
Under review as a conference paper at ICLR 2023

INCORPORATING EXPLICIT UNCERTAINTY ESTIMATES
INTO DEEP OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Most theoretically motivated work in the offline reinforcement learning setting
requires precise uncertainty estimates. This requirement restricts the algorithms
derived in that work to the tabular and linear settings where such estimates exist.
In this work, we develop a novel method for incorporating scalable uncertainty
estimates into an offline reinforcement learning algorithm called deep-SPIBB that
extends the SPIBB family of algorithms to environments with larger state and action
spaces. We use recent innovations in uncertainty estimation from the deep learning
community to get more scalable uncertainty estimates to plug into deep-SPIBB.
While these uncertainty estimates do not allow for the same theoretical guarantees
as in the tabular case, we argue that the SPIBB mechanism for incorporating
uncertainty is more robust and flexible than pessimistic approaches that incorporate
the uncertainty as a value function penalty. We bear this out empirically, showing
that deep-SPIBB outperforms pessimism based approaches with access to the same
uncertainty estimates and performs at least on par with a variety of other strong
baselines across several environments and datasets.

1 INTRODUCTION

In the study of offline reinforcement learning (OffRL), uncertainty plays a key role (Buckman et al.,
2020; Levine et al., 2020). This is because, unlike online RL where an agent receives feedback in
the form of low rewards after taking a bad action, an OffRL agent must learn from a fixed dataset
without feedback from the environment. As a result, a consistent issue for OffRL algorithms is the
overestimation of states and actions that are not seen in the dataset, leading to poor performance
when the agent is deployed and finds that those states and actions in fact have low reward (Fujimoto
et al., 2019b). To overcome this issue, OffRL algorithms often attempt to incorporate some notion of
uncertainty to ensure that the learned policy avoids regions of high uncertainty.

There are two main issues with this approach: (1) how to define uncertainty and (2) how to incorporate
uncertainty estimates into the OffRL algorithm. In tabular and linear MDPs, issue (1) is resolved by
using visitation counts and elliptical confidence regions, respectively (Yin et al., 2021; Yin & Wang,
2021; Jin et al., 2021; Laroche et al., 2019). In the large-scale MDPs that we consider, neither of
these solutions work, but there is a large literature from the deep learning community on uncertainty
quantification that we can leverage for OffRL (Ciosek et al., 2019; Osband et al., 2018; 2021; Burda
et al., 2019; Ostrovski et al., 2017; Lakshminarayanan et al., 2017; Blundell et al., 2015; Gal &
Ghahramani, 2016). Given these uncertainty estimators, this paper focuses primarily on issue (2),
how to incorporate uncertainty for OffRL.

To understand how to best incorporate uncertainty into an OffRL algorithm, we first provide a high
level algorithmic template that captures the majority of related work as instances of modified policy
iteration (Scherrer et al., 2012) that alternate between policy evaluation and policy improvement.
We then can sort prior work into four categories along two axes: whether the algorithm modifies
the evaluation step or the improvement step, and whether the algorithm uses an explicit uncertainty
estimator or not. One class of algorithms modifies the evaluation step by introducing value penalties
based on explicit uncertainty estimates, which we will call pessimism (Petrik et al., 2016; Buckman
et al., 2020; Jin et al., 2021). An alternative modifies the value estimation without using an uncertainty
estimate, like in CQL (Kumar et al., 2020). Another family uses behavior constraints that modify
the policy improvement step to keep the learned policy near the behavior policy (Fujimoto et al.,
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2019b;a), but does not use explicit uncertainty. Instead, we propose to use the fourth class of methods
that leverages uncertainty-based constraints in the policy improvement step and is inspired by the
SPIBB family of algorithms (Laroche et al., 2019; Laroche & Tachet des Combes, 2019; Nadjahi
et al., 2019; Simão et al., 2020). These algorithms modify the policy improvement step like a behavior
constraint, but also reason about state-based uncertainty like the pessimistic algorithms. Explicitly,
we define the deep-SPIBB algorithm that effectively incorporates uncertainty estimates into OffRL.

The main contributions of this paper are as follows:

• We introduce the deep-SPIBB algorithm which provides a principled way to incorporate
scalable uncertainty estimates for OffRL. We instantiate this algorithm using ensemble-
based uncertainty estimates inspired by Bayesian inference (Ciosek et al., 2019; Osband
et al., 2021).

• We provide a detailed comparison of several different mechanisms to incorporate uncertainty
by considering how each mechanism operates at the extreme settings of its hyperparameters.
This analysis shows that deep-SPIBB provides a flexible and robust mechanism to interpolate
between various extremes (greedy RL, behavior cloning, and one-step RL).

