

FLOW-BASED CONFORMAL PREDICTION FOR MULTI-DIMENSIONAL TIME SERIES

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

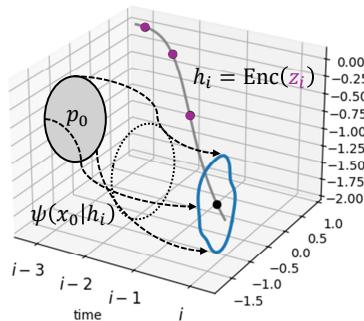
ABSTRACT

011 Time series prediction underpins a broad range of downstream tasks across many
012 scientific domains. Recent advances and increasing adoption of black-box machine
013 learning models for time series prediction highlight the critical need for
014 reliable uncertainty quantification. While conformal prediction has gained attention
015 as a reliable uncertainty quantification method, conformal prediction for time
016 series faces two key challenges: (1) adaptively leveraging correlations in features
017 and non-conformity scores to overcome the exchangeability assumption, and (2)
018 constructing prediction sets for multi-dimensional outcomes. To address these
019 challenges jointly, we propose a novel conformal prediction method for time
020 series using flow with classifier-free guidance. We provide coverage guarantees by
021 establishing exact non-asymptotic marginal coverage and a finite-sample bound
022 on conditional coverage for the proposed method. Evaluations on real-world time
023 series datasets demonstrate that our method constructs significantly smaller pre-
024 diction sets than existing conformal prediction methods while maintaining target
025 coverage.

1 INTRODUCTION

026 Uncertainty quantification has become essential in scientific fields where black-box machine learning
027 models are widely deployed (Angelopoulos & Bates, 2021). Conformal prediction (CP) has
028 emerged as a reliable, distribution-free framework for uncertainty quantification that constructs pre-
029 diction sets with coverage guarantees, ensuring they contain the true outcome with a specified con-
030 fidence level (Shafer & Vovk, 2008; Vovk et al., 2005). By constructing uncertainty sets using
031 non-conformity scores that quantify how atypical predictions are, CP generates reliable prediction
032 sets that satisfy a specified confidence level.

033 Time series prediction aims to forecast future out-
034 comes based on past sequential observations of fea-
035 tures (Box et al., 2015), and underpins a broad
036 range of downstream tasks. Recent advances in ma-
037 chine learning have led to the development of vari-
038 ous foundation models designed for time series pre-
039 diction (Kim et al., 2025; Miller et al., 2024; Wen
040 et al., 2023). The growing adoption of such mod-
041 els for time series prediction highlights the press-
042 ing need for reliable uncertainty quantification. Al-
043 though CP has been actively studied for reliable un-
044 certainty quantification, most existing CP methods
045 rely on the assumption of data exchangeability (Bar-
046 ber et al., 2023). The exchangeability assumption is
047 frequently violated in time series data, where obser-
048 vations exhibit complex temporal dependencies that
049 induce correlations in the non-conformity scores,
050 thereby making the direct application of CP to time
051 series prediction particularly challenging. An ad-
052 dditional challenge is that modern time series data
053 often contain high-dimensional features and multi-



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337

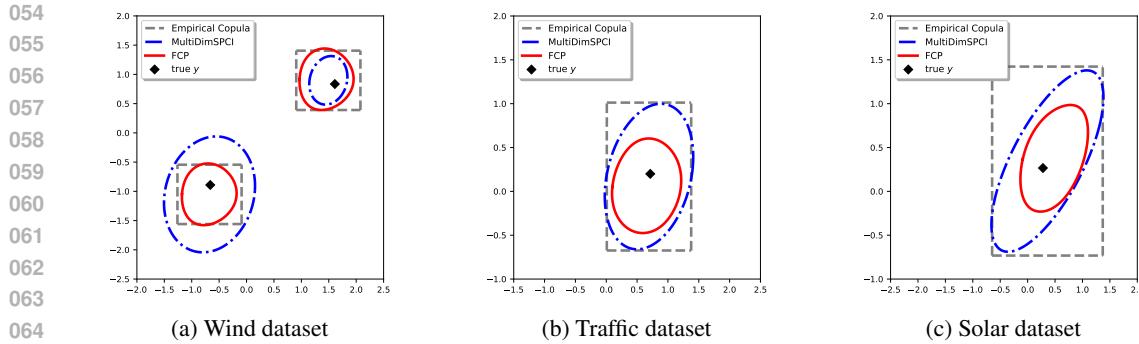


Figure 2: Comparison of the prediction sets at a target coverage of 0.95, constructed by FCP (ours), MultiDimSPCI (Xu et al., 2024), and conformal prediction using empirical copula (Messoudi et al., 2021) on (a) wind, (b) traffic, and (c) solar datasets. Prediction sets are manually selected from the test set for visual clarity. Two prediction sets are shown for the wind dataset.

dimensional outcomes. While CP methods for univariate outcomes are well-established, extending these methods to generate prediction sets for multi-dimensional outcomes is not straightforward and requires careful consideration in constructing prediction sets.

There has been substantial effort to extend CP beyond the exchangeability assumption. One line of research focuses on addressing distribution shifts in the data (Barber et al., 2023; Tibshirani et al., 2019). More recently, several works have developed CP methods for time series. For example, Xu & Xie (2021a) proposed a method to construct sequential prediction intervals for time series based on a bootstrap ensemble estimator, which were later extended to incorporate conditional quantile estimation in order to exploit correlations in non-conformity scores (Xu & Xie, 2023b). Auer et al. (2024) used modern Hopfield networks to capture temporal dependencies by reweighting samples, and constructed prediction intervals based on these reweighting. Another line of work have proposed multi-step conformal prediction methods for time series, but they assume access to multiple i.i.d. sequences of time series (Stankeviciute et al., 2021; Sun & Yu, 2022), which may limit their applicability in general practical settings. Despite these efforts, existing methods remain limited to univariate outcomes or assume access to multiple i.i.d. time series.

Constructing prediction sets for multi-dimensional outcomes has been an active area of research. Early approaches used copulas (Messoudi et al., 2021) and ellipsoidal uncertainty sets (Henderson et al., 2024; Johnstone & Ndiaye, 2022; Messoudi et al., 2022), yielding hyper-rectangular and ellipsoidal prediction sets, respectively. Subsequent research has aimed to move beyond specific geometric shapes of prediction sets: Braun et al. (2025) formulated structured non-convex optimization to obtain minimum-volume sets; and Tumu et al. (2024) used convex templates for prediction sets. Recent works have focused on transporting multi-dimensional non-conformity scores to a reference distribution from which prediction sets can be constructed. For example, Klein et al. (2025) and Thurin et al. (2025) used Monge–Kantorovich ranks (Chernozhukov et al., 2017; Hallin et al., 2021) to map multi-dimensional non-conformity scores onto a reference distribution to construct prediction sets, by solving optimal transport problems. Fang et al. (2025) applied conditional normalizing flows to map multi-dimensional non-conformity scores to the source distribution and construct prediction sets using a calibration set with the source distribution.

Consequently, an effective CP method for time series prediction must address the two aforementioned challenges simultaneously: leveraging correlations in both features and non-conformity scores, and constructing prediction sets for multi-dimensional outcomes. To the best of our knowledge, Xu et al. (2024) is the only work that seeks to address both challenges jointly, constructing ellipsoidal prediction sets by defining non-conformity scores as the radii of ellipsoidal sets and predicting these non-conformity scores conditionally.

In this work, we propose a novel conformal prediction method designed for time series prediction with multi-dimensional outcomes. Our method is designed to effectively address the aforementioned two challenges by using flow with classifier-free guidance. Specifically, we use flow to model the distribution of prediction residuals and their transformations conditioned on historical context, which is encoded by using Transformer. We define the non-conformity score as the Euclidean distance between the transformed prediction residual and the mean of a Gaussian source distribution

108 of the flow, which allows us to construct prediction sets at a desired confidence level. We pro-
 109 vide theoretical coverage guarantees by establishing an exact non-asymptotic marginal coverage
 110 and a finite-sample bound on conditional coverage for the proposed method. Empirical evaluations
 111 on three real-world multi-dimensional time series datasets demonstrate that the proposed method
 112 constructs significantly smaller prediction sets while maintaining target coverage, outperforming
 113 existing baselines.

115 2 PROBLEM SETUP

117 We consider a sequence of observations $\{(x_i, y_i) : i = 1, 2, \dots\}$, where $x_i \in \mathbb{R}^{d_x}$ represents d_x -
 118 dimensional feature, and $y_i \in \mathbb{R}^{d_y}$ represents d_y -dimensional continuous outcome. We assume
 119 that we have a base predictor \hat{f} that provides a point prediction \hat{y}_i for y_i , given by $\hat{y}_i = \hat{f}(x_{(i-k):i})$,
 120 where k specifies the size of the past observation window. The base predictor \hat{f} can be any black-box
 121 model and is not restricted to any specific constraints.

123 Suppose that the first T examples, $\{(x_i, y_i)\}_{i=1}^T$, are used for training. Our goal is to sequentially
 124 construct a prediction set $\hat{C}_i(z_i, \alpha)$ for the next step, beginning at time $i = T + 1$. Here, z_i denotes
 125 the features used to construct \hat{C}_i , and $\alpha \in [0, 1]$ denotes a pre-specified significance level. In the
 126 simplest setting, z_i consists only of x_i , but it may also include past features or non-conformity
 127 scores. We aim to construct prediction sets that satisfy *marginal coverage*:

$$128 \quad 129 \quad \mathbb{P}\left(y_i \in \hat{C}_i(z_i, \alpha)\right) \geq 1 - \alpha, \quad \forall i, \quad (1)$$

130 and ideally *conditional coverage*:

$$132 \quad 133 \quad \mathbb{P}\left(y_i \in \hat{C}_i(z_i, \alpha) \mid z_i\right) \geq 1 - \alpha, \quad \forall i. \quad (2)$$

134 Although trivially large prediction sets can always satisfy the target coverage, they do not provide
 135 useful information for uncertainty quantification. Therefore, the meaningful objective is to construct
 136 efficient prediction sets—the prediction sets that are as small as possible while satisfying the target
 137 coverage (Vovk et al., 2005).

138 Throughout this paper, we distinguish between the indices i and t to avoid confusion: the subscript
 139 i refers to the discrete time index of the sequence of observations, while the subscript t is reserved
 140 to refer to continuous time in ODEs. We use uppercase letters (e.g., X) to denote random variables
 141 and lowercase letters (e.g., x) to denote their realizations.

143 3 METHOD

145 3.1 PRELIMINARY: GUIDED FLOW

147 We use x as a generic variable in this section, distinct from the time series feature x_i introduced in
 148 the problem setup. A flow is a time-dependent mapping $\psi : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ that push-forward
 149 a random variable $X_0 \in \mathbb{R}^d$ from a source distribution p_0 to $X_t \in \mathbb{R}^d$ from a time-dependent
 150 probability density (i.e., probability path) p_t for time $t \in [0, 1]$ as follows:

$$151 \quad 152 \quad ([\psi_t]_* p_0)(x_t) = p_0(\psi_t^{-1}(x_t)) \left| \det \frac{\partial \psi_t^{-1}}{\partial x_t}(x_t) \right|, \quad (3)$$

154 where $*$ denotes the push-forward operator, $\det(\cdot)$ denotes the determinant, and $\psi_t(x) := \psi(t, x)$.
 155 Flow ψ is defined by a vector field $u : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ through the following ordinary differential
 156 equation (ODE):

$$157 \quad 158 \quad \frac{d}{dt} \psi_t(x_0) = u_t(\psi_t(x_0)), \quad \text{(flow ODE)} \\ 159 \quad \psi_0(x_0) = x_0. \quad \text{(initial condition)} \quad (4)$$

160 A guided flow $\psi_{t|h} : [0, 1] \times \mathbb{R}^d \times \mathbb{R}^{d_h} \rightarrow \mathbb{R}^d$ enables conditional generation by learning a mapping
 161 from a source distribution to a target conditional distribution, and is defined by a guided vector field

162 $u_{t|h} : [0, 1] \times \mathbb{R}^d \times \mathbb{R}^{d_h} \rightarrow \mathbb{R}^d$ with the following ODE:
 163

$$\begin{aligned} 164 \quad & \frac{d}{dt} \psi_{t|h}(x_0 | h) = u_{t|h}(\psi_{t|h}(x_0 | h) | h), & \text{(guided flow ODE)} \\ 165 \quad & \psi_{t=0|h}(x_0 | h) = x_0, & \text{(initial condition)} \end{aligned} \quad (5)$$

167 where $h \in \mathbb{R}^{d_h}$ denotes the guidance. By appropriately designing a conditional probability path per
 168 sample x_1 interpolating $p_{0|x_1}(x | x_1) = p_0$ and $p_{1|x_1}(x | x_1) = \delta_{x_1}$, where δ_{x_1} denoting the Dirac
 169 delta distribution centered at x_1 , we can obtain the marginal guided probability path:
 170

$$171 \quad p_{t|h}(x | h) = \int p_{t|x_1}(x | x_1) q(x_1 | h) dx_1, \quad (6)$$

173 which interpolates the source distribution p_0 and the target conditional distribution $q(x_1 | h)$. Given
 174 the conditional vector field $u_{t|x_1}$ that generates each conditional path $p_{t|x_1}$, the marginal guided
 175 vector field is obtained as:
 176

$$177 \quad u_{t|h}(x | h) = \int u_{t|x_1}(x | x_1) \frac{p_{t|x_1}(x | x_1) q(x_1 | h)}{p_{t|h}(x | h)} dx_1. \quad (7)$$

178 One can verify the marginal guided vector field generates the marginal guided probability path using
 179 the *continuity equation* (see Proposition A.1). Therefore, in order to learn the target conditional
 180 distribution, we parameterize the guided vector field with neural networks and train it to approximate
 181 the marginal guided vector field as closely as possible. A simple and effective way to train the
 182 guided vector field is through flow matching, which minimizes the mean-squared error between the
 183 conditional guided vector field and the parameterized guided vector field (Lipman et al., 2022):
 184

$$185 \quad \mathcal{L}_{\text{CFM}} = \mathbb{E}_{t, (x_1, h)} \left[\left\| u_{t|h}^\theta(x | h) - u_{t|x_1}(x | x_1) \right\|^2 \right], \quad (8)$$

187 where $t \sim \text{Unif}[0, 1]$, $(x_1, h) \sim q_{\text{data}}$, and $u_{t|h}^\theta$ is the parameterized guided vector field with param-
 188 eters θ .

189 We consider Gaussian conditional probability path defined as $p_{t|x_1}(x | x_1) = \mathcal{N}(x | \alpha_t x_1, \sigma_t^2 I_d)$,
 190 where \mathcal{N} denotes the Gaussian kernel and $I_d \in \mathbb{R}^{d \times d}$ denotes the identity matrix. $\alpha_t, \sigma_t : [0, 1] \rightarrow$
 191 $[0, 1]$ are interpolating scheduler, which are smooth functions satisfying $\alpha_0, \sigma_1 = 0$, $\alpha_1, \sigma_0 = 1$, and
 192 $\frac{d}{dt} \alpha_t - \frac{d}{dt} \sigma_t > 0$ for $t \in (0, 1)$. The guided vector field $u_{t|h}(x | h)$ can be reformulated as:
 193

$$194 \quad u_{t|h}(x | h) = u_t(x) + b_t \nabla_x \log p_{h|t}(h | x), \quad (9)$$

195 where $u_t(x)$ is unguided vector field, b_t is a scalar constant regarding α_t and σ_t (see Proposition
 196 A.2). Based on this reformulation, early approaches trained a separate classifier (Song et al.,
 197 2020) with a classifier scale $w > 1$ is beneficial in conditional generation in practice (Dhariwal &
 198 Nichol, 2021):

$$199 \quad \tilde{u}_{t|h}(x | h) = u_t(x) + w b_t \nabla_x \log p_{h|t}(h | x). \quad (10)$$

200 By using the identity $\nabla_x \log p_{t|h}(x | h) = \nabla_x \log p_t(x) + \nabla_x \log p_{h|t}(h | x)$, equation (10) can be
 201 equivalently rewritten as:
 202

$$203 \quad \tilde{u}_{t|h}(x | h) = (1 - w) u_t(x) + w u_{t|h}(x | h). \quad (11)$$

204 Instead of modeling $u_t(x)$ and $u_t(x | h)$ separately, Ho & Salimans (2022) proposed using a single
 205 vector field to model both cases by assigning a null condition h_\emptyset to represent the unguided vector
 206 field, which is known as classifier-free guidance (CFG):
 207

$$208 \quad \tilde{u}_{t|h}(x | h) = (1 - w) u_{t|h}(x | h_\emptyset) + w u_{t|h}(x | h), \quad (12)$$

209 where h_\emptyset denotes the guidance representing the unguided state of the vector field. The guided vector
 210 field can be trained using flow matching with the loss:
 211

$$212 \quad \mathcal{L}_{\text{CFM}}^{\text{CFG}} = \mathbb{E}_{t, \eta, (x_1, h)} \left[\left\| u_{t|h}^\theta(x | (1 - \eta)h + \eta h_\emptyset) - u_{t|x_1}(x | x_1) \right\|^2 \right], \quad (13)$$

213 where $\eta \sim \text{Bernoulli}(p_\emptyset)$ and p_\emptyset denotes the probability of assigning h_\emptyset . The resulting guided
 214 vector field $\tilde{u}_{t|h}(x | h)$ in equation (12) enables conditional generation by solving the guided flow
 215 ODE and has been widely used in various tasks such as image generation (Esser et al., 2024) and
 video generation (Polyak et al., 2025).

