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ABSTRACT

Time series prediction underpins a broad range of downstream tasks across many
scientific domains. Recent advances and increasing adoption of black-box ma-
chine learning models for time series prediction highlight the critical need for
reliable uncertainty quantification. While conformal prediction has gained atten-
tion as a reliable uncertainty quantification method, conformal prediction for time
series faces two key challenges: (1) adaptively leveraging correlations in features
and non-conformity scores to overcome the exchangeability assumption, and (2)
constructing prediction sets for multi-dimensional outcomes. To address these
challenges jointly, we propose a novel conformal prediction method for time se-
ries using flow with classifier-free guidance. We provide coverage guarantees by
establishing exact non-asymptotic marginal coverage and a finite-sample bound
on conditional coverage for the proposed method. Evaluations on real-world time
series datasets demonstrate that our method constructs significantly smaller pre-
diction sets than existing conformal prediction methods while maintaining target
coverage.

1 INTRODUCTION

Uncertainty quantification has become essential in scientific fields where black-box machine learn-
ing models are widely deployed (Angelopoulos & Bates, 2021). Conformal prediction (CP) has
emerged as a reliable, distribution-free framework for uncertainty quantification that constructs pre-
diction sets with coverage guarantees, ensuring they contain the true outcome with a specified con-
fidence level (Shafer & Vovk, 2008; Vovk et al., 2005). By constructing uncertainty sets using
non-conformity scores that quantify how atypical predictions are, CP generates reliable prediction
sets that satisfy a specified confidence level.

𝑝଴

ℎ௜ = Enc 𝑧௜

𝜓 𝑥଴ ℎ௜

Figure 1: Our method adaptively constructs
the prediction set at time i using a flow trans-
formation ψ conditioned on guidance hi,
which encodes contextual information ex-
tracted from past features and residuals.

Time series prediction aims to forecast future out-
comes based on past sequential observations of fea-
tures (Box et al., 2015), and underpins a broad
range of downstream tasks. Recent advances in ma-
chine learning have led to the development of vari-
ous foundation models designed for time series pre-
diction (Kim et al., 2025; Miller et al., 2024; Wen
et al., 2023). The growing adoption of such mod-
els for time series prediction highlights the press-
ing need for reliable uncertainty quantification. Al-
though CP has been actively studied for reliable un-
certainty quantification, most existing CP methods
rely on the assumption of data exchangeability (Bar-
ber et al., 2023). The exchangeability assumption is
frequently violated in time series data, where obser-
vations exhibit complex temporal dependencies that
induce correlations in the non-conformity scores,
thereby making the direct application of CP to time
series prediction particularly challenging. An ad-
ditional challenge is that modern time series data
often contain high-dimensional features and multi-
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(a) Wind dataset
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(b) Traffic dataset
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(c) Solar dataset

Figure 2: Comparison of the prediction sets at a target coverage of 0.95, constructed by FCP (ours),
MultiDimSPCI (Xu et al., 2024), and conformal prediction using empirical copula (Messoudi et al.,
2021) on (a) wind, (b) traffic, and (c) solar datasets. Prediction sets are manually selected from the
test set for visual clarity. Two prediction sets are shown for the wind dataset.

dimensional outcomes. While CP methods for univariate outcomes are well-established, extending
these methods to generate prediction sets for multi-dimensional outcomes is not straightforward and
requires careful consideration in constructing prediction sets.

There has been substantial effort to extend CP beyond the exchangeability assumption. One line of
research focuses on addressing distribution shifts in the data (Barber et al., 2023; Tibshirani et al.,
2019). More recently, several works have developed CP methods for time series. For example, Xu
& Xie (2021a) proposed a method to construct sequential prediction intervals for time series based
on a bootstrap ensemble estimator, which were later extended to incorporate conditional quantile
estimation in order to exploit correlations in non-conformity scores (Xu & Xie, 2023b). Auer et al.
(2024) used modern Hopfield networks to capture temporal dependencies by reweighting samples,
and constructed prediction intervals based on these reweighting. Another line of work have pro-
posed multi-step conformal prediction methods for time series, but they assume access to multiple
i.i.d. sequences of time series (Stankeviciute et al., 2021; Sun & Yu, 2022), which may limit their
applicability in general practical settings. Despite these efforts, existing methods remain limited to
univariate outcomes or assume access to multiple i.i.d. time series.

Constructing prediction sets for multi-dimensional outcomes has been an active area of research.
Early approaches used copulas (Messoudi et al., 2021) and ellipsoidal uncertainty sets (Hender-
son et al., 2024; Johnstone & Ndiaye, 2022; Messoudi et al., 2022), yielding hyper-rectangular and
ellipsoidal prediction sets, respectively. Subsequent research has aimed to move beyond specific ge-
ometric shapes of prediction sets: Braun et al. (2025) formulated structured non-convex optimization
to obtain minimum-volume sets; and Tumu et al. (2024) used convex templates for prediction sets.
Recent works have focused on transporting multi-dimensional non-conformity scores to a reference
distribution from which prediction sets can be constructed. For example, Klein et al. (2025) and
Thurin et al. (2025) used Monge–Kantorovich ranks (Chernozhukov et al., 2017; Hallin et al., 2021)
to map multi-dimensional non-conformity scores onto a reference distribution to construct predic-
tion sets, by solving optimal transport problems. Fang et al. (2025) applied conditional normalizing
flows to map multi-dimensional non-conformity scores to the source distribution and construct pre-
diction sets using a calibration set with the source distribution.

Consequently, an effective CP method for time series prediction must address the two aforemen-
tioned challenges simultaneously: leveraging correlations in both features and non-conformity
scores, and constructing prediction sets for multi-dimensional outcomes. To the best of our knowl-
edge, Xu et al. (2024) is the only work that seeks to address both challenges jointly, constructing
ellipsoidal prediction sets by defining non-conformity scores as the radii of ellipsoidal sets and pre-
dicting these non-conformity scores conditionally.

In this work, we propose a novel conformal prediction method designed for time series prediction
with multi-dimensional outcomes. Our method is designed to effectively address the aforemen-
tioned two challenges by using flow with classifier-free guidance. Specifically, we use flow to model
the distribution of prediction residuals and their transformations conditioned on historical context,
which is encoded by using Transformer. We define the non-conformity score as the Euclidean dis-
tance between the transformed prediction residual and the mean of a Gaussian source distribution
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of the flow, which allows us to construct prediction sets at a desired confidence level. We pro-
vide theoretical coverage guarantees by establishing an exact non-asymptotic marginal coverage
and a finite-sample bound on conditional coverage for the proposed method. Empirical evaluations
on three real-world multi-dimensional time series datasets demonstrate that the proposed method
constructs significantly smaller prediction sets while maintaining target coverage, outperforming
existing baselines.

2 PROBLEM SETUP

We consider a sequence of observations {(xi, yi) : i = 1, 2, . . .}, where xi ∈ Rdx represents dx-
dimensional feature, and yi ∈ Rdy represents dy-dimensional continuous outcome. We assume
that we have a base predictor f̂ that provides a point prediction ŷi for yi, given by ŷi = f̂(x(i−k):i),
where k specifies the size of the past observation window. The base predictor f̂ can be any black-box
model and is not restricted to any specific constraints.

Suppose that the first T examples, {(xi, yi)}Ti=1, are used for training. Our goal is to sequentially
construct a prediction set Ĉi(zi, α) for the next step, beginning at time i = T + 1. Here, zi denotes
the features used to construct Ĉi, and α ∈ [0, 1] denotes a pre-specified significance level. In the
simplest setting, zi consists only of xi, but it may also include past features or non-conformity
scores. We aim to construct prediction sets that satisfy marginal coverage:

P
(
yi ∈ Ĉi(zi, α)

)
≥ 1− α, ∀i, (1)

and ideally conditional coverage:

P
(
yi ∈ Ĉi(zi, α) | zi

)
≥ 1− α, ∀i. (2)

Although trivially large prediction sets can always satisfy the target coverage, they do not provide
useful information for uncertainty quantification. Therefore, the meaningful objective is to construct
efficient prediction sets—the prediction sets that are as small as possible while satisfying the target
coverage (Vovk et al., 2005).

Throughout this paper, we distinguish between the indices i and t to avoid confusion: the subscript
i refers to the discrete time index of the sequence of observations, while the subscript t is reserved
to refer to continuous time in ODEs. We use uppercase letters (e.g., X) to denote random variables
and lowercase letters (e.g., x) to denote their realizations.

3 METHOD

3.1 PRELIMINARY: GUIDED FLOW

We use x as a generic variable in this section, distinct from the time series feature xi introduced in
the problem setup. A flow is a time-dependent mapping ψ : [0, 1] × Rd → Rd that push-forward
a random variable X0 ∈ Rd from a source distribution p0 to Xt ∈ Rd from a time-dependent
probability density (i.e., probability path) pt for time t ∈ [0, 1] as follows:

([ψt]∗p0)(xt) = p0(ψ
−1
t (xt))

∣∣∣∣det ∂ψ−1
t

∂xt
(xt)

∣∣∣∣ , (3)

where ∗ denotes the push-forward operator, det(·) denotes the determinant, and ψt(x) := ψ(t, x).
Flow ψ is defined by a vector field u : [0, 1]×Rd → Rd through the following ordinary differential
equation (ODE):

d

dt
ψt(x0) = ut(ψt(x0)), (flow ODE)

ψ0(x0) = x0. (initial condition)
(4)

A guided flow ψt|h : [0, 1]×Rd×Rdh → Rd enables conditional generation by learning a mapping
from a source distribution to a target conditional distribution, and is defined by a guided vector field

3
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ut|h : [0, 1]× Rd × Rdh → Rd with the following ODE:

d

dt
ψt|h(x0 | h) = ut|h

(
ψt|h(x0 | h) | h

)
, (guided flow ODE)

ψt=0|h(x0 | h) = x0, (initial condition)
(5)

where h ∈ Rdh denotes the guidance. By appropriately designing a conditional probability path per
sample x1 interpolating p0|x1

(x | x1) = p0 and p1|x1
(x | x1) = δx1 , where δx1 denoting the Dirac

delta distribution centered at x1, we can obtain the marginal guided probability path:

pt|h(x | h) =
∫
pt|x1

(x | x1) q(x1 | h) dx1, (6)

which interpolates the source distribution p0 and the target conditional distribution q(x1 | h). Given
the conditional vector field ut|x1

that generates each conditional path pt|x1
, the marginal guided

vector field is obtained as:

ut|h(x | h) =
∫
ut|x1

(x | x1)
pt|x1

(x | x1)q(x1 | h)
pt|h(x | h)

dx1. (7)

One can verify the marginal guided vector field generates the marginal guided probability path using
the continuity equation (see Proposition A.1). Therefore, in order to learn the target conditional
distribution, we parameterize the guided vector field with neural networks and train it to approximate
the marginal guided vector field as closely as possible. A simple and effective way to train the
guided vector field is through flow matching, which minimizes the mean-squared error between the
conditional guided vector field and the parameterized guided vector field (Lipman et al., 2022):

LCFM = Et,(x1,h)

[∥∥∥uθt|h(x | h)− ut|x1
(x | x1)

∥∥∥2] , (8)

where t ∼ Unif[0, 1], (x1, h) ∼ qdata, and uθt|h is the parameterized guided vector field with param-
eters θ.