• Through experiments on classical environments (cartpole and catch) as well at Atari games,
we demonstrate the efficacy of deep-SPIBB. In particular, we find that deep-SPIBB con-
sistently outperforms pessimism when given access to the same imperfect uncertainty
estimators.

• When deep-SPIBB has access to better uncertainty estimators (as in the easier cartpole
environment) it is able to substantially outperform our other baselines of CQL and BCQ
as well. This suggests that as uncertainty estimators improve, deep-SPIBB will provide a
useful mechanism for incorporating them for OffRL.

2 PRELIMINARIES

We consider an OffRL setup with a discrete action space and access to a dataset D =
{(sj , aj , rj , s′j)}Nj=1 consisting of N transitions collected by some behavior policy β. The goal is to
learn a policy π from this data to maximize expected discounted returns J(π) = Eτ∼π[

∑∞
t=0 γ

trt].

2.1 ALGORITHMIC TEMPLATE

The vast majority of prior work on the OffRL problem can be seen through a common algorithmic
template of modified policy iteration. Each algorithm alternates between policy evaluation and
policy improvement steps. The main difference between algorithms comes in how they modify either
the evaluation or the improvement step. Below we first define the generic version of the OffRL
algorithmic template and then explain how different OffRL algorithms modify this template.

Policy improvement by greedy maximization:

π(i+1)(·|s) = argmax
π∈Π

∑
a∈A

π(a|s)Q̂(i)(s, a). (1)

Value estimation by fitted Q evaluation given the dataset D = {(sj , aj , rj , s′j)}Nj=1. Define the Bell-
man operator from datapoint j with π(i+1), Q̂(i), as T (j, π,Q) = rj + γ

∑
a′∈A π(a′|s′j)Q(s′j , a

′).
Then the evaluation step is:

Q̂(i+1) = argmin
Q∈Q

∑
j

(
Q(sj , aj)− T (j, π(i+1), Q̂(i))

)2

(2)

In addition to the policy and Q function, some algorithms we consider will also learn an estimated
behavior policy β̂(a|s) and/or an uncertainty function û(s, a). Generally, β̂ is learned by maximum
likelihood supervised learning. The uncertainty û on the other hand can be learned many different
ways. We will discuss û in more detail in Section 3 when we describe our method.

With this template we can provide a characterization of much prior work that is summarized in Table
1. The essential axes that we consider are (1) whether the algorithm modifies the improvement step
or the evaluation step and (2) whether the algorithm uses an uncertainty function u(s, a) or not.
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Table 1: A characterization of how several baseline methods fit into our template.

Uncertainty-free Uncertainty-based
Modified improvement step BCQ deep-SPIBB (ours)
Modified evaluation step CQL Pessimism

2.2 MODIFYING THE EVALUATION STEP

One approach to incorporating uncertainty is to introduce a penalty into the value estimation step that
encourages the policy to avoid novel states or actions.

Uncertainty-based. The simplest value penalty is to use an explicit estimate of uncertainty, we
will can this algorithm pessimism. Variants of pessimism have been examined in a broad range of
prior work (Petrik et al., 2016; Buckman et al., 2020; Jin et al., 2021). Given an uncertainty estimator
u : S ×A → R, the pessimism algorithm modifies the evaluation step to be:

Q̂(i+1) = argmin
Q∈Q

∑
j

(
Q(sj , aj)−

(
T (j, π(i+1), Q̂(i))− α · u(sj , aj)

))2

(3)

The hyperparameter α controls the amount of pessimism.1

Uncertainty-free. Alternatively, the algorithm can modify the evaluation step without use of an
explicit uncertainty function. A popular representation of this approach is the CQL algorithm Kumar
et al. (2020). In CQL there is no explicit estimate of uncertainty. Instead, the algorithm makes the
following update in the evaluation step:

Q(i+1) = argmin
Q∈Q

∑
j

α
(
log

∑
a

exp(Q(sj , a))−Q(sj , aj)
)
+

(
Q(sj , aj)− T (j, π(i+1), Q̂(i))

)2
(4)

The first term encourages the Q estimates to underestimate Q values at unobserved actions (via the
log-sum-exp term) while remaining large at observed actions (via the Q(sj , aj) term). Again the
hyperparameter α controls the penalty.

As explained in the original paper, this version of CQL can be viewed as a version of pessimism
with an entropy regularization term. In analog to pessimism, the implicit uncertainty function would
take the form of u(s, a) = π(a|s)

β(a|s) − 1 where π is the current policy iterate. Note this function is
non-stationary since it depends on π. Moreover, in practice with neural function approximation, the
CQL objective may behave differently than trying to implement this function explicitly. The implicit
nature of the uncertainty used by CQL makes it different from standard pessimism with explicit
uncertainty estimates.