216

Algorithm 1: Training Guided Flow using Flow Matching

217

Input: p_θ , initialized $u_{t|h}^\theta$ and Enc^θ

218

while not converged **do**

219

$\hat{\epsilon}_i \leftarrow y_i - \hat{y}_i$	▷ obtain prediction residuals
$h_i \leftarrow \text{Enc}^\theta(z_i)$	▷ obtain contextual representation
$h_\theta \leftarrow h_\theta$ with probability p_θ	▷ assign unguided state with probability p_θ
$x_0 \sim p_0(x)$	
$t \sim \text{Unif}(0, 1)$	
$x_t \leftarrow \alpha_t \hat{\epsilon}_i + \sigma_t x_0$	
$u_{t \hat{\epsilon}} \leftarrow \frac{d}{dt} \alpha_t \hat{\epsilon}_i + \frac{d}{dt} \sigma_t x_0$	
Update with $\nabla_\theta \ u_{t h}^\theta(x_t, h_i) - u_{t \hat{\epsilon}}\ ^2$	▷ flow matching loss

220

Output: trained $u_{t|h}^\theta$ and Enc^θ

221

222

223

3.2 CONFORMAL PREDICTION FOR TIME SERIES USING GUIDED FLOW

224

We use guided flow to learn a mapping from the source distribution to the distribution of prediction residual $\hat{\epsilon} = y - \hat{y}$, conditioned on past features and residuals. The prediction set is then defined through this transformation using guided flow to achieve the target coverage. This construction effectively addresses the two aforementioned key challenges in conformal prediction for time series. First, the guided flow explicitly captures correlations among past features and residuals by using them as guidance. Second, since the transformation using the guided flow can be defined between random variables in arbitrary dimensions, it enables the generation of prediction sets for multi-dimensional outcomes in any \mathbb{R}^{d_y} . Figure 1 provides a visual illustration of the method. We describe the method in detail in this section.

225

Guided flow design. We use Gaussian probability path with interpolating scheduler $a_t = t$ and $\sigma_t = (1 - t)$. The source distribution is set to an isotropic Gaussian with zero mean and covariance scale $\gamma > 0$, i.e., $\mathcal{N}(0, \gamma I_{d_y})$. For each time index i , we construct z_i by concatenating the past w features and prediction residuals, and use an encoder to obtain a contextual representation $h_i = \text{Enc}(z_i)$. The classifier-free guided vector field as defined in equation (12) uses h_i as the guidance to model the conditional distribution of $\hat{\epsilon}_i$. In our method, we use Transformer as the encoder (Vaswani et al., 2017), though alternative sequence models such as recurrent neural networks (RNNs) are also applicable. The guided vector field is trained via flow matching as defined in equation (13), and the encoder is jointly trained with it. The overall training procedure is summarized in Algorithm 1.

226

Prediction set. The trained guided flow models the conditional distribution of the prediction residual by mapping samples from the source Gaussian distribution to residuals conditioned on the guidance h_i . Since this transformation is bijective, we can define prediction sets for the residuals directly through the transformation. Let $\hat{e}_i(y) := \|\psi_{t=1|h}^{-1}(\hat{\epsilon} | h_i)\|$ be the Euclidean distance between the transformed residual and the origin, then the prediction set at significance level α can be defined as:

227

$$\hat{C}_i(z_i, \alpha) = \{y : \hat{e}_i(y) \leq r_{1-\alpha}\}, \quad (14)$$

228

where $r_{1-\alpha}$ is the radius of the ball $\mathcal{B}_{1-\alpha}$ that contains $1 - \alpha$ probability mass. Since we use $\mathcal{N}(0, \gamma I_{d_y})$ as the source distribution, the radius $r_{1-\alpha}$ is given by $r_{1-\alpha} = \sqrt{\gamma} \chi_{d_y}^{-1}(1-\alpha)$, where $\chi_{d_y}^{-1}$ denotes the inverse cumulative distribution function (CDF) of the chi distribution with d_y degrees of freedom. Intuitively, the prediction set is obtained by taking the ball that contains the same amount of probability mass as the target coverage and transforming it to the prediction set for the residual using the guided flow. Although this construction directly uses $\hat{e}(y)$ to construct the prediction set, $\hat{e}(y)$ is computed from the transformed residual and therefore serves as a proxy non-conformity score, consistent with treating residuals as non-conformity scores.

229

Since the prediction set is obtained through the transformation using the guided flow, it can take on flexible shapes without being constrained to follow any fixed geometric form, such as convex or ellipsoidal sets. We believe this enables the guided flow to generate smaller prediction sets that are better aligned with the data and the guidance. Although the prediction sets do not have any fixed geometric shape, some useful topological properties can still be inferred. In particular, Theorem A.4

ensures that the prediction sets are closed and connected. Figure 2 shows prediction sets in \mathbb{R}^2 generated by our proposed method alongside two other methods that produce hyper-rectangular prediction sets (Messoudi et al., 2021) and ellipsoidal prediction sets (Xu et al., 2024). The figure visually demonstrates the flexible shapes of the prediction sets constructed by our proposed method.

The size of the prediction set is computed as:

$$\int_{\mathcal{B}_\alpha} |\det(J_{\psi_{t=1|h}}(x | h))| dx \approx \text{Size}(\mathcal{B}_\alpha) \frac{1}{N} \sum_{j=1}^N |\det(J_{\psi_{t=1|h}}(x_j | h))|, \quad (15)$$

where ψ_1 represents the flow transformation from $t = 0$ to $t = 1$, and $J_{\psi_1}(x | h)$ denotes the Jacobian of ψ_1 at $x \in \mathcal{B}_\alpha$ conditioned on h . The right-hand side provides a Monte Carlo approximation, where x_j are i.i.d. samples drawn from \mathcal{B}_α and N is the number of samples. However, directly computing $\det(J_{\psi_1}(x | h))$ is computationally expensive, as it requires solving the guided flow ODE and evaluating the full Jacobian matrix. Instead, we can compute the log-determinant of the Jacobian by solving the following ODE:

$$\begin{aligned} \frac{d}{dt} \log |\det J_{\psi_{t|h}}(x | h)| &= \text{div}(u_{t|h}(\psi_{t|h}(x | h) | h)), & (\text{Jacobian ODE}) \\ \log |\det(J_{\psi_{t=0|h}}(x | h))| &= 0, & (\text{initial condition}) \end{aligned} \quad (16)$$

where $\text{div}(\cdot)$ denotes the divergence operator. A detailed derivation is provided in Proposition A.3. The accuracy of the prediction set size estimate depends on the Monte Carlo approximation. Purely random sampling from \mathcal{B}_α may introduce bias due to uneven coverage of the sampling space, and a small sample size N can result in high variance. To reduce sampling bias, we use quasi-Monte Carlo sampling based on Sobol sequences (Sobol, 1967; Owen, 2023), which provides more uniform sampling from \mathcal{B}_α . To control variance from finite sampling, we monitor the relative error in terms of sample size N . Additional implementation details are provided in the experiment section.

4 THEORY

In this section, we present exact non-asymptotic marginal coverage and a finite-sample bound on conditional coverage. We assume that $y_i \in \mathbb{R}^{d_y}$ is generated from an unknown true function f with additive noise $\epsilon_i \in \mathbb{R}^{d_y}$ according to $y_i = f(x_{(i-k):i}) + \epsilon_i$. Proofs are presented in Appendix A.

4.1 MARGINAL COVERAGE

We first establish that prediction sets generated by our method achieve exact non-asymptotic marginal coverage. This result follows from a fundamental property of flow: probability mass preservation under push-forward operations. When any measurable set is transformed through the push-forward operation of a flow, its probability mass is preserved. Lemma 4.3 formalizes this property and suffices to prove the exact non-asymptotic marginal coverage stated in Proposition 4.4.

Assumption 4.1 (Flow existence and uniqueness). The guided vector field $u_t(x | h)$ is continuously differentiable and Lipschitz continuous in x for all t and h . That is, there exists a constant $L_u > 0$ such that

$$\|u_t(x | h) - u_t(x' | h)\| \leq L_u \|x - x'\|, \quad \forall t, h, x, x'. \quad (17)$$

Remark 4.2. Assumption 4.1 ensures the existence and uniqueness of solutions of the guided flow ODE. In practice, the guided vector field can be modeled using neural network architectures that satisfy this assumption, such as multi-layer perceptrons (MLP) with smooth activation functions.

Lemma 4.3 (Probability mass preserving property of flows). *Let $X \sim p_X$ be a continuous random variable on \mathbb{R}^d , and let $\psi : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be a C^1 diffeomorphism. Define $Y := \psi(X)$ with density p_Y given by the push-forward of p_X under ψ . Then, for any measurable set $\mathcal{A} \subset \mathbb{R}^d$, the transformed set $\mathcal{A}' := \psi(\mathcal{A})$ satisfies:*

$$\mathbb{P}(X \in \mathcal{A}) = \mathbb{P}(Y \in \mathcal{A}') \quad (18)$$

Proposition 4.4 (Marginal coverage). *Let $\alpha \in (0, 1)$ be a pre-specified significance level. Under Assumption 4.1, suppose the guided flow provides a sufficiently accurate approximation of the target distribution from the source distribution. If the ball $\mathcal{B}_{1-\alpha}$ defining the prediction set in equation (14) has probability mass $1 - \alpha$, then the prediction set achieves exact marginal coverage of $1 - \alpha$.*

324 4.2 CONDITIONAL COVERAGE
325

326 We next establish a finite-sample bound on conditional coverage. We define the non-conformity
327 score based on the prediction residual as $\hat{e}_i = \|\psi^{-1}(\hat{\epsilon}_i \mid h_i)\|$, and the non-conformity score based
328 on the true noise as $e_i = \|\psi^{-1}(\epsilon_i \mid h_i)\|$. The guided flow ψ is trained on the training set until
329 convergence and then fixed for computing e and \hat{e} . The empirical CDF of \hat{e} and e are defined as:

$$330 \hat{F}_{T+1}(u) = \frac{1}{T} \sum_{i=1}^T \mathbb{1}\{\hat{e}_i \leq u\}, \quad \tilde{F}_{T+1}(u) = \frac{1}{T} \sum_{i=1}^T \mathbb{1}\{e_i \leq u\}. \quad (19)$$

333 We denote $F_e(u) = \mathbb{P}(e \leq u)$ as the CDF of the true non-conformity scores. Since the source dis-
334 tribution of the guided flow in our method is set to be identical across time, the marginal distribution
335 for e_i can be considered to be identical for all i . However, while the marginal distribution of e_i is
336 identical for all i , they may exhibit dependence through h_i . Therefore, we consider two settings: (1)
337 when $\{e_i\}_{i=1}^{T+1}$ are i.i.d., and (2) when $\{e_i\}_{i=1}^{T+1}$ are stationary and strongly mixing. We first establish
338 a finite-sample bound on conditional coverage under the assumption of i.i.d. non-conformity scores.

339 **Assumption 4.5** (i.i.d. non-conformity scores). The true non-conformity scores $\{e_i\}_{i=1}^T$ are i.i.d.

340 **Assumption 4.6** (Bi-Lipschitz flow). We assume that the guided flow $\psi_t(x \mid h)$ is bi-Lipschitz
341 continuous in x for all t and h . That is, there exist constants $L_\psi > 0$ and $L_{\psi^{-1}} > 0$, such that

$$342 \|\psi_t(x \mid h) - \psi_t(x' \mid h)\| \leq L_\psi \|x - x'\|, \quad \forall t, h, x, x', \quad (20)$$

344 and

$$345 \|\psi_t^{-1}(x \mid h) - \psi_t^{-1}(x' \mid h)\| \leq L_{\psi^{-1}} \|x - x'\|, \quad \forall t, h, x, x'. \quad (21)$$

346 *Remark 4.7.* Lemma A.8 shows that bi-Lipschitz guided vector field results in bi-Lipschitz guided
347 flow. Therefore, the vector field $u_t(x \mid h)$ can be modeled using neural network architec-
348 tures that satisfy this assumption. For example, one can use invertible Residual Networks (iRes-
349 Net) (Behrmann et al., 2019; Chen et al., 2019) with smooth activation functions.

350 **Assumption 4.8** (Lipschitz continuous of the CDF of the true non-conformity scores). Assume that
351 $F_e(u)$ is Lipschitz continuous with Lipschitz constant $L_{T+1} > 0$, and that F_e is strictly increasing
352 in u .

353 **Assumption 4.9** (Estimation quality). Define $\Delta_i = \hat{e}_i - e_i$. There exists a sequence $\{\delta_T\}_{T \geq 1}$ such
354 that

$$355 \frac{1}{T} \sum_{i=1}^T \|\Delta_i\|^2 \leq \delta_T^2, \quad \|\Delta_{T+1}\| \leq \delta_T. \quad (22)$$

357 As a result of Lemma A.10 and A.15, Theorem 4.10 establishes the finite-sample bound for condi-
358 tional coverage under i.i.d. non-conformity scores.

360 **Theorem 4.10** (Conditional coverage bound under i.i.d. non-conformity scores). *Under Assump-
361 tion 4.5, 4.6, 4.8, and 4.9, suppose the guided flow provides a sufficiently accurate approximation of
362 the target distribution from the source distribution. With probability $1 - \delta$, we have:*

$$363 \begin{aligned} 364 & \left| \mathbb{P}(Y_{T+1} \in \hat{C}_{T+1}^\alpha \mid Z_{T+1} = z_{T+1}) - (1 - \alpha) \right| \\ 365 & \leq 12 \sqrt{\frac{\log(16T)}{T}} + 4(L_{T+1} + \frac{1}{2})(2C + \delta_T). \end{aligned} \quad (23)$$

368 **Assumption 4.11** (Strictly stationary and strongly mixing non-conformity scores). Assume that
369 the sequence $\{e_i\}_{i=1}^T$ is strictly stationary and strongly mixing, with mixing coefficients satisfying
370 $0 < \sum_{k>0} \alpha(k) < M < \infty$.

371 **Corollary 4.12** (Conditional coverage bound under stationary and strongly mixing non-conformity
372 scores). *4.6, 4.8, 4.9, and 4.11, suppose the guided flow provides a sufficiently accurate approxima-
373 tion of the target distribution from the source distribution. With probability $1 - \delta$, we have:*

$$374 \begin{aligned} 375 & \left| \mathbb{P}(Y_{T+1} \in \hat{C}_{T+1}^\alpha \mid Z_{T+1} = z_{T+1}) - (1 - \alpha) \right| \\ 376 & \leq 12 \frac{(\frac{M}{2})^{1/3} (\log T)^{2/3}}{T^{1/3}} + 4(L_{T+1} + \frac{1}{2})(2C + \delta_T). \end{aligned} \quad (24)$$

378 The bounds in Theorem 4.10 and Corollary 4.12 depend on the sample size T and the estimation
 379 error δ_T . Both bounds converge to $1 - \alpha$ as $T \rightarrow \infty$, provided that $\delta_T = \mathcal{O}(T^{-a})$ for some $a > 0$.
 380 Intuitively, with sufficiently large training data and an accurate base predictor \hat{f} , the conditional
 381 coverage is guaranteed. The condition on δ_T can be satisfied by a broad class of estimators. For
 382 example, sieve estimators based on general neural networks achieve $\delta_T = o_p(T^{-1/4})$ when f is
 383 sufficiently smooth (Chen & White, 1999). The Lasso estimator and Dantzig selector achieve $\delta_T =$
 384 $o_p(T^{-1/2})$ when f is a sparse high-dimensional linear model (Bickel et al., 2009).
 385

386 5 EXPERIMENTS

389 For notational convenience, we refer to our method as FCP, which stands for Flow-based Conformal
 390 Prediction. We use MLP with Softplus activation to model the guided vector field and concate-
 391 nate the guidance and time with the input for the MLP. `dopr15` (Dormand & Prince, 1980)
 392 at absolute and relative tolerances of 1e-5 is used to solve all ODEs. A grid search is con-
 393 ducted to select the optimal hyperparameters for FCP. To determine an appropriate sample size
 394 N , we compute the relative standard error (SE) of the Jacobian determinants of ψ , defined as
 395 $\text{SE} \left(\{\det J_\psi(x_j | h)\}_{j=1}^N \right) / \text{Avg} \left(\{\det J_\psi(x_j | h)\}_{j=1}^N \right)$, then choose the smallest N such that the
 396 average relative SE across all h falls below 0.01. The source code for FCP is available at
 397 [anonymous_url](#).

