Under review as a conference paper at ICLR 2026

FLOW-BASED CONFORMAL PREDICTION FOR
MULTI-DIMENSIONAL TIME SERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series prediction underpins a broad range of downstream tasks across many
scientific domains. Recent advances and increasing adoption of black-box ma-
chine learning models for time series prediction highlight the critical need for
reliable uncertainty quantification. While conformal prediction has gained atten-
tion as a reliable uncertainty quantification method, conformal prediction for time
series faces two key challenges: (1) adaptively leveraging correlations in features
and non-conformity scores to overcome the exchangeability assumption, and (2)
constructing prediction sets for multi-dimensional outcomes. To address these
challenges jointly, we propose a novel conformal prediction method for time se-
ries using flow with classifier-free guidance. We provide coverage guarantees by
establishing exact non-asymptotic marginal coverage and a finite-sample bound
on conditional coverage for the proposed method. Evaluations on real-world time
series datasets demonstrate that our method constructs significantly smaller pre-
diction sets than existing conformal prediction methods while maintaining target

coverage.

1 INTRODUCTION

Uncertainty quantification has become essential in scientific fields where black-box machine learn-
ing models are widely deployed (Angelopoulos & Bates| [2021). Conformal prediction (CP) has
emerged as a reliable, distribution-free framework for uncertainty quantification that constructs pre-
diction sets with coverage guarantees, ensuring they contain the true outcome with a specified con-
fidence level (Shafer & Vovk, 2008; [Vovk et al., [2005). By constructing uncertainty sets using
non-conformity scores that quantify how atypical predictions are, CP generates reliable prediction

sets that satisfy a specified confidence level.

Time series prediction aims to forecast future out-
comes based on past sequential observations of fea-
tures (Box et al.l 2015), and underpins a broad
range of downstream tasks. Recent advances in ma-
chine learning have led to the development of vari-
ous foundation models designed for time series pre-
diction (Kim et al., 2025 Miller et al., 2024; 'Wen
et all 2023). The growing adoption of such mod-
els for time series prediction highlights the press-
ing need for reliable uncertainty quantification. Al-
though CP has been actively studied for reliable un-
certainty quantification, most existing CP methods .
rely on the assumption of data exchangeability (Bar- time i
ber et al.l[2023). The exchangeability assumption is
frequently violated in time series data, where obser-
vations exhibit complex temporal dependencies that
induce correlations in the non-conformity scores,
thereby making the direct application of CP to time
series prediction particularly challenging. An ad-
ditional challenge is that modern time series data
often contain high-dimensional features and multi-
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Figure 1: Our method adaptively constructs
the prediction set at time ¢ using a flow trans-
formation v conditioned on guidance h;,
which encodes contextual information ex-
tracted from past features and residuals.
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Figure 2: Comparison of the prediction sets at a target coverage of 0.95, constructed by FCP (ours),
MultiDimSPCI (Xu et al., [2024)), and conformal prediction using empirical copula (Messoudi et al.}
2021) on (a) wind, (b) traffic, and (c) solar datasets. Prediction sets are manually selected from the
test set for visual clarity. Two prediction sets are shown for the wind dataset.

dimensional outcomes. While CP methods for univariate outcomes are well-established, extending
these methods to generate prediction sets for multi-dimensional outcomes is not straightforward and
requires careful consideration in constructing prediction sets.

There has been substantial effort to extend CP beyond the exchangeability assumption. One line of
research focuses on addressing distribution shifts in the data (Barber et al., 2023} [Tibshirani et al.,
2019). More recently, several works have developed CP methods for time series. For example, |[Xu
& Xie| (2021a) proposed a method to construct sequential prediction intervals for time series based
on a bootstrap ensemble estimator, which were later extended to incorporate conditional quantile
estimation in order to exploit correlations in non-conformity scores (Xu & Xie, [2023b)). |Auer et al.
(2024) used modern Hopfield networks to capture temporal dependencies by reweighting samples,
and constructed prediction intervals based on these reweighting. Another line of work have pro-
posed multi-step conformal prediction methods for time series, but they assume access to multiple
ii.d. sequences of time series (Stankeviciute et al., 2021} |Sun & Yul [2022), which may limit their
applicability in general practical settings. Despite these efforts, existing methods remain limited to
univariate outcomes or assume access to multiple i.i.d. time series.

Constructing prediction sets for multi-dimensional outcomes has been an active area of research.
Early approaches used copulas (Messoud: et al., [2021) and ellipsoidal uncertainty sets (Hender-
son et al.| 2024} Johnstone & Ndiaye, [2022; Messoudi et al.| 2022)), yielding hyper-rectangular and
ellipsoidal prediction sets, respectively. Subsequent research has aimed to move beyond specific ge-
ometric shapes of prediction sets: |Braun et al.|(2025)) formulated structured non-convex optimization
to obtain minimum-volume sets; and [Tumu et al.| (2024) used convex templates for prediction sets.
Recent works have focused on transporting multi-dimensional non-conformity scores to a reference
distribution from which prediction sets can be constructed. For example, |[Klein et al.[ (2025) and
Thurin et al.|(2025) used Monge—Kantorovich ranks (Chernozhukov et al.| 2017} Hallin et al.| [2021)
to map multi-dimensional non-conformity scores onto a reference distribution to construct predic-
tion sets, by solving optimal transport problems. [Fang et al.|(2025) applied conditional normalizing
flows to map multi-dimensional non-conformity scores to the source distribution and construct pre-
diction sets using a calibration set with the source distribution.

Consequently, an effective CP method for time series prediction must address the two aforemen-
tioned challenges simultaneously: leveraging correlations in both features and non-conformity
scores, and constructing prediction sets for multi-dimensional outcomes. To the best of our knowl-
edge, Xu et al.[(2024) is the only work that seeks to address both challenges jointly, constructing
ellipsoidal prediction sets by defining non-conformity scores as the radii of ellipsoidal sets and pre-
dicting these non-conformity scores conditionally.

In this work, we propose a novel conformal prediction method designed for time series prediction
with multi-dimensional outcomes. Our method is designed to effectively address the aforemen-
tioned two challenges by using flow with classifier-free guidance. Specifically, we use flow to model
the distribution of prediction residuals and their transformations conditioned on historical context,
which is encoded by using Transformer. We define the non-conformity score as the Euclidean dis-
tance between the transformed prediction residual and the mean of a Gaussian source distribution
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of the flow, which allows us to construct prediction sets at a desired confidence level. We pro-
vide theoretical coverage guarantees by establishing an exact non-asymptotic marginal coverage
and a finite-sample bound on conditional coverage for the proposed method. Empirical evaluations
on three real-world multi-dimensional time series datasets demonstrate that the proposed method
constructs significantly smaller prediction sets while maintaining target coverage, outperforming
existing baselines.

2 PROBLEM SETUP

We consider a sequence of observations {(z;,y;) : ¢ = 1,2,...}, where z; € Ré= represents d-
dimensional feature, and y; € R represents d,-dimensional continuous outcome. We assume

that we have a base predictor f that provides a point prediction ¢; for y;, given by ¢; = f (T (=)
where k specifies the size of the past observation window. The base predictor f can be any black-box
model and is not restricted to any specific constraints.

Suppose that the first " examples, {(z;,y;)}7_,, are used for training. Our goal is to sequentially
construct a prediction set C;(z;, ) for the next step, beginning at time ¢ = T" + 1. Here, z; denotes

the features used to construct C;, and o € [0, 1] denotes a pre-specified significance level. In the
simplest setting, z; consists only of x;, but it may also include past features or non-conformity
scores. We aim to construct prediction sets that satisfy marginal coverage:

P(y€Cizia)) 21-a, Vi, (1)
and ideally conditional coverage:
P(yi€Cilzia)|z) 2 1-a, Vi )

Although trivially large prediction sets can always satisfy the target coverage, they do not provide
useful information for uncertainty quantification. Therefore, the meaningful objective is to construct
efficient prediction sets—the prediction sets that are as small as possible while satisfying the target
coverage (Vovk et al., 2005).

Throughout this paper, we distinguish between the indices 7 and ¢ to avoid confusion: the subscript
1 refers to the discrete time index of the sequence of observations, while the subscript ¢ is reserved
to refer to continuous time in ODEs. We use uppercase letters (e.g., X) to denote random variables
and lowercase letters (e.g., x) to denote their realizations.

3 METHOD

3.1 PRELIMINARY: GUIDED FLOW

We use x as a generic variable in this section, distinct from the time series feature x; introduced in
the problem setup. A flow is a time-dependent mapping % : [0, 1] x R? — R? that push-forward
a random variable X, € R? from a source distribution py to X; € R? from a time-dependent
probability density (i.e., probability path) p; for time ¢ € [0, 1] as follows:

oy !
3xt

([We)epo)(xe) = po(iby ' (24)) |det (z4)], 3)

where * denotes the push-forward operator, det(-) denotes the determinant, and 1 (x) := (¢, x).
Flow ¢ is defined by a vector field v : [0, 1] x R? — R through the following ordinary differential
equation (ODE):

%%(xo) = (e (x0)), (flow ODE)

Yo(xo) = x0. (initial condition)

“4)

A guided flow 1)y, = [0,1] x R? x R — R? enables conditional generation by learning a mapping
from a source distribution to a target conditional distribution, and is defined by a guided vector field
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wyp, < [0,1] x R? x R — R? with the following ODE:

d .
%¢t|h($0 | ) = wyn (Yo (xo | h) [ h),  (guided flow ODE)

¢t:0|h($o | h) = xo, (initial condition)

(&)

where h € R% denotes the guidance. By appropriately designing a conditional probability path per
sample x; interpolating po|,, (z | £1) = po and py |y, (z | 1) = ., , where J,, denoting the Dirac
delta distribution centered at z;, we can obtain the marginal guided probability path:

pyn(z | h) = /pt|x1(x | 21) q(w1 | h) dq, (6)

which interpolates the source distribution py and the target conditional distribution ¢(z1 | ). Given
the conditional vector field wy,, that generates each conditional path py,,, the marginal guided
vector field is obtained as:

P, (7 | T1)q(x1 | h)

ugp(z | h) = /ut\"“(x | 21) pen(x | h)

One can verify the marginal guided vector field generates the marginal guided probability path using
the continuity equation (see Proposition [A.I). Therefore, in order to learn the target conditional
distribution, we parameterize the guided vector field with neural networks and train it to approximate
the marginal guided vector field as closely as possible. A simple and effective way to train the
guided vector field is through flow matching, which minimizes the mean-squared error between the
conditional guided vector field and the parameterized guided vector field (Lipman et al., 2022):

d$1. (7)

2
Lcpm = Et,(zl,h) {HU?;L(I | h) - Ut\zl(fl? | 931)H ] s ()

where ¢ ~ Unif]0, 1], (21, h) ~ qdat, and u?‘ ,, is the parameterized guided vector field with param-
eters 0.