2.3 MODIFYING THE IMPROVEMENT STEP

Instead of modifying the evaluation step, we can alternatively modify the improvement step.

Uncertainty-free. The simplest way to modify the improvement step without using an uncertainty
estimate is to constrain the learned policy to choose actions that are well-supported under the estimated
behavior. The main example of this algorithm that we consider is the BCQ algorithm (Fujimoto et al.,
2019b;a). Explicitly, the BCQ algorithm with hyperparameter τ defines

π(i+1)(a|s) = 1

[
a = argmax

a′∈Aτ (s)

Q̂(i)(s, a′)

]
, Aτ (s) =

{
a ∈ A :

β̂(a|s)
maxa′∈A β̂(a′|s)

≥ τ

}
(5)

where β̂ is a maximum likelihood estimate of the behavior policy. When τ = 1 this is exactly
behavior cloning and when τ = 0 the constraint has no effect. Importantly, these methods do not use
any notion of uncertainty over states.

1Another instance of an uncertainty-based modification of the evaluation step is from the MBS algorithm of
Liu et al. (2020). Instead of using an uncertainty penalty, they threshold an uncertainty function and propagate
the minimal possible return in the Bellman backup if the uncertainty is too high.
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Uncertainty-based. The final option is to modify the policy improvement step with the use of
an explicit estimate of uncertainty. Our propsed deep-SPIBB algorithm falls into this category. In
contrast to behavior constraints, an uncertainty-based constraint takes into account the confidence
that we have in a given state. And in contrast to a value penalty, the uncertainty is not propagated in
the evaluation step. The main example of this style of algorithm is the SPIBB family of algorithms
(Laroche et al., 2019; Nadjahi et al., 2019; Simão et al., 2020) which we will discuss further in
Section 3 when we introduce deep-SPIBB.

2.4 (UN)RELATED WORK

In this subsection, we promptly acknowledge the existence of algorithm approaches for Offline RL
that are not directly related with the uncertainty question that this work is endeavoring to address. A
wide range of algorithms rely on actor-critic algorithmic architecture in order to handle MDPs with
continuous actions Wang et al. (2020); Wu et al. (2019); Siegel et al. (2020); Kostrikov et al. (2021);
Fujimoto & Gu (2021). We focus exclusively on the discrete action case and study different ways
of incorporating uncertainty into the algorithm. Another group of algorithms take advantage of an
explicit MDP model m̂, which confers them better out-of-distribution generalization capabilities Yu
et al. (2020); Kidambi et al. (2020); Yu et al. (2021); Janner et al. (2021). In our study, all the
considered algorithms are model-free in order to guard ourselves against confounding factors of
additional implementation details. Finally, there is the return-condition supervised learning approach
that has recently been introduced in the Offline RL literature Chen et al. (2021); Emmons et al. (2021).
We found the structure of these algorithms to be too distant from our work.

3 DEEP-SPIBB

We can now explicitly define the deep-SPIBB algorithm. To make the algorithm scale up to high
dimensional inputs, we use a neural uncertainty estimator described in Section 3.1. Using this
uncertainty estimator, deep-SPIBB uses a variant of the approximate soft-SPIBB (Nadjahi et al.,
2019) mechanism to incorporate uncertainty estimates into the policy improvement step, described in
Section 3.2.

3.1 NEURAL UNCERTAINTY ESTIMATION

As presented in prior work, soft-SPIBB relies on count-based uncertainty estimates û(s, a) that
have high probability guarantees. In the tabular case, we can derive these estimates from visitation
counts n(s, a) and set û(s, a) = c/

√
n(s, a). Unfortunately, this is not a scalable solution in larger

domains since it is unknown how to best generalize these precise notions of uncertainty to larger
domains that require data-efficient generalization across states. So, we borrow from the literature
on neural uncertainty estimation (Ciosek et al., 2019; Osband et al., 2021) and use an uncertainty
estimator based on ensembles trained to estimate random targets and regularized by random priors.
The objective and estimator are described in full detail in Appendix A. At a high level, the uncertainty
is proportional to the variance of an ensemble of models, each trained to predict a random function
with high-dimensional outputs.