398 **Baselines.** We evaluate FCP against several conformal prediction methods covering various ex-
 399 isting approaches: MultiDimSPCI (Xu et al., 2024), OT-CP (Thurin et al., 2025), CONTRA (Fang
 400 et al., 2025), conformal prediction using local ellipsoids (Messoudi et al., 2022), CopulaCPTS (Sun
 401 & Yu, 2022), and conformal prediction using empirical and Gaussian copulas (Messoudi et al.,
 402 2021). We also include two widely used probabilistic time series forecasting methods as baselines:
 403 Temporal Fusion Transformer (TFT) (Lim et al., 2021) and DeepAR (Salinas et al., 2020). Although
 404 TFT and DeepAR are originally developed for time series with univariate outcomes, we adapt them
 405 to our multi-dimensional setting by constructing independent copulas using the predicted intervals
 406 for each output dimension. Additional details and setup of the baselines are provided in Appendix B.
 407

408 **Datasets and base predictor.** We evaluated FCP and baselines on three real-world time series
 409 datasets: wind, traffic, and solar datasets. For the wind and traffic datasets, we randomly selected
 410 $d_y \in \{2, 4, 8\}$ locations to construct five sequences of d_y -dimensional time series. For the solar
 411 dataset, we use $d_y \in \{2, 4\}$ and similarly construct five sequences. Additional dataset details are
 412 provided in Appendix C. Base predictor \hat{f} is required to provide a point prediction \hat{y} . We used
 413 two types of base predictors for each dataset: (1) leave-one-out (LOO) bootstrap ensemble of 15
 414 multivariate linear regressors, and (2) recurrent neural network (RNN) with long short-term mem-
 415 ory (LSTM) units (Hochreiter & Schmidhuber, 1997). Since the RNN base predictor requires part
 416 of the sequence for training, whereas the LOO bootstrap predictor can leverage the full sequence,
 417 the effective sequence length available for evaluation varies by predictor. Each base predictor was
 418 trained independently for every sequence. For the RNN base predictor, the first 50% of each se-
 419 quence was allocated for training, and predictions were made for the remaining 50%, which served
 420 as the evaluation sequence. Within this evaluation sequence, the first 80% was used as a training
 421 set, and the final 20% was evenly divided into validation and test sets. Since FCP does not require
 422 a calibration set to construct prediction sets, the validation set was used for model selection during
 423 training. To ensure fair evaluation in terms of data utilization, we combined the training and vali-
 424 dation sets into a single calibration set for methods that require a calibration set. The specific data
 425 utilization scheme for each baseline is detailed Appendix B.
 426

427 **Evaluation metrics.** Efficient prediction sets are those that are as small as possible while satis-
 428 fying the desired coverage. Therefore, we use two evaluation metrics: empirical coverage and the
 429 average prediction set size. The empirical coverage at a target confidence level α is defined as:

$$430 \quad \frac{1}{|\mathcal{D}_{\text{test}}|} \sum_{\{z_i, y_i\} \in \mathcal{D}_{\text{test}}} \mathbb{1} \left(y_i \in \hat{C}_i(z_i, \alpha) \right), \quad (25)$$

432
433
434
435436
437
438
439
440
441
Table 1: Average empirical coverage and prediction sets sizes obtained by FCP and all baselines on
three real-world datasets, evaluated under different base predictors and varying outcome dimensions
 d_y . Reported values represent the average and standard deviation over five independent experiments.
The target confidence level was set to 0.95. Results with average empirical coverage below the
target confidence level are grayed out, and the smallest prediction set sizes, excluding the grayed-
out results, are highlighted in bold.

442

Dataset	Base Predictor	Method	$d_y = 2$		$d_y = 4$		$d_y = 8$	
			Coverage	Size	Coverage	Size	Coverage	Size
LOO Bootstrap		FCP	0.951 \pm .018	0.88 \pm .089	0.953 \pm .006	3.43 \pm .137	0.956 \pm .010	19.4 \pm .10.2
		MultiDimSPCI	0.953 \pm .016	1.31 \pm .524	0.950 \pm .018	6.39 \pm .390	0.954 \pm .024	205.5 \pm .161.5
		CopulaCPTS	1.0 \pm .000	22.3 \pm .19.0	1.0 \pm .000	611.3 \pm .484.7	1.0 \pm .000	3.50 \times 10 ⁹ \pm 3.73 \times 10 ⁸
		OT-CP	0.964 \pm .016	2.71 \pm .154	0.958 \pm .015	42.3 \pm .38.4	0.927 \pm .027	1.28 \times 10 ² \pm 7.13
		CONTRA	0.979 \pm .024	32.9 \pm .25.8	1.000 \pm .000	7.89 \times 10 ³ \pm 1.49 \times 10 ⁶	0.994 \pm .006	5.88 \times 10 ¹¹ \pm 1.16 \times 10 ¹²
		Local Ellipsoid	0.964 \pm .015	1.38 \pm .419	0.971 \pm .013	8.63 \pm .590	0.974 \pm .011	394.9 \pm .522.4
		Empirical Copula	0.951 \pm .013	1.22 \pm .316	0.958 \pm .019	4.94 \pm .25.7	0.948 \pm .012	77.4 \pm .26.1
		Gaussian Copula	0.945 \pm .017	1.17 \pm .289	0.958 \pm .019	5.11 \pm .24.0	0.948 \pm .012	77.4 \pm .26.1
Wind		TFT	0.723 \pm .172	1.34 \pm .588	0.515 \pm .174	4.26 \pm .3.52	0.187 \pm .126	6.75 \pm .3.19
		DeepAR	0.909 \pm .036	1.32 \pm .445	0.679 \pm .130	4.84 \pm .3.86	0.320 \pm .160	52.8 \pm .64.5
LSTM		FCP	0.952 \pm .054	1.18 \pm .215	0.957 \pm .022	10.8 \pm .105	0.953 \pm .056	2.48 \times 10³ \pm 669
		MultiDimSPCI	0.974 \pm .009	3.79 \pm .1.71	0.926 \pm .045	63.9 \pm .58.4	0.896 \pm .035	5.53 \times 10 ³ \pm 6.31 \times 10 ³
		CopulaCPTS	1.0 \pm .000	45.7 \pm .45.4	1.0 \pm .000	4.82 \times 10 ³ \pm 3.73 \times 10 ³	1.0 \pm .000	2.83 \times 10 ⁴ \pm 3.28 \times 10 ⁷
		OT-CP	0.970 \pm .033	9.13 \pm .48.8	0.939 \pm .052	212.3 \pm .124.5	0.943 \pm .053	8.39 \times 10 ⁴ \pm 4.68 \times 10 ⁴
		CONTRA	0.826 \pm .201	0.317 \pm .222	0.804 \pm .178	0.192 \pm .124	0.761 \pm .205	25.0 \pm .35.2
		Local Ellipsoid	0.978 \pm .043	10.5 \pm .6.97	1.0 \pm .000	354.4 \pm .406.8	1.0 \pm .000	2.63 \times 10 ⁵ \pm 2.70 \times 10 ⁵
		Empirical Copula	0.983 \pm .035	14.2 \pm .8.19	1.0 \pm .000	494.5 \pm .196.1	1.0 \pm .000	4.46 \times 10 ⁵ \pm 9.82 \times 10 ⁴
		Gaussian Copula	0.983 \pm .035	14.1 \pm .8.18	1.0 \pm .000	499.1 \pm .189.5	1.0 \pm .000	5.24 \times 10 ⁵ \pm 1.89 \times 10 ⁶
Traffic		TFT	0.550 \pm .321	1.90 \pm .695	0.395 \pm .195	3.93 \pm .2.01	0.136 \pm .189	23.7 \pm .34.8
		DeepAR	0.786 \pm .065	1.69 \pm .489	0.305 \pm .258	9.88 \pm .10.1	0.00 \pm .000	22.8 \pm .32.6
		FCP	0.957 \pm .014	0.915 \pm .119	0.953 \pm .009	1.06 \pm .431	0.965 \pm .015	1.53 \pm .161
		MultiDimSPCI	0.963 \pm .008	1.58 \pm .446	0.968 \pm .006	2.62 \pm .908	0.971 \pm .004	10.7 \pm .4.60
		CopulaCPTS	1.000 \pm .000	21.6 \pm .16.3	1.000 \pm .000	645.8 \pm .645.5	1.000 \pm .000	3.18 \times 10 ⁵ \pm 4.80 \times 10 ⁵
		OT-CP	0.966 \pm .000	2.03 \pm .685	0.963 \pm .007	32.0 \pm .20.0	0.954 \pm .007	3.90 \times 10 ³ \pm 1.22 \times 10 ³
		CONTRA	0.950 \pm .026	1.32 \pm .719	0.953 \pm .021	1.58 \pm .1.06	0.931 \pm .036	6.21 \pm .4.51
		Local Ellipsoid	0.970 \pm .007	2.04 \pm .455	0.973 \pm .005	2.95 \pm .1.06	0.980 \pm .003	3.82 \pm .1.13
LSTM		Empirical Copula	0.973 \pm .006	2.35 \pm .446	0.972 \pm .004	5.61 \pm .1.48	0.970 \pm .005	40.4 \pm .6.04
		Gaussian Copula	0.973 \pm .006	2.37 \pm .430	0.972 \pm .004	5.61 \pm .1.48	0.970 \pm .005	40.4 \pm .6.04
		TFT	0.407 \pm .065	0.292 \pm .080	0.189 \pm .306	0.07 \pm .031	0.09 \pm .007	0.009 \pm .007
		DeepAR	0.443 \pm .095	0.308 \pm .088	0.197 \pm .054	0.07 \pm .030	0.09 \pm .028	0.004 \pm .003
		FCP	0.968 \pm .022	0.859 \pm .075	0.966 \pm .022	1.05 \pm .111	0.950 \pm .010	1.82 \pm .287
		MultiDimSPCI	0.957 \pm .007	0.870 \pm .383	0.960 \pm .009	1.59 \pm .588	0.952 \pm .014	14.2 \pm .7.56
		CopulaCPTS	1.000 \pm .000	21.9 \pm .12.7	1.000 \pm .000	330.0 \pm .219.4	0.992 \pm .002	4.47 \times 10 ⁴ \pm 4.23 \times 10 ⁴
		OT-CP	0.953 \pm .006	0.920 \pm .379	0.939 \pm .027	11.8 \pm .9.35	0.921 \pm .029	730.2 \pm .698.7
Solar		CONTRA	0.940 \pm .258	0.222 \pm .082	0.942 \pm .028	0.106 \pm .056	0.910 \pm .032	0.050 \pm .050
		Local Ellipsoid	0.957 \pm .023	0.987 \pm .413	0.948 \pm .008	1.48 \pm .559	0.928 \pm .017	3.37 \pm .605
		Empirical Copula	0.955 \pm .005	3.81 \pm .629	0.948 \pm .010	25.8 \pm .5.06	0.920 \pm .017	1.22 \times 10 ³ \pm 281.9
		Gaussian Copula	0.953 \pm .006	3.74 \pm .570	0.952 \pm .011	26.4 \pm .4.00	0.920 \pm .017	1.22 \times 10 ³ \pm 281.9
		TFT	0.374 \pm .110	0.285 \pm .106	0.192 \pm .048	0.06 \pm .022	0.062 \pm .015	0.003 \pm .002
		DeepAR	0.386 \pm .065	0.266 \pm .069	0.211 \pm .056	0.06 \pm .017	0.09 \pm .009	0.003 \pm .001
		FCP	0.957 \pm .007	1.48 \pm .292	0.969 \pm .003	4.18 \pm .597	-	-
		MultiDimSPCI	0.968 \pm .005	1.97 \pm .076	0.971 \pm .003	11.4 \pm .1.20	-	-
LOO Bootstrap		CopulaCPTS	1.000 \pm .000	67.9 \pm .12.6	1.000 \pm .000	7.25 \times 10 ³ \pm 1.86 \times 10 ³	-	-
		OT-CP	0.984 \pm .004	3.69 \pm .797	0.971 \pm .006	248.9 \pm .40.3	-	-
		CONTRA	0.950 \pm .012	3.08 \pm .584	0.936 \pm .013	30.8 \pm .16.7	-	-
		Local Ellipsoid	0.947 \pm .004	1.44 \pm .188	0.948 \pm .005	1.87 \pm .540	-	-
		Empirical Copula	0.986 \pm .004	4.47 \pm .174	0.988 \pm .004	36.5 \pm .4.03	-	-
		Gaussian Copula	0.986 \pm .004	4.47 \pm .174	0.989 \pm .003	38.2 \pm .1.37	-	-
		TFT	0.782 \pm .026	0.779 \pm .056	0.722 \pm .028	3.18 \pm .415	-	-
		DeepAR	0.802 \pm .121	1.03 \pm .114	0.713 \pm .086	6.73 \pm .1.09	-	-
LSTM		FCP	0.968 \pm .009	1.16 \pm .092	0.961 \pm .008	2.09 \pm .566	-	-
		MultiDimSPCI	0.969 \pm .004	1.31 \pm .010	0.970 \pm .005	6.46 \pm .2.51	-	-
		CopulaCPTS	1.000 \pm .000	44.8 \pm .9.88	1.000 \pm .000	3.34 \times 10 ³ \pm 570	-	-
		OT-CP	0.979 \pm .005	2.25 \pm .247	0.963 \pm .008	142.0 \pm .40.8	-	-
		CONTRA	0.938 \pm .012	0.100 \pm .026	0.913 \pm .013	0.022 \pm .014	-	-
		Local Ellipsoid	0.972 \pm .005	1.27 \pm .143	0.975 \pm .004	2.43 \pm .996	-	-
		Empirical Copula	0.987 \pm .002	6.47 \pm .103	0.990 \pm .003	67.7 \pm .10.9	-	-
		Gaussian Copula	0.992 \pm .001	7.11 \pm .216	0.997 \pm .001	89.9 \pm .4.69	-	-
483		TFT	0.746 \pm .081	0.651 \pm .095	0.684 \pm .063	1.63 \pm .177	-	-
		DeepAR	0.839 \pm .028	1.01 \pm .088	0.715 \pm .043	3.57 \pm .493	-	-

484
485

486 where $\mathcal{D}_{\text{test}}$ denotes the test set. The average prediction set size is computed by averaging the sizes
 487 of \hat{C}_i over the test set, with the specific definition of the set size depending on the geometric form
 488 of each method.
 489

490

491 **Results.** Table 1 presents the results of experiments on three real-world datasets. FCP consistently
 492 obtained smaller prediction sets than all baselines while maintaining the target coverage. The perfor-
 493 mance gains of FCP were especially notable for higher outcome dimensions, showing significantly
 494 smaller prediction set sizes with lower variability. Moreover, FCP maintained stable coverage across
 495 varying d_y , whereas baseline methods often suffered from undercoverage or from overcoverage cou-
 496 pled with either overly contracted or excessively inflated prediction sets. In particular, methods re-
 497 lying on the exchangeability assumption often exhibited severe coverage errors and highly unstable
 498 prediction set sizes.
 499

500 MultiDimSPCI and CP using local ellipsoids generally showed good performance. In particular,
 501 on the solar dataset, CP with local ellipsoids achieved performance comparable to FCP. This is
 502 possibly due to their ability to capture temporal or local correlations, respectively. OT-CP and
 503 CONTRA also performed well in certain experiments, indicating some potential to adapt beyond
 504 the exchangeability assumption. We observed that increasing the guidance scale w often reduced
 505 the prediction set size, though at the cost of slightly lower coverage. In practice, an effective range
 506 for w was typically between 1 and 1.5 across our experiments.
 507

508

509 **Ablation study.** We conduct an ablation study to assess the impact of the encoder. Specifically,
 510 we evaluate FCP with and without the encoder, where in the latter case the guidance h is replaced
 511 by the concatenation of the feature at time i and residual at time $i - 1$. Table 2 reports the average
 512 empirical coverage and prediction set sizes of FCP with and without the encoder on the wind dataset.
 513 We observe that removing the encoder led to less stable coverage and noticeably larger prediction
 514 set sizes.
 515

516 Since the conditional coverage bound of FCP relies on the bi-Lipschitz flow assumption (Assump-
 517 tion 4.6), we conduct an additional experiment using iResNet (Behrmann et al., 2019) to model the
 518 vector field, ensuring this assumption is satisfied. Table 7 reports the average empirical coverage
 519 and prediction set sizes of FCP with MLP and iResNet across the three datasets with varying d_y . We
 520 observe that imposing bi-Lipschitzness in the vector field did not negatively affect either coverage
 521 or prediction set size.
 522

523

524 Table 2: Average empirical coverage and prediction set sizes obtained by FCP and FCP without
 525 the encoder on the wind dataset, evaluated under different base predictors and varying outcome
 526 dimensions d_y . The target confidence level was set to 0.95.
 527

Base Predictor	Method	$d_y = 2$		$d_y = 4$		$d_y = 8$	
		Coverage	Size	Coverage	Size	Coverage	Size
LOO Bootstrap	FCP with Encoder	0.951 \pm .018	0.88 \pm .089	0.953 \pm .006	3.43 \pm 1.37	0.956 \pm .010	19.4 \pm 10.2
	FCP w/o Encoder	0.948 \pm .023	1.13 \pm .193	0.964 \pm .005	3.99 \pm 1.03	0.964 \pm .010	35.3 \pm 14.0
LSTM	FCP with Encoder	0.952 \pm .054	1.18 \pm .215	0.957 \pm .022	10.8 \pm 1.05	0.953 \pm .056	2.48 \times 10 3 \pm 669
	FCP w/o Encoder	0.965 \pm .011	1.92 \pm .367	0.957 \pm .014	12.2 \pm 15.0	0.935 \pm .007	5.55 \times 10 3 \pm 7.47 \times 10 3

528

529

530

6 CONCLUSION

531

532

533 In this study, we proposed a novel conformal prediction method for multi-dimensional time series
 534 using flow with classifier-free guidance. We provided coverage guarantees of our method by estab-
 535 lishing exact non-asymptotic marginal coverage and a finite-sample bound on conditional coverage.
 536 Experiments on real-world datasets with a broad set of baselines demonstrated that our method con-
 537 structed smaller prediction sets while satisfying the target coverage, consistently outperforming the
 538 baselines. Future work will investigate dynamic optimal transport mappings, implemented through
 539 flow, between the non-conformity scores and the source distribution, with the aim of constructing
 540 more efficient prediction sets and deriving sharper coverage bounds.