We consider Gaussian conditional probability path defined as pt|x1
(x | x1) = N (x | αtx1, σ2

t Id),
where N denotes the Gaussian kernel and Id ∈ Rd×d denotes the identity matrix. αt, σt : [0, 1] →
[0, 1] are interpolating scheduler, which are smooth functions satisfying α0, σ1 = 0, α1, σ0 = 1, and
d
dtαt −

d
dtσt > 0 for t ∈ (0, 1). The guided vector field ut|h(x | h) can be reformulated as:

ut|h(x | h) = ut(x) + bt∇x log ph|t(h | x), (9)

where ut(x) is unguided vector field, bt is a scalar constant regarding αt and σt (see Proposi-
tion A.2). Based on this reformulation, early approaches trained a separate classifier (Song et al.,
2020) with a classifier scale w > 1 is beneficial in conditional generation in practice (Dhariwal &
Nichol, 2021) :

ũt|h(x | h) = ut(x) + wbt∇x log ph|t(h | x). (10)
By using the identity ∇x log pt|h(x | h) = ∇x log pt(x) +∇x log ph|t(h | x), equation (10) can be
equivalently rewritten as:

ũt|h(x | h) = (1− w)ut(x) + wut|h(x | h). (11)

Instead of modeling ut(x) and ut(x | h) separately, Ho & Salimans (2022) proposed using a single
vector field to model both cases by assigning a null condition h∅ to represent the unguided vector
field, which is known as classifier-free guidance (CFG):

ũt|h(x | h) = (1− w)ut|h(x | h∅) + wut|h(x | h), (12)

where h∅ denotes the guidance representing the unguided state of the vector field. The guided vector
field can be trained using flow matching with the loss:

LCFG
CFM = Et,η,(x1,h)

[∥∥∥uθt|h(x | (1− η)h+ ηh∅)− ut|x1
(x | x1)

∥∥∥2] , (13)

where η ∼ Bernoulli(p∅) and p∅ denotes the probability of assigning h∅. The resulting guided
vector field ũt|h(x | h) in equation (12) enables conditional generation by solving the guided flow
ODE and has been widely used in various tasks such as image generation (Esser et al., 2024) and
video generation (Polyak et al., 2025).
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Algorithm 1: Training Guided Flow using Flow Matching
Input: p∅, initialized uθ

t|h and Encθ

while not converged do
ϵ̂i ← yi − ŷi ▷ obtain prediction residuals
hi ← Encθ(zi) ▷ obtain contextual representation
hi ← h∅ with probability p∅ ▷ assign unguided state with probability p∅
x0 ∼ p0(x)
t ∼ Unif(0, 1)
xt ← αtϵ̂+ σtx0

ut|ϵ̂ ← d
dt
αtϵ̂i +

d
dt
σtx0

Update with∇θ∥uθ
t|h(xt, hi)− ut|ϵ̂∥2 ▷ flow matching loss

Output: trained uθ
t|h and Encθ

3.2 CONFORMAL PREDICTION FOR TIME SERIES USING GUIDED FLOW

We use guided flow to learn a mapping from the source distribution to the distribution of prediction
residual ϵ̂ = y − ŷ, conditioned on past features and residuals. The prediction set is then defined
through this transformation using guided flow to achieve the target coverage. This construction
effectively addresses the two aforementioned key challenges in conformal prediction for time series.
First, the guided flow explicitly captures correlations among past features and residuals by using
them as guidance. Second, since the transformation using the guided flow can be defined between
random variables in arbitrary dimensions, it enables the generation of prediction sets for multi-
dimensional outcomes in any Rdy . Figure 1 provides a visual illustration of the method. We describe
the method in detail in this section.

Guided flow design. We use Gaussian probability path with interpolating scheduler at = t and
σt = (1− t). The source distribution is set to an isotropic Gaussian with zero mean and covariance
scale γ > 0, i.e., N (0, γIdy ). For each time index i, we construct zi by concatenating the past
w features and prediction residuals, and use an encoder to obtain a contextual representation hi =
Enc(zi). The classifier-free guided vector field as defined in equation (12) uses hi as the guidance to
model the conditional distribution of ϵ̂i. In our method, we use Transformer as the encoder (Vaswani
et al., 2017), though alternative sequence models such as recurrent neural networks (RNNs) are also
applicable. The guided vector field is trained via flow matching as defined in equation (13), and the
encoder is jointly trained with it. The overall training procedure is summarized in Algorithm 1.

Prediction set. The trained guided flow models the conditional distribution of the prediction resid-
ual by mapping samples from the source Gaussian distribution to residuals conditioned on the guid-
ance hi. Since this transformation is bijective, we can define prediction sets for the residuals directly
through the transformation. Let êi(y) := ||ψ−1

t=1|h(ϵ̂ | hi)|| be the Euclidean distance between the
transformed residual and the origin, then the prediction set at significance level α can be defined as:

Ĉi(zi, α) = {y : êi(y) ≤ r1−α} , (14)

where r1−α is the radius of the ball B1−α that contains 1 − α probability mass. Since we use
N (0, γIdy ) as the source distribution, the radius r1−α is given by r1−α =

√
γχ−1

dy
(1−α), where χ−1

dy

denotes the inverse cumulative distribution function (CDF) of the chi distribution with dy degrees of
freedom. Intuitively, the prediction set is obtained by taking the ball that contains the same amount
of probability mass as the target coverage and transforming it to the prediction set for the residual
using the guided flow. Although this construction directly uses ê(y) to construct the prediction set,
ê(y) is computed from the transformed residual and therefore serves as a proxy non-conformity
score, consistent with treating residuals as non-conformity scores.

Since the prediction set is obtained through the transformation using the guided flow, it can take
on flexible shapes without being constrained to follow any fixed geometric form, such as convex or
ellipsoidal sets. We believe this enables the guided flow to generate smaller prediction sets that are
better aligned with the data and the guidance. Although the prediction sets do not have any fixed
geometric shape, some useful topological properties can still be inferred. In particular, Theorem A.4

5
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ensures that the prediction sets are closed and connected. Figure 2 shows prediction sets in R2

generated by our proposed method alongside two other methods that produce hyper-rectangular
prediction sets (Messoudi et al., 2021) and ellipsoidal prediction sets (Xu et al., 2024). The figure
visually demonstrates the flexible shapes of the prediction sets constructed by our proposed method.

The size of the prediction set is computed as:∫
Bα

∣∣det (Jψt=1|h(x | h)
)∣∣ dx ≈ Size(Bα)

1

N

N∑
j=1

∣∣det(Jψt=1|h(xj | h))
∣∣ , (15)

where ψ1 represents the flow transformation from t = 0 to t = 1, and Jψ1
(x | h) denotes the

Jacobian of ψ1 at x ∈ Bα conditioned on h. The right-hand side provides a Monte Carlo approx-
imation, where xj are i.i.d. samples drawn from Bα and N is the number of samples. However,
directly computing det (Jψ1

(x | h)) is computationally expensive, as it requires solving the guided
flow ODE and evaluating the full Jacobian matrix. Instead, we can compute the log-determinant of
the Jacobian by solving the following ODE:

d

dt
log |det Jψt|h(x | h)| = div

(
ut|h(ψt|h(x | h) | h)

)
, (Jacobian ODE)

log
∣∣det (Jψt=0|h(x | h)

)∣∣ = 0, (initial condition)
(16)

where div(·) denotes the divergence operator. A detailed derivation is provided in Proposition A.3.
The accuracy of the prediction set size estimate depends on the Monte Carlo approximation. Purely
random sampling from Bα may introduce bias due to uneven coverage of the sampling space, and
a small sample size N can result in high variance. To reduce sampling bias, we use quasi-Monte
Carlo sampling based on Sobol sequences (Sobol, 1967; Owen, 2023), which provides more uniform
sampling from Bα. To control variance from finite sampling, we monitor the relative error in terms
of sample size N . Additional implementation details are provided in the experiment section.

4 THEORY

In this section, we present exact non-asymptotic marginal coverage and a finite-sample bound on
conditional coverage. We assume that yi ∈ Rdy is generated from an unknown true function f with
additive noise ϵi ∈ Rdy according to yi = f(x(i−k):i) + ϵi. Proofs are presented in Appendix A.

4.1 MARGINAL COVERAGE

We first establish that prediction sets generated by our method achieve exact non-asymptotic
marginal coverage. This result follows from a fundamental property of flow: probability mass
preservation under push-forward operations. When any measurable set is transformed through the
push-forward operation of a flow, its probability mass is preserved. Lemma 4.3 formalizes this
property and suffices to prove the exact non-asymptotic marginal coverage stated in Proposition 4.4.
Assumption 4.1 (Flow existence and uniqueness). The guided vector field ut(x | h) is continuously
differentiable and Lipschitz continuous in x for all t and h. That is, there exists a constant Lu > 0
such that

∥ut(x | h)− ut(x
′ | h)∥ ≤ Lu∥x− x′∥, ∀t, h, x, x′. (17)

Remark 4.2. Assumption 4.1 ensures the existence and uniqueness of solutions of the guided flow
ODE. In practice, the guided vector field can be modeled using neural network architectures that
satisfy this assumption, such as multi-layer perceptrons (MLP) with smooth activation functions.
Lemma 4.3 (Probability mass preserving property of flows). Let X ∼ pX be a continuous random
variable on Rd, and let ψ : Rd → Rd be a C1 diffeomorphism. Define Y := ψ(X) with density pY
given by the push-forward of pX under ψ. Then, for any measurable set A ⊂ Rd, the transformed
set A′ := ψ(A) satisfies:

P(X ∈ A) = P(Y ∈ A′) (18)
Proposition 4.4 (Marginal coverage). Let α ∈ (0, 1) be a pre-specified significance level. Under
Assumption 4.1, suppose the guided flow provides a sufficiently accurate approximation of the target
distribution from the source distribution. If the ball B1−α defining the prediction set in equation (14)
has probability mass 1− α, then the prediction set achieves exact marginal coverage of 1− α.
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4.2 CONDITIONAL COVERAGE

We next establish a finite-sample bound on conditional coverage. We define the non-conformity
score based on the prediction residual as êi = ||ψ−1(ϵ̂i | hi)||, and the non-conformity score based
on the true noise as ei = ||ψ−1(ϵi | hi)||. The guided flow ψ is trained on the training set until
convergence and then fixed for computing e and ê. The empirical CDF of ê and e are defined as:

F̂T+1(u) =
1

T

T∑
i=1

1{êi ≤ u}, F̃T+1(u) =
1

T

T∑
i=1

1{ei ≤ u}. (19)

We denote Fe(u) = P(e ≤ u) as the CDF of the true non-conformity scores. Since the source dis-
tribution of the guided flow in our method is set to be identical across time, the marginal distribution
for ei can be considered to be identical for all i. However, while the marginal distribution of ei is
identical for all i, they may exhibit dependence through hi. Therefore, we consider two settings: (1)
when {ei}T+1

i=1 are i.i.d., and (2) when {ei}T+1
i=1 are stationary and strongly mixing. We first establish

a finite-sample bound on conditional coverage under the assumption of i.i.d. non-conformity scores.
Assumption 4.5 (i.i.d. non-conformity scores). The true non-conformity scores {ei}Ti=1 are i.i.d.
Assumption 4.6 (Bi-Lipschitz flow). We assume that the guided flow ψt(x | h) is bi-Lipschitz
continuous in x for all t and h. That is, there exist constants Lψ > 0 and Lψ−1 > 0, such that

∥ψt(x | h)− ψt(x
′ | h)∥ ≤ Lψ∥x− x′∥, ∀t, h, x, x′, (20)

and
∥ψ−1

t (x | h)− ψ−1
t (x′ | h)∥ ≤ Lψ−1∥x− x′∥, ∀t, h, x, x′. (21)

Remark 4.7. Lemma A.8 shows that bi-Lipschitz guided vector field results in bi-Lipschitz guided
flow. Therefore, the vector field ut(x | h) can be modeled using neural network architec-
tures that satisfy this assumption. For example, one can use invertible Residual Networks (iRes-
Net) (Behrmann et al., 2019; Chen et al., 2019) with smooth activation functions.
Assumption 4.8 (Lipschitz continuous of the CDF of the true non-conformity scores). Assume that
Fe(u) is Lipschitz continuous with Lipschitz constant LT+1 > 0, and that Fe is strictly increasing
in u.
Assumption 4.9 (Estimation quality). Define ∆i = ϵ̂i − ϵi. There exists a sequence {δT }T≥1 such
that

1

T

T∑
i=1

∥∆i∥2 ≤ δ2T , ∥∆T+1∥ ≤ δT . (22)

As a result of Lemma A.10 and A.15, Theorem 4.10 establishes the finite-sample bound for condi-
tional coverage under i.i.d. non-conformity scores.
Theorem 4.10 (Conditional coverage bound under i.i.d. non-conformity scores). Under Assump-
tion 4.5, 4.6, 4.8, and 4.9, suppose the guided flow provides a sufficiently accurate approximation of
the target distribution from the source distribution. With probability 1− δ, we have:∣∣∣P(YT+1 ∈ ĈαT+1 | ZT+1 = zT+1)− (1− α)

∣∣∣
≤ 12

√
log(16T )

T
+ 4(LT+1 +

1

2
)(2C + δT ).