We make one key change relative to prior work. Rather than using both state and action as input to our
uncertainty estimator, we only use the ensemble-based uncertainty estimator to estimate state-based
uncertainty û(s). We then combine this with the behavior policy estimate β̂(a|s) to derive û(s, a). In
particular, we define our uncertainty estimator as

û(s, a) =
û(s)√
β̂(a|s)

. (6)

The rationale for using
√
β̂(a|s) comes from the tabular setting, where if we were to use counts to

define û(s) = c√
n(s)

and β̂(a|s) = n(s,a)
n(s) , then our û(s, a) would be exactly the standard count-

based c√
n(s,a)

. This decision is supported empirically in the experiments section. Intuitively, this

helps because it guarantees that the uncertainty estimator is consistent with the estimated behavior
used in the SPIBB constraint.
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3.2 ALGORITHM

The algorithm consists of three models: β̂(a|s) an estimate of the behavior policy, û(s, a) an
uncertainty quantification, and Q̂ an estimated Q function. The Q updates are much like those of
SPIBB-DQN (Laroche & Tachet des Combes, 2019) except we use approximate soft-SPIBB and
scalable neural uncertainty estimates. Since we use target networks to approximate policy iteration,
we will use parenthetical superscripts to keep track of the policy iteration step (i.e. the number of
times the target network has been updated).

Policy improvement step. At step i+1, the policy π(i+1) approximates the solution to the following
constrained optimization problem:

π(·|s) = argmax
π∈∆|A|

∑
a∈A

Q̂(i)(s, a)π(a|s), s.t.
∑
a∈A

û(s, a)
∣∣∣π(a|s)− β̂(a|s)

∣∣∣ ≤ ϵtrain (7)

Since this problem is difficult to solve exactly, we use the approximation technique described in
Nadjahi et al. (2019).

Value estimation step. For the value estimation step, we use the standard expected SARSA backup
from the Equation (2). Since π(i+1) is uncertainty-constrained, it prevents Q values from being
propagated from state-action pairs with high uncertainty under û.

Evaluation policy. One modification that we make from prior work on soft-SPIBB is to generalize
the algorithm by separating the hyperparameter ϵtrain that governs the deviation from the behavior
during the policy improvement step during training from ϵeval that governs this deviation during
evaluation. So the evaluation policy using the final estimated Q function Q̂(I) becomes the solution
of the optimization:

πeval(·|s) = argmax
π∈∆|A|

∑
a∈A

Q̂(I)(s, a)π(a|s), s.t.
∑
a∈A

û(s, a)
∣∣∣π(a|s)− β̂(a|s)

∣∣∣ ≤ ϵeval. (8)

As we will see in Section 4, this choice allows us to capture a richer tradeoff between different
methods instead of simply interpolating between behavior cloning and greedy RL.

Algorithmic variants. We will consider two variants of the algorithm:

1. Standard deep-SPIBB where we set ϵeval = ϵtrain.
2. Generalized deep-SPIBB where we tune ϵeval independently of ϵtrain.

These variants will be discussed in greater depth in the next section where we compare the tradeoffs
made by ϵtrain and ϵeval with those made by the baseline offline RL algorithms introduced above.

4 COMPARING ALGORITHMIC TRADEOFFS

Each algorithm introduced above comes with a hyperparameter that governs the tradeoff between
acting greedily and restricting the learned policy to be safe (or two hyperparameters in the case of
generalized deep-SPIBB). The key difference between the algorithms is how they choose to modulate
this tradeoff and which points they choose at the extremes.

Extremal hyperparameter settings. To understand the tradeoff that each hyperparameter governs,
it is useful to understand what happens at the extremal values. The results of this analysis are
summarized in Table 2. There are a few key takeaways from this analysis:

• All algorithms capture greedy RL at one extreme of the hyperparameters.
• All algorithms except for pessimism capture a variant of BC at another extreme setting of

the hyperparameters. Note that due to the greedy nature of the policies defined in BCQ
and CQL, they cannot exactly represent BC for a stochastic behavior policy and instead
choose the action that has maximum probability under the behavior (which we will denote
as argmax BC).
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Table 2: A summary of what each algorithm reduces to at extreme settings of their hyperparameters.

Algorithm Extreme 1 Extreme 2
BCQ argmax BC at τ = 1 Greedy RL at τ = 0
CQL argmax BC as α → ∞ Greedy RL at α = 0
Pessimism Minimal uncertainty as α → ∞ Greedy RL at α = 0
Deep-SPIBB BC at ϵtrain = ϵeval = 0 Greedy RL as ϵtrain = ϵeval → ∞
Gen Deep-SPIBB BC at ϵeval = 0 Greedy RL as ϵtrain = ϵeval → ∞

One-step RL at ϵtrain = 0

• Only generalized deep-SPIBB captures one-step RL (Brandfonbrener et al., 2021; Gulcehre
et al., 2021) that performs one step of policy improvement at another extreme setting of the
hyperparameters.