540
541 ETHICS STATEMENT542
543 We confirm that our study complies with the ICLR Code of Ethics and does not present additional
544 ethical issues.545
546 REPRODUCIBILITY STATEMENT547
548 The source code for the method and experiments will be made publicly available. Detailed de-
549 scriptions of the experimental setup, including hyperparameters, datasets, and implementation, are
550 provided in the Experiments section and the Appendix for reproducibility.551
552 REFERENCES553
554 Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction and
555 distribution-free uncertainty quantification. *arXiv preprint arXiv:2107.07511*, 2021.556
557 Andreas Auer, Martin Gauch, Daniel Klotz, and Sepp Hochreiter. Conformal prediction for time
558 series with modern hopfield networks. *Advances in Neural Information Processing Systems*, 36,
2024.559
560 Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal
561 prediction beyond exchangeability. *The Annals of Statistics*, 51(2):816–845, 2023.562
563 Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Duvenaud, and Jörn-Henrik Jacobsen.
564 Invertible residual networks. In *International conference on machine learning*, pp. 573–582.
PMLR, 2019.565
566 Peter J Bickel, Ya'acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis of lasso and
567 dantzig selector. 2009.568
569 Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities. In *Summer
school on machine learning*, pp. 208–240. Springer, 2003.570
571 George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. *Time series analysis:
forecasting and control*. John Wiley & Sons, 2015.572
573 Sacha Braun, Liviu Aolaritei, Michael I Jordan, and Francis Bach. Minimum volume conformal sets
574 for multivariate regression. *arXiv preprint arXiv:2503.19068*, 2025.575
576 Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for
577 invertible generative modeling. *Advances in neural information processing systems*, 32, 2019.578
579 Xiaohong Chen and Halbert White. Improved rates and asymptotic normality for nonparametric
580 neural network estimators. *IEEE Transactions on Information Theory*, 45(2):682–691, 1999.581
582 Victor Chernozhukov, Alfred Galichon, Marc Hallin, and Marc Henry. Monge-kantorovich depth,
583 quantiles, ranks and signs. *Annals of Statistics*, 45(1):223–256, 2017.584
585 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
in neural information processing systems*, 34:8780–8794, 2021.586
587 John R Dormand and Peter J Prince. A family of embedded runge-kutta formulae. *Journal of
computational and applied mathematics*, 6(1):19–26, 1980.588
589 Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. Asymptotic minimax character of the sample
590 distribution function and of the classical multinomial estimator. *The Annals of Mathematical
Statistics*, pp. 642–669, 1956.591
592 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
593 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
2024.

- 594 Zhenhan Fang, Aixin Tan, and Jian Huang. CONTRA: Conformal prediction region via normalizing
 595 flow transformation. In *The Thirteenth International Conference on Learning Representations*,
 596 2025. URL <https://openreview.net/forum?id=p009cqLq7Q>.
- 597
- 598 Thomas Hakon Gronwall. Note on the derivatives with respect to a parameter of the solutions of a
 599 system of differential equations. *Annals of Mathematics*, 20(4):292–296, 1919.
- 600 Marc Hallin, Eustasio del Barrio, Juan Cuesta-Albertos, and Carlos Matrán. Distribution and quan-
 601 tile functions, ranks and signs in dimension d: A measure transportation approach. *Annals of*
 602 *statistics*, 49(2):1139–1165, 2021.
- 603
- 604 Iain Henderson, Adrien Mazoyer, and Fabrice Gamboa. Adaptive inference with random ellipsoids
 605 through conformal conditional linear expectation. *arXiv preprint arXiv:2409.18508*, 2024.
- 606
- 607 Morris W Hirsch, Stephen Smale, and Robert L Devaney. *Differential equations, dynamical systems,*
 608 *and an introduction to chaos*. Academic press, 2013.
- 609 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint*
 610 *arXiv:2207.12598*, 2022.
- 611
- 612 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural computation*, 9(8):
 613 1735–1780, 1997.
- 614
- 615 Chancellor Johnstone and Eugene Ndiaye. Exact and approximate conformal inference in multiple
 616 dimensions. *arXiv preprint arXiv:2210.17405*, 2022.
- 617
- 618 Jongseon Kim, Hyungjoon Kim, HyunGi Kim, Dongjun Lee, and Sungroh Yoon. A comprehensive
 619 survey of deep learning for time series forecasting: architectural diversity and open challenges.
Artificial Intelligence Review, 58(7):1–95, 2025.
- 620
- 621 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 622 2014.
- 623
- 624 Michal Klein, Louis Bethune, Eugene Ndiaye, and Marco Cuturi. Multivariate conformal prediction
 625 using optimal transport. *arXiv preprint arXiv:2502.03609*, 2025.
- 626
- 627 Michael R Kosorok. *Introduction to empirical processes and semiparametric inference*, volume 61.
 Springer, 2008.
- 628
- 629 Bryan Lim, Sercan Ö Ari̇k, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
 630 interpretable multi-horizon time series forecasting. *International Journal of Forecasting*, 37(4):
 631 1748–1764, 2021.
- 632
- 633 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 634 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.
- 635
- 636 Soundouss Messoudi, Sébastien Destercke, and Sylvain Rousseau. Copula-based conformal predic-
 637 tion for multi-target regression. *Pattern Recognition*, 120:108101, 2021.
- 638
- 639 Soundouss Messoudi, Sébastien Destercke, and Sylvain Rousseau. Ellipsoidal conformal inference
 640 for multi-target regression. In *Conformal and Probabilistic Prediction with Applications*, pp.
 641 294–306. PMLR, 2022.
- 642
- 643 John A Miller, Mohammed Aldosari, Farah Saeed, Nasid Habib Barna, Subas Rana, I Budak
 644 Arpinar, and Ninghao Liu. A survey of deep learning and foundation models for time series
 645 forecasting. *arXiv preprint arXiv:2401.13912*, 2024.
- 646
- 647 J.R. Munkres. *Topology*. Featured Titles for Topology. Prentice Hall, Incorporated, 2000. ISBN
 648 9780131816299. URL <https://books.google.com/books?id=XjoZAQAAIAAJ>.
- 649
- 650 Art B. Owen. *Practical Quasi-Monte Carlo Integration*. <https://artowen.su.domains/mc/practicalqmc.pdf>, 2023.

- 648 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv
 649 Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, David Yan, Dhruv Choudhary, Dingkang
 650 Wang, Geet Sethi, Guan Pang, Haoyu Ma, Ishan Misra, Ji Hou, Jialiang Wang, Kiran Ja-
 651 gadeesh, Kunpeng Li, Luxin Zhang, Mannat Singh, Mary Williamson, Matt Le, Matthew Yu,
 652 Mitesh Kumar Singh, Peizhao Zhang, Peter Vajda, Quentin Duval, Rohit Girdhar, Roshan Sum-
 653 baly, Sai Saketh Rambhatla, Sam Tsai, Samaneh Azadi, Samyak Datta, Sanyuan Chen, Sean Bell,
 654 Sharadh Ramaswamy, Shelly Sheynin, Siddharth Bhattacharya, Simran Motwani, Tao Xu, Tianhe
 655 Li, Tingbo Hou, Wei-Ning Hsu, Xi Yin, Xiaoliang Dai, Yaniv Taigman, Yaqiao Luo, Yen-Cheng
 656 Liu, Yi-Chiao Wu, Yue Zhao, Yuval Kirstain, Zecheng He, Zijian He, Albert Pumarola, Ali Tha-
 657 bet, Artsiom Sanakoyeu, Arun Mallya, Baishan Guo, Boris Araya, Breena Kerr, Carleigh Wood,
 658 Ce Liu, Cen Peng, Dimitry Vengertsev, Edgar Schonfeld, Elliot Blanchard, Felix Juefei-Xu,
 659 Fraylie Nord, Jeff Liang, John Hoffman, Jonas Kohler, Kaolin Fire, Karthik Sivakumar, Lawrence
 660 Chen, Licheng Yu, Luya Gao, Markos Georgopoulos, Rashel Moritz, Sara K. Sampson, Shikai
 661 Li, Simone Parmeggiani, Steve Fine, Tara Fowler, Vladan Petrovic, and Yuming Du. Movie gen:
 662 A cast of media foundation models, 2025. URL <https://arxiv.org/abs/2410.13720>.
 663
 664 Emmanuel Rio et al. *Asymptotic theory of weakly dependent random processes*, volume 80.
 665 Springer, 2017.
 666
 667 David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
 668 casting with autoregressive recurrent networks. *International journal of forecasting*, 36(3):1181–
 669 1191, 2020.
 670
 671 Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning
 672 Research*, 9(3), 2008.
 673
 674 Ilya M Sobol. The distribution of points in a cube and the approximate evaluation of integrals. *USSR
 675 Computational mathematics and mathematical physics*, 7:86–112, 1967.
 676
 677 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 678 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 679 arXiv:2011.13456*, 2020.
 680
 681 Kamile Stankeviciute, Ahmed M Alaa, and Mihaela van der Schaar. Conformal time-series fore-
 682 casting. *Advances in neural information processing systems*, 34:6216–6228, 2021.
 683
 684 Sophia Sun and Rose Yu. Copula conformal prediction for multi-step time series forecasting. *arXiv
 685 preprint arXiv:2212.03281*, 2022.
 686
 687 Gauthier Thurin, Kimia Nadjahi, and Claire Boyer. Optimal transport-based conformal prediction.
 688 In *Forty-second International Conference on Machine Learning*, 2025.
 689
 690 Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal pre-
 691 diction under covariate shift. *Advances in neural information processing systems*, 32, 2019.
 692
 693 Renukanandan Tumu, Matthew Cleaveland, Rahul Mangharam, George Pappas, and Lars Linde-
 694 mann. Multi-modal conformal prediction regions by optimizing convex shape templates. In *6th
 695 Annual Learning for Dynamics & Control Conference*, pp. 1343–1356. PMLR, 2024.
 696
 697 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 698 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 699 tion processing systems*, 30, 2017.
 700
 701 Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. *Algorithmic learning in a random world*,
 702 volume 29. Springer, 2005.
 703
 704 Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun.
 705 Transformers in time series: a survey. In *Proceedings of the Thirty-Second International Joint
 706 Conference on Artificial Intelligence*, pp. 6778–6786, 2023.
 707
 708 Chen Xu and Yao Xie. Conformal prediction interval for dynamic time-series. In *International
 709 Conference on Machine Learning*, pp. 11559–11569. PMLR, 2021a.

- 702 Chen Xu and Yao Xie. Conformal anomaly detection on spatio-temporal observations with missing
 703 data. *arXiv preprint arXiv:2105.11886*, 2021b.
 704
- 705 Chen Xu and Yao Xie. Conformal prediction for time series. *IEEE Transactions on Pattern Analysis
 706 and Machine Intelligence*, 2023a.
 707
- 708 Chen Xu and Yao Xie. Sequential predictive conformal inference for time series. In *International
 709 Conference on Machine Learning*, pp. 38707–38727. PMLR, 2023b.
 710
- 711 Chen Xu, Hanyang Jiang, and Yao Xie. Conformal prediction for multi-dimensional time series by
 712 ellipsoidal sets. *arXiv preprint arXiv:2403.03850*, 2024.
 713
- 714 Minghe Zhang, Chen Xu, Andy Sun, Feng Qiu, and Yao Xie. Solar radiation ramping events mod-
 715 eling using spatio-temporal point processes. *arXiv preprint arXiv:2101.11179*, 2021. Accepted
 716 at the 2021 INFORMS Conference on Service Science (ICSS 2021).
 717
- 718 Shixiang Zhu, Hanyu Zhang, Yao Xie, and Pascal Van Hentenryck. Multi-resolution spatio-temporal
 719 prediction with application to wind power generation. *arXiv preprint arXiv:2108.13285*, 2021.
 720

A PROOFS

721 **Proposition A.1.** *Let $u_{t|x_1}(x | x_1)$ be the vector field generating the probability path $p_{t|x_1}(x | x_1)$.
 722 Then, the vector field $u_{t|h}(x | h)$ is a valid vector field generating $p_{t|h}(x | h)$.*

723 *Proof.* Since $u_{t|x_1}(x | x_1)$ generates the probability path $p_{t|x_1}(x | x_1)$, the continuity equation
 724 holds for each x_1 :

$$\frac{\partial p_{t|x_1}(x | x_1)}{\partial t} + \operatorname{div}(u_{t|x_1}(x | x_1)p_{t|x_1}(x | x_1)) = 0. \quad (26)$$

725 The time derivative of $p_{t|h}(x | h)$ is:
 726

$$\begin{aligned} 727 \frac{\partial p_{t|h}(x | h)}{\partial t} &= \frac{\partial}{\partial t} \int p_{t|x_1}(x | x_1)q(x_1 | h) dx_1 \\ 728 &= \int \frac{\partial p_{t|x_1}(x | x_1)}{\partial t} q(x_1 | h) dx_1 \\ 729 &= - \int \operatorname{div}(u_{t|x_1}(x | x_1)p_{t|x_1}(x | x_1)) q(x_1 | h) dx_1 \\ 730 &= -\operatorname{div} \left(\int u_{t|x_1}(x | x_1)p_{t|x_1}(x | x_1)q(x_1 | h) dx_1 \right). \end{aligned} \quad (27)$$

731 Since the marginal guided vector field is defined as:

$$732 u_{t|h}(x | h) := \int u_{t|x_1}(x | x_1) \frac{p_{t|x_1}(x | x_1)q(x_1 | h)}{p_{t|h}(x | h)} dx_1, \quad (28)$$

733 we can rewrite as:
 734

$$735 u_{t|h}(x | h)p_{t|h}(x | h) = \int u_{t|x_1}(x | x_1)p_{t|x_1}(x | x_1)q(x_1 | h) dx_1. \quad (29)$$

736 Substituting equation (29) into equation (27), we have:
 737

$$738 \frac{\partial p_{t|h}(x | h)}{\partial t} = -\operatorname{div}(u_{t|h}(x | h)p_{t|h}(x | h)), \quad (30)$$

739 which is the continuity equation for $p_{t|h}(x | h)$ under the vector field $u_{t|h}(x | h)$. Therefore,
 740 $u_{t|h}(x | h)$ is a valid vector field generating $p_{t|h}(x | h)$. \square
 741

756 **Proposition A.2.** *With a given Gaussian probability path $p_{t|x_1}(x | x_1) = \mathcal{N}(x | \alpha_t x_1, \sigma_t^2 I_d)$, the*
 757 *guided vector field $u_{t|h}(x | h)$ can be reformulated as:*
 758

$$759 \quad u_{t|h}(x | h) = u_t(x) + b_t \nabla_x \log p_{h|t}(h | x). \quad (31)$$

762 *Proof.* By the definition of the guided marginal probability path:
 763

$$764 \quad p_{t|h}(x | h) = \int p_{t|x_1}(x | x_1) q(x_1 | h) dx_1, \quad (32)$$

766 where $p_{t|x_1}(x | x_1) = \mathcal{N}(x | \alpha_t x_1, \sigma_t^2 I)$. We express the score function as
 767

$$768 \quad \nabla_x \log p_{t|h}(x | h) = \frac{\nabla_x p_{t|h}(x | h)}{p_{t|h}(x | h)} \quad (33)$$

$$770 \quad = \frac{\int \nabla_x p_{t|x_1}(x | x_1) q(x_1 | h) dx_1}{p_{t|h}(x | h)} \quad (34)$$

$$773 \quad = \int \nabla_x \log p_{t|x_1}(x | x_1) \frac{p_{t|x_1}(x | x_1) q(x_1 | h)}{p_{t|h}(x | h)} dx_1. \quad (35)$$

775 Since $p_{t|x_1}(x | x_1) = \mathcal{N}(x | \alpha_t x_1, \sigma_t^2 I)$, we have:
 776

$$778 \quad u_t(x | x_1) = \frac{\dot{\alpha}_t}{\sigma_t} (x - \alpha_t x_1) + \dot{\alpha}_t x_1 \quad (36)$$

$$780 \quad = \frac{\dot{\alpha}_t}{\sigma_t} x - \frac{\dot{\alpha}_t}{\sigma_t} \alpha_t x_1 + \dot{\alpha}_t x_1 \quad (37)$$

$$782 \quad = \frac{\dot{\alpha}_t}{\sigma_t} x + (\dot{\alpha}_t - \frac{\dot{\alpha}_t}{\sigma_t} \alpha_t) x_1 \quad (38)$$

$$784 \quad = \frac{\dot{\alpha}_t}{\alpha_t} x + (\dot{\alpha}_t \sigma_t - \alpha_t \dot{\sigma}_t) \frac{1}{\alpha_t \sigma_t} (x - \alpha_t x_1) \quad (39)$$

$$786 \quad = \frac{\dot{\alpha}_t}{\alpha_t} x + (\dot{\alpha}_t \sigma_t - \alpha_t \dot{\sigma}_t) \frac{\sigma_t}{\alpha_t} \nabla \log p_t(x | x_1), \quad (40)$$