We consider Gaussian conditional probability path defined as py|,, (z | 1) = N (2 | apx1,071q),
where A denotes the Gaussian kernel and I; € R%*¢ denotes the identity matrix. oy, o0y : [0,1] —
[0, 1] are interpolating scheduler, which are smooth functions satisfying g, 01 = 0, a1, 09 = 1, and
40, — Lo, > 0fort € (0,1). The guided vector field u;,(z | k) can be reformulated as:

dt
ugp(x | h) = ue(x) + bV log pppe(h | 2), 9)

where wu;(z) is unguided vector field, b; is a scalar constant regarding «; and o (see Proposi-
tion[A.2). Based on this reformulation, early approaches trained a separate classifier (Song et al.l
2020) with a classifier scale w > 1 is beneficial in conditional generation in practice (Dhariwal &
Nichol}, 2021} :

7:bt\h(ilf | h) = u(z) + WbV, 10gph|t(h | ). (10)
By using the identity V, log pyn(z | h) = Vi logps(x) 4+ Vi log ppje(h | ), equation can be
equivalently rewritten as:

Uyp(z | h) = (1 — w)us(x) + wuyp(z | h). (11)

Instead of modeling u () and us(z | h) separately,[Ho & Salimans|(2022)) proposed using a single
vector field to model both cases by assigning a null condition hg to represent the unguided vector
field, which is known as classifier-free guidance (CFG):

Uyp(x | h) = (1 —w)uyp(z | hg) +wuyp(z | h), (12)

where hg denotes the guidance representing the unguided state of the vector field. The guided vector
field can be trained using flow matching with the loss:

£ = Eenger ||

2
wlp(@ | (1= n)h+nhs) — wy, (x| xl)H } (13)

where 7 ~ Bernoulli(pg) and py denotes the probability of assigning hg. The resulting guided
vector field @, (2 | h) in equation enables conditional generation by solving the guided flow
ODE and has been widely used in various tasks such as image generation (Esser et al.l [2024) and
video generation (Polyak et al., [2025]).
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Algorithm 1: Training Guided Flow using Flow Matching

Input: pg, initialized uflh and Enc?
while not converged do

€ —Yi — Ui > obtain prediction residuals

hi < Enc®(z) > obtain contextual representation

hi < hg with probability pz > assign unguided state with probability pa
xo ~ po(x)

t ~ Unif(0, 1)

Tt < até + otxo

Ugle € %atéi + %Utfﬂo

Update with V9||u$‘h(xt, hi) — el > flow matching loss

Output: trained uf| ,, and Enc?

3.2 CONFORMAL PREDICTION FOR TIME SERIES USING GUIDED FLOW

We use guided flow to learn a mapping from the source distribution to the distribution of prediction
residual € = y — ¥, conditioned on past features and residuals. The prediction set is then defined
through this transformation using guided flow to achieve the target coverage. This construction
effectively addresses the two aforementioned key challenges in conformal prediction for time series.
First, the guided flow explicitly captures correlations among past features and residuals by using
them as guidance. Second, since the transformation using the guided flow can be defined between
random variables in arbitrary dimensions, it enables the generation of prediction sets for multi-
dimensional outcomes in any R% . Figure provides a visual illustration of the method. We describe
the method in detail in this section.

Guided flow design. We use Gaussian probability path with interpolating scheduler a; = ¢ and
ot = (1 — t). The source distribution is set to an isotropic Gaussian with zero mean and covariance
scale v > 0, i.e., N(0,714,). For each time index i, we construct z; by concatenating the past
w features and prediction residuals, and use an encoder to obtain a contextual representation h; =
Enc(z;). The classifier-free guided vector field as defined in equation uses h; as the guidance to
model the conditional distribution of ¢;. In our method, we use Transformer as the encoder (Vaswani
et al.,2017), though alternative sequence models such as recurrent neural networks (RNNs) are also
applicable. The guided vector field is trained via flow matching as defined in equation (T3}, and the
encoder is jointly trained with it. The overall training procedure is summarized in Algorithm ]

Prediction set. The trained guided flow models the conditional distribution of the prediction resid-
ual by mapping samples from the source Gaussian distribution to residuals conditioned on the guid-
ance h;. Since this transformation is bijective, we can define prediction sets for the residuals directly
through the transformation. Let é;(y) := Hwt;lll 1 (€ | hi)|| be the Euclidean distance between the
transformed residual and the origin, then the prediction set at significance level a can be defined as:

Ci(zi,a) ={y : éi(y) <ri—at, (14)

where r1_,, is the radius of the ball B;_, that contains 1 — « probability mass. Since we use
N(0, 714, ) as the source distribution, the radius ry _, is givenby 7, = \ﬁxgyl (1—a), where ngl
denotes the inverse cumulative distribution function (CDF) of the chi distribution with d,, degrees of
freedom. Intuitively, the prediction set is obtained by taking the ball that contains the same amount
of probability mass as the target coverage and transforming it to the prediction set for the residual
using the guided flow. Although this construction directly uses é(y) to construct the prediction set,
é(y) is computed from the transformed residual and therefore serves as a proxy non-conformity
score, consistent with treating residuals as non-conformity scores.

Since the prediction set is obtained through the transformation using the guided flow, it can take
on flexible shapes without being constrained to follow any fixed geometric form, such as convex or
ellipsoidal sets. We believe this enables the guided flow to generate smaller prediction sets that are
better aligned with the data and the guidance. Although the prediction sets do not have any fixed
geometric shape, some useful topological properties can still be inferred. In particular, Theorem



Under review as a conference paper at ICLR 2026

ensures that the prediction sets are closed and connected. Figure [2| shows prediction sets in R?
generated by our proposed method alongside two other methods that produce hyper-rectangular
prediction sets (Messoudi et al., |2021)) and ellipsoidal prediction sets (Xu et al., 2024). The figure
visually demonstrates the flexible shapes of the prediction sets constructed by our proposed method.

The size of the prediction set is computed as:

N
/B |det (Jy,_,, (z | h))| dz ~ Size(B Z\det Tpe_sin (@i | R))], 15)

where 1)1 represents the flow transformation from ¢ = 0 to ¢ = 1, and Jy, (x | h) denotes the
Jacobian of ¢, at x € B, conditioned on h. The right-hand side provides a Monte Carlo approx-
imation, where x; are i.i.d. samples drawn from B, and N is the number of samples. However,
directly computing det (Jy, (z | h)) is computationally expensive, as it requires solving the guided
flow ODE and evaluating the full Jacobian matrix. Instead, we can compute the log-determinant of
the Jacobian by solving the following ODE:

d
o log | det Jy, , (z | h)| = div (wy, (Y (x| h) | B)), (Jacobian ODE) (16)

log |det (Jy,_,, (z | B))| =0, (initial condition)

where div(-) denotes the divergence operator. A detailed derivation is provided in Proposition
The accuracy of the prediction set size estimate depends on the Monte Carlo approximation. Purely
random sampling from B, may introduce bias due to uneven coverage of the sampling space, and
a small sample size N can result in high variance. To reduce sampling bias, we use quasi-Monte
Carlo sampling based on Sobol sequences (Sobol,|1967;|Owen, 2023)), which provides more uniform
sampling from B,. To control variance from finite sampling, we monitor the relative error in terms
of sample size N. Additional implementation details are provided in the experiment section.

4 THEORY

In this section, we present exact non-asymptotic marginal coverage and a finite-sample bound on
conditional coverage. We assume that y; € R% is generated from an unknown true function f with
additive noise ¢; € R% according to y; = f (% (i—k):s) + €. Proofs are presented in Appendix

4.1 MARGINAL COVERAGE

We first establish that prediction sets generated by our method achieve exact non-asymptotic
marginal coverage. This result follows from a fundamental property of flow: probability mass
preservation under push-forward operations. When any measurable set is transformed through the
push-forward operation of a flow, its probability mass is preserved. Lemma [.3] formalizes this
property and suffices to prove the exact non-asymptotic marginal coverage stated in Proposition[4.4]

Assumption 4.1 (Flow existence and uniqueness). The guided vector field u;(x | h) is continuously
differentiable and Lipschitz continuous in x for all £ and h. That is, there exists a constant L,, > 0
such that

llue(z | h) —ue(z" | )| < Ly|lw — 2|, VYt h,z, 2. (17)
Remark 4.2. Assumption f.T| ensures the existence and uniqueness of solutions of the guided flow
ODE. In practice, the guided vector field can be modeled using neural network architectures that
satisfy this assumption, such as multi-layer perceptrons (MLP) with smooth activation functions.