(23)

Assumption 4.11 (Strictly stationary and strongly mixing non-conformity scores). Assume that
the sequence {ei}Ti=1 is strictly stationary and strongly mixing, with mixing coefficients satisfying
0 <

∑
k>0 α(k) < M <∞.

Corollary 4.12 (Conditional coverage bound under stationary and strongly mixing non-conformity
scores). 4.6, 4.8, 4.9, and 4.11, suppose the guided flow provides a sufficiently accurate approxima-
tion of the target distribution from the source distribution. With probability 1− δ, we have:∣∣∣P(YT+1 ∈ ĈαT+1 | ZT+1 = zT+1)− (1− α)

∣∣∣
≤ 12

(M2 )1/3(log T )2/3

T 1/3
+ 4(LT+1 +

1

2
)(2C + δT ).

(24)
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The bounds in Theorem 4.10 and Corollary 4.12 depend on the sample size T and the estimation
error δT . Both bounds converge to 1− α as T → ∞, provided that δT = O(T−a) for some a > 0.
Intuitively, with sufficiently large training data and an accurate base predictor f̂ , the conditional
coverage is guaranteed. The condition on δT can be satisfied by a broad class of estimators. For
example, sieve estimators based on general neural networks achieve δT = op(T

−1/4) when f is
sufficiently smooth (Chen & White, 1999). The Lasso estimator and Dantzig selector achieve δT =
op(T

−1/2) when f is a sparse high-dimensional linear model (Bickel et al., 2009).

5 EXPERIMENTS

For notational convenience, we refer to our method as FCP, which stands for Flow-based Conformal
Prediction. We use MLP with Softplus activation to model the guided vector field and concate-
nate the guidance and time with the input for the MLP. dopri5 (Dormand & Prince, 1980)
at absolute and relative tolerances of 1e-5 is used to solve all ODEs. A grid search is con-
ducted to select the optimal hyperparameters for FCP. To determine an appropriate sample size
N , we compute the relative standard error (SE) of the Jacobian determinants of ψ, defined as
SE
(
{det Jψ(xj | h)}Nj=1

)
/Avg

(
{det Jψ(xj | h)}Nj=1

)
, then choose the smallest N such that the

average relative SE across all h falls below 0.01. The source code for FCP is available at
anonymous_url.

Baselines. We evaluate FCP against several conformal prediction methods covering various ex-
isting approaches: MultiDimSPCI (Xu et al., 2024), OT-CP (Thurin et al., 2025), CONTRA (Fang
et al., 2025), conformal prediction using local ellipsoids (Messoudi et al., 2022), CopulaCPTS (Sun
& Yu, 2022), and conformal prediction using empirical and Gaussian copulas (Messoudi et al.,
2021). We also include two widely used probabilistic time series forecasting methods as baselines:
Temporal Fusion Transformer (TFT) (Lim et al., 2021) and DeepAR (Salinas et al., 2020). Although
TFT and DeepAR are originally developed for time series with univariate outcomes, we adapt them
to our multi-dimensional setting by constructing independent copulas using the predicted intervals
for each output dimension. Additional details and setup of the baselines are provided in Appendix B.

Datasets and base predictor. We evaluated FCP and baselines on three real-world time series
datasets: wind, traffic, and solar datasets. For the wind and traffic datasets, we randomly selected
dy ∈ {2, 4, 8} locations to construct five sequences of dy-dimensional time series. For the solar
dataset, we use dy ∈ {2, 4} and similarly construct five sequences. Additional dataset details are
provided in Appendix C. Base predictor f̂ is required to provide a point prediction ŷ. We used
two types of base predictors for each dataset: (1) leave-one-out (LOO) bootstrap ensemble of 15
multivariate linear regressors, and (2) recurrent neural network (RNN) with long short-term mem-
ory (LSTM) units (Hochreiter & Schmidhuber, 1997). Since the RNN base predictor requires part
of the sequence for training, whereas the LOO bootstrap predictor can leverage the full sequence,
the effective sequence length available for evaluation varies by predictor. Each base predictor was
trained independently for every sequence. For the RNN base predictor, the first 50% of each se-
quence was allocated for training, and predictions were made for the remaining 50%, which served
as the evaluation sequence. Within this evaluation sequence, the first 80% was used as a training
set, and the final 20% was evenly divided into validation and test sets. Since FCP does not require
a calibration set to construct prediction sets, the validation set was used for model selection during
training. To ensure fair evaluation in terms of data utilization, we combined the training and vali-
dation sets into a single calibration set for methods that require a calibration set. The specific data
utilization scheme for each baseline is detailed Appendix B.

Evaluation metrics. Efficient prediction sets are those that are as small as possible while satis-
fying the desired coverage. Therefore, we use two evaluation metrics: empirical coverage and the
average prediction set size. The empirical coverage at a target confidence level α is defined as:

1

|Dtest|
∑

{zi,yi}∈Dtest

1

(
yi ∈ Ĉi(zi, α)

)
, (25)
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Table 1: Average empirical coverage and prediction sets sizes obtained by FCP and all baselines on
three real-world datasets, evaluated under different base predictors and varying outcome dimensions
dy . Reported values represent the average and standard deviation over five independent experiments.
The target confidence level was set to 0.95. Results with average empirical coverage below the
target confidence level are grayed out, and the smallest prediction set sizes, excluding the grayed-
out results, are highlighted in bold.

Dataset Base Predictor Method dy = 2 dy = 4 dy = 8

Coverage Size Coverage Size Coverage Size

Wind

LOO Bootstrap

FCP 0.951±.018 0.88±.089 0.953±.006 3.43±1.37 0.956±.010 19.4±10.2

MultiDimSPCI 0.953±.016 1.31±.524 0.956±.018 6.39±3.90 0.951±.024 205.5±161.5

CopulaCPTS 1.0±.000 22.3±19.0 1.0±.000 611.3±484.7 1.0±.000 3.50× 105±3.73×105

OT-CP 0.964±.015 2.71±1.54 0.958±.015 42.3±38.4 0.927±.027 1.28× 103±713

CONTRA 0.979±.024 32.9±25.8 1.000±.000 7.89× 105±1.49×106 0.994±.006 5.88× 1011±1.16×1012

Local Ellipsoid 0.964±.015 1.38±.419 0.971±.013 8.63±5.90 0.974±.011 394.9±522.4

Empirical Copula 0.951±.013 1.22±.316 0.958±.019 4.94±2.57 0.948±.012 77.4±26.1

Gaussian Copula 0.945±.017 1.17±.289 0.958±.019 5.11±2.40 0.948±.012 77.4±26.1

TFT 0.723±.172 1.34±.588 0.515±.174 4.26±3.52 0.187±.126 6.75±3.19

DeepAR 0.909±.036 1.32±.445 0.672±.130 4.84±3.86 0.320±.160 52.8±64.5

LSTM

FCP 0.952±.054 1.18±.215 0.957±.022 10.8±1.05 0.953±.056 2.48 × 103
±669

MultiDimSPCI 0.974±.009 3.79±1.71 0.926±.045 63.9±58.4 0.896±.035 5.53× 103±6.31×103

CopulaCPTS 1.0±.000 45.7±45.4 1.0±.000 4.82× 103±3.73×103 1.0±.000 2.83× 107±3.28×107

OT-CP 0.970±.033 9.13±4.88 0.939±.052 212.3±124.5 0.943±.053 8.39× 104±4.68×104

CONTRA 0.826±.201 0.317±.222 0.804±.178 0.192±.124 0.761±.205 25.0±35.2

Local Ellipsoid 0.978±.043 10.5±6.97 1.0±.000 354.4±406.8 1.0±.000 2.63× 105±2.70×105

Empirical Copula 0.983±.035 14.2±8.19 1.0±.000 494.5±196.1 1.0±.000 4.46× 105±9.82×104

Gaussian Copula 0.983±.035 14.1±8.18 1.0±.000 499.1±189.5 1.0±.000 5.24× 105±1.89×105

TFT 0.550±.321 1.90±.695 0.395±.195 3.93±2.01 0.136±.189 23.7±34.8

DeepAR 0.786±.065 1.69±.489 0.305±.258 9.88±10.1 0.00±.000 22.8±32.6

Traffic

LOO Bootstrap

FCP 0.957±.014 0.915±.119 0.953±.009 1.06±.431 0.965±.015 1.53±.161
MultiDimSPCI 0.963±.008 1.58±.446 0.968±.006 2.62±.908 0.971±.004 10.7±4.60

CopulaCPTS 1.000±.000 21.6±16.3 1.000±.000 645.8±645.5 1.000±.000 3.18× 105±4.80×105

OT-CP 0.966±.008 2.03±.685 0.963±.007 32.0±20.0 0.954±.007 3.90× 103±1.22×103

CONTRA 0.950±.026 1.32±.719 0.953±.021 1.58±1.06 0.931±.036 6.21±4.51

Local Ellipsoid 0.970±.007 2.04±.505 0.975±.005 2.95±1.06 0.980±.003 3.82±1.13

Empirical Copula 0.973±.006 2.35±.446 0.972±.004 5.61±1.48 0.970±.005 40.4±6.04

Gaussian Copula 0.973±.006 2.37±.430 0.972±.004 5.61±1.48 0.970±.005 40.4±6.04

TFT 0.407±.065 0.292±.089 0.189±.306 0.07±.031 0.09±.007 0.009±.007
DeepAR 0.443±.095 0.308±.088 0.197±.054 0.07±.030 0.09±.028 0.004±.003

LSTM

FCP 0.968±.022 0.859±.075 0.966±.022 1.05±.111 0.950±.010 1.82±.287
MultiDimSPCI 0.957±.007 0.870±.383 0.960±.009 1.59±.588 0.952±.014 14.2±7.56

CopulaCPTS 1.000±.000 21.9±12.7 1.000±.000 330.0±219.4 0.992±.002 4.47× 104±4.23×104

OT-CP 0.953±.006 0.920±.379 0.939±.027 11.8±9.35 0.921±.029 730.2±698.7

CONTRA 0.940±.258 0.222±.082 0.942±.028 0.106±.056 0.910±.032 0.050±.050
Local Ellipsoid 0.957±.023 0.987±.413 0.948±.008 1.48±.559 0.928±.017 3.37±.605
Empirical Copula 0.955±.005 3.81±.629 0.948±.010 25.8±5.06 0.920±.017 1.22× 103±281.9