788 where $\dot{\alpha}_t$ denotes $\frac{d}{dt} \alpha_t$, and $\dot{\sigma}_t$ denotes $\frac{d}{dt} \sigma_t$. The last equality holds since $\nabla_x \log p_{t|x_1}(x | x_1) =$
 789 $-\frac{1}{\sigma_t^2} (x - \alpha_t x_1)$.
 790

791 The guided velocity field is defined as:
 792

$$793 \quad u_{t|h}(x | h) = \int u_{t|x_1}(x | x_1) \frac{p_{t|x_1}(x | x_1) q(x_1 | h)}{p_{t|h}(x | h)} dx_1. \quad (41)$$

795 Therefore,
 796

$$797 \quad u_{t|h}(x | h) = a_t x + b_t \nabla_x \log p_t(x | h), \quad (42)$$

798 where $a_t = \frac{\dot{\alpha}_t}{\alpha_t}$, and $b_t = (\dot{\alpha}_t \sigma_t - \alpha_t \dot{\sigma}_t) \frac{\sigma_t}{\alpha_t}$.
 799

800 By using the identity $\nabla_x \log p_{t|h}(x | h) = \nabla_x \log p_{h|t}(h | x) + \nabla_x \log p_t(x)$, we have:
 801

$$801 \quad u_t(x | h) = a_t x + b_t (\nabla \log p_{h|t}(h | x) + \nabla \log p_t(x)) = u_t(x) + b_t \nabla_x \log p_{h|t}(h | x). \quad (43)$$

802 \square

804 **Proposition A.3.** *The log-determinant Jacobian ODE defined in equation equation 16 is equivalent*
 805 *to the divergence of the guided vector field.*
 806

807 *Proof.* The Jacobian ODE is defined as:
 808

$$809 \quad \frac{d}{dt} J_{\psi_{t|h}}(x | h) = \frac{\partial u_{t|h}(\psi_{t|h}(x | h))}{\partial \psi_{t|h}(x | h)} \frac{\partial \psi_{t|h}(x | h)}{\partial x} = \frac{\partial u_{t|h}(\psi_{t|h}(x | h))}{\partial \psi_{t|h}(x | h)} J_{\psi_{t|h}}(x | h), \quad (44)$$

with the initial condition:

$$J_{\psi_{t=0|h}}(x \mid h) = I. \quad (45)$$

By using Jacobi's formula,

$$\frac{d}{dt} \det J_{\psi_{t|h}}(x \mid h) = \det J_{\psi_{t|h}}(x \mid h) \cdot \text{tr} \left(J_{\psi_{t|h}}^{-1}(x \mid h) \frac{d}{dt} J_{\psi_{t|h}}(x \mid h) \right). \quad (46)$$

Substituting equation 44 into equation 46, we obtain:

$$\frac{d}{dt} \det J_{\psi_t|h}(x \mid h) = \det J_{\psi_t|h}(x \mid h) \cdot \text{tr} \left(\frac{\partial u_{t|h}(\psi_t|h(x \mid h))}{\partial \psi_t|h(x \mid h)} \right). \quad (47)$$

Therefore,

$$\frac{d}{dt} \log |\det J_{\psi_t|h}(x \mid h)| = \text{tr} \left(\frac{\partial u_{t|h}(\psi_{t|h}(x \mid h))}{\partial \psi_{t|h}(x \mid h)} \right). \quad (48)$$

Since the trace of the Jacobian of a vector field corresponds to its divergence, we have:

$$\text{tr} \left(\frac{\partial u_{t|h}(\psi_{t|h}(x \mid h))}{\partial \psi_{t|h}(x \mid h)} \right) = \text{div} \left(u_{t|h}(\psi_{t|h}(x \mid h)) \right), \quad (49)$$

where $\operatorname{div}(\cdot)$ denotes the divergence operator.

Therefore, the log-determinant of the Jacobian ODE is defined as

$$\frac{d}{dt} \log |\det J_{\psi_{t|h}}(x \mid h)| = \text{div}(u_{t|h}(\psi_{t|h}(x \mid h))) \quad (50)$$

with the initial condition:

$$\log |\det J_{\psi_t-\eta \mid h}(x \mid h)| = 0. \quad (51)$$

Theorem A.4 (Closed and connected sets under a continuous map, Munkres (2000)). *Let Z and Y be topological spaces, and let $\psi : Z \rightarrow Y$ be a continuous map. If $E \subset Z$ is closed and connected, then $\psi(E) \subset Y$ is also closed and connected.*

Assumption A.5 (Compact feature and outcome domains). The feature and outcome domains are compact. That is, $x_i \in \mathcal{X} \subset \mathbb{R}^{d_x}$ and $y_i \in \mathcal{Y} \subset \mathbb{R}^{d_y}$, where \mathcal{X} and \mathcal{Y} are compact sets.

Remark A.6. While it's not strictly required, further assume that the domains of x_i and y_i are compact, which ensures that the encoder output is also compact, as formalized in Assumption A.5. Under Assumption A.5, if the encoder is a continuous function that maps a sequence of inputs to a representation $h \in \mathbb{R}^{d_h}$, then the image of the encoder $\mathcal{H} \subset \mathbb{R}^{d_h}$ is compact.

Lemma A.7 (Lipschitz continuous of the guided flow). *Let ψ_t denote the guided flow defined by a guided vector field u_t . If the guided vector field $u_t(x \mid h)$ is Lipschitz continuous in x uniformly over $t \in [0, 1]$ and $h \in \mathcal{H}$, i.e., there exists a constant $L_u > 0$ such that*

$$\|\mathcal{U}_t(x \mid h) - \mathcal{U}_t(x' \mid h)\| \leq L_{\mathcal{U}} \|x - x'\| \quad \forall x, x', t, h. \quad (52)$$

then the guided flow $\psi_t(x \mid h)$ is Lipschitz continuous in x over $t \in [0, 1]$ and $h \in \mathcal{H}$. That is, there exists a constant $L_{\psi_t} > 0$ such that

$$\|\psi_t(x \mid h) - \psi_t(x' \mid h)\| \leq L_\psi \|x - x'\| \quad \forall x, x', t, h. \quad (53)$$

Proof. Let $d(t) = \|\psi_t(x \mid h) - \psi_t(x' \mid h)\|$

Since the guided vector field is Lipschitz continuous, there exists L_u such that

$$\|\mu_t(x \mid h) - \mu_t(x' \mid h)\| \leq L_{\mu} \|x - x'\| \quad \forall t, h, x, x' \quad (54)$$

864 This is equivalent to
 865

$$866 \|u_t(\psi_t(x \mid h) \mid h) - u_t(\psi_t(x' \mid h) \mid h)\| \leq L_u \|\psi_t(x \mid h) - \psi_t(x' \mid h)\|, \quad \forall t, h, x, x'. \quad (55)$$

867 Let $z(t) = \psi_t(x \mid h) - \psi_t(x' \mid h)$, then
 868

$$869 \frac{d}{dt} d(t) = \frac{1}{\|z(t)\|} \langle z(t), \frac{d}{dt} z(t) \rangle = \langle \frac{z(t)}{\|z(t)\|}, \frac{d}{dt} z(t) \rangle \quad (56)$$

872 Since $\frac{d}{dt} z(t) = u_t(\psi_t(x \mid h) \mid h) - u_t(\psi_t(x' \mid h) \mid h)$, by Cauchy-Schwarz inequality,
 873

$$874 \langle \frac{z(t)}{\|z(t)\|}, \frac{d}{dt} z(t) \rangle \leq \|u_t(\psi_t(x \mid h) \mid h) - u_t(\psi_t(x' \mid h) \mid h)\| \quad (57)$$

877 Therefore,
 878

$$879 \frac{d}{dt} d(t) \leq \|u_t(\psi_t(x \mid h) \mid h) - u_t(\psi_t(x' \mid h) \mid h)\| \quad (58)$$

882 Since the guided vector field is Lipschitz continuous,
 883

$$884 \frac{d}{dt} d(t) \leq L_u d(t) \quad (59)$$

886 Based on Gronwall's inequality Gronwall (1919); Hirsch et al. (2013),
 887

888 Assuming that $d(t) > 0$ divide both sides by $d(t)$. If $d(t) = 0$, the inequality holds.
 889

$$890 \frac{1}{d(t)} \frac{d}{dt} d(t) \leq L \Rightarrow \frac{d}{dt} \log d(t) \leq L \quad (60)$$

892 Now integrate both sides from 0 to t :
 893

$$895 \log d(t) - \log d(0) \leq Lt \Rightarrow \log \left(\frac{d(t)}{d(0)} \right) \leq Lt \Rightarrow \frac{d(t)}{d(0)} \leq e^{Lt} \Rightarrow d(t) \leq d(0)e^{Lt} \quad (61)$$

898 Since $d(0) = \|\psi_0(x \mid h) - \psi_0(x' \mid h)\| = \|x - x'\|$,
 900

$$900 \|\psi_t(x \mid h) - \psi_t(x' \mid h)\| \leq e^{L_u t} \|x - x'\| \quad (62)$$

902 Therefore, we know that
 903

$$903 \|\psi_t(x \mid h) - \psi_t(x' \mid h)\| \leq e^{L_u} \|x - x'\| \quad \forall x, x', t, h \quad (63)$$

905 \square

906 **Proof of Lemma 4.3.** Since the probability density function of $Y = \psi(X)$ is the push-forward of
 907 p_X , we have:
 908

$$909 p_Y(y) = p_X(\psi^{-1}(y)) |\det J_{\psi^{-1}}(y)|, \quad (64)$$

910 where $\det A$ denotes the determinant of a square matrix A and $J_{\psi^{-1}}(y) = \frac{\partial \psi^{-1}(y)}{\partial y}$ is the Jacobian
 911 of ψ^{-1} . The probability mass of the transformed set $\mathcal{A}' = \psi(\mathcal{A})$ is:
 912

$$913 \mathbb{P}(Y \in \mathcal{A}') = \int_{\mathcal{A}'} p_Y(y) dy. \quad (65)$$

915 Using the change-of-variables $y = \psi(x)$ with $dy = |\det J_{\psi}(x)| dx$, we have:
 916

$$917 \int_{\mathcal{A}'} p_Y(y) dy = \int_{\mathcal{A}} p_Y(\psi(x)) |\det J_{\psi}(x)| dx. \quad (66)$$

918 Substituting from equation equation 64, we have:
919

$$920 \int_{\mathcal{A}} p_Y(\psi(x)) |\det J_\psi(x)| dx = \int_{\mathcal{A}} p_X(x) |\det J_{\psi^{-1}}(\psi(x))| |\det J_\psi(x)| dx. \quad (67)$$

922 Since $J_{\psi^{-1}}(\psi(x)) = J_\psi(x)^{-1}$, we know that $|\det J_{\psi^{-1}}(\psi(x))| \cdot |\det J_\psi(x)| = 1$. Hence,
923

$$924 \int_{\mathcal{A}'} p_Y(y) dy = \int_{\mathcal{A}} p_X(x) dx. \quad (68)$$

□

927 **Lemma A.8** (bi-Lipschitz guided flow). *Assume that the guided vector field is bi-Lipschitz uniformly
928 in x over $t \in [0, 1]$ and $h \in \mathcal{H}$, i.e., there exists L_u and l_u such that*

$$930 l_u \|x - x'\| \leq \|u_t(x | h) - u_t(x' | h)\| \leq L_u \|x - x'\| \quad \forall t, h, x, x'. \quad (69)$$

931 Then the guided flow ψ is bi-Lipschitz. There exists L_ψ and l_ψ such that
932

$$933 l_\psi \|x - x'\| \leq \|\psi_t(x | h) - \psi_t(x' | h)\| \leq L_\psi \|x - x'\| \quad \forall t, h, x, x'. \quad (70)$$

935 *Proof.* Proof follows similarly to Lemma A.7. The upper Lipschitz bound follows from Lemma A.7.
936

937 Let $z(t) = \psi_t(x | h) - \psi_t(x' | h)$ and $d(t) = \|\psi_t(x | h) - \psi_t(x' | h)\| = \|z_t\|$.
938

$$939 \frac{d}{dt} \|z(t)\|^2 = 2 \langle z(t), \frac{d}{dt} z(t) \rangle \quad (71)$$

941 By Cauchy-Schwarz inequality,
942

$$943 \frac{d}{dt} \|z(t)\|^2 = \frac{d}{dt} d(t)^2 \geq -2 \|z(t)\| \|\frac{d}{dt} z(t)\| \quad (72)$$

946 Since $\frac{d}{dt} z(t) = u_t(x | h) - u_t(x' | h)$ and $\|u_t(x | h) - u_t(x' | h)\| \geq l_u \|x - x'\| = l_u \|\psi_t(x | h) - \psi_t(x' | h)\|$, we obtain
947

$$949 \frac{d}{dt} d(t)^2 \geq -2 l_u \|z(t)\|^2 = -2 l_u d(t)^2 \quad (73)$$

951 Using Gronwall's inequality,
952

$$953 \|\psi_t(x | h) - \psi_t(x' | h)\| \geq e^{-l_u t} \|x - x'\| \quad (74)$$

954 Therefore, we know that
955

$$956 \|\psi_t(x | h) - \psi_t(x' | h)\| \geq e^{-l_u} \|x - x'\| \quad \forall x, x', t, h \quad (75)$$

958 Combining with the upper Lipschitz bound, we get
959

$$960 e^{-l_u} \|x - x'\| \leq \|\psi_t(x | h) - \psi_t(x' | h)\| \leq e^{L_u} \|x - x'\| \quad \forall x, x', t, h \quad (76)$$

□

962 **Lemma A.9.** *Under Assumption 4.8, $F_e(e_{T+1}) \sim \text{Unif}[0, 1]$.*
963

964 *Proof.* Since F_e is strictly increasing and continuous under Assumption 4.8, the Lemma holds for
965 $e_{T+1} \sim F_e$.
966

967 **Lemma A.10** (Convergence of empirical CDF of i.i.d. $\{e_i\}_{i=1}^T$). *Under Assumption 4.5 and 4.6,
968 for any T , there exists an event A_T with probability at least $1 - \sqrt{\frac{\log(16T)}{T}}$, such that conditioned
969 on A_T ,*

$$970 \sup_x |\tilde{F}_{T+1}(x) - F_e(x)| \leq \sqrt{\frac{\log(16T)}{T}}. \quad (77)$$

Proof of Lemma A.10. The proof follows the proof of Lemma 1 in Xu & Xie (2023a). Under the assumption that $\{e_i\}_{i=1}^{T+1}$ are i.i.d., the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (Dvoretzky et al., 1956; Kosorok, 2008) implies:

$$\mathbb{P} \left(\sup_x \left| \tilde{F}_{T+1}(x) - F_e(x) \right| > s_T \right) \leq 2e^{-2Ts_T^2}. \quad (78)$$

Choose $s_T = \sqrt{W(16T)/(2\sqrt{T})}$, where $W(T)$ denotes the Lambert W function satisfying $W(T)e^{W(T)} = T$. Since $W(16T) \leq \log(16T)$, it follows that $s_T \leq \sqrt{\log(16T)/T}$. Define the event A_T on which $\sup_x \left| \tilde{F}_{T+1}(x) - F_e(x) \right| \leq \sqrt{\log(16T)/T}$, so that we have:

$$\sup_x \left| \tilde{F}_{T+1}(x) - F_e(x) \right| \mid A_T \leq \sqrt{\frac{\log(16T)}{T}}, \quad (79)$$

and

$$\mathbb{P}(A_T) > 1 - \sqrt{\frac{\log(16T)}{T}}. \quad (80)$$

□

Lemma A.11 (Gaussian concentration inequality, Theorem 5.6 in Boucheron et al. (2003)). *Let $X \sim \mathcal{N}(0, I_d)$ be a standard Gaussian random vector in \mathbb{R}^d and let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be an L_f -Lipschitz continuous function. Then, for all $t > 0$,*

$$\mathbb{P}(f(X) \geq \mathbb{E}[f(X)] + t) \leq \exp \left(\frac{-t^2}{2L_f^2} \right), \quad (81)$$

Proposition A.12 (Gaussian concentration inequality with isotropic covariance). *Let $X \sim \mathcal{N}(0, \gamma I_d)$ be an isotropic Gaussian random vector in \mathbb{R}^d with covariance matrix $\gamma I_d \in \mathbb{R}^d$ for some $\gamma > 0$ and let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be an L_f -Lipschitz continuous function. Then, for all $t > 0$,*

$$\mathbb{P}(f(X) \geq \mathbb{E}[f(X)] + t) \leq \exp \left(\frac{-t^2}{2\gamma L_f^2} \right), \quad (82)$$

Proof. Let $X' \sim \mathcal{N}(0, I_d)$, and define $X = \sqrt{\gamma}X'$, so that $X \sim \mathcal{N}(0, \gamma I_d)$. Define the function $f_\gamma(x) := f(\sqrt{\gamma}x)$. Then f_γ is $\sqrt{\gamma}L_f$ -Lipschitz. Applying Lemma A.11 to $f_\gamma(X')$, we obtain:

$$\mathbb{P}(f_\gamma(X') \geq \mathbb{E}[f_\gamma(X')] + t) \leq \exp \left(-\frac{t^2}{2\gamma L_f^2} \right). \quad (83)$$

Since $f(X) = f_\gamma(X')$,

$$\mathbb{P}(f(X) \geq \mathbb{E}[f(X)] + t) = \mathbb{P}(f_\gamma(X') \geq \mathbb{E}[f_\gamma(X')] + t) \leq \exp \left(-\frac{t^2}{2\gamma L_f^2} \right). \quad (84)$$

□

Lemma A.13 (Norm concentration of isotropic Gaussian random vectors). *Let $X_i \sim \mathcal{N}(\mathbf{0}, \gamma I_d)$ be an isotropic Gaussian random vector in \mathbb{R}^d , and $\|\cdot\|$ be 2-norm. Then for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, we have:*

$$\max_{1 \leq i \leq T} \|X_i\| \leq M_T, \quad (85)$$

where $M_T = \sqrt{\gamma} \left(\sqrt{d} + \sqrt{2 \log(T/\delta)} \right)$.

