approach is capable of formulating a rel- 490

atively appropriate KV cache retention strategy in 491

accordance with diverse tasks. Particularly, in the 492

circumstance of maintaining an extremely small 493

KV cache size, the effect is significantly enhanced. 494

In the future, we hope that there is a more suitable 495

method to perform KV cache compression without 496

increasing the computation. 497
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Limitations498

Our work has several potential limitations. First,499

given the limited computational budget, we only500

validate our DynamicKV on models Scaling up501

to super-large model sizes (e.g., 70B), and apply-502

ing DynamicKV to more cutting-edge model archi-503

tectures will be more convincing model architec-504

tures. Second, although we have conducted experi-505

ments on multiple tasks including single- and multi-506

document QA, summarization, synthetic tasks, and507

code completion, the generalization ability of Dy-508

namicKV to other tasks or datasets has not been509

fully explored. Future work will focus on expand-510

ing the application scope of DynamicKV to more511

diverse tasks and datasets.512

Ethics and Reproducibility Statements513

Ethics We take ethical considerations seriously514

and follow the guidelines outlined by the ACL515

Ethics Policy. The DynamicKV method is designed516

to optimize long-context inference in LLMs, with-517

out the need for collecting sensitive or private in-518

formation. All datasets used in the experiments519

are publicly available and widely adopted by the520

research community, ensuring transparency and521

accessibility. We do not foresee any significant eth-522

ical concerns related to the development and use of523

the DynamicKV method.524

Reproducibility To ensure reproducibility, we525

provide detailed descriptions of our experimen-526

tal setup, including model configurations, datasets,527

and performance metrics. Furthermore, we have528

provided our code in the Supplementary Ma-529

terial. We hope that the provided resources will530

support further advancements in efficient LLM in-531

ference and memory management.532
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A Appendix774