Gaussian Copula 0.953±.006 3.74±.570 0.952±.011 26.4±4.00 0.920±.017 1.22× 103±281.9
TFT 0.374±.110 0.285±.106 0.192±.048 0.06±.022 0.062±.015 0.003±.002
DeepAR 0.386±.065 0.266±.069 0.211±.056 0.06±.017 0.09±.009 0.003±.001

Solar

LOO Bootstrap

FCP 0.957±.007 1.48±.292 0.969±.003 4.18±.597 - -
MultiDimSPCI 0.968±.005 1.97±.076 0.971±.003 11.4±1.20 - -
CopulaCPTS 1.000±.000 67.9±12.6 1.000±.000 7.25× 103±1.86×103 - -
OT-CP 0.984±.004 3.69±.797 0.971±.006 248.9±40.3 - -
CONTRA 0.950±.012 3.08±.584 0.936±.013 30.8±16.7 - -
Local Ellipsoid 0.947±.004 1.44±.188 0.948±.005 1.87±.540 - -
Empirical Copula 0.986±.004 4.47±.174 0.988±.004 36.5±4.03 - -
Gaussian Copula 0.986±.004 4.47±.174 0.989±.003 38.2±1.37 - -
TFT 0.782±.026 0.779±.056 0.722±.028 3.18±.415 - -
DeepAR 0.802±.121 1.03±.114 0.713±.086 6.73±1.09 - -

LSTM

FCP 0.968±.009 1.16±.092 0.961±.008 2.09±.566 - -
MultiDimSPCI 0.969±.004 1.31±.010 0.976±.005 6.46±2.51 - -
CopulaCPTS 1.000±.000 44.8±9.88 1.000±.000 3.34× 103±570 - -
OT-CP 0.979±.005 2.25±.247 0.963±.008 142.0±40.8 - -
CONTRA 0.938±.012 0.100±.026 0.913±.013 0.022±.014 - -
Local Ellipsoid 0.972±.005 1.27±.143 0.978±.004 2.43±.996 - -
Empirical Copula 0.987±.002 6.47±.103 0.990±.003 67.7±10.9 - -
Gaussian Copula 0.992±.001 7.11±.216 0.997±.001 89.9±4.69 - -
TFT 0.746±.081 0.651±.095 0.684±.063 1.63±.177 - -
DeepAR 0.839±.028 1.01±.088 0.715±.043 3.57±.493 - -
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where Dtest denotes the test set. The average prediction set size is computed by averaging the sizes
of Ĉi over the test set, with the specific definition of the set size depending on the geometric form
of each method.

Results. Table 1 presents the results of experiments on three real-world datasets. FCP consistently
obtained smaller prediction sets than all baselines while maintaining the target coverage. The perfor-
mance gains of FCP were especially notable for higher outcome dimensions, showing significantly
smaller prediction set sizes with lower variability. Moreover, FCP maintained stable coverage across
varying dy , whereas baseline methods often suffered from undercoverage or from overcoverage cou-
pled with either overly contracted or excessively inflated prediction sets. In particular, methods re-
lying on the exchangeability assumption often exhibited severe coverage errors and highly unstable
prediction set sizes.

MultiDimSPCI and CP using local ellipsoids generally showed good performance. In particular,
on the solar dataset, CP with local ellipsoids achieved performance comparable to FCP. This is
possibly due to their ability to capture temporal or local correlations, respectively. OT-CP and
CONTRA also performed well in certain experiments, indicating some potential to adapt beyond
the exchangeability assumption. We observed that increasing the guidance scale w often reduced
the prediction set size, though at the cost of slightly lower coverage. In practice, an effective range
for w was typically between 1 and 1.5 across our experiments.

Ablation study. We conduct an ablation study to assess the impact of the encoder. Specifically,
we evaluate FCP with and without the encoder, where in the latter case the guidance h is replaced
by the concatenation of the feature at time i and residual at time i − 1. Table 2 reports the average
empirical coverage and prediction set sizes of FCP with and without the encoder on the wind dataset.
We observe that removing the encoder led to less stable coverage and noticeably larger prediction
set sizes.

Since the conditional coverage bound of FCP relies on the bi-Lipschitz flow assumption (Assump-
tion 4.6), we conduct an additional experiment using iResNet (Behrmann et al., 2019) to model the
vector field, ensuring this assumption is satisfied. Table 7 reports the average empirical coverage
and prediction set sizes of FCP with MLP and iResNet across the three datasets with varying dy . We
observe that imposing bi-Lipschitzness in the vector field did not negatively affect either coverage
or prediction set size.

Table 2: Average empirical coverage and prediction set sizes obtained by FCP and FCP without
the encoder on the wind dataset, evaluated under different base predictors and varying outcome
dimensions dy . The target confidence level was set to 0.95.

Base Predictor Method dy = 2 dy = 4 dy = 8
Coverage Size Coverage Size Coverage Size

LOO Bootstrap FCP with Encoder 0.951±.018 0.88±.089 0.953±.006 3.43±1.37 0.956±.010 19.4±10.2

FCP w/o Encoder 0.948±.023 1.13±.193 0.964±.005 3.99±1.03 0.964±.010 35.3±14.0

LSTM FCP with Encoder 0.952±.054 1.18±.215 0.957±.022 10.8±1.05 0.953±.056 2.48× 103±669

FCP w/o Encoder 0.965±.011 1.92±.367 0.957±.014 12.2±15.0 0.935±.007 5.55× 103±7.47×103

6 CONCLUSION

In this study, we proposed a novel conformal prediction method for multi-dimensional time series
using flow with classifier-free guidance. We provided coverage guarantees of our method by estab-
lishing exact non-asymptotic marginal coverage and a finite-sample bound on conditional coverage.
Experiments on real-world datasets with a broad set of baselines demonstrated that our method con-
structs smaller prediction sets while satisfying the target coverage, consistently outperforming the
baselines. Future work will investigate dynamic optimal transport mappings, implemented through
flow, between the non-conformity scores and the source distribution, with the aim of constructing
more efficient prediction sets and deriving sharper coverage bounds.
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Soundouss Messoudi, Sébastien Destercke, and Sylvain Rousseau. Copula-based conformal predic-
tion for multi-target regression. Pattern Recognition, 120:108101, 2021.
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A PROOFS

Proposition A.1. Let ut|x1
(x | x1) be the vector field generating the probability path pt|x1

(x | x1).
Then, the vector field ut|h(x | h) is a valid vector field generating pt|h(x | h).

Proof. Since ut|x1
(x | x1) generates the probability path pt|x1

(x | x1), the continuity equation
holds for each x1:

∂pt|x1
(x | x1)
∂t

+ div
(
ut|x1

(x | x1)pt|x1
(x | x1)

)
= 0. (26)

The time derivative of pt|h(x | h) is:

∂pt|h(x | h)
∂t

=
∂

∂t

∫
pt|x1

(x | x1)q(x1 | h) dx1

=

∫
∂pt|x1

(x | x1)
∂t

q(x1 | h) dx1

= −
∫

div
(
ut|x1

(x | x1)pt|x1
(x | x1)

)
q(x1 | h) dx1

= −div
(∫

ut|x1
(x | x1)pt|x1

(x | x1)q(x1 | h) dx1
)
.

(27)

Since the marginal guided vector field is defined as:

ut|h(x | h) :=
∫
ut|x1

(x | x1)
pt|x1

(x | x1)q(x1 | h)
pt|h(x | h)

dx1, (28)

we can rewrite as:

ut|h(x | h)pt|h(x | h) =
∫
ut|x1

(x | x1)pt|x1
(x | x1)q(x1 | h) dx1. (29)

Substituting equation (29) into equation (27), we have:

∂pt|h(x | h)
∂t

= −div
(
ut|h(x | h)pt|h(x | h)

)
, (30)

which is the continuity equation for pt|h(x | h) under the vector field ut|h(x | h). Therefore,
ut|h(x | h) is a valid vector field generating pt|h(x | h).

14
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Proposition A.2. With a given Gaussian probability path pt|x1
(x | x1) = N (x | αtx1, σ2

t Id), the
guided vector field ut|h(x | h) can be reformulated as:

ut|h(x | h) = ut(x) + bt∇x log ph|t(h | x). (31)

Proof. By the definition of the guided marginal probability path:

pt|h(x | h) =
∫
pt|x1

(x | x1)q(x1 | h)dx1, (32)

where pt|x1
(x | x1) = N (x | αtx1, σ2

t I). We express the score function as

∇x log pt|h(x | h) =
∇xpt|h(x | h)
pt|h(x | h)

(33)

=

∫
∇xpt|x1

(x | x1)q(x1 | y)dx1
pt|h(x | h)

(34)

=

∫
∇x log pt|x1

(x | x1)
pt|x1

(x | x1)q(x1 | y)
pt|h(x | h)

dx1. (35)

Since pt|x1
(x | x1) = N (x | αtx1, σ2

t I), we have:

ut(x | x1) =
α̇t
σt

(x− αtx1) + α̇tx1 (36)

=
α̇t
σt
x− α̇t

σt
αtx1 + α̇tx1 (37)

=
α̇t
σt
x+ (α̇t −

α̇t
σt
αt)x1 (38)

=
α̇t
αt
x+ (α̇tσt − αtσ̇t)

1

αtσt
(x− αtx1) (39)

=
α̇t
αt
x+ (α̇tσt − αtσ̇t)

σt
αt

∇ log pt(x | x1), (40)

where α̇t denotes d
dtαt, and σ̇t denotes d

dtσt. The last equality holds since ∇x log pt|x1
(x | x1) =

− 1
σ2
t
(x− αtx1).

The guided velocity field is defined as:

ut|h(x | h) =
∫
ut|x1

(x | x1)
pt|x1

(x | x1)q(x1 | h)
pt|h(x | h)

dx1. (41)

Therefore,
ut|h(x | h) = atx+ bt∇x log pt(x | h), (42)

where at = α̇t

αt
, and bt = (α̇tσt − αtσ̇t)

σt

αt
.

By using the identity ∇x log pt|h(x | h) = ∇x log ph|t(h | x) +∇x log pt(x), we have:

ut(x | h) = atx+ bt
(
∇ log ph|t(h | x) +∇ log pt(x)

)
= ut(x) + bt∇x log ph|t(h | x). (43)

Proposition A.3. The log-determinant Jacobian ODE defined in equation equation 16 is equivalent
to the divergence of the guided vector field.

Proof. The Jacobian ODE is defined as:

d

dt
Jψt|h(x | h) =

∂ut|h(ψt|h(x | h))
∂ψt|h(x | h)

∂ψt|h(x | h)
∂x

=
∂ut|h(ψt|h(x | h))
∂ψt|h(x | h)

Jψt|h(x | h), (44)
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with the initial condition:
Jψt=0|h(x | h) = I. (45)

By using Jacobi’s formula,

d

dt
det Jψt|h(x | h) = det Jψt|h(x | h) · tr

(
J−1
ψt|h

(x | h) d
dt
Jψt|h(x | h)

)
. (46)

Substituting equation equation 44 into equation equation 46, we obtain:

d

dt
det Jψt|h(x | h) = detJψt|h(x | h) · tr

(
∂ut|h(ψt|h(x | h))
∂ψt|h(x | h)

)
. (47)

Therefore,
d

dt
log |det Jψt|h(x | h)| = tr

(
∂ut|h(ψt|h(x | h))
∂ψt|h(x | h)

)
. (48)

Since the trace of the Jacobian of a vector field corresponds to its divergence, we have:

tr
(
∂ut|h(ψt|h(x | h))
∂ψt|h(x | h)

)
= div

(
ut|h(ψt|h(x | h))

)
, (49)

where div(·) denotes the divergence operator.