1026 **Proof of Lemma A.13.** Let $X \sim \mathcal{N}(0, \gamma I_d)$ be an isotropic Gaussian random vector in \mathbb{R}^d with
 1027 covariance matrix $\gamma I_d \in \mathbb{R}^d$ for some $\gamma > 0$ and let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be 2-norm, i.e., $f(X) = \|X\|$.
 1028

1029 Using Proposition A.12 and since f is 1-Lipschitz continuous, we have for all $t > 0$:

$$1031 \quad \mathbb{P}(\|X\| \geq \mathbb{E}[\|X\|] + t) \leq \exp\left(-\frac{t^2}{2\gamma}\right). \quad (86)$$

1033 Using Jensen's inequality and since $X \sim \mathcal{N}(0, \gamma I_d)$,

$$1035 \quad \mathbb{E}[\|X\|] \leq \sqrt{\mathbb{E}[\|X\|^2]} = \sqrt{\mathbb{E}[X^\top X]} = \sqrt{\text{tr}(\gamma I_d)} = \sqrt{\gamma d}. \quad (87)$$

1037 Therefore, for any $t > 0$,

$$1039 \quad \mathbb{P}\left(\|X\| \geq \sqrt{\gamma d} + t\right) \leq \exp\left(-\frac{t^2}{2\gamma}\right). \quad (88)$$

1042 By the union bound,

$$1044 \quad \mathbb{P}\left(\max_{1 \leq i \leq T} \|X_i\| \geq \sqrt{\gamma d} + t\right) \leq \sum_{i=1}^T \mathbb{P}\left(\|X_i\| \geq \sqrt{\gamma d} + t\right) \leq T \cdot \exp\left(-\frac{t^2}{2\gamma}\right). \quad (89)$$

1047 By setting $T \cdot \exp(-t^2/2\gamma) \leq \delta$, we obtain:

$$1049 \quad t \geq \sqrt{2\gamma \log\left(\frac{T}{\delta}\right)}. \quad (90)$$

1052 Therefore, with probability at least $1 - \delta$,

$$1054 \quad \max_{1 \leq i \leq T} \|X_i\| \leq \sqrt{\gamma d} + \sqrt{2\gamma \log\left(\frac{T}{\delta}\right)}. \quad (91)$$

1057 Defining $M_T := \sqrt{\gamma} \left(\sqrt{d} + \sqrt{2 \log(T/\delta)} \right)$, we conclude:

$$1060 \quad \max_{1 \leq i \leq T} \|X_i\| \leq M_T. \quad (92)$$

1062 \square

1063 **Lemma A.14** (Bound on the sum of differences between true and estimated non-conformity scores).
 1064 *Under Assumption 4.6 and 4.9, with probability at least $1 - \delta$,*

$$1066 \quad \sum_{i=1}^T |\hat{e}_i - e_i| \leq 2T(M_T L_{\psi^{-1}} \delta_T + L_{\psi^{-1}}^2 \delta_T^2). \quad (93)$$

1070 *Proof.* Since the encoder is fixed after convergence, it generates the same h for \hat{e} and e . Let $\hat{s}_i =$
 1071 $\psi^{-1}(\hat{e}_i \mid h)$ and $s_i = \psi^{-1}(e_i \mid h)$.

1073 Using the identity for the difference of squared norms:

$$1074 \quad \begin{aligned} \|\hat{s}_i\| &= \|s_i + (\hat{s}_i - s_i)\|^2 \\ 1075 &= \|s_i\|^2 + 2\langle s_i, \hat{s}_i - s_i \rangle + \|\hat{s}_i - s_i\|^2, \end{aligned} \quad (94)$$

1077 we obtain:

$$1078 \quad \|\hat{s}_i\|^2 - \|s_i\|^2 = 2\langle s_i, \hat{s}_i - s_i \rangle + \|\hat{s}_i - s_i\|^2 \quad (95)$$

1080 Therefore,

$$\begin{aligned} |\hat{e}_i - e_i| &= \left| \|\hat{s}_i\|^2 - \|s_i\|^2 \right| \\ &= \left| 2\langle s_i, \hat{s}_i - s_i \rangle + \|\hat{s}_i - s_i\|^2 \right|. \end{aligned} \quad (96)$$

1084 By the Cauchy-Schwarz inequality,

$$|\langle s_i, \hat{s}_i - s_i \rangle| \leq \|s_i\| \cdot \|\hat{s}_i - s_i\|. \quad (97)$$

1088 Since ψ^{-1} is Lipschitz continuous with Lipschitz constant $L_{\psi^{-1}}$, we have:

$$\|\hat{s}_i - s_i\| \leq L_{\psi^{-1}} \|\hat{e}_i - e_i\| = L_{\psi^{-1}} \|\Delta_i\|. \quad (98)$$

1092 Substituting inequality (98) into the inner product bound in equation (97),

$$|\langle s_i, \hat{s}_i - s_i \rangle| \leq \|s_i\| \cdot \|\hat{s}_i - s_i\| \leq L_{\psi^{-1}} \|s_i\| \|\Delta_i\|. \quad (99)$$

1096 Then, by the triangle inequality,

$$|\hat{e}_i - e_i| \leq 2L_{\psi^{-1}} \|s_i\| \|\Delta_i\| + L_{\psi^{-1}}^2 \|\Delta_i\|^2. \quad (100)$$

1100 By Lemma A.13, we have with probability at least $1 - \delta$ that $\|s_i\| \leq M_T$ for all i , and by Assumption 4.9, $\|\Delta_i\| \leq \delta_T$. Substituting these into the inequality (100),

$$|\hat{e}_i - e_i| \leq 2M_T L_{\psi^{-1}} \delta_T + L_{\psi^{-1}}^2 \delta_T^2. \quad (101)$$

1104 Summing over all $i = 1, \dots, T$, we conclude:

$$\sum_{i=1}^T |\hat{e}_i - e_i| \leq T \left(2M_T L_{\psi^{-1}} \delta_T + L_{\psi^{-1}}^2 \delta_T^2 \right). \quad (102)$$

1109 \square

1111 **Lemma A.15** (Distance between the empirical CDF of $\{e_i\}_{i=1}^T$ and $\{\hat{e}_i\}_{i=1}^T$). *Under Assumption 4.6, 4.8, and 4.9, with probability $1 - \delta$, $\hat{F}_{T+1}(x)$ and $\tilde{F}_{T+1}(x)$ satisfy*

$$\sup_x \left| \hat{F}_{T+1}(x) - \tilde{F}_{T+1}(x) \right| \leq (2L_{T+1} + 1)C_+ 2 \sup_x \left| \tilde{F}_{T+1}(x) - F_e(x) \right|, \quad (103)$$

1116 where $C = \sqrt{M_T L_{\psi^{-1}} \delta_T + L_{\psi^{-1}}^2 \delta_T^2}$.

1119 **Proof of Lemma A.15.** By Lemma A.14, we have with probability at least $1 - \delta$,

$$\sum_{t=1}^T |\hat{e}_t - e_t| \leq T \left(2M_T L_{\psi^{-1}} \delta_T + L_{\psi^{-1}}^2 \delta_T^2 \right). \quad (104)$$

1124 Let $C = \left(2M_T L_{\psi^{-1}} \delta_T + L_{\psi^{-1}}^2 \delta_T^2 \right)^{1/2}$. Then,

$$\sum_{i=1}^T |\hat{e}_i - e_i| \leq T C^2. \quad (105)$$

1130 Define $S = \{t : |\hat{e}_t - e_t| \geq C\}$. Then,

$$|S| \cdot C \leq \sum_{t=1}^T |\hat{e}_t - e_t| \leq T C^2, \quad (106)$$

1134 which implies $|S| \leq TC$.
 1135

1136 We can bound the difference between the empirical CDFs of \hat{e}_i and e_i as follows:

$$\begin{aligned}
 1137 \quad & |\hat{F}_{T+1}(x) - \tilde{F}_{T+1}(x)| \leq \frac{1}{T} \sum_{t=1}^T |\mathbb{1}\{\hat{e}_t \leq x\} - \mathbb{1}\{e_t \leq x\}| \\
 1138 \quad & \leq \frac{1}{T} \left(|S| + \sum_{t \notin S} |\mathbb{1}\{\hat{e}_t \leq x\} - \mathbb{1}\{e_t \leq x\}| \right) \\
 1139 \quad & \stackrel{(i)}{\leq} \frac{1}{T} \left(|S| + \sum_{t \notin S} \mathbb{1}\{|e_t - x| \leq C\} \right) \\
 1140 \quad & \leq \frac{1}{T} \left(|S| + \sum_{t=1}^T \mathbb{1}\{|e_t - x| \leq C\} \right) \\
 1141 \quad & \leq C + \mathbb{P}(|e_{T+1} - x| \leq C) \\
 1142 \quad & + \sup_x \left| \frac{1}{T} \sum_{t=1}^T \mathbb{1}\{|e_t - x| \leq C\} - \mathbb{P}(|e_{T+1} - x| \leq C) \right| \\
 1143 \quad & \stackrel{(ii)}{=} C + [F_e(x+C) - F_e(x-C)] \\
 1144 \quad & + \sup_x \left| [\tilde{F}_{T+1}(x+C) - \tilde{F}_{T+1}(x-C)] - [F_e(x+C) - F_e(x-C)] \right| \\
 1145 \quad & \stackrel{(iii)}{\leq} (2L_{T+1} + 1)C + 2 \sup_x |\tilde{F}_{T+1}(x) - F_e(x)|. \\
 1146 \quad & \end{aligned} \tag{107}$$

1147 Here, (i) follows from the inequality $|\mathbb{1}\{a \leq x\} - \mathbb{1}\{b \leq x\}| \leq \mathbb{1}\{|b-x| \leq |a-b|\}$ for $a, b \in \mathbb{R}$,
 1148 (ii) follows from the identity $\mathbb{P}(|e_{T+1} - x| \leq C) = F_e(x+C) - F_e(x-C)$, and (iii) uses the
 1149 Lipschitz continuity of $F_e(x)$.
 1150 \square

1151 **Proof of Theorem 4.10.** For any $\beta \in [0, \alpha]$,

$$\begin{aligned}
 1152 \quad & \left| \mathbb{P} \left(Y_{T+1} \in \hat{C}_{T+1}^\alpha \mid Z_{T+1} = z_{T+1} \right) - (1 - \alpha) \right| \\
 1153 \quad & = \left| \mathbb{P} \left(\hat{e}_{T+1} \in [\hat{F}_{T+1}^{-1}(\beta), \hat{F}_{T+1}^{-1}(1 - \alpha + \beta)] \mid Z_{T+1} = z_{T+1} \right) - (1 - \alpha) \right| \\
 1154 \quad & \stackrel{(i)}{=} \left| \mathbb{P} \left(\beta \leq \hat{F}_{T+1}(\hat{e}_{T+1}) \leq 1 - \alpha + \beta \right) - \mathbb{P}(\beta \leq F_e(e_{T+1}) \leq 1 - \alpha + \beta) \right|. \\
 1155 \quad & \end{aligned} \tag{108}$$

1156 Equality (i) follows from Lemma A.9, which states that $F_e(e_{T+1}) \sim \text{Unif}[0, 1]$. This can be further
 1157 bounded by:
 1158

$$\begin{aligned}
 1159 \quad & \left| \mathbb{P} \left(\beta \leq \hat{F}_{T+1}(\hat{e}_{T+1}) \leq 1 - \alpha + \beta \right) - \mathbb{P}(\beta \leq F_e(e_{T+1}) \leq 1 - \alpha + \beta) \right| \\
 1160 \quad & \leq \mathbb{E} \left| \mathbb{1} \left\{ \beta \leq \hat{F}_{T+1}(\hat{e}_{T+1}) \leq 1 - \alpha + \beta \right\} - \mathbb{1} \left\{ \beta \leq F_e(e_{T+1}) \leq 1 - \alpha + \beta \right\} \right| \\
 1161 \quad & \stackrel{(i)}{\leq} \mathbb{E} \left(\left| \mathbb{1} \left\{ \beta \leq \hat{F}_{T+1}(\hat{e}_{T+1}) \right\} - \mathbb{1} \left\{ \beta \leq F_e(e_{T+1}) \right\} \right| \right. \\
 1162 \quad & \quad \left. + \left| \mathbb{1} \left\{ \hat{F}_{T+1}(\hat{e}_{T+1}) \leq 1 - \alpha + \beta \right\} - \mathbb{1} \left\{ F_e(e_{T+1}) \leq 1 - \alpha + \beta \right\} \right| \right) \\
 1163 \quad & \end{aligned} \tag{109}$$

1164 Here, inequality (i) follows from the fact that for any $a, b \in \mathbb{R}$ and real values $x, y \in \mathbb{R}$,

$$1165 \quad |\mathbb{1}\{a \leq x \leq b\} - \mathbb{1}\{a \leq y \leq b\}| \leq |\mathbb{1}\{a \leq x\} - \mathbb{1}\{a \leq y\}| + |\mathbb{1}\{x \leq b\} - \mathbb{1}\{y \leq b\}|. \tag{110}$$

1166 By triangle inequality,

$$\begin{aligned}
& \mathbb{E} \left(\left| \mathbb{1} \left\{ \beta \leq \hat{F}_{T+1}(\hat{e}_{T+1}) \right\} - \mathbb{1} \left\{ \beta \leq F_e(e_{T+1}) \right\} \right| \right. \\
& \quad \left. + \left| \mathbb{1} \left\{ \hat{F}_{T+1}(\hat{e}_{T+1}) \leq 1 - \alpha + \beta \right\} - \mathbb{1} \left\{ F_e(e_{T+1}) \leq 1 - \alpha + \beta \right\} \right| \right) \\
& \leq \underbrace{\mathbb{E} \left(\left| \mathbb{1} \left\{ \beta \leq \hat{F}_{T+1}(\hat{e}_{T+1}) \right\} - \mathbb{1} \left\{ \beta \leq F_e(e_{T+1}) \right\} \right| \right)}_{(a)} \\
& \quad + \underbrace{\mathbb{E} \left(\left| \mathbb{1} \left\{ \hat{F}_{T+1}(\hat{e}_{T+1}) \leq 1 - \alpha + \beta \right\} - \mathbb{1} \left\{ F_e(e_{T+1}) \leq 1 - \alpha + \beta \right\} \right| \right)}_{(b)} \tag{111}
\end{aligned}$$

For term (a), we have:

$$\begin{aligned}
& \mathbb{E} \left(\left| \mathbb{1} \left\{ \beta \leq \hat{F}_{T+1}(\hat{e}_{T+1}) \right\} - \mathbb{1} \left\{ \beta \leq F_e(e_{T+1}) \right\} \right| \right) \\
& \leq \mathbb{P} \left(|F_e(e_{T+1}) - \beta| \leq |\hat{F}_{T+1}(\hat{e}_{T+1}) - F_e(e_{T+1})| \right). \tag{112}
\end{aligned}$$

This inequality follows from the fact that for $a, b \in \mathbb{R}$, $|\mathbb{1}\{a \leq x\} - \mathbb{1}\{b \leq x\}| \leq \mathbb{1}\{|b - x| \leq |a - b|\}$, and $\mathbb{E}[\mathbb{1}\{A\}] = \mathbb{P}(A)$.