What happens to pessimism at the extreme. It is worth delving deeper into what happens for the
pessimism algorithm as α → ∞. Note that we can view the pessimistic algorithm as optimizing an
augmented reward r̃(s, a) = r(s, a)− α · u(s, a). As we send α → ∞ the impact of r on r̃ tends to
zero. As a result, we end up learning a policy that approaches πu(a|s) = 1[a = argmaxa′ Q∗

u(s, a
′)]

where Q∗
u is the Q function of the optimal policy for the reward function −u(s, a). We will call

πu the minimal uncertainty policy. One key difference is that the minimal uncertainty policy can
prefer policies that remain in states that are often observed in the dataset over actions chosen by the
behavior. This difference is not necessarily bad in all cases, but provides a different inductive bias
than the other algorithms considered.

The issues with pessimism become more problematic when the uncertainty function is poorly
estimated (as it may be in high-dimensional state spaces). Since the default is to minimize the
uncertainty, if the uncertainty estimate has some accidentally underestimated uncertainties there is
no way to remedy the situation by tuning the hyperparameter α. Sending α → ∞ will act greedily
with respect to the negative uncertainty and thereby exploit the underestimated uncertainty estimate,
yielding an unsafe policy. Alternatively, sending α → 0 will be greedy with respect to the estimated
reward and yield a different unsafe policy. This is especially troublesome in realistic datasets where
we expect the behavior to already give us a reasonable policy. In contrast, by defaulting to the
behavior policy, deep-SPIBB can at least recover the performance of the behavior simply by tuning ϵ,
no matter the quality of the uncertainty estimates2.

The benefits of deep-SPIBB. From this perspective, our deep-SPIBB algorithm has a few benefits.
First, unlike pessimism, SPIBB is able to remain robust to poor quality uncertainty estimates by
defaulting to the behavior policy. Second, unlike methods like BCQ and CQL that ignore state-based
uncertainty, SPIBB can leverage uncertainty estimates when available.

Moreover, our generalized deep-SPIBB algorithm goes one step further by introducing a different
default setting of the hyperparameters. When ϵtrain is set to 0, then the evaluation step will learn
Qβ , as in one-step RL (Brandfonbrener et al., 2021; Gulcehre et al., 2021). Then as we vary ϵeval
from 0 to infinity while fixing ϵtrain = 0 we interpolate between BC and argmax of Q̂β , the greedy
one-step policy. Capturing this algorithm as a special case (while the other baseline algorithms do
not) provides further illustration that generalized deep-SPIBB is capturing a different tradeoff than
the baseline algorithms.

5 EXPERIMENTS

We conduct an empirical analysis to evaluate how well deep-SPIBB incorporates uncertainty estimates
and to compare deep-SPIBB to four baselines: BC, BCQ (Fujimoto et al., 2019b;a), pessimism

2Note that there may also be errors in the behavior estimate. However, here we are considering problems
with large, high-dimensional state spaces, but finite action spaces. As a result, we expect it to be easier to solve
the supervised learning problem of predicting action given state than to solve the uncertainty quantification
problem of quantifying uncertainty over state and action, which implicitly requires learning a joint density model
over s and a rather than just the model of a conditioned on s
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(Buckman et al., 2020; Jin et al., 2021), and CQL (Kumar et al., 2020). We run all of these algorithms
along with deep-SPIBB on a diverse variety of datasets generated in the classic Cartpole and Catch
environments as well as standard Atari benchmark datasets (Gulcehre et al., 2020). These experiments
allow us to test how well deep-SPIBB is able to incorporate uncertainty across different domains from
low-dimensional observation spaces (Cartpole) to image-based observations with simple dynamics
(Catch) to image-based observations with complex dynamics (Atari). Our main finding is that deep-
SPIBB consistently outperforms pessimism, suggesting that it does a better job of incorporating
explicit uncertainty estimates. Our secondary finding is that when uncertainty is easier to estimate
(as in Cartpole) deep-SPIBB substantially outperforms all the baselines, while in more challenging
environments (as in Atari) it performs about the same as the strongest baseline method, CQL,
suggesting a robustness to poor uncertainty estimates.

Experimental setup. Following CQL (Kumar et al., 2020), we build our deep-SPIBB algorithm
and each of the baselines on top of QR-DQN (Dabney et al., 2018) using JAX (Bradbury et al., 2018)
and the Acme framework (Hoffman et al., 2020). For all experiments, we tune each algorithm (BCQ,
CQL, pessimism, and deep-SPIBB) across 4 values of the hyperparameters controlling the deviation
from the behavior policy. All other training hyperparameters are held fixed. All algorithms have
access to the same behavior and uncertainty estimates. Full details can be found in Appendix B.