Lemma 4.3 (Probability mass preserving property of flows). Let X ~ px be a continuous random
variable on RY, and let ) : R* — R? be a C! diffeomorphism. Define Y := 1)(X) with density py
given by the push-forward of px under 1. Then, for any measurable set A C RY, the transformed
set A" := 1p(A) satisfies:

PXeA)=PYecA) (18)
Proposition 4.4 (Marginal coverage). Let o € (0, 1) be a pre-specified significance level. Under
Assumption[d.1} suppose the guided flow provides a sufficiently accurate approximation of the target
distribution from the source distribution. If the ball B1 _,, defining the prediction set in equation
has probability mass 1 — «, then the prediction set achieves exact marginal coverage of 1 — .
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4.2 CONDITIONAL COVERAGE

We next establish a finite-sample bound on conditional coverage. We define the non-conformity
score based on the prediction residual as é; = |[1)~1(é; | h;)||, and the non-conformity score based
on the true noise as e; = ||[¢p"1(e; | h;)||. The guided flow 1+ is trained on the training set until
convergence and then fixed for computing e and é. The empirical CDF of é and e are defined as:

T T

P (u) = %Z e <u),  Fr(u) = %Z 1{e; < u). (19)

i=1 i=1

We denote F,.(u) = P(e < u) as the CDF of the true non-conformity scores. Since the source dis-
tribution of the guided flow in our method is set to be identical across time, the marginal distribution
for e; can be considered to be identical for all .. However, while the marginal distribution of e; is
identical for all 7, they may exhibit dependence through h;. Therefore, we consider two settings: (1)
when {e;}/ ! arei.i.d., and (2) when {e;} 7! are stationary and strongly mixing. We first establish
a finite-sample bound on conditional coverage under the assumption of i.i.d. non-conformity scores.
Assumption 4.5 (i.i.d. non-conformity scores). The true non-conformity scores {6i}iT:1 are i.i.d.
Assumption 4.6 (Bi-Lipschitz flow). We assume that the guided flow v:(z | h) is bi-Lipschitz
continuous in x for all ¢ and h. That is, there exist constants L, > 0 and L1 > 0, such that
[e(2 | ) = e | W)l < Lyllz — 2’|, Vit bz, (20)

and

I (@ | h) =7 (@' [ W) < Ly-slle = 2’|l Vi, h,a,2. 2D
Remark 4.7. Lemma[A.8]shows that bi-Lipschitz guided vector field results in bi-Lipschitz guided
flow. Therefore, the vector field u;(x | h) can be modeled using neural network architec-

tures that satisfy this assumption. For example, one can use invertible Residual Networks (iRes-
Net) (Behrmann et al., 2019;|Chen et al., 2019) with smooth activation functions.

Assumption 4.8 (Lipschitz continuous of the CDF of the true non-conformity scores). Assume that
F.(u) is Lipschitz continuous with Lipschitz constant L7, 1 > 0, and that F, is strictly increasing
in u.
Assumption 4.9 (Estimation quality). Define A; = €; — ¢;. There exists a sequence {d7 }r>1 such
that

T
1
fz [Ail? < 6%, A7l < or. (22)

i=1
As a result of Lemma[A.T0]and [A.T5] Theorem 4.10|establishes the finite-sample bound for condi-

tional coverage under i.i.d. non-conformity scores.

Theorem 4.10 (Conditional coverage bound under i.i.d. non-conformity scores). Under Assump-

tion and[.9} suppose the guided flow provides a sufficiently accurate approximation of
the target distribution from the source distribution. With probability 1 — §, we have:

‘P(YT+1 €Cfui | Zryn=2r01) — (1 - a)

(23)
< 12\/ % +4(Lpyq + %)(20 + o).

Assumption 4.11 (Strictly stationary and strongly mixing non-conformity scores). Assume that
the sequence {e;}1_, is strictly stationary and strongly mixing, with mixing coefficients satisfying
0< psoa(k) <M < oo.

Corollary 4.12 (Conditional coverage bound under stationary and strongly mixing non-conformity

scores). and suppose the guided flow provides a sufficiently accurate approxima-
tion of the target distribution from the source distribution. With probability 1 — §, we have:

‘P(YT_H S a%_._l | Zry1 = ZT-H) - (1 - a)

(4)/*(log T)*/*
T1/3

(24)

1
<12 + 4(LT+1 + 5)(20 + 5T)-
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The bounds in Theorem [4.10] and Corollary .12] depend on the sample size 7" and the estimation
error d7. Both bounds converge to 1 — v as T — oo, provided that 67 = O(T~%) for some a > 0.

Intuitively, with sufficiently large training data and an accurate base predictor f, the conditional
coverage is guaranteed. The condition on §7 can be satisfied by a broad class of estimators. For
example, sieve estimators based on general neural networks achieve dr = op(T_l/ 1) when f is
sufficiently smooth (Chen & Whitel [1999). The Lasso estimator and Dantzig selector achieve ;7 =
op (T’l/ 2) when f is a sparse high-dimensional linear model (Bickel et al., [2009).

5 EXPERIMENTS

For notational convenience, we refer to our method as FCP, which stands for Flow-based Conformal
Prediction. We use MLP with Softplus activation to model the guided vector field and concate-
nate the guidance and time with the input for the MLP. dopri5 (Dormand & Prince| [1980)
at absolute and relative tolerances of le-5 is used to solve all ODEs. A grid search is con-
ducted to select the optimal hyperparameters for FCP. To determine an appropriate sample size
N, we compute the relative standard error (SE) of the Jacobian determinants of v, defined as
SE ({det Jy (z; | h)}3,) /Avg ({det Jy(z; | h)}I.,), then choose the smallest N such that the
average relative SE across all h falls below 0.01. The source code for FCP is available at
anonymous_url.

Baselines. We evaluate FCP against several conformal prediction methods covering various ex-
isting approaches: MultiDimSPCI (Xu et al., 2024), OT-CP (Thurin et al.| 2025), CONTRA (Fang
et al.| 2025)), conformal prediction using local ellipsoids (Messoudi et al.,[2022)), CopulaCPTS (Sun
& Yul 2022), and conformal prediction using empirical and Gaussian copulas (Messoudi et al.,
2021). We also include two widely used probabilistic time series forecasting methods as baselines:
Temporal Fusion Transformer (TFT) (Lim et al.| 2021 and DeepAR (Salinas et al.,|2020). Although
TFT and DeepAR are originally developed for time series with univariate outcomes, we adapt them
to our multi-dimensional setting by constructing independent copulas using the predicted intervals
for each output dimension. Additional details and setup of the baselines are provided in Appendix B}

Datasets and base predictor. We evaluated FCP and baselines on three real-world time series
datasets: wind, traffic, and solar datasets. For the wind and traffic datasets, we randomly selected
d, € {2,4,8} locations to construct five sequences of d,-dimensional time series. For the solar
dataset, we use d,, € {2,4} and similarly construct five sequences. Additional dataset details are

provided in Appendix |[Cl Base predictor f is required to provide a point prediction §. We used
two types of base predictors for each dataset: (1) leave-one-out (LOO) bootstrap ensemble of 15
multivariate linear regressors, and (2) recurrent neural network (RNN) with long short-term mem-
ory (LSTM) units (Hochreiter & Schmidhuber, [1997). Since the RNN base predictor requires part
of the sequence for training, whereas the LOO bootstrap predictor can leverage the full sequence,
the effective sequence length available for evaluation varies by predictor. Each base predictor was
trained independently for every sequence. For the RNN base predictor, the first 50% of each se-
quence was allocated for training, and predictions were made for the remaining 50%, which served
as the evaluation sequence. Within this evaluation sequence, the first 80% was used as a training
set, and the final 20% was evenly divided into validation and test sets. Since FCP does not require
a calibration set to construct prediction sets, the validation set was used for model selection during
training. To ensure fair evaluation in terms of data utilization, we combined the training and vali-
dation sets into a single calibration set for methods that require a calibration set. The specific data
utilization scheme for each baseline is detailed Appendix [B]

Evaluation metrics. Efficient prediction sets are those that are as small as possible while satis-
fying the desired coverage. Therefore, we use two evaluation metrics: empirical coverage and the
average prediction set size. The empirical coverage at a target confidence level « is defined as:
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Table 1: Average empirical coverage and prediction sets sizes obtained by FCP and all baselines on
three real-world datasets, evaluated under different base predictors and varying outcome dimensions
d,. Reported values represent the average and standard deviation over five independent experiments.
The target confidence level was set to 0.95. Results with average empirical coverage below the
target confidence level are grayed out, and the smallest prediction set sizes, excluding the grayed-
out results, are highlighted in bold.