This appendix presents a detailed description of775

the used models and dataset (Appendix A.1 and776

A.2), along with additional results from Need in777

a HayStack (Appendix A.3), comprehensive effi-778

ciency experiments (Appendix A.4), and more ex-779

perimenet results on LongBench (Appendix A.5).780

A.1 Model Details781

Our experiments are based on four represen-782

tative open-sourced LLMs, namely LlaMA-3-783

8B-Instruct, Mistral-7B-Instruct-v0.2, Qwen2-7B-784

Instruct, and InternLM2.5-Chat-1M. Testing ex-785

amples are evaluated in a generative format, with786

answers generated by greedy decoding across all787

tasks to ensure a fair comparison. All the model788

structures and details in our experiment are shown789

in Table 3.790

A.2 Dataset Details791

We evaluate the performance of DynamicKV on792

long-context tasks using LongBench (Bai et al.,793

2023), a rigorously constructed benchmark suite794

designed to challenge language models with ex-795

tended documents and intricate information se-796

quences. Developed for comprehensive, multi-task797

assessment, LongBench serves as a critical tool798

for measuring a model’s ability to understand and799

reason over long-context inputs with precision and800

depth. The data sources, average length, evaluation801

metrics, language, and data volume of subdatasets802

of LongBench are shown in Table 4.803

A.3 Need in a HayStack804

As shown in Table 5, we compare the perfor-805

mance of various KV cache compression methods806

– StreamingLLM, H2O, SnapKV, PyramidKV, and807

DynamicKV – on the Needle in a Haystack task us-808

ing two models: LlaMA-3-8B-Instruct and Qwen-809

2-7B-Instruct. Across both models, our Dynam-810

icKV achieves the highest performance, scoring811

0.9 for LlaMA-3-8B-Instruct and 0.87 for Qwen-2-812

7B-Instruct. These results highlight DynamicKV’s813

superior ability to retain task-critical information814

in long-context scenarios.815

A.4 Efficiency Experiments816

We evaluate the efficiency of DynamicKV against817

the standard method (FullKV) under varying in-818

put/output lengths. All experiments are conducted819

with a fixed context window (m = 128), measur- 820

ing Time-to-First-Token (TTFT), Time-Per-Output- 821

Token (TPOT), end-to-end latency, and GPU mem- 822

ory usage. The results are summarized in Table 6. 823

Key observations include: 824

• Short Sequences (8k/2k): DynamicKV 825

improves TPOT by 22.5% (27.63→33.85 826

tok/s) while slightly increasing TTFT by 6% 827

(0.66s→0.70s), achieving 18.2% lower total 828

latency (74.79s→61.21s) with 638MB mem- 829

ory reduction. 830

• Long Sequences (32k/8k): The advan- 831

tages amplify significantly, with Dy- 832

namicKV delivering 129% higher TPOT 833

(11.65→26.69 tok/s), 56% lower latency 834

(706.56s→310.56s), and 11.2% memory 835

savings (31213MB→27713MB). 836

• Scalability: FullKV shows superlinear TPOT 837

degradation (11.65 tok/s at 32k inputs), while 838

DynamicKV maintains stable throughput 839

through on-demand computation, demonstrat- 840

ing better adaptability to long-context genera- 841

tion. 842

The experiments demonstrate that dynamic KV 843

caching trades marginal initial latency for substan- 844

tially better sustained generation speed and mem- 845

ory efficiency, particularly beneficial for long-text 846

generation tasks (>2k output tokens). 847

A.5 More Experiment Result on LongBench 848

Table 7 presents a performance comparison on the 849

LongBench for different KV cache compression 850

methods (StreamingLLM, H2O, SnapKV, Pyra- 851

midKV and our DynamicKV) with a fixed cache 852

size of 128. We conduct experiments across var- 853

ious tasks such as Single-Document QA, Multi- 854

Document QA, Summarization, Few-shot Learn- 855

ing, Synthetic tasks, and Code Completion. 856

The results show that our DynamicKV con- 857

sistently achieves competitive or superior perfor- 858

mance compared to previous methods. While Ful- 859

lKV yields the highest average scores, Dynam- 860

icKV achieves the best or near-best performance 861

across several models – particularly excelling with 862

Mistral-7B-Instruct-v0.2 and InternLM-2.5-Chat- 863

1M – demonstrating effective memory compression 864

with minimal loss in accuracy. 865
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Configuration LlaMA-3-8B-
Instruct

Mistral-7B-
Instruct-v0.2

Qwen2-7B-
Instruct

InternLM2.5-7B-
Chat-1M

Hidden Size 4,096 4,096 3,584 4096
# Layers 32 32 28 32
# Query Heads 32 32 28 32
# KV Heads 8 8 4 8
Head Size 128 128 128 128
Intermediate Size 14,336 14,336 18,944 14336
Embedding False False False False
Vocabulary Size 128,256 32,000 151,646 92,544

Table 3: Configuration of Models.

Dataset Source Avg length Metric Language #data

Single-Document QA
NarrativeQA Literature, Film 18,409 F1 English 200
Qasper Science 3,619 F1 English 200
MultiFieldQA-en Multi-field 4,559 F1 English 150

Multi-Document QA
HotpotQA Wikipedia 9,151 F1 English 200
2WikiMultihopQA Wikipedia 4,887 F1 English 200
MuSiQue Wikipedia 11,214 F1 English 200

Summarization
GovReport Government report 8,734 Rouge-L English 200
QMSum Meeting 10,614 Rouge-L English 200
MultiNews News 2,113 Rouge-L English 200

Few-shot Learning
TREC Web question 5,177 Accuracy (CLS) English 200
TriviaQA Wikipedia, Web 8,209 F1 English 200
SAMSum Dialogue 6,258 Rouge-L English 200

Synthetic Task
PassageCount Wikipedia 11,141 Accuracy (EM) English 200
PassageRetrieval-en Wikipedia 9,289 Accuracy (EM) English 200

Code Completion
LCC Github 1,235 Edit Sim Python/C#/Java 500
RepoBench-P Github repository 4,206 Edit Sim Python/Java 500

Table 4: An overview of the dataset statistics in LongBench.