5.1 BSUITE ENVIRONMENTS

Datasets. For our first set of experiments we consider two simple environments (cartpole and catch)
from bsuite (Osband et al., 2019). In each environment we collect 5 different types of datasets with
10 seeds for each type of data (for a total of 50 datasets per environment). Cartpole has horizon and
maximum return of 1000 and catch has horizon of 10 and returns bounded between -1 and 1. Datasets
on cartpole have 20k transitions and datasets on catch have 2k transitions. The five dataset types
in each environment are collected by as follows: (1) med is data collected by a DQN agent trained
to medium performance (200 training episodes), (2) med seed is a mixture of 5 different policies
each trained to medium performance, (3) uni is a uniformly random policy, (4) uni med is an equal
mixture of data from a uniform policy and a medium policy, (5) uni exp is an equal mixture of data
from a uniform policy and an expert policy (trained for 500 episodes on cartpole, 1000 episodes on
catch). We report mean and standard error across seeds. Results are shown in Figure 1.

Figure 1: Final performance for OffRL agents trained on five dataset types across two environments.
Error bars show standard error across ten seeds for dataset generation.

Results. These results show deep-SPIBB to be consistently the top performer across the suite of
experiments and to emphasize our two main findings. First, consider the comparison to pessimism.
Across all ten datasets, generalized deep-SPIBB outperforms pessimism and standard deep-SPIBB
outperforms pessimism on nine out of ten datasets. The performance gap is particularly large on
Catch, where the image-based inputs and smaller dataset size make uncertainty quantification more
challenging. By defaulting to the behavior policy instead of the minimal uncertainty policy, deep-
SPIBB is more robust to poor uncertainty estimates, while still being able to leverage good uncertainty
estimates in Cartpole.

Second, consider the comparison to all baselines. Generalized deep-SPIBB is the top performer on
nine out of ten datasets, with the only exception being a slight underperformance relative to BCQ and
CQL on the Catch med seed dataset. On Cartpole where the uncertainty estimation task is easier,
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deep-SPIBB dramatically outperforms the uncertainty-free BCQ and CQL methods. On Catch, where
uncertainty estimation is more difficult, deep-SPIBB does not outperform BCQ and CQL, but is able
to match their performance while pessimism struggles due to the difficulty of uncertainty estimation.

5.2 ATARI ENVIRONMENTS

Figure 2: Final performance for OffRL agents on
atari 1% datasets. Results are normalized so that
BC achieves a score of 1 and a randomly initial-
ized policy achieves a score of 0. Error bars show
standard deviation across three seeds for dataset
generation.

Datasets. Next we run deep-SPIBB and our
four baselines on the atari 1% benchmark (Agar-
wal et al., 2020). Specifically, we use the data
from RL Unplugged (Gulcehre et al., 2020)
subsampled down to 1% of the trajectories for
each run and report mean and standard deviation
across three seeds for each environment. Results
are shown in Figure 2.

Results. Again these experiments back up
our two main findings. First, compared to
pessimism, deep-SPIBB is dramatically better.
While deep-SPIBB consistently outperforms BC
substantially, pessimism never even recovers
the performance of BC. Uncertainty estimation
in Atari is very difficult and thus pessimism’s
choice to default to the minimal uncertainty policy can cause serious issues as seen here. In contrast,
deep-SPIBB is much more robust to poor uncertainty estimates. Second, compared to all baselines,
deep-SPIBB generally performs slightly better than BCQ and is competitive with CQL. Improving
the performance of deep-SPIBB will likely require improved uncertainty quantification.

5.3 HYPERPARAMETER ABLATIONS

Figure 3: Sweeps across ϵtrain and ϵeval on Seaquest and Pong. Color indicates performance,
darker is better. Generally, we find that lower ϵtrain and higher ϵeval is beneficial. This setting of
hyperparameters places us closer to one-step RL.

To validate the usefulness of generalized deep-SPIBB over deep-SPIBB with ϵtrain = ϵeval, we
conduct hyperparameter sweeps over the two different types of epsilon. Results are shown in Figure
3. Essentially, we find that it is often beneficial to set ϵtrain substantially lower than ϵeval, especially
on more challenging environments. This is consistent with the observations of Nadjahi et al. (2019);
Brandfonbrener et al. (2021); Gulcehre et al. (2021) that the one-step algorithm that just performs
one step of policy improvement is often a very strong algorithm (generalized soft-SPIBB captures the
one-step algorithm for ϵtrain = 0). Moreover, the more challenging environments and datasets likely
yield worse uncertainty estimates, making it more risky to propagate values with low uncertainty
since the uncertainty may be erroneously low. Thus, setting a lower ϵtrain can learn a more robust Q
function, while allowing a larger ϵeval can yield improved performance.