Dataset Base Predictor Method dy =2 dy =4 dy, =8
Coverage Size Coverage Size Coverage Size
FCP 0.9514 015  0.8810s0 0.953+ 006 343,137 0.956+ 010 1941102
MultiDimSPCI 09531016  1.31is524  0.956+ 018 6.3943.90 0.9514 024 205.54161.5
CopulaCPTS L0rooo 2231190 104000 611344817 LO0rooo  3.50 x 107, 0 1os
OT-CP 0.964+ 015  2.71x151  0.9584 015 42.3138.4 0.9274 027 1.28 x 10473
LOO Bootstrap CONTRA 0.9794 024 3294258  1.0004 090 7.89 x 101149)(106 0.9944 g0 5.88 x lolill,mxlo‘?
Local Ellipsoid 0.9644 015 1.384.419 0.9714 013 8.6345.90 0.9744 011 394.94502.4
Empirical Copula  0.9514 13  1.224 316  0.9584 019 4.9449 57 0.9484 012 7744961
Gaussian Copula  0.9454 917 1.174 289  0.9584 019 5.1142.40 0.9484 012 7741961
TFT 0.7234 170 1344 555 0.5154 174 1.261 3 50 0.1871 126 6.7515.10
Wind DeepAR 0.9094 036 1.324 445  0.6724 130 18445 56 0.3201 160 52.84 645
FCP 0.9524 054 L184215  0.957+ 02 10.841 05 0.9531056 248 x 103450
MultiDimSPCI 0.974+ 000 3.79+171  0.926. 45 63.9+58.4 0.896+.035  5.53 x 1036 51,100
CopulaCPTS 104000 4571454 104000  482x 103, . 1o 102000 283 X 10704 05,107
OT-CP 09704035 9132485 0.930+ om0 212341245 0943+ 055 839 x 103, (e 10
LSTM CONTRA 0.8261 501 0.3174 900 0.8044 175 0.1924 194 0.761+ 205 25.0435.0
Local Ellipsoid ~ 0.978+0s3 10.52607 104000 354441068 102000 263 X 100, 7,108
Empirical Copula  0.9834 ¢35  14.245.19 1.04.000 494.54196.1 1.04.000 4.46 x 1019_82“01
Gaussian Copula  0.983:.035 14.1eg18 104000 499.141805 L0xo00 524 X 107, g, 100
TFT 0.5504 301 1904 o5 0.3954 105 o 0.1364 180 2371918
DeepAR 0.7864 065  1.694 450  0.3054 055 10.1 0.00- 000 Sia6
FCP 0.9574 014 09154 119 0.9534 009 1.06 431 0.9654 015 1.531 161
MultiDimSPCI 0.963+.00s 1.581.416  0.9684 006 2.62+ 908 0.971 4+ 04 10.714.60
CopulaCPTS 1.000+ 000 21.61163  1.000+ 000 645.84645.5 1.0004. 000 3.18 x 1014.80“05
OT-CP 0.9664.00s  2.031.685  0.963+ 007 32.0420.0 0954+ 007 3.90 X 103, 05108
LOO Bootstrap CONTRA 09504026 1324710 0.9534 031 1.5841.06 0.931+ 036 6.2121 51
Local Ellipsoid 0.9704 007 2.04+505 0.9754 005 2.9541.06 0.980+ 003 3.8241.13
Empirical Copula  0.9731 o6 2.354 446  0.9724 004 5.6141.48 0.970+ 005 40.446.04
Gaussian Copula  0.9734 o006 2.37+.430  0.9724 g04 5.6141.48 0.970+ 005 40.446.04
TFT 0.407+ 065 0.2924 0s9  0.189% 306 0.07+ 031 0.09+ 007 0.0094 007
Traffic DeepAR 0.443+ 005  0.308+.088  0.197+.054 0.07+ 030 0.09+ 028 0.004+.003
FCP 0.968+.022 0.859+ 075 0.966.+ 022 1054 113 0.950+ 010 182 57
MultiDimSPCI 0.957+ 007 0.8704+ 383 0.960+ 009 1.594 588 0.9524 914 1424756
CopulaCPTS 10001000 2194127 1.000+.000 330.04219.4 0.9924 002 447 x 10%, 50 10
OT-CP 0.9531.006 0.920-370 0.930 o7 11.810.35 0.921 020 730216057
LSTM CONTRA 0.9404 258 0.2224 g0 0.9424 o8 0.106+ 056 0.9104 032 0.0504 050
Local Ellipsoid 0.957+ 023  0.9874 413  0.948. s 1.484 559 0.9284 017 3.37+ 605
Empirical Copula  0.9554 005  3.814.629  0.948 g1 25.845.06 1.22 x 103 541 o
Gaussian Copula  0.953+ 906 3.74+.570  0.9524 g11 26.4+4.00 1.22 x 103541 o
TFT 0.3744 110 0.2854 106  0.1924 ous 0.06 020 0.0034 000
DeepAR 0.386+ 065 0.2664 069 0.211+ 056 0.06+.017 0.003+ 001
FCp 0.957+ 007 1484092 0.969+ 003 418 597 - -
MultiDimSPCI  0.9684 005  1.971.076  0.971 003 11441 50 - -
CopulaCPTS 1.000+£ 000 6791126 1.000+ 000 7.25 % 10'118GX103 - -
OT-CP 0.9844 g4 3.694.797  0.9714 006 248.9440.3 - -
CONTRA 0.950+ 012 3.08+£584  0.936+ 013 30.8+16.7 - -
LOO Bootstrap 17 Bllipsoid 0,047+ vor 144 ree 0.945. o 1871 510 ] -
Empirical Copula  0.9864+ 004 4474174  0.988+ 004 36.5+4.03 - -
Gaussian Copula  0.9864 004  4.474174  0.9894 003 38.241 37 - -
TFT 0.782+ 026  0.7794.056  0.722+ 028 3.18% 115 B -
Solar DeepAR 0.8024 121 1.034.114  0.7134+ 086 6.73+1.00 - -
FCP 0.968+ 009 1164 092  0.9614 gos 2.09. 566 - -
MultiDimSPCI 0.969+ 004 1.31lto10  0.976+ 005 6.46+951 - -
CopulaCPTS 1.000:.000 4481088 1.000:000  3.34 x 103, - -
OT-CP 0.9794 005  2.254247  0.9634 008 142.0140.8 - -
LSTM CONTRA 0.9384+ 012 0.1004.026 0.913+ 013 0.0224 014 - -
Local Ellipsoid 09724 005 1274143  0.978+ oo 2.43+ 996 - -
Empirical Copula  0.9874 02 6.474 103  0.9904 003 67.7+10.9 - -
Gaussian Copula  0.9924 901 7.114 216 0.997+ 001 89.944 69 - -
TFT 0.746 1 0s1 0.6511 005  0.6844 063 1.63 ¢ 177 N -
DeepAR 0.839+ 028 1.014 088 0.715+ ga3 3.574 403 - -
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where D,y denotes the test set. The average prediction set size is computed by averaging the sizes

of C; over the test set, with the specific definition of the set size depending on the geometric form
of each method.

Results. Table[T|presents the results of experiments on three real-world datasets. FCP consistently
obtained smaller prediction sets than all baselines while maintaining the target coverage. The perfor-
mance gains of FCP were especially notable for higher outcome dimensions, showing significantly
smaller prediction set sizes with lower variability. Moreover, FCP maintained stable coverage across
varying d,,, whereas baseline methods often suffered from undercoverage or from overcoverage cou-
pled with either overly contracted or excessively inflated prediction sets. In particular, methods re-
lying on the exchangeability assumption often exhibited severe coverage errors and highly unstable
prediction set sizes.

MultiDimSPCI and CP using local ellipsoids generally showed good performance. In particular,
on the solar dataset, CP with local ellipsoids achieved performance comparable to FCP. This is
possibly due to their ability to capture temporal or local correlations, respectively. OT-CP and
CONTRA also performed well in certain experiments, indicating some potential to adapt beyond
the exchangeability assumption. We observed that increasing the guidance scale w often reduced
the prediction set size, though at the cost of slightly lower coverage. In practice, an effective range
for w was typically between 1 and 1.5 across our experiments.

Ablation study. We conduct an ablation study to assess the impact of the encoder. Specifically,
we evaluate FCP with and without the encoder, where in the latter case the guidance h is replaced
by the concatenation of the feature at time ¢ and residual at time ¢ — 1. Table |reports the average
empirical coverage and prediction set sizes of FCP with and without the encoder on the wind dataset.
We observe that removing the encoder led to less stable coverage and noticeably larger prediction
set sizes.

Since the conditional coverage bound of FCP relies on the bi-Lipschitz flow assumption (Assump-
tion @, we conduct an additional experiment using iResNet (Behrmann et al.,[2019) to model the
vector field, ensuring this assumption is satisfied. Table [/| reports the average empirical coverage
and prediction set sizes of FCP with MLP and iResNet across the three datasets with varying d,,. We
observe that imposing bi-Lipschitzness in the vector field did not negatively affect either coverage
or prediction set size.

Table 2: Average empirical coverage and prediction set sizes obtained by FCP and FCP without
the encoder on the wind dataset, evaluated under different base predictors and varying outcome
dimensions d,,. The target confidence level was set to 0.95.

Base Predictor Method d, =2 d, =4 d, =8
Coverage Size Coverage Size Coverage Size
FCP with Encoder  0.9514 918 0.88+.089 0.953+ 006 3.43+1.37 0.9564 010 19.4410.2
LOO Bootstrap FCP w/o Encoder  0.9481 o3 1.13+ 193 0.9644+ 005 3.994103 0.964+ 010 35.3414.0
LSTM FCP with Encoder 0-952i.054 1.18i,215 0-957i.022 10.8i1,05 0-953i,056 2.48 x 10i669
FCP W/O Encoder 0.965i,011 1-92i.367 0-957i.014 12-2i15.0 0.935 007 5.55 X “)er 17x 103

6 CONCLUSION

In this study, we proposed a novel conformal prediction method for multi-dimensional time series
using flow with classifier-free guidance. We provided coverage guarantees of our method by estab-
lishing exact non-asymptotic marginal coverage and a finite-sample bound on conditional coverage.
Experiments on real-world datasets with a broad set of baselines demonstrated that our method con-
structs smaller prediction sets while satisfying the target coverage, consistently outperforming the
baselines. Future work will investigate dynamic optimal transport mappings, implemented through
flow, between the non-conformity scores and the source distribution, with the aim of constructing
more efficient prediction sets and deriving sharper coverage bounds.
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A PROOFS

Proposition A.1. Let uy,, (x | 1) be the vector field generating the probability path py|,, (x | x1).
Then, the vector field uy (x| h) is a valid vector field generating pyp(x | h).

Proof. Since uy,, (x| 1) generates the probability path py,, (x | 1), the continuity equation
holds for each x1:

apt\zl (1‘ ‘ -7;1)

o + div (utm(m | 21)Pt|z, (T | xl)) =0. (26)
The time derivative of py, (z | h) is:
Opyn(x | h) 0
o o /Ptm(aj | #1)q(x1 | h) dxy
Ops|z, (x|
= [Pl e
(27)

= —/diV (wt)zy (2 | 1)P1)ay (x| 21)) q(21 | B) day

= _div (/ Utjz, (€ | 21)peje, (7 | 21)q(21 | B) dml) '

Since the marginal guided vector field is defined as:

Pt|ay (x| z1)q(x1 | h)
ugp(x | h) = | uye, (x| x dxq, (28)
e 1) = [, ) P20 O e
we can rewrite as:
Ut|h($ | h)Pt\h(x | h) = /Ut\ml(iﬂ ‘ xl)pt\xl(x | 951)(1(351 ‘ h) dzy. (29)
Substituting equation (29) into equation (27), we have:
Opyn(x | h) .
e = —div (ugn (@ | Wpan(@ | 1)) (30)
which is the continuity equation for py,(x | h) under the vector field uy(x | h). Therefore,
uyp (x| h) is a valid vector field generating py (x| h). O
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Proposition A.2. With a given Gaussian probability path py,, (z | 1) = N(z | cwaq,0714), the
guided vector field gy (x | h) can be reformulated as:

uyp (x| h) = up(x) + 0,V log e (h | ). 3D

Proof. By the definition of the guided marginal probability path:

pn(e |0 = [ pie, (o [ aton | W), (32)
where pyj,, (¢ | #1) = N (2 | aya1, 071). We express the score function as
Va:pt\h(x | h)
Vilogpyp(z | h) = ——————= (33)
(@ | 2) pen(z | h)
_ S Vabije (x| z1)q(21 | y)day (34)
pen(x | h)
Pefay (2 | 21)q(21 | y)
= [ V,logp, (x| z dxy. (35)
/ ter (7] 71) Pz | h) '
Since py, (¢ | #1) = N (2 | aya1, 071), we have:
Gy .
ui(z | z1) = U—(x — 1) + (36)
t
= %x — %atxl + 37
Ot Ot
= 20+ (d — Say)n (38)
Ot Ot
: 1
%, + (ot — t0y) (x — apxq) (39)
Ot Q0
= 20 1 (quor — ui) LV logpi(x | 71), (40)
Ot Qg

where a; denotes %at, and o; denotes %at. The last equality holds since V; log py,, (z | 1) =
—0%2 (x — apzq).