Therefore, the log-determinant of the Jacobian ODE is defined as:

d

dt
log |det Jψt|h(x | h)| = div

(
ut|h(ψt|h(x | h))

)
(50)

with the initial condition:
log |det Jψt=0|h(x | h)| = 0. (51)

Theorem A.4 (Closed and connected sets under a continuous map, Munkres (2000)). Let Z and Y
be topological spaces, and let ψ : Z → Y be a continuous map. If E ⊂ Z is closed and connected,
then ψ(E) ⊂ Y is also closed and connected.

Assumption A.5 (Compact feature and outcome domains). The feature and outcome domains are
compact. That is, xi ∈ X ⊂ Rdx and yi ∈ Y ⊂ Rdy , where X and Y are compact sets.

Remark A.6. While its not strictly required, further assume that the domains of xi and yi are com-
pact, which ensures that the encoder output is also compact, as formalized in Assumption A.5.
Under Assumption A.5, if the encoder is a continuous function that maps a sequence of inputs to a
representation h ∈ Rdh , then the image of the encoder H ⊂ Rdh is compact.

Lemma A.7 (Lipschitz continuous of the guided flow). Let ψt denote the guided flow defined by a
guided vector field ut. If the guided vector field ut(x | h) is Lipschitz continuous in x uniformly
over t ∈ [0, 1] and h ∈ H, i.e., there exists a constant Lu > 0 such that

∥ut(x | h)− ut(x
′ | h)∥ ≤ Lu∥x− x′∥ ∀x, x′, t, h, (52)

then the guided flow ψt(x | h) is Lipschitz continuous in x over t ∈ [0, 1] and h ∈ H. That is, there
exists a constant Lψ > 0 such that

∥ψt(x | h)− ψt(x
′ | h)∥ ≤ Lψ∥x− x′∥ ∀x, x′, t, h. (53)

Proof. Let d(t) = ∥ψt(x | h)− ψt(x
′ | h)∥

Since the guided vector field is Lipschitz continuous, there exists Lu such that

∥ut(x | h)− ut(x
′ | h)∥ ≤ Lu∥x− x′∥, ∀t, h, x, x′. (54)
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This is equivalent to

∥ut(ψt(x | h) | h)− ut(ψt(x
′ | h) | h)∥ ≤ Lu∥ψt(x | h)− ψt(x

′ | h)∥, ∀t, h, x, x′. (55)

Let z(t) = ψt(x | h)− ψt(x
′ | h), then

d

dt
d(t) =

1

∥z(t)∥
⟨z(t), d

dt
z(t)⟩ = ⟨ z(t)

∥z(t)∥
,
d

dt
z(t)⟩ (56)

Since d
dtz(t) = ut(ψt(x | h) | h)− ut(ψt(x

′ | h) | h), by Cauchy-Schwarz inequality,

|⟨ z(t)

∥z(t)∥
,
d

dt
z(t)⟩| ≤ ∥ut(ψt(x | h) | h)− ut(ψt(x

′ | h) | h)∥ (57)

Therefore,

d

dt
d(t) ≤ ∥ut(ψt(x | h) | h)− ut(ψt(x

′ | h) | h)∥ (58)

Since the guided vector field is Lipschitz continuous,

d

dt
d(t) ≤ Lud(t) (59)

Based on Gronwall’s inequality Gronwall (1919); Hirsch et al. (2013),

Assuming that d(t) > 0 divide both sides by d(t). If d(t) = 0, the inequality holds.

1

d(t)

d

dt
d(t) ≤ L⇒ d

dt
log d(t) ≤ L (60)

Now integrate both sides from 0 to t:

log d(t)− log d(0) ≤ Lt⇒ log

(
d(t)

d(0)

)
≤ Lt⇒ d(t)

d(0)
≤ eLt ⇒ d(t) ≤ d(0)eLt (61)

Since d(0) = ∥ψ0(x | h)− ψ0(x
′ | h)∥ = ∥x− x′∥,

∥ψt(x | h)− ψt(x
′ | h)∥ ≤ eLut∥x− x′∥ (62)

Therefore, we know that

∥ψt(x | h)− ψt(x
′ | h)∥ ≤ eLu∥x− x′∥ ∀x, x′, t, h (63)

Proof of Lemma 4.3. Since the probability density function of Y = ψ(X) is the push-forward of
pX , we have:

pY (y) = pX(ψ−1(y))
∣∣det Jψ−1(y)

∣∣ , (64)

where detA denotes the determinant of a square matrix A and Jψ−1(y) = ∂ψ−1(y)
∂y is the Jacobian

of ψ−1. The probability mass of the transformed set A′ = ψ(A) is:

P(Y ∈ A′) =

∫
A′
pY (y) dy. (65)

Using the change-of-variables y = ψ(x) with dy = |det Jψ(x)|dx, we have:∫
A′
pY (y) dy =

∫
A
pY (ψ(x)) |det Jψ(x)| dx. (66)
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Substituting from equation equation 64, we have:∫
A
pY (ψ(x)) |det Jψ(x)| dx =

∫
A
pX(x)

∣∣det Jψ−1(ψ(x))
∣∣ ∣∣det Jψ(x)∣∣ dx. (67)

Since Jψ−1(ψ(x)) = Jψ(x)
−1, we know that |det Jψ−1(ψ(x))| · | det Jψ(x)| = 1. Hence,∫

A′
pY (y) dy =

∫
A
pX(x) dx. (68)

Lemma A.8 (bi-Lipschitz guided flow). Assume that the guided vector field is bi-Lipschitz uniformly
in x over t ∈ [0, 1] and h ∈ H, i.e., there exists Lu and lu such that

lu∥x− x′∥ ≤ ∥ut(x | h)− ut(x
′ | h)∥ ≤ Lu∥x− x′∥ ∀t, h, x, x′. (69)

Then the guided flow ψ is bi-Lipschitz. There exists Lψ and lψ such that

lψ∥x− x′∥ ≤ ∥ψt(x | h)− ψt(x
′ | h)∥ ≤ Lψ∥x− x′∥ ∀t, h, x, x′. (70)

Proof. Proof follows similarly to Lemma A.7. The upper Lipschitz bound follows from Lemma A.7.

Let z(t) = ψt(x | h)− ψt(x
′ | h) and d(t) = ∥ψt(x | h)− ψt(x

′ | h)∥ = ∥zt∥.

d

dt
∥z(t)∥2 = 2⟨z(t), d

dt
z(t)⟩ (71)

By Cauchy-Schwarz inequality,

d

dt
∥z(t)∥2 =

d

dt
d(t)2 ≥ −2∥z(t)∥∥ d

dt
z(t)∥ (72)

Since d
dtz(t) = ut(x | h) − ut(x

′ | h) and ∥ut(x | h) − ut(x
′ | h)∥ ≥ lu∥x − x′∥ = lu∥ψt(x |

h)− ψt(x
′ | h)∥, we obtain

d

dt
d(t)2 ≥ −2lu∥z(t)∥2 = −2lud(t)

2 (73)

Using Gronwall’s inequality,

∥ψt(x | h)− ψt(x
′ | h)∥ ≥ e−lut∥x− x′∥ (74)

Therefore, we know that

∥ψt(x | h)− ψt(x
′ | h)∥ ≥ e−lu∥x− x′∥ ∀x, x′, t, h (75)

Combining with the upper Lipschitz bound, we get

e−lu∥x− x′∥ ≤ ∥ψt(x | h)− ψt(x
′ | h)∥ ≤ eLu∥x− x′∥ ∀x, x′, t, h (76)

Lemma A.9. Under Assumption 4.8, Fe(eT+1) ∼ Unif[0, 1].

Proof. Since Fe is strictly increasing and continuous under Assumption 4.8, the Lemma holds for
eT+1 ∼ Fe.

Lemma A.10 (Convergence of empirical CDF of i.i.d. {ei}Ti=1). Under Assumption 4.5 and 4.6,

for any T , there exists an event AT with probability at least 1 −
√

log(16T )
T , such that conditioned

on AT ,

sup
x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ≤√ log(16T )

T
. (77)
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Proof of Lemma A.10. The proof follows the proof of Lemma 1 in Xu & Xie (2023a). Under the
assumption that {ei}T+1

i=1 are i.i.d., the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (Dvoretzky
et al., 1956; Kosorok, 2008) implies:

P
(
sup
x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ > sT

)
≤ 2e−2Ts2T . (78)

Choose sT =
√
W (16T )/(2

√
T ), where W (T ) denotes the Lambert W function satisfying

W (T )eW (T ) = T . Since W (16T ) ≤ log(16T ), it follows that sT ≤
√

log(16T )/T . Define

the event AT on which supx

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ≤√log(16T )/T , so that we have:

sup
x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ∣∣∣AT ≤

√
log(16T )

T
, (79)

and

P(AT ) > 1−
√

log(16T )

T
. (80)

Lemma A.11 (Gaussian concentration inequality, Theorem 5.6 in Boucheron et al. (2003)). Let
X ∼ N (0, Id) be a standard Gaussian random vector in Rd and let f : Rd → R be an Lf -Lipschitz
continuous function. Then, for all t > 0,

P(f(X) ≥ E[f(X)] + t) ≤ exp

(
−t2

2Lf
2

)
, (81)

Proposition A.12 (Gaussian concentration inequality with isotropic covariance). Let X ∼
N (0, γId) be an isotropic Gaussian random vector in Rd with covariance matrix γId ∈ Rd for
some γ > 0 and let f : Rd → R be an Lf -Lipschitz continuous function. Then, for all t > 0,

P(f(X) ≥ E[f(X)] + t) ≤ exp

(
−t2

2γLf
2

)
, (82)

Proof. Let X ′ ∼ N (0, Id), and define X =
√
γX ′, so that X ∼ N (0, γId). Define the function

fγ(x) := f(
√
γx). Then fγ is

√
γLf -Lipschitz. Applying Lemma A.11 to fγ(X ′), we obtain:

P (fγ(X
′) ≥ E[fγ(X ′)] + t) ≤ exp

(
− t2

2γL2
f

)
. (83)

Since f(X) = fγ(X
′),

P(f(X) ≥ E[f(X)] + t) = P (fγ(X
′) ≥ E[fγ(X ′)] + t) ≤ exp

(
− t2

2γL2
f

)
. (84)

Lemma A.13 (Norm concentration of isotropic Gaussian random vectors). Let Xi ∼ N (0, γId) be
an isotropic Gaussian random vector in Rd, and ∥ · ∥ be 2-norm. Then for any δ ∈ (0, 1), with
probability at least 1− δ, we have:

max
1≤i≤T

∥Xi∥ ≤MT , (85)

where MT =
√
γ
(√

d+
√
2 log(T/δ)

)
.
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Proof of Lemma A.13. Let X ∼ N (0, γId) be an isotropic Gaussian random vector in Rd with
covariance matrix γId ∈ Rd for some γ > 0 and let f : Rd → R be 2-norm, i.e., f(X) = ∥X∥.