The plots also show that the hyperparameters are somewhat independent in the sense that the optimal
value of ϵeval is stable across different values of ϵtrain. This observation can allow for more efficient
hyperparameter tuning by avoiding a complete grid search.

8



Under review as a conference paper at ICLR 2023

5.4 UNCERTAINTY ABLATIONS

To validate our choices about how to parameterize the uncertainty estimates, we run deep-SPIBB
wih several different uncertainty estimators. The most important decision in our uncertainty estimate
is to use separate estimates of u(s) and β(a|s) to derive u(s, a), as described above. This choice is
validated by the results in Figure 4.

Figure 4: Uncertainty ablations on Seaquest. “BC
as unc” uses u(s, a) = 1√

β̂(a|s)
, and “unc sa”

trains an uncertainty estimator that takes s, a as in-
put rather than using u(s) combined with β(a|s).

Essentially, we see major gains of our factored
uncertatinty estimator over an uncertainty esti-
mator trained on s and a jointly. Interestingly,
just using the behavior component of the un-
certainty estimator also outperforms the joint
uncertianty estimator suggesting that the state-
based part of the uncertainty is either not very
important in this task or so poorly estimated in
this high dimensional state space that it adds
little to the performance.

5.5 CONNECTION TO PRIOR RESULTS

This chunk of empirical analysis builds on the re-
sults already reported in the SPIBB papers Nad-
jahi et al. (2019); Simão et al. (2020) where the pessimistic algorithm RaMDP was found to perform
as well as Soft-SPIBB under two conditions: (i) the uncertainty estimates are well-estimated, either
from count-based statistical concentration bounds such as Hoeffding’s inequality, or from handcrafted
uncertainty measures based on states’ similarity computed from their Euclidean distance in a well-
adapted environment, and (ii) the intrinsic/extrinsic reward balance is fine tuned, meaning that the
pessimism hyperparameter setting appeared as more sensitive than Soft-SPIBB’s.

Our novel empirical results bring light on the robustness of these two approaches when the uncertainty
estimator is more brittle. In Cartpole, with its low-dimensional observation space, we find that both
are able to take a significant advantage over the uncertainty-free methods. In Catch where the state
representation is more image-like, we see that pessimism’s performance immediately crashes, while
deep-SPIBB is more robust to these less-than-perfect uncertainty estimates and remains on-par with
BCQ and CQL. Finally, in the Atari environments where the state is a complex image, pessimism is
consistently and significantly worse than behavior cloning, which it cannot even fall back on.

This set of experiments with increasing difficulty in the uncertainty estimation (and the RL task) tells
us that uncertainty-based algorithms are better than uncertainty-free algorithms when the uncertainty
estimates are reliable but that out of the uncertainty-based algorithms, only deep-SPIBB is robust to
bad estimates. While deep-SPIBB does not surpass CQL in hard environments for now, there is hope
that advances in neural uncertainty estimation will allow it to do so in the future.

6 DISCUSSION

Here we have introduced the deep-SPIBB algorithm for inclorporating explicit uncertainty estimates
into deep offine RL. We have seen that the deep-SPIBB mechanism of incorporating uncertainty
into the policy improvement step is more performant and robust than the pessimism mechanism of
incorportating uncertainty as a penalty in the evaluation step. When the uncertainty estimates are
good, deep-SPIBB also improves over the uncertainty-free baselines of BCQ and CQL.

Our work does have a few limitations that are worth mentioning to inspire future work in these
directions. First, it is not clear how to extend the deep-SPIBB algorithm to continuous action spaces.
Second, like most algorithmic work in offline RL, deep-SPIBB has important hyperparameters
(ϵtrain and ϵeval) that govern the policy constraints. How to practically tune hyperparameters like
these offline without interacting with the environment remains an open challenge, although recent
work makes some progress (Paine et al., 2020; Zhang & Jiang, 2021). Finally, perhaps the most
interesting direction for future work based on deep-SPIBB is to improve the uncertainty estimators.
Our results suggest that access to better uncertainty estimators in challenging domains like Atari
could dramatically improve deep-SPIBB over the uncertainty-free baselines.
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A UNCERTAINTY ESTIMATOR