The guided velocity field is defined as:

Ptle, (7 | 1)q(w1 | h)
h) = . 41
ugp (2 | h) /uml(z | 1) pone | 1) dxy 41)
Therefore,
ugp(x | h) = arx + 0,V logpe(x | h), (42)

where ay = %, and bt = (dtOt — atdt)%.
By using the identity V. log py,(z | h) = Vi logpye(h | ©) + V, log ps(x), we have:
ur(z | h) = awx + by (Vg ppye(h | 2) + Viogpi(x)) = up(x) + bV logppe(h | 2).  (43)
O
Proposition A.3. The log-determinant Jacobian ODE defined in equation equation[I6)is equivalent
to the divergence of the guided vector field.
Proof. The Jacobian ODE is defined as:

d _ Ougn(Yen( | ) OYyn(x | h)  Ouyn(Pyn(x | b))
e I = Ty o owaeimy I
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with the initial condition:

Jwt=0|h (‘T | h) =1 (45)
By using Jacobi’s formula,
d 1 d
et Ty, (o | ) = det Ty, (| 0) e (I e 1) S u, e D). @6)

Substituting equation equation 4] into equation equation 46| we obtain:

d 3Uf\h(1/)t\h(x | h))
—det J h) =det J h)-t : . 47
et T (o 1) = det Ty, (o | 1) (UL @)
Therefore,
d Oug ) (Yyyn( | h))
— log | det J h)| =t 48
dt Og| € wt\h(gj | )| I'< aw”h(x ‘ h) ) ( )
Since the trace of the Jacobian of a vector field corresponds to its divergence, we have:
3Ut\h(¢t|h(l’ | h))
t = di h))), 49
(Hite i) =z ) )
where div(-) denotes the divergence operator.
Therefore, the log-determinant of the Jacobian ODE is defined as:
d .
o log | det quh(x | h)| = div (ut|h(z/1t|h(x | h))) (50)
with the initial condition:
log | det Tp—opn (z | h)| =0. 5D
O

Theorem A.4 (Closed and connected sets under a continuous map, [Munkres| (2000)). Let Z and Y
be topological spaces, and let 1) : Z — Y be a continuous map. If E C Z is closed and connected,
then Y(E) C Y is also closed and connected.

Assumption A.5 (Compact feature and outcome domains). The feature and outcome domains are
compact. Thatis, x; € X C R% and v €Y C R%, where X’ and ) are compact sets.

Remark A.6. While its not strictly required, further assume that the domains of z; and y; are com-
pact, which ensures that the encoder output is also compact, as formalized in Assumption
Under Assumption@l if the encoder is a continuous function that maps a sequence of inputs to a
representation 2 € R%, then the image of the encoder H C R? is compact.

Lemma A.7 (Lipschitz continuous of the guided flow). Let vy denote the guided flow defined by a
guided vector field uy. If the guided vector field u:(x | h) is Lipschitz continuous in x uniformly
overt € [0,1] and h € H, i.e., there exists a constant L,, > 0 such that

lue(z | h) —ug(z' | B)|| < Ly||lz — 2| Va,2',t,h, (52)

then the guided flow (x| h) is Lipschitz continuous in x overt € [0,1] and h € H. That is, there
exists a constant Ly, > 0 such that

[pe( | h) = (2’ | W)l < Lyllz — 2’| Va,a',¢, h. (53)

Proof. Letd(t) = [[¢¢(z | h) — ¢e(a’ | B)||
Since the guided vector field is Lipschitz continuous, there exists L,, such that

lue(a | h) = ue(a” | D) < Lulle =2/, Yt h,z, 2. (54)

16
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This is equivalent to

lue (e | 1) [ h) = we(be(2” | h) | )| < Lulltbe(@ [ ) = pe(a” [ Rl VE bz 2. (55)

Let z(t) = ¥(x | h) — (2’ | h), then

TR ISR S
Since %z(t) =u(Pe(x | h) | h) —ur(e(2’ | R) | h), by Cauchy-Schwarz inequality,
0N iz u x —u x
Therefore,
@ a(t) < el | 1) | ) —w (e’ | 1) | B)] (58)

Since the guided vector field is Lipschitz continuous,

d
Zd(t) < Lud() (59)

Based on Gronwall’s inequality (Gronwall| (1919); Hirsch et al.|(2013)),
Assuming that d(t) > 0 divide both sides by d(t). If d(t) = 0, the inequality holds.

1 d d
—_—— <L=—1 <L
a0 dtd(t) <L= - log d(t) < (60)
Now integrate both sides from 0 to ¢:
log d(t) — log d(0) < Lt = log (;Z((é))) <Lt= d((é)) <elt = d(t) < d(0)ert  (61)
Since d(0) = [[¢o(z | h) — ¢o(a" [ W) = ||z — 2],
[e( | B) = u(a” | W) < e la — o] (62)
Therefore, we know that
lbe(z | h) — (2’ | B)|| < elu|lx —a'|| Va2’ t,h (63)

O
Proof of Lemma[.3] Since the probability density function of Y = (X)) is the push-forward of
; (64)

px, we have:
py (y) = px (¥~ (y)) [det Ty (y)
W 'y

where det A denotes the determinant of a square matrix A and J,,-1(y) = oy is the Jacobian
of 1p~. The probability mass of the transformed set A’ = (A) is:

’

PWGAU=/pﬂw@- (65)

Using the change-of-variables y = ¢(z) with dy = | det Jy; (x)|dx, we have:

[ s = [ pyw) et @) . (66)
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Substituting from equation equation[64] we have:

/ py (Y¥(x)) |det Jy(x)| de = / px () ’det Jyp—1 ’ }det Jy(z)| da. (67)
A A
Since Jy,-1(¢(z)) = Jy(x) !, we know that | det Jy—1 (¢ ()| - | det Jy (z)| = 1. Hence,
| wwidy= [ pxia)in (68)
! A
O

Lemma A.8 (bi-Lipschitz guided flow). Assume that the guided vector field is bi-Lipschitz uniformly
inxovert € [0,1] and h € H, i.e., there exists L,, and l,, such that

(x| h) —ue(2" | h)|| < Lyllxz — 2’| Vt, hyz,2'. (69)

lyllx — x
Then the guided flow 1 is bi-Lipschitz. There exists Ly, and ly, such that
bplle ="l < [[¢n(z [ h) = (2’ [ )| < Lylle = 2"V, bz, 2. (70)

Proof. Proof follows similarly to Lemma[A.7} The upper Lipschitz bound follows from Lemmal[A.7]
Let 2(t) = ¢¢(x | h) — (2" | h) and d(t) = [[¢e(2 | h) — (2" | R)]| = [[2¢]-

d 2 d
L1 = 2(2(0), 72(0) an
By Cauchy-Schwarz inequality,
d s d d
i > -
12017 = =d®)* > =2z @)l =) (72)

Sl)nce dt( (,t|) =) u(x | h) — (e’ | h) and fJug(z | h) — w2 [ R)|| = Lulle — 2| = Lullgr (e |
x :

d
274 = =20l ()]* = —2L.d(t)® (73)
Using Gronwall’s inequality,
le(z | h) = ez’ | h)| = e e — 2| (74)
Therefore, we know that
[e(@ | h) = ve(a’ [ W)l 2 el —a'|| Va,a,t,h (75)

Combining with the upper Lipschitz bound, we get
|| < [l | B) = e [ B[] < e

—lu||p

e x—a| Va,2' t h (76)

Lemma A.9. Under Assumption.8] F.(er11) ~ Unif[0, 1].

Proof. Since F, is strictly increasing and continuous under Assumption [4.8] the Lemma holds for
€41 F, e- O

Lemma A.10 (Convergence of empirical CDF of i.i.d. {e;}7_,). Under Assumption E 4.5 and 4.6

M, such that conditioned

for any T, there exists an event At with probability at least 1 —
on Ar,
log(16T")

T (77)

sup FTH(x) - Fe(x)’ <

18
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Proof of Lemma[A.10] The proof follows the proof of Lemma 1 inXu & Xie|(2023a). Under the
assumption that {e; }; T+ are i.i.d., the Dvoretzky—Kiefer—Wolfowitz (DKW) inequality (Dvoretzky
et al.| |1956; Kosorok 2008) implies:

P ( (z) — Fe(;v)‘ > sT> < 2¢2Tsr, (78)
Choose s = /W (16T)/(2V/T), where W (T) denotes the Lambert W function satisfying
W(T)eW(T) = T. Since W(16T) < log 67), it follows that sy < 4/log(167")/T. Define

the event A7 on which sup,, FT+1 x) ‘ < /log( 16T /T so that we have:

- log(16T)
sup ‘FTH(:B) - Fe(x)‘ ’AT < —7 (79)
and
log(16T
P(Az) > 1— 1/ 108U6T) (80)
T

O

Lemma A.11 (Gaussian concentration inequality, Theorem 5.6 in Boucheron et al.| (2003)). Let
X ~ N(0, 1) be a standard Gaussian random vector in R% and let f : RY — R be an L -Lipschitz
continuous function. Then, for all t > 0,

_ 42
B(F(X) > E[f(X)] +1) < exp (2;2) , 81)

Proposition A.12 (Gaussian concentration inequality with isotropic covariance). Let X ~
N(0,7v14) be an isotropic Gaussian random vector in R with covariance matrix vI; € R for
some~y > 0andlet f : R* = Rbean L ¢-Lipschitz continuous function. Then, for all t > 0,

_ 42
B(F(X) > E[f(X)] +1) < exp (wﬁf) , (2)

Proof. Let X' ~ N(0,1;), and define X = ,/7X’, so that X ~ N(0,71;). Define the function
fy(z) == f(y/7x). Then f, is \/7Ly-Lipschitz. Applying Lemma to f,(X'), we obtain:

/ ! t2
P (LX) 2 B (X)) +1) < exp (—QVL? ) . (53)
Since f(X) = f(X'),
P(f(X) 2 B[f(X)] +1) =P (f4(X") 2 E[f,(X")] + 1) < exp <_2§L?> - (34
0

Lemma A.13 (Norm concentration of isotropic Gaussian random vectors). Let X; ~ N(0,~v14) be
an isotropic Gaussian random vector in R?, and || - || be 2-norm. Then for any § € (0,1), with
probability at least 1 — §, we have:

<
11232XT |1 X:] < Mr, (85)

where My = \/7 (m+ w)
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Proof of Lemma[A.13] Let X ~ N(0,7I,) be an isotropic Gaussian random vector in R? with
covariance matrix yI; € R? for some v > 0 and let f : R? — R be 2-norm, i.e., f(X) = || X].