Model StreamingLLM H2O SnapKV PyramidKV DynamicKV

LlaMA-3-8B-Instruct 0.29 0.46 0.80 0.89 0.9
Qwen-2-7B-Instruct 0.22 0.41 0.84 0.86 0.87

Table 5: Comparison of different KV cache compression methods in the Needle in a Haystack task.
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Input Len Output Len Method TTFT (s) TPOT (tok/s) Latency (s) Memory (MB)

8k 2k FullKV 0.66 27.63 74.79 20055
8k 2k Dynamickv 0.70 33.85 61.21 19417

16k 4k FullKV 1.45 19.55 209.56 23859
16k 4k Dynamickv 1.49 33.02 125.52 22051

32k 8k FullKV 3.52 11.65 706.56 31213
32k 8k Dynamickv 3.58 26.69 310.56 27713

Table 6: Efficiency comparison between FullKV and DynamicKV

Model
Method

Single-Document QA Multi-Document QA Summarization Few-shot Learning Synthetic Code

Avg.NrtvQA
Qasper

MF-en
HotpotQA

2WikiMQA

Musique

GovReport

QMSum

MultiN
ews

TREC
TriviaQA

SAMSum
PCount

PRe Lcc
RB-P

18409 3619 4559 9151 4887 11214 8734 10614 2113 5177 8209 6258 11141 9289 1235 4206 –

L
la

M
A

-3
-8

B
-I

ns
tr

uc
t

FullKV 25.16 31.81 39.59 43.09 36.15 21.77 28.62 23.34 26.33 75.00 90.50 42.36 5.20 69.25 59.04 53.93 41.95

StreamingLLM 17.85 9.50 23.09 37.84 29.02 16.77 17.91 20.42 20.16 44.00 73.00 30.00 5.80 69.50 48.38 49.31 32.03
H2O 21.58 12.54 28.49 37.13 32.36 18.88 20.23 22.16 21.14 39.00 86.62 39.19 5.50 69.50 57.39 54.46 35.39

SnapKV 21.71 12.37 32.38 37.44 30.48 19.50 19.06 21.36 20.07 45.5 87.74 38.15 5.50 68.85 57.42 54.61 35.76
PyramidKV 22.26 16.65 30.73 38.97 29.28 19.19 19.92 22.06 20.87 68.00 88.95 38.23 5.92 69.50 57.20 51.54 37.45

ours 22.10 14.93 32.94 41.06 27.98 21.18 20.03 22.06 21.28 65.50 89.61 38.70 5.13 69.50 58.01 54.00 37.75

M
is

tr
al

-7
B

-I
ns

tr
uc

t-
v0

.2 FullKV 26.63 32.99 49.34 42.77 27.35 18.77 32.87 24.24 27.10 71.00 86.23 42.96 2.75 86.98 56.93 54.49 42.71

StreamingLLM 16.58 14.76 30.36 28.13 21.76 11.98 18.26 19.02 19.16 43.50 74.12 28.50 2.50 31.81 43.65 41.19 27.83
H2O 21.66 21.64 38.60 30.96 20.63 13.02 20.65 22.61 22.08 39.00 82.19 39.75 3.16 79.98 51.25 48.20 34.71

SnapKV 20.11 21.28 42.98 37.51 22.31 14.43 19.19 21.89 21.01 48.00 83.77 40.44 2.51 66.99 51.64 48.57 35.16
PyramidKV 22.11 22.52 43.04 33.57 22.98 15.69 20.56 22.52 21.36 65.50 83.84 40.03 2.89 67.26 51.51 46.42 36.36

ours 22.05 23.65 43.08 36.03 22.60 15.23 21.35 23.11 22.19 68.00 84.79 41.02 4.20 70.11 52.45 47.41 37.33

Q
w

en
2-

7B
-I

ns
tr

uc
t

FullKV 25.14 42.35 45.04 14.80 14.13 9.23 36.35 23.79 26.51 76.50 89.16 45.23 6.50 75.50 60.30 60.78 40.71

StreamingLLM 19.25 23.63 26.51 14.00 15.30 7.46 18.07 19.30 18.30 47.00 77.92 31.57 6.50 17.00 42.52 41.94 26.64
H2O 20.33 30.43 34.22 13.61 13.37 7.81 20.72 21.66 18.44 40.00 86.94 42.17 7.00 70.50 53.45 53.76 33.40