Using Proposition A.12 and since f is 1-Lipschitz continuous, we have for all t > 0:

P(∥X∥ ≥ E[∥X∥] + t) ≤ exp

(
− t2

2γ

)
. (86)

Using Jensen’s inequality and since X ∼ N (0, γId),

E[∥X∥] ≤
√

E[∥X∥2] =
√
E[X⊤X] =

√
tr(γId) =

√
γd. (87)

Therefore, for any t > 0,

P
(
∥X∥ ≥

√
γd+ t

)
≤ exp

(
− t2

2γ

)
. (88)

By the union bound,

P
(

max
1≤i≤T

∥Xi∥ ≥
√
γd+ t

)
≤

T∑
i=1

P
(
∥Xi∥ ≥

√
γd+ t

)
≤ T · exp

(
− t2

2γ

)
. (89)

By setting T · exp
(
−t2/2γ

)
≤ δ, we obtain:

t ≥

√
2γ log

(
T

δ

)
. (90)

Therefore, with probability at least 1− δ,

max
1≤i≤T

∥Xi∥ ≤
√
γd+

√
2γ log

(
T

δ

)
. (91)

Defining MT :=
√
γ
(√

d+
√
2 log(T/δ)

)
, we conclude:

max
1≤i≤T

∥Xi∥ ≤MT . (92)

Lemma A.14 (Bound on the sum of differences between true and estimated non-conformity scores).
Under Assumption 4.6 and 4.9, with probability at least 1− δ,

T∑
i=1

|êi − ei| ≤ 2T (MTLψ−1δT + L2
ψ−1δ2T ). (93)

Proof. Since the encoder is fixed after convergence, it generates the same h for ϵ̂ and ϵ. Let ŝi =
ψ−1(ϵ̂i | h) and si = ψ−1(ϵi | h).
Using the identity for the difference of squared norms:

∥ŝi∥ = ∥si + (ŝi − si)∥2

= ∥si∥2 + 2⟨si, ŝi − si⟩+ ∥ŝi − si∥2,
(94)

we obtain:

∥ŝi∥2 − ∥si∥2 = 2⟨si, ŝi − si⟩+ ∥ŝi − si∥2 (95)
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Therefore,
|êi − ei| =

∣∣∥ŝi∥2 − ∥si∥2
∣∣

=
∣∣2⟨si, ŝi − si⟩+ ∥ŝi − si∥2

∣∣ . (96)

By the Cauchy-Schwarz inequality,

|⟨si, ŝi − si⟩| ≤ ∥si∥ · ∥ŝi − si∥. (97)

Since ψ−1 is Lipschitz continuous with Lipschitz constant Lψ−1 , we have:

∥ŝi − si∥ ≤ Lψ−1∥ϵ̂i − ϵi∥ = Lψ−1∥∆i∥. (98)

Substituting inequality (98) into the inner product bound in equation (97),

|⟨si, ŝi − si⟩| ≤ ∥si∥ · ∥ŝi − si∥ ≤ Lψ−1∥si∥∥∆i∥. (99)

Then, by the triangle inequality,

|êi − ei| ≤ 2Lψ−1∥si∥∥∆i∥+ L2
ψ−1∥∆i∥2. (100)

By Lemma A.13, we have with probability at least 1− δ that ∥si∥ ≤MT for all i, and by Assump-
tion 4.9, ∥∆i∥ ≤ δT . Substituting these into the inequality (100),

|êi − ei| ≤ 2MTLψ−1δT + L2
ψ−1δ2T . (101)

Summing over all i = 1, . . . , T , we conclude:

T∑
i=1

|êi − ei| ≤ T
(
2MTLψ−1δT + L2

ψ−1δ2T

)
. (102)

Lemma A.15 (Distance between the empirical CDF of {ei}Ti=1 and {êi}Ti=1). Under Assump-
tion 4.6, 4.8, and 4.9, with probability 1− δ, F̂T+1(x) and F̃T+1(x) satisfy

sup
x

∣∣∣F̂T+1(x)− F̃T+1(x)
∣∣∣ ≤ (2LT+1 + 1)C+2 sup

x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ , (103)

where C =
√
MTLψ−1δT + L2

ψ−1δ2T .

Proof of Lemma A.15. By Lemma A.14, we have with probability at least 1− δ,

T∑
t=1

|êt − et| ≤ T
(
2MTLψ−1δT + L2

ψ−1δ2T

)
. (104)

Let C =
(
2MTLψ−1δT + L2

ψ−1δ2T

)1/2
. Then,

T∑
i=1

|êi − ei| ≤ TC2. (105)

Define S = {t : |êt − et| ≥ C}. Then,

|S| · C ≤
T∑
t=1

|êt − et| ≤ TC2, (106)
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which implies |S| ≤ TC.

We can bound the difference between the empirical CDFs of êi and ei as follows:

|F̂T+1(x)− F̃T+1(x)| ≤
1

T

T∑
t=1

|1{êt ≤ x} − 1{et ≤ x}|

≤ 1

T

(
|S|+

∑
t/∈S

|1{êt ≤ x} − 1{et ≤ x}|

)
(i)

≤ 1

T

(
|S|+

∑
t/∈S

1{|et − x| ≤ C}

)

≤ 1

T

(
|S|+

T∑
t=1

1{|et − x| ≤ C}

)
≤ C + P(|eT+1 − x| ≤ C)

+ sup
x

∣∣∣∣∣ 1T
T∑
t=1

1{|et − x| ≤ C} − P(|eT+1 − x| ≤ C)

∣∣∣∣∣
(ii)
= C + [Fe(x+ C)− Fe(x− C)]

+ sup
x

∣∣∣[F̃T+1(x+ C)− F̃T+1(x− C)
]
− [Fe(x+ C)− Fe(x− C)]

∣∣∣
(iii)

≤ (2LT+1 + 1)C + 2 sup
x

|F̃T+1(x)− Fe(x)|.
(107)

Here, (i) follows from the inequality |1{a ≤ x} − 1{b ≤ x}| ≤ 1{|b− x| ≤ |a− b|} for a, b ∈ R,
(ii) follows from the identity P(|eT+1 − x| ≤ C) = Fe(x + C) − Fe(x − C), and (iii) uses the
Lipschitz continuity of Fe(x).

Proof of Theorem 4.10. For any β ∈ [0, α],∣∣∣P(YT+1 ∈ ĈαT+1 | ZT+1 = zT+1

)
− (1− α)

∣∣∣
=
∣∣∣P(êT+1 ∈

[
F̂−1
T+1(β), F̂

−1
T+1(1− α+ β)

]
| ZT+1 = zT+1

)
− (1− α)

∣∣∣
(i)
=
∣∣∣P(β ≤ F̂T+1(êT+1) ≤ 1− α+ β

)
− P (β ≤ Fe(eT+1) ≤ 1− α+ β)

∣∣∣ .
(108)

Equality (i) follows from Lemma A.9, which states that Fe(eT+1) ∼ Unif[0, 1]. This can be further
bounded by:∣∣∣P(β ≤ F̂T+1(êT+1) ≤ 1− α+ β

)
− P (β ≤ Fe(eT+1) ≤ 1− α+ β)

∣∣∣
≤ E

∣∣∣1{β ≤ F̂T+1(êT+1) ≤ 1− α+ β
}
− 1 {β ≤ Fe(eT+1) ≤ 1− α+ β}

∣∣∣
(i)

≤ E
(∣∣∣1{β ≤ F̂T+1(êT+1)

}
− 1 {β ≤ Fe(eT+1)}

∣∣∣
+
∣∣∣1{F̂T+1(êT+1) ≤ 1− α+ β

}
− 1 {Fe(eT+1) ≤ 1− α+ β}

∣∣∣)
(109)

Here, inequality (i) follows from the fact that for any a, b ∈ R and real values x, y ∈ R,

|1{a ≤ x ≤ b} − 1{a ≤ y ≤ b}| ≤ |1{a ≤ x} − 1{a ≤ y}|+ |1{x ≤ b} − 1{y ≤ b}| . (110)

By triangle inequality,
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E
(∣∣∣1{β ≤ F̂T+1(êT+1)

}
− 1 {β ≤ Fe(eT+1)}

∣∣∣
+
∣∣∣1{F̂T+1(êT+1) ≤ 1− α+ β

}
− 1 {Fe(eT+1) ≤ 1− α+ β}

∣∣∣)
≤ E

(∣∣∣1{β ≤ F̂T+1(êT+1)} − 1{β ≤ Fe(eT+1)}
∣∣∣)︸ ︷︷ ︸

(a)

+ E
(∣∣∣1{F̂T+1(êT+1) ≤ 1− α+ β

}
− 1 {Fe(eT+1) ≤ 1− α+ β}

∣∣∣)︸ ︷︷ ︸
(b)

(111)

For term (a), we have:

E
(∣∣∣1{β ≤ F̂T+1(êT+1)} − 1{β ≤ Fe(eT+1)}

∣∣∣)
≤ P

(
|Fe(eT+1)− β| ≤ |F̂T+1(êT+1)− Fe(eT+1)|

)
.

(112)

This inequality follows from the fact that for a, b ∈ R, |1{a ≤ x} − 1{b ≤ x}| ≤ 1{|b − x| ≤
|a− b|}, and E[1{A}] = P(A).

Similarly, for term (b), we have:

E
(∣∣∣1{F̂T+1(êT+1) ≤ 1− α+ β

}
− 1 {Fe(eT+1) ≤ 1− α+ β}

∣∣∣)
≤ P

(
|Fe(eT+1)− (1− α+ β)| ≤

∣∣∣F̂T+1(êT+1)− Fe(eT+1)
∣∣∣) . (113)

Therefore,

∣∣∣P(YT+1 ∈ ĈαT+1 | ZT+1 = zT+1

)
− (1− α)

∣∣∣
≤ P

(
|Fe(eT+1)− β| ≤ |F̂T+1(êT+1)− Fe(eT+1)|

)
+ P

(
|Fe(eT+1)− (1− α+ β)| ≤ |F̂T+1(êT+1)− Fe(eT+1)|

) (114)

In Lemma A.10, we defined AT as the event on which

sup
x

|F̃T+1(x)− Fe(x)|
∣∣AT ≤

√
log(16T )

T
,

where P(AT ) > 1−
√

log(16T )
T . LetACT denote the complement of the eventAT . For any γ ∈ [0, 1],

we have:

P
(
|Fe(eT+1)− γ| ≤ |F̂T+1(êT+1)− Fe(eT+1)|

)
≤ P

(
|Fe(eT+1)− γ| ≤ |F̂T+1(êT+1)− Fe(eT+1)| | AT

)
+ P(ACT )

≤ P
(
|Fe(eT+1)− γ| ≤ |F̂T+1(êT+1)− Fe(êT+1)|+ |Fe(êT+1)− Fe(eT+1)|

∣∣∣AT)
+

√
log(16T )

T
.

(115)

To bound the conditional probability above, we note that with probability 1− δ, conditioning on the
event AT ,
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|F̂T+1(êT+1)− Fe(eT+1)|+ |Fe(êT+1)− Fe(eT+1)|
∣∣AT

(i)

≤ sup
x

|F̂T+1(x)− Fe(x)|
∣∣AT + LT+1|êT+1 − eT+1|

≤ sup
x

|F̂T+1(x)− F̃T+1(x)|
∣∣AT + sup

x
|F̃T+1(x)− Fe(x)|

∣∣AT + LT+1|êT+1 − eT+1|

(ii)

≤ (2LT+1 + 1)C + 3 sup
x

|F̃T+1(x)− Fe(x)|
∣∣AT + LT+1δT

(iii)

≤ 3

√
log(16T )

T
+

(
LT+1 +

1

2

)
(2C + δT ).

(116)

Here, inequality (i) holds due to the supremum of |F̂T+1(x)−Fe(x)| over x and Lipschitz continuity
of Fe from Assumption 4.8. Inequality (ii) follows from Lemma A.15. Inequality (iii) follows from
Lemma A.10.

Since Fe(eT+1) ∼ Unif[0, 1],

P
(
|Fe(eT+1)− γ| ≤

∣∣∣F̂T+1(êT+1)− Fe(êT+1)
∣∣∣+ |Fe(êT+1)− Fe(eT+1)|

∣∣∣AT)
≤ 6

√
log(16T )

T
+ 2

(
LT+1 +

1

2

)
(2C + δT ).