Using Proposition and since f is 1-Lipschitz continuous, we have for all £ > 0:

t2
B(IX| > E[X][] + ) < exp (—QV) . (36)

Using Jensen’s inequality and since X ~ A (0,~v1y),
E[IX] < VE[IX[P] = \/EXTX] = vtr(v1a) = v/7d. (87)

Therefore, for any ¢ > 0,
£2
P(IX) > vad+ 1) < exp (—2). (88)
g

By the union bound,

T

t2
P (ggnglXill > \/%H) <) P (||Xi|| > NH) <T-exp (—%> . (89)

i=1

By setting 7" - exp (—t?/27) < 4, we obtain:

t> UQ*ﬂog (?) (90)

Therefore, with probability at least 1 — 4,

T
s 10 < v+ 2108 (5 ). o
Defining My := /7 (\/g +/2 log(T/é)) , we conclude:

max || X;|| < Mr. (92)
1<i<T

O

Lemma A.14 (Bound on the sum of differences between true and estimated non-conformity scores).
Under Assumption.6land .9 with probability at least 1 — 6,

T
> lei— el < 2T (MrLy187 + L1 67). ©3)

i=1

Proof. Since the encoder is fixed after convergence, it generates the same h for € and e. Let §; =
w_l(éi | h) and s; = ¢_1(6i | h)

Using the identity for the difference of squared norms:

Sill = llsi + (8 — s0)|?
ll$:ll = || i ( )A|| A 2 04
= |Isill” + 2(ss, $i — s4) + |85 — 4|7,
we obtain:
16017 = llsall® = 2(si, $i — s3) + |55 — sil? (95)
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Therefore,
6 —eil = [[13il1* = llsill?| ©6)
= !2(si,§i —8i)+ |8 — 51H2| .
By the Cauchy-Schwarz inequality,
[(si,8i = si)l < llsall - 118 — sill- ©7)
Since 1)~ ! is Lipschitz continuous with Lipschitz constant L1, we have:
18i = sill < Ly-1|é; — €] = Ly—1[|Aq|. (98)
Substituting inequality (98) into the inner product bound in equation (97),
(56,8 = si)| < llsall - 18: — sill < Ly [lsal[[| Aall- (99)
Then, by the triangle inequality,
i — eil < 2Ly lsilll Al + L A% (100)

By Lemma | we have with probability at least 1 — § that ||s;|| < My for all 4, and by Assump-
tion[d.9] ||A < dp. Substituting these into the inequality (100),

|éz — €i| < QMTL¢715T + LdfléT' (101)
Summing over all? = 1,...,T, we conclude:
T
Sles—el<T (QMTLW(ST + pr,la%) . (102)
i=1
L]
Lemma A.15 (Distance between the empirical CDF of {ez}T 1 and {&;}L)). Under Assump-
tlonn . and. with probability 1 — 6, FT+1( ) and FT+1( ) satisfy
() — FT+1($)‘ < (2Lr41+1)Cy2sup FT_H(x) — Fo(x)|, (103)
x

where C = \/MTLw—15T + Li,lé%.
Proof of Lemma By Lemmal|A.T14] we have with probability at least 1 — 4,

T
Slee—el <T (QMTLd,_lJT + Li_lé%) . (104)
t=1

1/2
Let C = (2MTL¢716T + Li,lé%) . Then,

T
> e —ei| <TC? (105)
=1
Define S = {t : |é; — e;| > C}. Then,
T
S|-C <Y | — e <TC?, (106)
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which implies |S| < T'C.

We can bound the difference between the empirical CDFs of é; and e; as follows:

|Fria(z) = Fro(@)] < o Z [1{é: < o} — I{er <z}

T
<S| +) J1fer <2} - 1{er < x}>

¢S

<S|+Z]l{|et—x| <C}>

t¢s

(ISI +le{|et -7 < C}>

ST
<C+P |eT+1—x|<C)

= A
Nl

IA
el

+sup LS 1fler— o1 < €}~ Blleras — ol < 0>|
WOt [Fulz + C) — Fu(z - O)]
+sup [FTH(HC)—FTH(QC—C) —[F(z+C) - Fu(a — C)]

< (2Lpy1 + 1)C + 25up [Py (x) — Fo(@)].
x

(107)

Here, (i) follows from the inequality |1{a < x} — ]l{b <z} < ]l{\b —z| <la—10b|} fora,b R,

(i3) follows from the identity P(lery1 — z| < C) = Fo(x + C) — F.(x — C), and (i) uses the
Lipschitz continuity of F¢(x).

O

Proof of Theorem 4 For any 3 € [0, o],

‘IP’ (YT+1 S @j‘fﬂ \ Zry1 = ZT+1) —(1- 04)‘

= [P (érs1 € [Fr1i(8), Byl = a+ B)] | Zrin = 2r1) - (1 - a)| (108)
(1)

(ﬁ < Frii(érs) <1- CH-ﬁ) P(B < Fe(er1) <1— a+ﬁ)‘ :

Equality (i) follows from Lemma[A.9] which states that F¢.(e71) ~ Unif[0, 1]. This can be further
bounded by:

‘P (5 < Frii(éry) <1 —04+5> —P(B < Fe(ery1) <1 —a—i—ﬁ)‘

<E|1{8< Prii(eri) S1-a+ 8}~ 1{B< Fleryn) < 1-a+ 6}
; (109)
(S) E (‘]1 {ﬁ < ﬁT+1(éT+1)} -1{B< Fe(€T+1)}‘

[ {Pri@ri) <1-a+ 8}~ 1{Fuleri) < 1-a+ 8|

Here, inequality (¢) follows from the fact that for any a, b € R and real values x,y € R,
Ma<z<b}—1{a<y<b} < |la<al—1{a<y} +|L{z <b}—L{y <b}|. (110)

By triangle inequality,
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E(‘]l{ 8T+1)} —-1{p< Fe(€T+1)}‘
{215} -1 5r 23001
<E ‘ll{ﬂ < Frii(éri)} — 1{B < Felern }D (111)

(
(a)
+E (‘]1 {FT+1 éry1) <1 —Oé—i—ﬁ} —1{F.(er41) <1— Oé+ﬁ}D

(b)

For term (a), we have:

E (|1{8 < Pros(eri)} = 18 < Flersn))) .
<P (|Fulerss) = B < |Proi(ersn) = Felera)l)

This inequality follows from the fact that for a,b € R, |[1{a <z} —1{b <z} < I{|b — 2| <
|a —b|}, and E[1{A}] = P(A).

Similarly, for term (b), we have:
E (‘]1 {ﬁT+1(éT+1) <l—a+ B} C1{F(erp1) <1—at B}D

~ (113)
<P (|Fulers) = (L= a+B)| < |Praser) - Felers1)]).

Therefore,

‘P (YT+1 €C¢ | Zrsr = ZT+1) - (1= 04)‘
<P (|Fulers) = B < |Pria@rn) - Foleria)l) (114)
+ P (|Fulersn) = (1= a+B)| < [Fros(ers) = Felers))
In Lemma[A10} we defined A7 as the event on which

log(16T)

sup | P (w) = F.(a)l|Ar < 2525,

where P(Ar) > 1—4/ %. Let AS denote the complement of the event Ar. Forany vy € [0, 1],
we have:

P(|F.(er41) =1 < |Proa(érin) = Felersa)])
<P (IF(er1) =71 £ 1Proa(éren) - Folersa)| | Ar) +P(A)
< P(|Fu(ers1) =] < [Pras(ersn) = Folra)| + | Feérs) = Folersi)| | Ar)

log(16T")
—

(115)

To bound the conditional probability above, we note that with probability 1 — d, conditioning on the
event Ar,

23



Under review as a conference paper at ICLR 2026

|Fri1(érs1) — Fo(erin)| + [Fe(érg) — Felery1)|| Ar
(1) ~
< sup |[Fryi(x) — Fe(z)| | Ar + Lrjaléryn — erqal

< sup|Frya(z) — Fria(z)| | Ar + sup |Fria(z) - Fo(o)] | A7 + Lrjaléryr — eri (116)

(1) ~
S (2LT+1 + 1)0 + 3sup |FT+1(1‘) — Fe($)| | AT + LT+15T

(iid) log(167T 1
<3 % + (LT+1 - 2) (2C + 67).