SnapKV 22.26 31.62 38.95 16.05 17.71 7.66 18.91 21.41 18.21 46.00 87.61 42.01 6.50 63.50 54.87 53.03 34.14
PyramidKV 20.50 31.70 39.95 18.54 18.54 8.85 19.24 20.47 18.18 60.00 87.98 39.71 7.00 49.00 48.77 47.91 33.52

ours 22.77 35.57 42.62 14.80 16.35 8.31 21.41 21.97 19.56 58.00 88.18 40.93 6.50 70.00 53.58 52.50 35.82

In
te

rn
L

M
-2

.5
-7

B
-C

ha
t-

1M

FullKV 22.42 27.61 39.98 40.92 33.48 26.68 33.01 25.18 26.28 72.50 86.76 39.76 2.91 100.00 55.86 57.95 43.21

StreamingLLM 17.91 13.02 24.31 24.27 16.01 11.29 17.29 20.62 18.06 48.5 67.53 21.93 0.82 87.39 43.45 42.79 29.70
H2O 16.16 17.71 27.94 26.83 17.83 17.81 13.99 22.59 16.9 39.50 81.87 32.15 1.32 96.50 48.30 47.27 32.79

SnapKV 19.65 17.44 35.29 27.36 18.58 19.79 12.76 22.42 16.31 48.00 80.23 31.35 0.95 95.00 49.47 48.22 33.93
PyramidKV 18.80 17.35 33.48 31.16 20.05 19.02 14.65 22.02 17.40 69.50 80.87 32.02 1.23 95.00 47.13 44.73 35.28

ours 17.93 19.89 34.15 31.50 19.03 20.60 15.14 22.41 18.15 70.00 83.09 32.44 0.86 95.50 49.33 47.16 36.07

Table 7: Performance comparison on the LongBench dataset for full KV cache, previous methods
(StreamingLLM, H2O, SnapKV, PyramidKV), and our DynamicKV method, with KV cache sizes of 128, using
models including LLaMA3-8B-Instruct, Mistral-7B-Instruct-v0.2, QWen2-7B-Instruct, and InternLM-2.5-Chat-1M.
Bold indicates the best performance.
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Algorithm 1 DynamicKV in Prefill Phase

1: Input: initial budget K/V cache list Kb, V b, ratio max rmax, update interval m, mean token length
wt, window size ws, sequence length S, head dimention hd, input embedding of window size
Xws ∈ Rws∗d, initial budget Attention list computed by window token and others Ab,

2: Output: Compressed K/V cache Kc, V c

3: Bl = (wt− ws)× rmax

4: def Update_Buffer_Length(A, l):
5: Agather ← cat(([A for l in (1, l)]), 0).view(-1)
6: cnts← Count_Elemnets(topk(Agather, k=(wt− ws) ∗H ∗ l).indices / (L ∗ S)) / l
7: Compute the norm of cnts, range in (0, 1)
8: BL← [int((bs ∗ t / max(norm))) for t in norm]
9: r← sum(BL) / ((wt− ws)∗L)

10: BL← [int(k/r) for k in BL]
11: Return BL
12: for l← 1 to L do
13: Compute full KV states Ks, V s

14: for h← 1 to H do
15: /* compute the Attention between window size token and other all token */
16: Al

h← softmax((XwsWQ
h ) ·KT

h ).mean(dim=-2).pooling(dim=-1)
17: end for
18: Append Al to Ab /* current Al shape is [H , S] */
19: /* calculate current layer buffer KV cache */
20: indices← Al.topk(Bl, dim=-1).indices.unsqueeze(-1).expand(-1, -1, hd)
21: Kb

l ← cat((Ks[:,:−ws,:].gather(dim=-2, indices),Ks[:,−ws:,:]), dim=-2)
22: V b

l ← cat((V s[:,:−ws,:].gather(dim=-2, indices),V s[:,−ws:,:]), dim=-2)
23: /* gradually compress*/
24: if l % m == 0 then
25: Bl← Update_Buffer_Length(Al, l)
26: /* update the buffer K/V Cache*/
27: for i← 1 to l do
28: Kb

i ← cat((Kb
l [:,:Bli,:], Kb

l [:,−ws:,:]), dim=-2)
29: V b

i ← cat((V b
l [:,:Bli,:], V b

l [:,−ws:,:]), dim=-2)
30: end for
31: end if
32: end for
33: Update the K/V Cache Kc, V c from Kb, V b
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