(117)

Therefore, by substituting inequality (117) to inequality (114), we obtain:∣∣∣P(YT+1 ∈ ĈαT+1 | ZT+1 = zT+1

)
− (1− α)

∣∣∣
≤ 12

√
log(16T )

T
+ 4(LT+1 +

1

2
)(2C + δT ).

(118)

Definition A.16. A sequence of random variables {Xn} is said to be strictly stationary if for every
k ≥ 1, any integers n1, . . . , nk, and any integer h, the joint distribution of the random variables
(Xn1

, . . . , Xnk
) is the same as the joint distribution of (Xn1+h, . . . , Xnk+h).

Definition A.17. A sequence of random variables {Xn} is said to be strongly mixing (or α-mixing)
if the mixing coefficients α(k) defined by

α(k) = sup
n∈N

sup
A∈Fn

1 , B∈F∞
n+k

|P(A ∩B)− P(A)P(B)| (119)

satisfy α(k) → 0 as k → ∞, where Fb
a denotes the σ-algebra generated by {Xa, . . . , Xb}.

Lemma A.18 (Convergence of empirical CDF of stationary and strongly mixing {ei}Ti=1). Under
Assumption 4.11, for any T , there exists an event AT with probability at least 1 − (M(log T )2

2T )1/3,
such that conditioned on AT ,

sup
x

|F̃T+1(x)− Fe(x)| ≤
(M2 )1/3(log T )2/3

T 1/3
. (120)

Proof of Lemma A.18. The proof follows similarly in the proof of Lemma B.11 in Xu et al. (2024).
Define vT (x) :=

√
T (F̃T+1(x)− Fe(x)). By using Proposition 7.1 in Rio et al. (2017), we have:

E
(
sup
x

|vT (x)|2
)

≤

(
1 + 4

T∑
k=0

α(k)

)(
3 +

log T

2 log 2

)2

, (121)
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where α(k) denots the k-th mixing coefficient. Under Assumption 4.11, we have
∑
k≥0 α(k) ≤

M <∞. Applying Markov’s inequality yields:

P
(
sup
x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ≥ sT

)
≤

E
(
supx |vT (x)|2/T

)
s2T

≤ 1 + 4M

Ts2T

(
3 +

log T

2 log 2

)2

. (122)

By setting

sT :=

(
1 + 4M

T

(
3 +

log T

2 log 2

)2
)1/3

≈
(
M(log T )2

2T

)1/3

, (123)

we then have:

P

(
sup
x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ≤ (M(log T )2

2T

)1/3
)

≥ 1−
(
M(log T )2

2T

)1/3

. (124)

Define the event AT on which supx

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ≤ (M(log T )2

2T

)1/3
, so that we have:

sup
x

∣∣∣F̃T+1(x)− Fe(x)
∣∣∣ ∣∣∣AT ≤

(
M(log T )2

2T

)1/3

(125)

and

P(AT ) > 1−
(
M(log T )2

2T

)1/3

. (126)

Proof of Corollary 4.12. Under Assumption 4.11, the result follows by combining Lemma A.15
and A.18, using an argument analogous to the proof of Theorem 4.10.

B EXPERIMENT DETAILS

B.1 EXPERIMENT SETUP

OT-CP. We implemented OT-CP using the source code released by the authors Thurin et al. (2025).
The training and validation sets were combined to form a calibration set. Following the setup in the
original publication, 75% of the calibration set was used to solve OT, and the remaining 25% was
used to calibrate the prediction sets.

CONTRA. As the source code from the original publication was not released, we implemented
CONTRA ourselves following the methodology and details provided in Fang et al. (2025). Consis-
tent with the original setup, we used six coupling layers with a hidden dimension of 128 and trained
the model for 100 epochs with the same batch size as FCP and a learning rate of 0.001. The training
and validation sets were combined into a calibration set, of which 50% was used to train the model
and the remaining 50% was used to calibrate the prediction sets.

MultiDimSPCI. We implemented MultiDimSPCI using the source code released by the au-
thors Xu et al. (2024). The context window size was set to 50 for all real-world datasets, consistent
with the setup used for FCP. Following the original publication, the number of trees was set to 15.
The training and validation sets were combined into a single training set.

Conformal prediction using copulas. We implemented this method using the source code re-
leased by the authors Messoudi et al. (2021), following the setup described in the original publica-
tion. The training and validation sets were combined to form a calibration set.
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Conformal prediction using local ellipsoids We implemented this method using the source code
provided by the authors Messoudi et al. (2022). Following the setup in the original publication, the
training set was used as the proper training set and the validation set as the calibration set. The
number of neighbors for kNN was set to 5% of the proper training set size, as suggested by the
authors. We also experimented with different neighbor ratios, but these variations did not lead to
meaningful differences in performance.

CopulaCPTS We implemented this method using the source code provided by the authors Sun &
Yu (2022), following the setup described in the original publication. The training and validation sets
were combined to form a calibration set.

Temporal Fusion Transformer We implemented Temporal Fusion Transformer (TFT) Lim et al.
(2021) using pytorch forecasting. A hyperparameter grid search was conducted on the train-
ing set of each dataset with dy = 2 to determine the optimal configuration. We believe this hyper-
parameter search generalizes well to higher dy within each dataset, since TFT makes predictions
for each outcome dimension independently in our setup. Performance was observed to saturate at a
model dimension of 32, with two attention heads and two layers, therefore these settings were used
for all experiments. For consistency with FCP, the context window size was fixed at 50 across all
experiments. We trained the models using the Adam optimizer Kingma (2014) with a learning rate
of 0.001, a maximum of 50 epochs, and a dropout rate of 0.1. Quantile loss with q ∈ {0.025, 0.975}
was used for 0.95 target coverage.

DeepAR We implemented DeepAR Salinas et al. (2020) using pytorch forecasting. A hy-
perparameter grid search was conducted on the training set of each dataset with dy = 2 to determine
the optimal configuration similarly to TFT. Performance was observed to saturate at a model dimen-
sion of 32 with two layers, therefore these settings were used for all experiments. For consistency
with FCP, the context window size was fixed at 50 across all experiments. We trained the models
using the Adam optimizer Kingma (2014) with a learning rate of 0.001, a maximum of 50 epochs,
and a dropout rate of 0.1. Multivariate normal distribution loss with q ∈ {0.025, 0.975} was used
for 0.95 target coverage.

Table 3: The hyperparameter search space for FCP.

Hyperparameter Search space

Vector field the number of layers { 2, 4, 6 }
hidden dimension { 16, 32, 64 }

Encoder

the number of layers { 2, 4, 6 }
the number of heads { 2, 4, 8 }
model dimension { 16, 32, 64 }
dropout { 0, 0.1 }

General
covariance scale γ { 1, 2, 4, 8 }
learning rate { 0.0005, 0.0001 }
batch size { 8, 16 }

FCP We used multilayer perceptions (MLP) to model the guided vector field ut|h : [0, 1]×Rdh ×
Rdy → Rdy . The time variable t ∈ [0, 1] was concatenated with the input and fed into the vector
field. A hyperparameter grid search was conducted on the training set of each dataset with different
dy to determine the optimal configuration. We set the hidden dimension of the vector field iden-
tical to the model dimension of the encoder, so that additional layer is not required between the
vector field and the encoder. Table 3 shows the hyperparameter search space and Table 4 shows the
optimized hyperparameter configuration. The context window size for the encoder was set to 50.
We trained the model with Adam optimizer Kingma (2014) with a maximum of 50 epochs for all
experiments and used the validation set to select the best model.

To determine an appropriate sample size N for the set size estimation using quasi-Monte Carlo
sampling, we computed the relative standard error of the Jacobian determinants of ψ, defined as
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SE(det Jψ,h)/Avg(det Jψ,h), where det Jψ,h = {det Jψ(xj | h)}Nj=1 are the sampled Jacobian
determinants conditioned on h. We selected the smallest N such that the average relative standard
error across all h falls below 0.01. We used N = 4096 for experiments with dy = 2, N = 8192 for
experiments with dy = 4, and N = 16384 for experiments with dy = 8.

Table 4: The optimized hyperparameter configuration for FCP based on the grid search.

Dataset Hyperparameter dy = 2 dy = 4 dy = 8

Wind

the number of layers of the vector field 4 4 4
the number of heads of the encoder 2 2 2
the number of layers of the encoder 4 4 4
the hidden dimension of the vector field and encoder 32 32 32
covariance scale γ 1 1 2
encoder dropout 0.1 0.1 0.1
batch size 4 4 4
learning rate 0.0005 0.0005 0.0005
null condition probability 0.05 0.05 0.05
guidance scale w (LOO/LSTM base predictor) 1.1/1.1 1.1/1.1 1.1/1.1

Traffic

the number of layers of the vector field 4 4 4
the number of heads of the encoder 2 2 2
the number of layers of the encoder 4 4 4
the hidden dimension of the vector field and encoder 32 32 32
covariance scale γ 1 1 1
encoder dropout 0.1 0.1 0.1
batch size 8 8 8
learning rate 0.0001 0.0001 0.0001
null condition probability 0.05 0.05 0.05
guidance scale w (LOO/LSTM base predictor) 1.1/1.2 1.1/1.2 1.05/1.5

Solar

the number of layers of the vector field 4 4 -
the number of heads of the encoder 2 2 -
the number of layers of the encoder 4 4 -
the hidden dimension of the vector field and encoder 32 32 -
covariance scale γ 1 1 -
encoder dropout 0.1 0.1 -
batch size 8 8 -
learning rate 0.0005 0.0005 -
null condition probability 0.05 0.05 -
guidance scale w (LOO/LSTM base predictor) 1.5/1.2 1.2/1.1 -

B.2 COMPUTATIONAL COST

Training time. Table 5 reports the wall-clock training time for all methods, computed as the sum
over five independent runs on five different sequences. All models were trained on a machine
equipped with dual Intel Xeon Gold 6226 CPUs and a single NVIDIA A100 GPU. For methods
that do not employ neural networks, only the CPU was used.

C DATASET DETAILS

Wind dataset The wind dataset contains wind speed records measured at 30 different wind
farms (Zhu et al., 2021). Each wind farm location provides 768 records with 5 features at each times-
tamp. We randomly select dy ∈ {2, 4, 8} locations to construct five sequences of dy-dimensional
time series.

Traffic dataset The traffic dataset contains traffic flow collected at 15 different traffic sensor lo-
cations (Xu & Xie, 2021b). Each sensor location provides 8778 observations with 5 features at
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Table 5: the wall-clock training time (hrs) for all methods.