Similarly, for term (b), we have:

$$\begin{aligned}
& \mathbb{E} \left(\left| \mathbb{1} \left\{ \hat{F}_{T+1}(\hat{e}_{T+1}) \leq 1 - \alpha + \beta \right\} - \mathbb{1} \left\{ F_e(e_{T+1}) \leq 1 - \alpha + \beta \right\} \right| \right) \\
& \leq \mathbb{P} \left(|F_e(e_{T+1}) - (1 - \alpha + \beta)| \leq |\hat{F}_{T+1}(\hat{e}_{T+1}) - F_e(e_{T+1})| \right). \tag{113}
\end{aligned}$$

Therefore,

$$\begin{aligned}
& \left| \mathbb{P} \left(Y_{T+1} \in \hat{C}_{T+1}^\alpha \mid Z_{T+1} = z_{T+1} \right) - (1 - \alpha) \right| \\
& \leq \mathbb{P} \left(|F_e(e_{T+1}) - \beta| \leq |\hat{F}_{T+1}(\hat{e}_{T+1}) - F_e(e_{T+1})| \right) \\
& \quad + \mathbb{P} \left(|F_e(e_{T+1}) - (1 - \alpha + \beta)| \leq |\hat{F}_{T+1}(\hat{e}_{T+1}) - F_e(e_{T+1})| \right) \tag{114}
\end{aligned}$$

In Lemma A.10, we defined A_T as the event on which

$$\sup_x |\tilde{F}_{T+1}(x) - F_e(x)| \mid A_T \leq \sqrt{\frac{\log(16T)}{T}},$$

where $\mathbb{P}(A_T) > 1 - \sqrt{\frac{\log(16T)}{T}}$. Let A_T^C denote the complement of the event A_T . For any $\gamma \in [0, 1]$, we have:

$$\begin{aligned}
& \mathbb{P} \left(|F_e(e_{T+1}) - \gamma| \leq |\hat{F}_{T+1}(\hat{e}_{T+1}) - F_e(e_{T+1})| \right) \\
& \leq \mathbb{P} \left(|F_e(e_{T+1}) - \gamma| \leq |\hat{F}_{T+1}(\hat{e}_{T+1}) - F_e(e_{T+1})| \mid A_T \right) + \mathbb{P}(A_T^C) \\
& \leq \mathbb{P} \left(|F_e(e_{T+1}) - \gamma| \leq |\hat{F}_{T+1}(\hat{e}_{T+1}) - F_e(\hat{e}_{T+1})| + |F_e(\hat{e}_{T+1}) - F_e(e_{T+1})| \mid A_T \right) \\
& \quad + \sqrt{\frac{\log(16T)}{T}}. \tag{115}
\end{aligned}$$

To bound the conditional probability above, we note that with probability $1 - \delta$, conditioning on the event A_T ,

$$\begin{aligned}
& |\widehat{F}_{T+1}(\hat{e}_{T+1}) - F_e(e_{T+1})| + |F_e(\hat{e}_{T+1}) - F_e(e_{T+1})| \mid A_T \\
& \stackrel{(i)}{\leq} \sup_x |\widehat{F}_{T+1}(x) - F_e(x)| \mid A_T + L_{T+1} |\hat{e}_{T+1} - e_{T+1}| \\
& \leq \sup_x |\widehat{F}_{T+1}(x) - \widetilde{F}_{T+1}(x)| \mid A_T + \sup_x |\widetilde{F}_{T+1}(x) - F_e(x)| \mid A_T + L_{T+1} |\hat{e}_{T+1} - e_{T+1}| \quad (116) \\
& \stackrel{(ii)}{\leq} (2L_{T+1} + 1)C + 3 \sup_x |\widetilde{F}_{T+1}(x) - F_e(x)| \mid A_T + L_{T+1} \delta_T \\
& \stackrel{(iii)}{\leq} 3 \sqrt{\frac{\log(16T)}{T}} + \left(L_{T+1} + \frac{1}{2} \right) (2C + \delta_T).
\end{aligned}$$

Here, inequality (i) holds due to the supremum of $|\widehat{F}_{T+1}(x) - F_e(x)|$ over x and Lipschitz continuity of F_e from Assumption 4.8. Inequality (ii) follows from Lemma A.15. Inequality (iii) follows from Lemma A.10.

Since $F_e(e_{T+1}) \sim \text{Unif}[0, 1]$,

$$\begin{aligned}
& \mathbb{P} \left(|F_e(e_{T+1}) - \gamma| \leq |\widehat{F}_{T+1}(\hat{e}_{T+1}) - F_e(\hat{e}_{T+1})| + |F_e(\hat{e}_{T+1}) - F_e(e_{T+1})| \mid A_T \right) \\
& \leq 6 \sqrt{\frac{\log(16T)}{T}} + 2 \left(L_{T+1} + \frac{1}{2} \right) (2C + \delta_T).
\end{aligned} \quad (117)$$

Therefore, by substituting inequality (117) to inequality (114), we obtain:

$$\begin{aligned}
& \left| \mathbb{P} \left(Y_{T+1} \in \widehat{C}_{T+1}^\alpha \mid Z_{T+1} = z_{T+1} \right) - (1 - \alpha) \right| \\
& \leq 12 \sqrt{\frac{\log(16T)}{T}} + 4 \left(L_{T+1} + \frac{1}{2} \right) (2C + \delta_T).
\end{aligned} \quad (118)$$

□

Definition A.16. A sequence of random variables $\{X_n\}$ is said to be *strictly stationary* if for every $k \geq 1$, any integers n_1, \dots, n_k , and any integer h , the joint distribution of the random variables $(X_{n_1}, \dots, X_{n_k})$ is the same as the joint distribution of $(X_{n_1+h}, \dots, X_{n_k+h})$.

Definition A.17. A sequence of random variables $\{X_n\}$ is said to be *strongly mixing* (or α -mixing) if the mixing coefficients $\alpha(k)$ defined by

$$\alpha(k) = \sup_{n \in \mathbb{N}} \sup_{A \in \mathcal{F}_1^n, B \in \mathcal{F}_{n+k}^\infty} |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)| \quad (119)$$

satisfy $\alpha(k) \rightarrow 0$ as $k \rightarrow \infty$, where \mathcal{F}_a^b denotes the σ -algebra generated by $\{X_a, \dots, X_b\}$.

Lemma A.18 (Convergence of empirical CDF of stationary and strongly mixing $\{e_i\}_{i=1}^T$). *Under Assumption 4.11, for any T , there exists an event A_T with probability at least $1 - (\frac{M(\log T)^2}{2T})^{1/3}$, such that conditioned on A_T ,*

$$\sup_x |\tilde{F}_{T+1}(x) - F_e(x)| \leq \frac{(\frac{M}{2})^{1/3} (\log T)^{2/3}}{T^{1/3}}. \quad (120)$$

Proof of Lemma A.18. The proof follows similarly in the proof of Lemma B.11 in Xu et al. (2024). Define $v_T(x) := \sqrt{T}(\tilde{F}_{T+1}(x) - F_e(x))$. By using Proposition 7.1 in Rio et al. (2017), we have:

$$\mathbb{E} \left(\sup_x |v_T(x)|^2 \right) \leq \left(1 + 4 \sum_{k=0}^T \alpha(k) \right) \left(3 + \frac{\log T}{2 \log 2} \right)^2, \quad (121)$$

1296 where $\alpha(k)$ denotes the k -th mixing coefficient. Under Assumption 4.11, we have $\sum_{k \geq 0} \alpha(k) \leq$
 1297 $M < \infty$. Applying Markov's inequality yields:
 1298

$$1299 \mathbb{P} \left(\sup_x \left| \tilde{F}_{T+1}(x) - F_e(x) \right| \geq s_T \right) \leq \frac{\mathbb{E} (\sup_x |v_T(x)|^2 / T)}{s_T^2} \leq \frac{1+4M}{Ts_T^2} \left(3 + \frac{\log T}{2 \log 2} \right)^2. \quad (122)$$

1301 By setting
 1302

$$1304 s_T := \left(\frac{1+4M}{T} \left(3 + \frac{\log T}{2 \log 2} \right)^2 \right)^{1/3} \approx \left(\frac{M(\log T)^2}{2T} \right)^{1/3}, \quad (123)$$

1307 we then have:
 1308

$$1310 \mathbb{P} \left(\sup_x \left| \tilde{F}_{T+1}(x) - F_e(x) \right| \leq \left(\frac{M(\log T)^2}{2T} \right)^{1/3} \right) \geq 1 - \left(\frac{M(\log T)^2}{2T} \right)^{1/3}. \quad (124)$$

1313 Define the event A_T on which $\sup_x \left| \tilde{F}_{T+1}(x) - F_e(x) \right| \leq \left(\frac{M(\log T)^2}{2T} \right)^{1/3}$, so that we have:
 1314

$$1315 \sup_x \left| \tilde{F}_{T+1}(x) - F_e(x) \right| \mid A_T \leq \left(\frac{M(\log T)^2}{2T} \right)^{1/3} \quad (125)$$

1318 and

$$1319 \mathbb{P}(A_T) > 1 - \left(\frac{M(\log T)^2}{2T} \right)^{1/3}. \quad (126)$$

1321 \square

1323 **Proof of Corollary 4.12.** Under Assumption 4.11, the result follows by combining Lemma A.15
 1324 and A.18, using an argument analogous to the proof of Theorem 4.10.
 1325

1326 \square

1328 B EXPERIMENT DETAILS

1330 B.1 EXPERIMENT SETUP

1332 **OT-CP.** We implemented OT-CP using the source code released by the authors Thurin et al. (2025).
 1333 The training and validation sets were combined to form a calibration set. Following the setup in the
 1334 original publication, 75% of the calibration set was used to solve OT, and the remaining 25% was
 1335 used to calibrate the prediction sets.

1336 **CONTRA.** As the source code from the original publication was not released, we implemented
 1337 CONTRA ourselves following the methodology and details provided in Fang et al. (2025). Consis-
 1338 tent with the original setup, we used six coupling layers with a hidden dimension of 128 and trained
 1339 the model for 100 epochs with the same batch size as FCP and a learning rate of 0.001. The training
 1340 and validation sets were combined into a calibration set, of which 50% was used to train the model
 1341 and the remaining 50% was used to calibrate the prediction sets.

1343 **MultiDimSPCI.** We implemented MultiDimSPCI using the source code released by the au-
 1344 thors Xu et al. (2024). The context window size was set to 50 for all real-world datasets, consistent
 1345 with the setup used for FCP. Following the original publication, the number of trees was set to 15.
 1346 The training and validation sets were combined into a single training set.

1348 **Conformal prediction using copulas.** We implemented this method using the source code re-
 1349 leased by the authors Messoudi et al. (2021), following the setup described in the original publica-
 1350 tion. The training and validation sets were combined to form a calibration set.

1350 **Conformal prediction using local ellipsoids** We implemented this method using the source code
 1351 provided by the authors Messoudi et al. (2022). Following the setup in the original publication, the
 1352 training set was used as the proper training set and the validation set as the calibration set. The
 1353 number of neighbors for kNN was set to 5% of the proper training set size, as suggested by the
 1354 authors. We also experimented with different neighbor ratios, but these variations did not lead to
 1355 meaningful differences in performance.

1356
 1357 **CopulaCPTS** We implemented this method using the source code provided by the authors Sun &
 1358 Yu (2022), following the setup described in the original publication. The training and validation sets
 1359 were combined to form a calibration set.

1360
 1361 **Temporal Fusion Transformer** We implemented Temporal Fusion Transformer (TFT) Lim et al.
 1362 (2021) using `pytorch_forecasting`. A hyperparameter grid search was conducted on the training
 1363 set of each dataset with $d_y = 2$ to determine the optimal configuration. We believe this hyper-
 1364 parameter search generalizes well to higher d_y within each dataset, since TFT makes predictions
 1365 for each outcome dimension independently in our setup. Performance was observed to saturate at a
 1366 model dimension of 32, with two attention heads and two layers, therefore these settings were used
 1367 for all experiments. For consistency with FCP, the context window size was fixed at 50 across all
 1368 experiments. We trained the models using the Adam optimizer Kingma (2014) with a learning rate
 1369 of 0.001, a maximum of 50 epochs, and a dropout rate of 0.1. Quantile loss with $q \in \{0.025, 0.975\}$
 1370 was used for 0.95 target coverage.

1371 **DeepAR** We implemented DeepAR Salinas et al. (2020) using `pytorch_forecasting`. A hy-
 1372 perparameter grid search was conducted on the training set of each dataset with $d_y = 2$ to determine
 1373 the optimal configuration similarly to TFT. Performance was observed to saturate at a model dimen-
 1374 sion of 32 with two layers, therefore these settings were used for all experiments. For consistency
 1375 with FCP, the context window size was fixed at 50 across all experiments. We trained the models
 1376 using the Adam optimizer Kingma (2014) with a learning rate of 0.001, a maximum of 50 epochs,
 1377 and a dropout rate of 0.1. Multivariate normal distribution loss with $q \in \{0.025, 0.975\}$ was used
 1378 for 0.95 target coverage.

Table 3: The hyperparameter search space for FCP.

	Hyperparameter	Search space
Vector field	the number of layers	$\{ 2, 4, 6 \}$
	hidden dimension	$\{ 16, 32, 64 \}$
Encoder	the number of layers	$\{ 2, 4, 6 \}$
	the number of heads	$\{ 2, 4, 8 \}$
	model dimension	$\{ 16, 32, 64 \}$
	dropout	$\{ 0, 0.1 \}$
General	covariance scale γ	$\{ 1, 2, 4, 8 \}$
	learning rate	$\{ 0.0005, 0.0001 \}$
	batch size	$\{ 8, 16 \}$

1393 **FCP** We used multilayer perceptions (MLP) to model the guided vector field $u_{t|h} : [0, 1] \times \mathbb{R}^{d_h} \times$
 1394 $\mathbb{R}^{d_y} \rightarrow \mathbb{R}^{d_y}$. The time variable $t \in [0, 1]$ was concatenated with the input and fed into the vector
 1395 field. A hyperparameter grid search was conducted on the training set of each dataset with different
 1396 d_y to determine the optimal configuration. We set the hidden dimension of the vector field identi-
 1397 cal to the model dimension of the encoder, so that additional layer is not required between the
 1398 vector field and the encoder. Table 3 shows the hyperparameter search space and Table 4 shows the
 1399 optimized hyperparameter configuration. The context window size for the encoder was set to 50.
 1400 We trained the model with Adam optimizer Kingma (2014) with a maximum of 50 epochs for all
 1401 experiments and used the validation set to select the best model.

1402 To determine an appropriate sample size N for the set size estimation using quasi-Monte Carlo
 1403 sampling, we computed the relative standard error of the Jacobian determinants of ψ , defined as

SE($\det J_{\psi,h}$)/Avg($\det J_{\psi,h}$), where $\det J_{\psi,h} = \{\det J_{\psi}(x_j \mid h)\}_{j=1}^N$ are the sampled Jacobian determinants conditioned on h . We selected the smallest N such that the average relative standard error across all h falls below 0.01. We used $N = 4096$ for experiments with $d_y = 2$, $N = 8192$ for experiments with $d_y = 4$, and $N = 16384$ for experiments with $d_y = 8$.

Table 4: The optimized hyperparameter configuration for FCP based on the grid search.

Dataset	Hyperparameter	$d_y = 2$	$d_y = 4$	$d_y = 8$
Wind	the number of layers of the vector field	4	4	4
	the number of heads of the encoder	2	2	2
	the number of layers of the encoder	4	4	4
	the hidden dimension of the vector field and encoder	32	32	32
	covariance scale γ	1	1	2
	encoder dropout	0.1	0.1	0.1
	batch size	4	4	4
	learning rate	0.0005	0.0005	0.0005
	null condition probability	0.05	0.05	0.05
Traffic	guidance scale w (LOO/LSTM base predictor)	1.1/1.1	1.1/1.1	1.1/1.1
	the number of layers of the vector field	4	4	4
	the number of heads of the encoder	2	2	2
	the number of layers of the encoder	4	4	4
	the hidden dimension of the vector field and encoder	32	32	32
	covariance scale γ	1	1	1
	encoder dropout	0.1	0.1	0.1
	batch size	8	8	8
	learning rate	0.0001	0.0001	0.0001
Solar	null condition probability	0.05	0.05	0.05
	guidance scale w (LOO/LSTM base predictor)	1.1/1.2	1.1/1.2	1.05/1.5
	the number of layers of the vector field	4	4	-
	the number of heads of the encoder	2	2	-
	the number of layers of the encoder	4	4	-
	the hidden dimension of the vector field and encoder	32	32	-
	covariance scale γ	1	1	-
	encoder dropout	0.1	0.1	-
	batch size	8	8	-

B.2 COMPUTATIONAL COST

Training time. Table 5 reports the wall-clock training time for all methods, computed as the sum over five independent runs on five different sequences. All models were trained on a machine equipped with dual Intel Xeon Gold 6226 CPUs and a single NVIDIA A100 GPU. For methods that do not employ neural networks, only the CPU was used.

C DATASET DETAILS

Wind dataset The wind dataset contains wind speed records measured at 30 different wind farms (Zhu et al., 2021). Each wind farm location provides 768 records with 5 features at each timestamp. We randomly select $d_y \in \{2, 4, 8\}$ locations to construct five sequences of d_y -dimensional time series.

Traffic dataset The traffic dataset contains traffic flow collected at 15 different traffic sensor locations (Xu & Xie, 2021b). Each sensor location provides 8778 observations with 5 features at

Table 5: the wall-clock training time (hrs) for all methods.

Dataset	Method	$d_y=2$	$d_y=4$	$d_y=8$
Wind	FCP	≤ 0.2	≤ 0.2	≤ 0.2
	CONTRA	≤ 0.2	≤ 0.2	≤ 0.2
	MultiDimSPCI	≤ 0.05	≤ 0.05	≤ 0.05
	Local Ellipsoid	≤ 0.01	≤ 0.01	≤ 0.01
	Empirical Copula	≤ 0.01	≤ 0.01	≤ 0.01
	Gaussian Copula	≤ 0.01	≤ 0.01	≤ 0.01
	CopulaCPTS	≤ 0.01	≤ 0.01	≤ 0.01
	TFT	≤ 1	≤ 2	≤ 4
	DeepAR	≤ 1	≤ 2	≤ 4
Traffic	FCP	≤ 0.5	≤ 0.5	≤ 0.5
	CONTRA	≤ 0.5	≤ 0.5	≤ 0.5
	MultiDimSPCI	≤ 1	≤ 1	≤ 1
	Local Ellipsoid	≤ 0.01	≤ 0.01	≤ 0.01
	Empirical Copula	≤ 0.01	≤ 0.01	≤ 0.01
	Gaussian Copula	≤ 0.01	≤ 0.01	≤ 0.01
	CopulaCPTS	≤ 0.01	≤ 0.01	≤ 0.01
	TFT	≤ 4	≤ 8	≤ 16
	DeepAR	≤ 4	≤ 8	≤ 16
Solar	FCP	≤ 0.5	≤ 0.5	–
	CONTRA	≤ 0.5	≤ 0.5	–
	MultiDimSPCI	≤ 1	≤ 1	–
	Local Ellipsoid	≤ 0.01	≤ 0.01	–
	Empirical Copula	≤ 0.01	≤ 0.01	–
	Gaussian Copula	≤ 0.01	≤ 0.01	–
	CopulaCPTS	≤ 0.01	≤ 0.01	–
	TFT	≤ 4	≤ 8	–
	DeepAR	≤ 4	≤ 8	–

each timestamp. We randomly select $d_y \in \{2, 4, 8\}$ locations to construct five sequences of d_y -dimensional time series.