We take an approach based off of Bayesian ensembling with prior network from Ciosek et al. (2019).
While that work focused on estimating uncertainty in supervised learning problems, we use the same
technique with no labels to get a measure of state-based uncertainty. Explicitly, we create an ensemble
of B models that each take in a state s and output an M -dimensional vector. Each component fi of
the ensemble has a corresponding random prior function pi defined by a randomly initialized network.
The fi networks are then trained to predict difference between the prior and some target (in our case,
the target is gaussian noise ϵi sampled from N (0, σϵ) for each datapoint i). State-based uncertainty
is then calculated as

û(s) =
√

σ̂2
µ(s) + αv̂σ(s), (9)

σ̂2
µ(s) =

1

MB

B∑
i=1

∥fi(s)− pi(s)∥2, v̂2σ(s) =
1

B

B∑
i=1

(
σ̂2
µ(s)−

1

M
∥fi(s)− pi(s)∥2

)2

B EXPERIMENTAL DETAILS

Hyperparameters. First we will provide all of the hyperparameters used in the various steps of our
training algorithms. Every algorithm is trained with the Adam optimizer.

Table 3: Hyperparameters for behavior estimation in cartpole and catch

Hyperparameter Value
Training steps 1e4
Learning rate 1e− 3
Batch size 256
MLP width 64
MLP depth 2
Prior MLP depth 1

Table 4: Hyperparameters for behavior estimation in Atari

Hyperparameter Value
Training steps 1e5
Learning rate 1e− 4
Batch size 256
Network Architecture DQN

Table 5: Hyperparameters for uncertainty estimation in cartpole and catch

Hyperparameter Value
Training steps 1e4
Learning rate 1e− 4
Batch size 256
MLP width 256
MLP depth 2
M 64
B 5
α 1.0
σϵ 0.1
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Table 6: Hyperparameters for uncertainty estimation in Atari

Hyperparameter Value
Training steps 1e5
Learning rate 1e− 4
Batch size 256
Network architecture DQN
Prior network architecture DQN - 1 dense layer
M 64
B 5
α 1.0
σϵ 0.1

Table 7: Shared hyperparameters for RL in cartpole and catch

Hyperparameter Value
Training steps 1e5
Learning rate 3− 5
Batch size 256
Target update period 1000
MLP width 256
MLP depth 2
QR quantiles 201
Discount 0.99

Table 8: Shared hyperparameters for RL in Atari

Hyperparameter Value
Training steps 1e6
Learning rate 3− 5
Batch size 256
Target update period 2500
Network architecture DQN
QR quantiles 201
Discount 0.99

Each RL algorithm also has specific hyperparameters. For each algorithm we choose four values
of the hyperparameter. We should note that for the deep-SPIBB and pessimism that rely on our
learned uncertainty estimates, we normalize the values of ϵ and α respectively to the scale of the
uncertainty estimator. We estimate the scale of the uncertainty function by just evaluating the mean
of the uncertainty function on a batch of data from the training set.

Table 9: Algorithm-specific hyperparameters for cartpole and catch

Algorithm Hyperparameter Value
BCQ τ [0.01, 0.03, 0.1, 0.3]
Pessimism α [0.3, 1.0, 3.0, 10.0]
CQL α [0.3, 1.0, 3.0, 10.0]
deep-SPIBB ϵtrain [0.1, 0.3, 1.0, 3.0]
gen deep-SPIBB ϵeval [0.001, 0.01, 0.1, 1.0]

14



Under review as a conference paper at ICLR 2023

Table 10: Algorithm-specific hyperparameters for Atari

Algorithm Hyperparameter Value
BCQ τ [0.01, 0.03, 0.1, 0.3]
Pessimism α [0.1, 1.0, 10.0, 100.0]
CQL α [0.3, 1.0, 3.0, 10.0]
deep-SPIBB ϵtrain [0.001, 0.01, 0.03, 0.1]
gen deep-SPIBB ϵeval [0.0001, 0.001, 0.01, 0.1]

Evaluation. For evaluation we run 50 episodes of each trained RL model and take the mean. Plots
in the text then report the mean and standard deviation of this mean value across training seeds. We
report the results for the best performing hyperparameter out of those in the table for each algorithm.

Compute. All models are trained on various types of GPU on an internal cluster. Each run for
cartpole/catch takes less than 15 minutes and each run on Atari takes less than 1 day.

Asset licenses. For completeness, we also report the licenses of the assets that we used in the paper:
JAX Bradbury et al. (2018): Apache-2.0, Acme Hoffman et al. (2020): Apache-2.0, RL-unplugged
Gulcehre et al. (2020): Apache-2.0, bsuite Osband et al. (2019): Apache-2.0.
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