Here, inequality (¢) holds due to the supremum of \ﬁTH (x)— F.(z)| over z and Lipschitz continuity
of F, from Assumption[4.8] Inequality (i7) follows from Lemma Inequality (74i) follows from
LemmalA.10

Since F,(er+1) ~ Unif[0, 1],

P (|Eu(ers1) =1l < |Froa@re) - Fuleran)| + |Fe(ersa) - Felersa)l | Ar)
117)

log(16T 1
<6 L + 2 (LT—H + ) (2C + o7).
T 2
Therefore, by substituting inequality (I17) to inequality (I14), we obtain:
’P (YT+1 € Oy | Zpsr = ZT+1) -(1- 04)‘
(118)
log(16T 1
<12 % +4(Lryq + 5)(20 +07).
O
Definition A.16. A sequence of random variables { X, } is said to be strictly stationary if for every
k > 1, any integers nq,...,ng, and any integer h, the joint distribution of the random variables
(Xnyy- -, Xn,) is the same as the joint distribution of (X, 41, ..., Xny+th)-

Definition A.17. A sequence of random variables { X, } is said to be strongly mixing (or a-mixing)
if the mixing coefficients «(k) defined by

a(k) = sup sup |P(AN B) —P(A)P(B)| (119)

neN A€ Fp, BEF,,

satisfy a(k) — 0 as k — oo, where F? denotes the o-algebra generated by { X, ..., X3 }.
Lemma A.18 (Convergence of empirical CDF of stationary and strongly mixing {e;}7_,). Under

2
Assumption for any T, there exists an event A with probability at least 1 — (%)1/ 3
such that conditioned on A,

(%5)!*(log )%/
T1/3

sup |Fry1(z) — F.(x)] < (120)

Proof of Lemma[A.18] The proof follows similarly in the proof of Lemma B.11 in[Xu et al||(2024).
Define vr () := VT(EFr41(x) — F.(z)). By using Proposition 7.1 in Rio et al.| (2017), we have:

E (sup |vT(:c)|2> < |1+ 4ia(k) (3 + log T >2, (121)
z - — 2log 2
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where (k) denots the k-th mixing coefficient. Under Assumption 4.11} we have 3, -, a(k) <
M < oco. Applying Markov’s inequality yields: -

~ E (sup \UT(:E)|2/T) 1+4M logT \?
P ( sup | — Fo(w)| 257 ) < d (22
(Sgp 7+1(2) @)} = ST) - 52, - Tsk < 210g2) (122)
By setting
1/3
oo (1AM dogT N\ (M (logT)? Y3 123
T T 2log 2 = 2T ’
we then have:
1/3 2\ 1/3
(logT M(logT
P <sup‘FT+1 ‘_ < ogT)* > ) >1- <(207gﬂ)> . (124)
. 7 M (log T')? 1/3
Define the event Ar on which sup,, |Fry1(z) — Fe(m)‘ < (%) , so that we have:
. M(log T)2\ "/
sup ‘FT_H(x) - Fe(a:)‘ ‘AT < w (125)
z 2T
and /8
M (log T)?
P(A 11— ———— . 126
(Ar) > ( 5T (126)
O

Proof of Corollaryd.12] Under Assumption [.11] the result follows by combining Lemma
and using an argument analogous to the proof of Theorem .10}

O

B EXPERIMENT DETAILS

B.1 EXPERIMENT SETUP

OT-CP. We implemented OT-CP using the source code released by the authors/Thurin et al.|(2025).
The training and validation sets were combined to form a calibration set. Following the setup in the
original publication, 75% of the calibration set was used to solve OT, and the remaining 25% was
used to calibrate the prediction sets.

CONTRA. As the source code from the original publication was not released, we implemented
CONTRA ourselves following the methodology and details provided in [Fang et al.|(2025). Consis-
tent with the original setup, we used six coupling layers with a hidden dimension of 128 and trained
the model for 100 epochs with the same batch size as FCP and a learning rate of 0.001. The training
and validation sets were combined into a calibration set, of which 50% was used to train the model
and the remaining 50% was used to calibrate the prediction sets.

MultiDimSPCI. We implemented MultiDimSPCI using the source code released by the au-
thors | Xu et al.|(2024). The context window size was set to 50 for all real-world datasets, consistent
with the setup used for FCP. Following the original publication, the number of trees was set to 15.
The training and validation sets were combined into a single training set.

Conformal prediction using copulas. We implemented this method using the source code re-
leased by the authors Messoudi et al.|(2021)), following the setup described in the original publica-
tion. The training and validation sets were combined to form a calibration set.
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Conformal prediction using local ellipsoids We implemented this method using the source code
provided by the authors [Messoudi et al.[(2022)). Following the setup in the original publication, the
training set was used as the proper training set and the validation set as the calibration set. The
number of neighbors for KNN was set to 5% of the proper training set size, as suggested by the
authors. We also experimented with different neighbor ratios, but these variations did not lead to
meaningful differences in performance.

CopulaCPTS We implemented this method using the source code provided by the authors [Sun &
Yu|(2022), following the setup described in the original publication. The training and validation sets
were combined to form a calibration set.

Temporal Fusion Transformer We implemented Temporal Fusion Transformer (TFT) Lim et al.
(2021) using pytorch_forecasting. A hyperparameter grid search was conducted on the train-
ing set of each dataset with d, = 2 to determine the optimal configuration. We believe this hyper-
parameter search generalizes well to higher d, within each dataset, since TFT makes predictions
for each outcome dimension independently in our setup. Performance was observed to saturate at a
model dimension of 32, with two attention heads and two layers, therefore these settings were used
for all experiments. For consistency with FCP, the context window size was fixed at 50 across all
experiments. We trained the models using the Adam optimizer Kingmal (2014) with a learning rate
0f 0.001, a maximum of 50 epochs, and a dropout rate of 0.1. Quantile loss with ¢ € {0.025,0.975}
was used for 0.95 target coverage.

DeepAR We implemented DeepAR [Salinas et al.[(2020) using pytorch_forecasting. A hy-
perparameter grid search was conducted on the training set of each dataset with d,, = 2 to determine
the optimal configuration similarly to TFT. Performance was observed to saturate at a model dimen-
sion of 32 with two layers, therefore these settings were used for all experiments. For consistency
with FCP, the context window size was fixed at 50 across all experiments. We trained the models
using the Adam optimizer Kingma) (2014) with a learning rate of 0.001, a maximum of 50 epochs,
and a dropout rate of 0.1. Multivariate normal distribution loss with ¢ € {0.025,0.975} was used
for 0.95 target coverage.

Table 3: The hyperparameter search space for FCP.

Hyperparameter Search space
the number of layers {2,4,6}
Vector field 1 14en dimension  { 16, 32,64 }
the number of layers {2,4,6}
Encoder the number of heads {2,4,8 }
model dimension {16,32,64}
dropout {0,0.1}
covariance scale ~y {1,2,4,8}
General learning rate {0.0005, 0.0001 }
batch size {8,16 }

FCP We used multilayer perceptions (MLP) to model the guided vector field wu,;, : [0, 1] x R x
R4 — R, The time variable ¢ € [0, 1] was concatenated with the input and fed into the vector
field. A hyperparameter grid search was conducted on the training set of each dataset with different
d, to determine the optimal configuration. We set the hidden dimension of the vector field iden-
tical to the model dimension of the encoder, so that additional layer is not required between the
vector field and the encoder. Table [3|shows the hyperparameter search space and Table ] shows the
optimized hyperparameter configuration. The context window size for the encoder was set to 50.
We trained the model with Adam optimizer Kingma) (2014) with a maximum of 50 epochs for all
experiments and used the validation set to select the best model.

To determine an appropriate sample size /N for the set size estimation using quasi-Monte Carlo
sampling, we computed the relative standard error of the Jacobian determinants of ¢, defined as
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SE(det Jy, 1) /Avg(det Jy ), where det Jy 5 = {det Jy(z; | h)})_, are the sampled Jacobian
determinants conditioned on h. We selected the smallest IV such that the average relative standard
error across all h falls below 0.01. We used N = 4096 for experiments with d,, = 2, N = 8192 for

experiments with d,, = 4, and N = 16384 for experiments with d, = 8.

Table 4: The optimized hyperparameter configuration for FCP based on the grid search.

Dataset Hyperparameter dy=2 dy,=4 dy,=38

the number of layers of the vector field 4 4 4
the number of heads of the encoder 2 2 2
the number of layers of the encoder 4 4 4
the hidden dimension of the vector field and encoder 32 32 32

1 1 2

. covariance scale
Wind v

encoder dropout 0.1 0.1 0.1
batch size 4 4 4
learning rate 0.0005  0.0005  0.0005
null condition probability 0.05 0.05 0.05
guidance scale w (LOO/LSTM base predictor) 1.1/1.1  L.1/1.1 1.1/1.1
the number of layers of the vector field 4 4 4
the number of heads of the encoder 2 2 2
the number of layers of the encoder 4 4 4
the hidden dimension of the vector field and encoder 32 32 32
Traffic covariance scale y 1 1 1
encoder dropout 0.1 0.1 0.1
batch size 8 8 8
learning rate 0.0001  0.0001  0.0001
null condition probability 0.05 0.05 0.05
guidance scale w (LOO/LSTM base predictor) 1.1/1.2  1.1/1.2  1.05/1.5
the number of layers of the vector field 4 4 -
the number of heads of the encoder 2 2 -
the number of layers of the encoder 4 4 -
the hidden dimension of the vector field and encoder 32 32 -
Solar covariance scale y 1 1 -
encoder dropout 0.1 0.1 -
batch size 8 8 -
learning rate 0.0005  0.0005 -
null condition probability 0.05 0.05 -
guidance scale w (LOO/LSTM base predictor) 1.5/1.2  1.2/1.1 -

B.2 COMPUTATIONAL COST

Training time. Table[5|reports the wall-clock training time for all methods, computed as the sum
over five independent runs on five different sequences. All models were trained on a machine
equipped with dual Intel Xeon Gold 6226 CPUs and a single NVIDIA A100 GPU. For methods
that do not employ neural networks, only the CPU was used.

C DATASET DETAILS

Wind dataset The wind dataset contains wind speed records measured at 30 different wind
farms (Zhu et al., 2021)). Each wind farm location provides 768 records with 5 features at each times-
tamp. We randomly select d,, € {2, 4,8} locations to construct five sequences of d,-dimensional
time series.

Traffic dataset The traffic dataset contains traffic flow collected at 15 different traffic sensor lo-
cations (Xu & Xie} [2021b). Each sensor location provides 8778 observations with 5 features at

27



Under review as a conference paper at ICLR 2026

Table 5: the wall-clock training time (hrs) for all methods.

Dataset Method dy=2 dy=4 dy=8
FCP <0.2 <0.2 <0.2
CONTRA <02 <02 <02

MultiDimSPCI <005 <0.056 <0.05
Local Ellipsoid <001 <0.01 <£o0.01
Wind Empirical Copula < 0.01 <0.01 <0.01
Gaussian Copula < 0.01 <0.01 <0.01
CopulaCPTS <001 <0.01 <0.01
TFT <1 <2 <4
DeepAR

FCP

CONTRA

MultiDimSPCI

Local Ellipsoid
Traffic Empirical Copula

Gaussian Copula

CopulaCPTS

TFT

DeepAR

FCP

CONTRA

MultiDimSPCI

Local Ellipsoid
Solar Empirical Copula

Gaussian Copula

CopulaCPTS

TFT

DeepAR

INA | A
oo
ot Ot
A
[an)
ot

sk ocooc o
|
VANVAY

oo
S

IAAIAIA
cooolh
===
IAAIAIA

INA &8 SIA

RO = =i
g
IAAIAIA

l/\‘/\_c’,o_c’,ol/\
oooo-
o o

— =
[e2 e

INIATAIA
o O

ot Ot
IAIA
OO

ot Ot

|

OO D
e g
|

ININININA

INA o o o olA
INAIAIA

INA S o o olA

each timestamp. We randomly select d, € {2,4,8} locations to construct five sequences of d,-
dimensional time series.