Solar dataset The solar dataset considers solar radiation in Diffused Horizontal Irradiance (DHI) units at 9 different solar sensor locations (Zhang et al., 2021). Each location provides 8755 records with 5 features at each timestamp. For the solar dataset, we randomly selected $d_y \in \{2, 4\}$ locations to construct five sequences of d_y -dimensional time series. We did not construct sequences with $d_y = 8$ due to the limited number of unique locations, which could lead to overlapping sequences across different trials of experiments.

D ADDITIONAL EXPERIMENTS

D.1 EXPERIMENT AT 0.9 CONFIDENCE LEVEL

Table 6 reports the results on the three real-world datasets at the 0.9 confidence level. We exclude TFT and DeepAR, as they did not demonstrate competitive performance in the experiment at the 0.95 confidence level. The overall results remain consistent with those at the 0.95 confidence level. Notably, the gap in average prediction set sizes between FCP and other strong baselines—such as MultiDimSPCI, CP using local ellipsoids, and OT-CP for $d_y \in 2, 4$ on the traffic and solar datasets—decreases at the 0.9 confidence level.

D.2 ROLLING COVERAGE ON WIND DATASET

Since conditional coverage is challenging to evaluate in real-world data, we use rolling coverage to approximate conditional coverage at a specific time index. Rolling coverage at time index i is

1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524

Table 6: Average empirical coverage and prediction sets sizes obtained by FCP and all baselines on three real-world datasets, evaluated under different base predictors and varying outcome dimensions d_y . Reported values represent the average and standard deviation over five independent experiments. The target confidence level was set to 0.9.

Dataset	Base Predictor	Method	$d_y = 2$		$d_y = 4$		$d_y = 8$	
			Coverage	Size	Coverage	Size	Coverage	Size
Wind	LOO Bootstrap	FCP	0.906 \pm .022	0.596 \pm .050	0.925 \pm .017	0.734 \pm .139	0.938 \pm .011	5.24 \pm .145
		MultiDimSPCI	0.917 \pm .013	0.790 \pm .341	0.919 \pm .024	2.26 \pm .149	0.933 \pm .015	47.7 \pm .52.5
		CopulaCPTS	1.000 \pm .000	22.3 \pm .19.0	1.000 \pm .000	611.3 \pm 484.7	1.000 \pm .000	3.50 \times 10 5 \pm 3.73 \times 10 5
		OT-CP	0.919 \pm .033	0.904 \pm .572	0.951 \pm .025	23.9 \pm .20.9	0.883 \pm .025	1.00 \times 10 4 \pm 622.8
		CONTRA	0.919 \pm .045	6.53 \pm .5.17	0.974 \pm .016	4.12 \times 10 4 \pm 5.05 \times 10 4	0.974 \pm .016	4.12 \times 10 9 \pm 4.05 \times 10 9
		Local Ellipsoid	0.943 \pm .028	0.952 \pm .409	0.958 \pm .015	3.58 \pm .2.18	0.961 \pm .008	53.2 \pm .68.1
		Empirical Copula	0.914 \pm .023	0.597 \pm .204	0.917 \pm .021	1.21 \pm .375	0.896 \pm .042	7.38 \pm .2.04
	LSTM	Gaussian Copula	0.914 \pm .023	0.622 \pm .189	0.917 \pm .021	1.54 \pm .725	0.919 \pm .019	17.0 \pm .4.48
Traffic	LOO Bootstrap	FCP	0.917 \pm .061	0.884 \pm .161	0.924 \pm .024	5.72 \pm .7.18	0.896 \pm .065	848.4 \pm .229.2
		MultiDimSPCI	0.948 \pm .022	2.68 \pm .1.15	0.904 \pm .040	41.9 \pm .46.8	0.839 \pm .074	2.37 \times 10 3 \pm 2.16 \times 10 3
		CopulaCPTS	1.000 \pm .000	45.7 \pm .45.4	1.000 \pm .000	4.82 \times 10 3 \pm 3.73 \times 10 3	1.000 \pm .000	2.83 \times 10 5 \pm 3.28 \times 10 7
		OT-CP	0.909 \pm .046	5.98 \pm .2.84	0.900 \pm .029	188.1 \pm 106.3	0.978 \pm .019	7.21 \times 10 5 \pm 3.49 \times 10 4
		CONTRA	0.730 \pm .240	0.22 \pm .202	0.696 \pm .247	0.05 \pm .023	0.761 \pm .177	7.71 \pm .6.80
		Local Ellipsoid	0.978 \pm .043	7.40 \pm .4.25	1.000 \pm .000	167.3 \pm 137.5	1.000 \pm .000	1.28 \times 10 5 \pm 1.24 \times 10 5
		Empirical Copula	0.974 \pm .042	10.6 \pm .5.93	1.000 \pm .000	325.9 \pm 148.9	0.991 \pm .017	2.38 \times 10 5 \pm 5.90 \times 10 4
Solar	LSTM	Gaussian Copula	0.978 \pm .043	10.7 \pm .5.86	1.000 \pm .000	331.4 \pm 131.8	0.991 \pm .017	3.01 \times 10 5 \pm 1.17 \times 10 5
		FCP	0.913 \pm .026	0.613 \pm .243	0.935 \pm .010	0.453 \pm .2.23	0.934 \pm .039	1.03 \pm .101
		MultiDimSPCI	0.920 \pm .008	1.01 \pm .262	0.929 \pm .011	1.48 \pm .468	0.934 \pm .006	2.92 \pm .911
		CopulaCPTS	1.000 \pm .000	21.6 \pm 16.3	1.000 \pm .000	645.8 \pm 645.5	1.000 \pm .000	3.18 \times 10 5 \pm 4.80 \times 10 5
		OT-CP	0.921 \pm .008	1.09 \pm .269	0.927 \pm .010	2.39 \pm .9.15	0.914 \pm .006	1.46 \times 10 3 \pm 588.0
		CONTRA	0.892 \pm .037	0.606 \pm .325	0.902 \pm .034	0.565 \pm .317	0.849 \pm .048	0.414 \pm .309
		Local Ellipsoid	0.927 \pm .021	1.22 \pm .391	0.942 \pm .010	1.17 \pm .391	0.945 \pm .008	0.954 \pm .376
Solar	LOO Bootstrap	Empirical Copula	0.915 \pm .013	1.24 \pm .296	0.930 \pm .004	2.17 \pm .399	0.931 \pm .004	9.63 \pm .3.17
		Gaussian Copula	0.915 \pm .012	1.26 \pm .294	0.934 \pm .007	2.38 \pm .501	0.936 \pm .008	10.9 \pm .1.68
		FCP	0.953 \pm .022	0.633 \pm .148	0.945 \pm .019	0.623 \pm .058	0.923 \pm .032	0.673 \pm .298
		MultiDimSPCI	0.914 \pm .008	0.607 \pm .255	0.914 \pm .014	0.977 \pm .388	0.913 \pm .022	4.82 \pm .2.70
		CopulaCPTS	1.000 \pm .000	21.9 \pm 12.7	1.000 \pm .000	330.0 \pm 219.4	0.999 \pm .002	4.47 \times 10 5 \pm 4.25 \times 10 5
		OT-CP	0.894 \pm .007	0.575 \pm .238	0.875 \pm .025	1.99 \pm .1.26	0.850 \pm .042	356.5 \pm 322.9
		CONTRA	0.889 \pm .025	0.129 \pm .050	0.860 \pm .043	0.031 \pm .020	0.809 \pm .060	0.007 \pm .006
Solar	LSTM	Local Ellipsoid	0.915 \pm .028	0.625 \pm .262	0.899 \pm .021	0.706 \pm .325	0.871 \pm .039	1.12 \pm .341
		Empirical Copula	0.908 \pm .015	2.59 \pm .383	0.912 \pm .019	13.9 \pm .2.72	0.880 \pm .020	515.2 \pm 105.7
		Gaussian Copula	0.910 \pm .017	2.62 \pm .363	0.908 \pm .017	13.3 \pm .2.69	0.874 \pm .019	479.0 \pm 141.1
		FCP	0.905 \pm .014	0.589 \pm .109	0.900 \pm .010	1.67 \pm .326	-	-
		MultiDimSPCI	0.930 \pm .007	1.10 \pm .068	0.942 \pm .006	5.13 \pm .435	-	-
		CopulaCPTS	1.000 \pm .000	67.9 \pm 12.6	1.000 \pm .000	7.25 \times 10 3 \pm 1.86 \times 10 3	-	-
		OT-CP	0.936 \pm .016	1.44 \pm .440	0.928 \pm .009	8.54 \pm .1.84	-	-
Solar	LOO Bootstrap	CONTRA	0.889 \pm .004	1.38 \pm .506	0.878 \pm .010	7.16 \pm .4.09	-	-
		Local Ellipsoid	0.897 \pm .010	0.749 \pm .064	0.885 \pm .010	0.320 \pm .059	-	-
		Empirical Copula	0.949 \pm .007	1.98 \pm .192	0.955 \pm .005	7.87 \pm .9.09	-	-
		Gaussian Copula	0.953 \pm .005	2.12 \pm .142	0.962 \pm .004	9.66 \pm .626	-	-
		FCP	0.911 \pm .051	0.673 \pm .288	0.907 \pm .016	0.535 \pm .104	-	-
		MultiDimSPCI	0.938 \pm .006	0.733 \pm .066	0.937 \pm .004	2.60 \pm 1.04	-	-
		CopulaCPTS	1.000 \pm .000	44.8 \pm 9.88	1.000 \pm .000	3.34 \times 10 3 \pm 570.7	-	-
Solar	LSTM	OT-CP	0.914 \pm .011	0.585 \pm .084	0.924 \pm .019	10.6 \pm .5.80	-	-
		CONTRA	0.885 \pm .021	0.112 \pm .037	0.858 \pm .017	0.034 \pm .033	-	-
		Local Ellipsoid	0.921 \pm .012	0.582 \pm .055	0.934 \pm .005	0.514 \pm .250	-	-
		Empirical Copula	0.925 \pm .005	2.98 \pm .082	0.939 \pm .010	17.3 \pm .4.44	-	-
		Gaussian Copula	0.939 \pm .002	3.56 \pm .203	0.964 \pm .005	28.0 \pm .2.64	-	-

1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

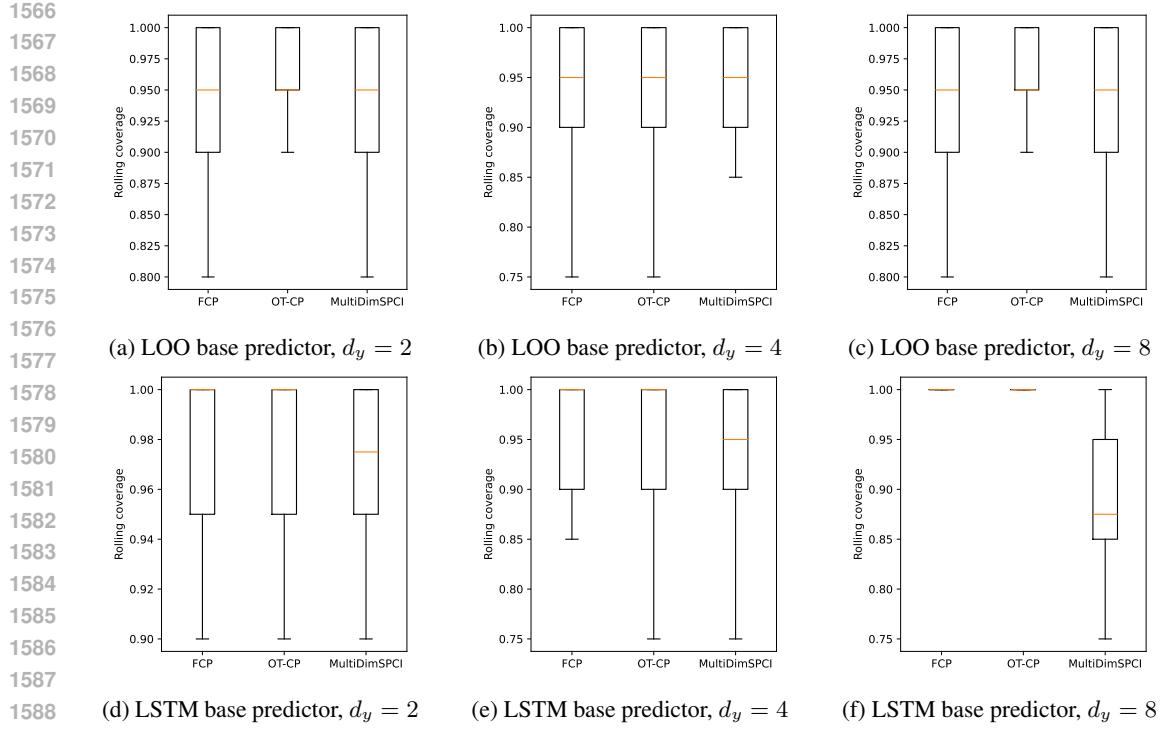


Figure 3: Rolling coverage results on the wind dataset with rolling window size 20.

defined as:

$$\widehat{\text{RC}}_i = \frac{1}{m} \sum_{j=0}^{m-1} \mathbb{1} \left\{ y_{i-j} \in \widehat{C}_{i-j}(z_{i-j}, \alpha) \right\}, \quad (127)$$

where m is a rolling window size. Figure 3 presents the rolling coverage of the test set with rolling window size $m = 20$ on the wind dataset.

D.3 ABLATION STUDY

Ablation study on vector field under bi-Lipschitz flow assumption. Table 7 reports the average empirical coverage and prediction set sizes of FCP with MLP and iResNet across the three datasets with varying d_y .

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637

1638 Table 7: Average empirical coverage and prediction sets sizes obtained by FCP using MLP vector
 1639 field and iResNet vector field on three real-world datasets, evaluated under different base predictors
 1640 and varying outcome dimensions d_y . Reported values represent the average and standard deviation
 1641 over five independent experiments. The target confidence level was set to 0.95. Results with average
 1642 empirical coverage below the target confidence level are grayed out, and the smallest prediction set
 1643 sizes, excluding the grayed-out results, are highlighted in bold.

Dataset	Base Predictor	Method	$d_y = 2$		$d_y = 4$		$d_y = 8$	
			Coverage	Size	Coverage	Size	Coverage	Size
Wind	LOO Bootstrap	FCP (MLP)	0.951 \pm .018	0.88 \pm .089	0.953 \pm .006	3.43 \pm 1.37	0.956 \pm .010	19.4 \pm 10.2
		FCP (iResNet)	0.951 \pm .021	1.14 \pm .069	0.954 \pm .014	1.79 \pm .736	0.953 \pm .018	14.8 \pm 22.5
	LSTM	FCP (MLP)	0.952 \pm .054	1.18 \pm .215	0.957 \pm .022	10.8 \pm 1.05	0.953 \pm .056	2.48 $\times 10^3$ \pm 669
		FCP (iResNet)	0.957 \pm .034	1.84 \pm .279	0.957 \pm .018	6.37 \pm 2.91	0.978 \pm .015	2.55×10^3 \pm 1.94 $\times 10^3$
Traffic	LOO Bootstrap	FCP (MLP)	0.957 \pm .014	0.915 \pm .119	0.953 \pm .009	1.06 \pm .431	0.965 \pm .015	1.53 \pm .161
		FCP (iResNet)	0.950 \pm .021	1.21 \pm .084	0.959 \pm .014	1.33 \pm .118	0.970 \pm .007	2.72 \pm .215
	LSTM	FCP (MLP)	0.968 \pm .022	0.859 \pm .075	0.966 \pm .022	1.05 \pm .111	0.950 \pm .010	1.82 \pm .287
		FCP (iResNet)	0.957 \pm .024	0.788 \pm .051	0.970 \pm .010	1.31 \pm .103	0.956 \pm .016	2.50 \pm .328
Solar	LOO Bootstrap	FCP (MLP)	0.957 \pm .007	1.48 \pm .292	0.969 \pm .003	4.18 \pm .597	-	-
		FCP (iResNet)	0.952 \pm .009	1.42 \pm .166	0.956 \pm .003	2.69 \pm .196	-	-
	LSTM	FCP (MLP)	0.968 \pm .009	1.16 \pm .092	0.961 \pm .008	2.09 \pm .566	-	-
1656	LSTM	FCP (iResNet)	0.955 \pm .005	1.24 \pm .076	0.955 \pm .008	2.42 \pm .276	-	-

1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673