Dataset Method dy=2 dy=4 dy=8

Wind

FCP ≤ 0.2 ≤ 0.2 ≤ 0.2
CONTRA ≤ 0.2 ≤ 0.2 ≤ 0.2
MultiDimSPCI ≤ 0.05 ≤ 0.05 ≤ 0.05
Local Ellipsoid ≤ 0.01 ≤ 0.01 ≤ 0.01
Empirical Copula ≤ 0.01 ≤ 0.01 ≤ 0.01
Gaussian Copula ≤ 0.01 ≤ 0.01 ≤ 0.01
CopulaCPTS ≤ 0.01 ≤ 0.01 ≤ 0.01
TFT ≤ 1 ≤ 2 ≤ 4
DeepAR ≤ 1 ≤ 2 ≤ 4

Traffic

FCP ≤ 0.5 ≤ 0.5 ≤ 0.5
CONTRA ≤ 0.5 ≤ 0.5 ≤ 0.5
MultiDimSPCI ≤ 1 ≤ 1 ≤ 1
Local Ellipsoid ≤ 0.01 ≤ 0.01 ≤ 0.01
Empirical Copula ≤ 0.01 ≤ 0.01 ≤ 0.01
Gaussian Copula ≤ 0.01 ≤ 0.01 ≤ 0.01
CopulaCPTS ≤ 0.01 ≤ 0.01 ≤ 0.01
TFT ≤ 4 ≤ 8 ≤ 16
DeepAR ≤ 4 ≤ 8 ≤ 16

Solar

FCP ≤ 0.5 ≤ 0.5 –
CONTRA ≤ 0.5 ≤ 0.5 –
MultiDimSPCI ≤ 1 ≤ 1 –
Local Ellipsoid ≤ 0.01 ≤ 0.01 –
Empirical Copula ≤ 0.01 ≤ 0.01 –
Gaussian Copula ≤ 0.01 ≤ 0.01 –
CopulaCPTS ≤ 0.01 ≤ 0.01 –
TFT ≤ 4 ≤ 8 –
DeepAR ≤ 4 ≤ 8 –

each timestamp. We randomly select dy ∈ {2, 4, 8} locations to construct five sequences of dy-
dimensional time series.

Solar dataset The solar dataset considers solar radiation in Diffused Horizontal Irradiance (DHI)
units at 9 different solar sensor locations (Zhang et al., 2021). Each location provides 8755 records
with 5 features at each timestamp. For the solar dataset, we randomly selected dy ∈ {2, 4} locations
to construct five sequences of dy-dimensional time series. We did not construct sequences with
dy = 8 due to the limited number of unique locations, which could lead to overlapping sequences
across different trials of experiments.

D ADDITIONAL EXPERIMENTS

D.1 EXPERIMENT AT 0.9 CONFIDENCE LEVEL

Table 6 reports the results on the three real-world datasets at the 0.9 confidence level. We exclude
TFT and DeepAR, as they did not demonstrate competitive performance in the experiment at the
0.95 confidence level. The overall results remain consistent with those at the 0.95 confidence level.
Notably, the gap in average prediction set sizes between FCP and other strong baselines—such
as MultiDimSPCI, CP using local ellipsoids, and OT-CP for dy ∈ 2, 4 on the traffic and solar
datasets—decreases at the 0.9 confidence level.

D.2 ROLLING COVERAGE ON WIND DATASET

Since conditional coverage is challenging to evaluate in real-world data, we use rolling coverage
to approximate conditional coverage at a specific time index. Rolling coverage at time index i is
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Table 6: Average empirical coverage and prediction sets sizes obtained by FCP and all baselines on
three real-world datasets, evaluated under different base predictors and varying outcome dimensions
dy . Reported values represent the average and standard deviation over five independent experiments.
The target confidence level was set to 0.9.

Dataset Base Predictor Method dy = 2 dy = 4 dy = 8

Coverage Size Coverage Size Coverage Size

Wind

LOO Bootstrap

FCP 0.906±.022 0.596±.050 0.925±.017 0.734±.139 0.938±.011 5.24±1.45

MultiDimSPCI 0.917±.013 0.790±.341 0.919±.024 2.26±1.49 0.933±.015 47.7±52.5

CopulaCPTS 1.000±.000 22.3±19.0 1.000±.000 611.3±484.7 1.000±.000 3.50× 105±3.73×105

OT-CP 0.919±.033 0.904±.572 0.951±.025 23.9±20.9 0.883±.025 1.00× 103±622.8

CONTRA 0.919±.045 6.53±5.17 0.974±.016 4.12× 104±5.05×104 0.974±.016 4.12× 109±4.05×109

Local Ellipsoid 0.943±.028 0.952±.409 0.958±.015 3.58±2.18 0.961±.008 53.2±68.1

Empirical Copula 0.914±.023 0.597±.204 0.917±.021 1.21±.375 0.896±.042 7.38±2.04

Gaussian Copula 0.914±.023 0.622±.189 0.917±.021 1.54±.725 0.919±.019 17.0±4.48

LSTM

FCP 0.917±.061 0.884±.161 0.924±.024 5.72±.718 0.896±.065 848.4±229.2

MultiDimSPCI 0.948±.022 2.68±1.15 0.904±.040 41.9±46.8 0.839±.074 2.37× 103±2.16×103

CopulaCPTS 1.000±.000 45.7±45.4 1.000±.000 4.82× 103±3.73×103 1.000±.000 2.83× 107±3.28×107

OT-CP 0.909±.046 5.98±2.84 0.900±.029 188.1±106.3 0.978±.019 7.21× 104±3.49×104

CONTRA 0.730±.240 0.22±.202 0.696±.247 0.05±.023 0.761±.177 7.71±6.80

Local Ellipsoid 0.978±.043 7.40±4.25 1.000±.000 167.3±137.5 1.000±.000 1.28× 105±1.24×105

Empirical Copula 0.974±.042 10.6±5.93 1.000±.000 325.9±148.9 0.991±.017 2.38× 105±5.90×104

Gaussian Copula 0.978±.043 10.7±5.86 1.000±.000 331.4±131.8 0.991±.017 3.01× 105±1.17×105

Traffic

LOO Bootstrap

FCP 0.913±.026 0.613±.243 0.935±.010 0.453±.223 0.934±.039 1.03±.101
MultiDimSPCI 0.920±.008 1.01±.262 0.929±.011 1.48±.468 0.934±.006 2.92±.911
CopulaCPTS 1.000±.000 21.6±16.3 1.000±.000 645.8±645.5 1.000±.000 3.18× 105±4.80×105

OT-CP 0.921±.008 1.09±.269 0.927±.010 2.39±.915 0.914±.006 1.46× 103±588.0
CONTRA 0.892±.037 0.606±.325 0.902±.034 0.565±.317 0.849±.048 0.414±.309
Local Ellipsoid 0.927±.021 1.22±.391 0.942±.010 1.17±.391 0.945±.008 0.954±.376
Empirical Copula 0.915±.013 1.24±.296 0.930±.004 2.17±.399 0.931±.004 9.63±3.17

Gaussian Copula 0.915±.012 1.26±.294 0.934±.007 2.38±.501 0.936±.008 10.9±1.68

LSTM

FCP 0.953±.022 0.633±.148 0.945±.019 0.623±.058 0.923±.032 0.673±.298
MultiDimSPCI 0.914±.008 0.607±.255 0.914±.014 0.977±.388 0.913±.022 4.82±2.70

CopulaCPTS 1.000±.000 21.9±12.7 1.000±.000 330.0±219.4 0.999±.002 4.47× 105±4.25×105

OT-CP 0.894±.007 0.575±.238 0.875±.025 1.99±1.26 0.850±.042 356.5±322.9

CONTRA 0.889±.025 0.129±.050 0.860±.043 0.031±.020 0.809±.060 0.007±.006
Local Ellipsoid 0.915±.028 0.625±.262 0.899±.021 0.706±.325 0.871±.039 1.12±.341
Empirical Copula 0.908±.015 2.59±.383 0.912±.019 13.9±2.72 0.880±.020 515.2±105.7

Gaussian Copula 0.910±.017 2.62±.363 0.908±.017 13.3±2.69 0.874±.019 479.0±141.1

Solar

LOO Bootstrap

FCP 0.905±.014 0.589±.109 0.900±.010 1.67±.326 - -
MultiDimSPCI 0.930±.007 1.10±.068 0.942±.006 5.13±.435 - -
CopulaCPTS 1.000±.000 67.9±12.6 1.000±.000 7.25× 103±1.86×103 - -
OT-CP 0.936±.016 1.44±.440 0.928±.009 8.54±1.84 - -
CONTRA 0.889±.004 1.38±.506 0.878±.010 7.16±4.09 - -
Local Ellipsoid 0.897±.010 0.749±.064 0.885±.010 0.320±.059 - -
Empirical Copula 0.949±.007 1.98±.192 0.955±.005 7.87±.909 - -
Gaussian Copula 0.953±.005 2.12±.142 0.962±.004 9.66±.626 - -

LSTM

FCP 0.911±.051 0.673±.288 0.907±.016 0.535±.104 - -
MultiDimSPCI 0.938±.006 0.733±.066 0.937±.004 2.60±1.04 - -
CopulaCPTS 1.000±.000 44.8±9.88 1.000±.000 3.34× 103±570.7 - -
OT-CP 0.914±.011 0.585±.084 0.924±.019 10.6±5.80 - -
CONTRA 0.835±.021 0.112±.037 0.858±.017 0.034±.033 - -
Local Ellipsoid 0.921±.012 0.582±.055 0.934±.005 0.514±.250 - -
Empirical Copula 0.925±.005 2.98±.082 0.939±.010 17.3±4.44 - -
Gaussian Copula 0.939±.002 3.56±.203 0.964±.005 28.0±2.64 - -
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(b) LOO base predictor, dy = 4
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(c) LOO base predictor, dy = 8
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(d) LSTM base predictor, dy = 2
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(f) LSTM base predictor, dy = 8

Figure 3: Rolling coverage results on the wind dataset with rolling window size 20.

defined as:

R̂Ci =
1

m

m−1∑
j=0

1

{
yi−j ∈ Ĉi−j(zi−j , α)

}
, (127)

where m is a rolling window size. Figure 3 presents the rolling coverage of the test set with rolling
window size m = 20 on the wind dataset.

D.3 ABLATION STUDY

Ablation study on vector field under bi-Lipschitz flow assumption. Table 7 reports the average
empirical coverage and prediction set sizes of FCP with MLP and iResNet across the three datasets
with varying dy .
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Table 7: Average empirical coverage and prediction sets sizes obtained by FCP using MLP vector
field and iResNet vector field on three real-world datasets, evaluated under different base predictors
and varying outcome dimensions dy . Reported values represent the average and standard deviation
over five independent experiments. The target confidence level was set to 0.95. Results with average
empirical coverage below the target confidence level are grayed out, and the smallest prediction set
sizes, excluding the grayed-out results, are highlighted in bold.

Dataset Base Predictor Method dy = 2 dy = 4 dy = 8

Coverage Size Coverage Size Coverage Size

Wind
LOO Bootstrap FCP (MLP) 0.951±.018 0.88±.089 0.953±.006 3.43±1.37 0.956±.010 19.4±10.2

FCP (iResNet) 0.951±.021 1.14±.069 0.954±.014 1.79±.736 0.953±.018 14.8±22.5

LSTM FCP (MLP) 0.952±.054 1.18±.215 0.957±.022 10.8±1.05 0.953±.056 2.48 × 103
±669

FCP (iResNet) 0.957±.034 1.84±.279 0.957±.018 6.37±2.91 0.978±.015 2.55× 103±1.94×103

Traffic
LOO Bootstrap FCP (MLP) 0.957±.014 0.915±.119 0.953±.009 1.06±.431 0.965±.015 1.53±.161

FCP (iResNet) 0.950±.021 1.21±.084 0.959±.014 1.33±.118 0.970±.007 2.72±.215

LSTM FCP (MLP) 0.968±.022 0.859±.075 0.966±.022 1.05±.111 0.950±.010 1.82±.287
FCP (iResNet) 0.957±.024 0.788±.051 0.970±.010 1.31±.103 0.956±.016 2.50±.328

Solar
LOO Bootstrap FCP (MLP) 0.957±.007 1.48±.292 0.969±.003 4.18±.597 - -

FCP (iResNet) 0.952±.009 1.42±.166 0.956±.003 2.69±.196 - -

LSTM FCP (MLP) 0.968±.009 1.16±.092 0.961±.008 2.09±.566 - -
FCP (iResNet) 0.955±.005 1.24±.076 0.955±.008 2.42±.276 - -
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