Solar dataset The solar dataset considers solar radiation in Diffused Horizontal Irradiance (DHI)
units at 9 different solar sensor locations (Zhang et al., [2021). Each location provides 8755 records
with 5 features at each timestamp. For the solar dataset, we randomly selected d,, € {2, 4} locations
to construct five sequences of d,-dimensional time series. We did not construct sequences with
d, = 8 due to the limited number of unique locations, which could lead to overlapping sequences
across different trials of experiments.

D ADDITIONAL EXPERIMENTS

D.1 EXPERIMENT AT 0.9 CONFIDENCE LEVEL

Table [6] reports the results on the three real-world datasets at the 0.9 confidence level. We exclude
TFT and DeepAR, as they did not demonstrate competitive performance in the experiment at the
0.95 confidence level. The overall results remain consistent with those at the 0.95 confidence level.
Notably, the gap in average prediction set sizes between FCP and other strong baselines—such
as MultiDimSPCI, CP using local ellipsoids, and OT-CP for d, € 2,4 on the traffic and solar
datasets—decreases at the 0.9 confidence level.

D.2 ROLLING COVERAGE ON WIND DATASET

Since conditional coverage is challenging to evaluate in real-world data, we use rolling coverage
to approximate conditional coverage at a specific time index. Rolling coverage at time index ¢ is
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Table 6: Average empirical coverage and prediction sets sizes obtained by FCP and all baselines on
three real-world datasets, evaluated under different base predictors and varying outcome dimensions
d,. Reported values represent the average and standard deviation over five independent experiments.
The target confidence level was set to 0.9.

Dataset Base Predictor Method dy =2 dy =4 dy, =8
Coverage Size Coverage Size Coverage Size
FCPp 0.9064+ 022  0.5964 050 0.9254 017 0.7344+ 139 0.9384 011 5.2441 45
MultiDimSPCI 0917+ 013 0.790+ 341 0.9194 24 2.2641 49 0.933+ 015 4771525
CopulaCPTS 1000000 2231100 10004 000 61132807 10002000 3.50 X 107, 74, 105
10O Bootstrap  OT-CP 0.919403 0.9041572  0.951% 005 2391200 0.8832025  1.00 x 10855
CONTRA 0.9191 015 6534517 0974w e A12x 100, (0 0 0.97de g 412 % 109, 00 10
Local Ellipsoid 0.9434+ 028 0.9524 400 0.9584 015 3.5842.18 0.961+ o8 53.24681
Empirical Copula  0.9144 923  0.5974 204 0.9174 021 1.214 375 0.896+ 042 7.3849.04
‘Wind Gaussian Copula  0.9144 023 0.6224 189 0.9171 021 1.544 725 0.919+ 019 17.044.48
FCP 09174061 0.8844 161 0.9244 24 5.724 718 0.896+ 065 848.44999.2
MuliDimSPCI  0.9484 35 2.682115  0.904 40 4193465 08394 o714 237 x 103, ¢ 100
CopulaCPTS 10005000 4572454 1.000:000 4.82x 103, 75,100 1.0004000 283 X 100, 50 10r
LSTM OT-CP 0.909+.046 59812814  0.900+ 029 188.14+106.3 09781019 7.21 x 1045 49,104
CONTRA 0.7304 240  0.224 902 0.6964 247 0.054 023 0.7614 177 7.7146.80
Local Ellipsoid ~ 0.9781 043 7404425  1.000 000 167311375 1000000 128 X 10, 5, 100
Empirical Copula  0.9744 g4 10.645.93  1.0004 000 325.94148.9 0.9914 017 2.38 x lois.gomm
Gaussian Copula  0.9781 043  10.71586  1.000+ 000 331441318 0991+ 017 3.01 X 103, 17,105
FCP 0.9134+.026 0.6131243 0.9354 010 0.4534 223 0.9344 039 1.03+.101
MultiDimSPCI 0.9204 00s  1.011262  0.9294 011 1.4841 468 0.934 4 006 2.924 o1y
CopulaCPTS 1.0004000 2162165  1.000 00 645.8.615.5 10004000 318 X 102, 40 100
LOO Bootstrap  OT-CP 0.9214 o0s  1.091269  0.9274 010 2.391 915 0.9144 005 1.46 x 1095850
CONTRA 0.8924 g37  0.606+ 305 0.9024 o34 0.5654 317 0.8494 048 0.414 4 309
Local Ellipsoid 0.9274 021 1.224391 0.9424 010 1.174 301 0.945+ o8 0.954 4 376
Empirical Copula  0.9154 913 1.244 296 0.9304 004 2.174 399 0.9314 004 9.6343.17
Traffic Gaussian Copula  0.9154 g12 1.264 994 0.9344 go7 2.384 501 0.936+ 008 10.941 68
FCPp 0.9534 022 0.6334 148 0.9454 019 0.623+ 058 0.923 4+ 032 0.673+ 208
MultiDimSPCI 09144+ gog  0.6074+.255 0.914+ 914 0.977+ 388 0.913+ 022 4.821970
CopulaCPTS 10004 000 2194107  1.000 00 330.0210.4 09994 002 447 X 100, 50 16
LSTM OT-CP 0.8941 007 0.5751235  0.875%.025 1994126 0.850s0:2 356513200
CONTRA 0.8894.025 0.1294 050  0.860+ 043 0.031+ 020 0.809+ 060 0.007+.006
Local Ellipsoid 0.9154 g2s  0.6254 262 0.8994 21 0.706+ 325 0.871+ 039 1.124 341
Empirical Copula  0.9084 015  2.59+ 383  0.9124 19 13.940.72 0.880+ 020 515.24105.7
Gaussian Copula  0.9104 017 2.624+ 363  0.908+ 017 13.312.69 0.8744 019 479.04141.1
FCP 0.9054 014 0.5894.109  0.900+ 010 1.674+ 326 - -
MultiDimSPCI 0.930+.007 1.10+.068  0.9424 006 5.134 435 - -
CopulaCPTS 1.0004.000 6794126 1.0004 000 7.25 x 1033:1.86“04 - -
OT-CP 0.9364.016 1444400  0.9284 009 8.5441.84 - -
LOO Bootstrap N 1Ra 0.8891 001 1385506  0.8784 010 7162400 - -
Local Ellipsoid 0.897+.010 0.7494 064 0.8854 010 0.320+ 059 - -
Empirical Copula  0.9494 go7  1.984+ 192 0.955+ 005 7.87+.909 - -
Solar Gaussian Copula  0.9534 go5  2.124 142 0.9624 004 9.66+ 626 - -
FCP 09114 051 0.6731.288 0.907+.016 0.5354 104 - -
MultiDimSPCI 0.9384+ 006 0.733+1 066 0.937+ 004 2.6041 04 - -
CopulaCPTS 1.0004.000 44.83988  1.000+ 000 3.34 x 103570 7 - -
LSTM OT-CP 0.9144 011 0.5854 084 0.9244 019 10.645.80 - -
CONTRA 0.8354 021 0.1124 937 0.8584 17 0.0344 033 - -
Local Ellipsoid ~ 0.9211.012  0.5821.055  0.9341.003 0.5141 250 . .
Empirical Copula  0.9251 005 2.981.0s2  0.939+ 010 1734404 - -
Gaussian Copula  0.9394 gp2  3.564203  0.9644 005 28.049.64 - -
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Figure 3: Rolling coverage results on the wind dataset with rolling window size 20.

defined as:

m—1
! Z ]l{yi_j S @-_j(zi_j,a)}, (127)

i = —
m <
=0

RC

where m is a rolling window size. Figure [3|presents the rolling coverage of the test set with rolling
window size m = 20 on the wind dataset.

D.3 ABLATION STUDY

Ablation study on vector field under bi-Lipschitz flow assumption. Table[7]reports the average
empirical coverage and prediction set sizes of FCP with MLP and iResNet across the three datasets
with varying d,,.
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Table 7: Average empirical coverage and prediction sets sizes obtained by FCP using MLP vector
field and iResNet vector field on three real-world datasets, evaluated under different base predictors
and varying outcome dimensions d,. Reported values represent the average and standard deviation
over five independent experiments. The target confidence level was set to 0.95. Results with average
empirical coverage below the target confidence level are grayed out, and the smallest prediction set
sizes, excluding the grayed-out results, are highlighted in bold.

Dataset Base Predictor Method dy =2 dy =4 dy, =8
Coverage Size Coverage Size Coverage Size
FCP (MLP) 0.951+ 018 0.8810s0 0.9531006 3431137 0.9564 010 19.4110.2
Wind LOOBootstrap  fep iResNet) 00514 31 1145 060  0.954s014 179% 706 0.953 o1 148,005
LSTM FCP (MLP) 0.9524 054 1184915 0.9574020 10.84105 0.9534 056 2.48 x 107 449
FCP (iResNet) 0957+ 031 1841079 09571015 6.3Ti201 09785015 255 % 103, o110
LOO Bootstrap  LCE (MLP) 0.9571.014 09151119 0.9534000 1.064 431  0.9654 015 1.531 161
Traffic stap — pep (iResNet)  0.9504 021 1214 084 0.959+ 014 1.334118 0.9704 007 2.724 215
LSTM FCP (MLP) 0.968+ 022  0.8591 075 0.966+ 022 1.05L 7117 0.9504 010 1.82, 557
FCP (iResNet) 0.9574+ 024 0.788+ 051 0.970+010 1.311103 0.9564 016 2.504 328
FCP (MLP) 0.9574 007 1481292 0.9691.003 4.184 597 - -
Solar LOOBoolstrap  gep iResNet)  0.9524 009 1424 166 0.9564 005 2694 196 - ]
LSTM FCP (MLP) 0.968+ 009 1.164 92 0.9614 008  2.09+ 566 - -
FCP (iResNet)  0.955: 005 1.243 076 0.9554 005 2.424 976 - ;
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