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Abstract

Integrating planning with reinforcement learning (RL) significantly improves
problem-solving capabilities for sequential decision-making problems, particu-
larly in sparse-reward, long-horizon tasks. Recently, it has been shown that discrete
world models can be trained such that no model degradation occurs over thousands
of time steps and states can be re-identified during planning. As a result, a heuristic
function can be trained with data generated from the world model, and the learned
world model and heuristic function can be used with planning to solve problems.
However, this approach fails to solve problems with state transformations to which
the world model and heuristic function should be invariant (i.e., noise), without
re-training the world model and heuristic function. In this work, we introduce
Stable Planning through Aligned Representations (SPAR), an efficient framework
that trains a discrete world model and heuristic function in a clean Markov decision
process (MDP) and trains an alignment network to map transformed states to their
discrete latent state in the clean MDP. When solving problems, we exploit the
underlying discrete latent representation and round the output of the alignment net-
work with the aim of exactly matching the clean latent state. As a result, adapting
to transformations only requires training the adaptation network while the world
model and heuristic function remain fixed. We then demonstrate its effectiveness
on Rubik’s Cube and Sokoban domains, and compare it with applying a similar
approach to a world model with continuous latent representations. SPAR success-
fully solves over 90% of problems with 17 different visual transformations and
real-world images. This adaptation process requires no additional world model or
heuristic function re-training, and reduces re-training time by at least 95%.

1 Introduction

Many real-world problems require long-horizon planning to find solutions. However, planning cannot
happen when the state transition function (also known as the “world model”), which maps states and
actions to next states, is not known. One approach used to address this, which has yielded success in
both simulation and the real-world, is to learn the world model using data obtained from interacting
with the environment [1, 2, 3, 4, 5]. These methods then use the learned world model to train a
heuristic function, which either estimates the expected future reward, in the general reinforcement
leanring setting, or remaining cost to go to the goal (also known as the “cost-to-go”), in the more
restricted pathfinding setting. Given a test instance, the learned world model and heuristic function
used with a heuristic search algorithm, such as Monte Carlo tree search (MCTS) [6] or A* search [7].
However, these approaches are not robust no noise. For example, if irrelevant distractors that were
not seen during training are part of a state at test time, the learned world model’s prediction may
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become very unreliable making finding solutions impractical. As a result, these approaches will most
likely fail to generalize beyond very carefully controlled settings. Furthermore, when specifying
goals with a goal images, noise present in the environment can make goal state identification difficult.
For example, if a goal image is specified in a bright room and the room is currently dark, unless the
action space includes controlling the lights, there is no sequence of actions that can reach the goal
image.

One approach to solving this problem of noise could be to train the world model on noisy states.
However, this suffers from the following drawbacks: (1) The world model is forced to capture noisy
transitions, which may require more parameters and hinder performance; (2) Goal state identification
still depends on the noise present in the state, which means different goal images must be given
based on the noise present in the start state; and (3) It requires that the world model and heuristic
function be re-trained if a new type of noise is introduced. On the other hand, another approach
would begin with training a world model in a clean environment (i.e. without noise). At test time, if
noise is present, the data obtained from training the world model is re-used by adding noise to the
states and training an alignment model that maps the noisy states to the clean states. As a result, no
new data need be obtained and the world model and heuristic function remain fixed. However, one
potential drawback of this approach is that small differences in the denoised state and the clean state
could cause compounding errors to occur when applying the world model across many timesteps,
also known as model-degradation.
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Figure 1: Overview for training the alignment
model given a latent space encoder and noise trans-
formation that applies to states to which the world
model and heuristic function should be invariant.

To address these issues, we introduce Sta-
ble Planning through Aligned Representations
(SPAR). SPAR trains a discrete world model
that maps states in a clean environment to a dis-
crete latent state and then trains an alignment
model to map noisy states to their discrete latent
representation in the clean environment. SPAR
exploits the fact that the latent representation is
discrete by rounding the output of the alignment
model when solving problems with the aim of
exactly matching the true discrete latent state.
Since discrete world models have been shown to
accurately predict next states across thousands
of timesteps without model degradation [5], this
also enables planning over long horizons with-
out model degradation in the presence of noise.
On the other hand, we show that training an
alignment model for a world model with a con-
tinuous latent representation results in model
degradation, even when the continuous model
does not exhibit model degradation in the clean
environment. Our approach is summarized in
Figure 1.

2 Related Work

Model-based reinforcement learning and planning. Model-based RL (MBRL) improves sample
efficiency by learning a dynamics model and exploiting that model for policy improvement or
planning [8]. Dyna architecture interleaves real experience with model-generated rollouts to update
value functions and policies [8]. More recent methods couple learned neural models with powerful
search procedures. AlphaZero learns value and policy networks and performs Monte Carlo Tree
Search (MCTS) in known perfect-information games [9], while MuZero achieves superhuman
performance without access to the true simulator by learning a latent dynamics model for planning
with MCTS [10]. PlaNet, Dreamer, and DreamerV2 learn latent world models and optimize policies
via latent imagination, but they do not perform explicit test-time search to arbitrary goal states [11,
12, 13]. In contrast to policy-only use of models, our setting requires long-horizon search guided by
a learned heuristic over representations that support exact state re-identification.
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Learning state representations for search. A body of work learns symbolic or latent state spaces
that enable classical search from pixels. LatPlan learns a discrete binary latent representation with
an autoencoder and induces a classical planning model solvable by off-the-shelf planners [14, 15].
PPGS [16] learns a continuous latent space with forward and inverse models, constructs a latent-
state graph using threshold-based state re-identification, and then uses uninformed graph search to
solve combinatorial puzzles. However, continuous latent rollouts can accumulate error and force
frequent re-planning, and uninformed breadth-first search scales poorly [16]. A complementary
line learns heuristics to guide search directly from experience. DeepCubeA trains a deep neural
network to approximate the cost-to-go via deep approximate value iteration and uses the learned
heuristic with A* search to solve the Rubik’s Cube and other puzzles, training against a single fixed
goal (the canonical solved state) [17]. DeepCubeAI [5] instead learns a discrete world model and
a goal-conditioned heuristic defined over binary latent states, rounding each bit at 0.5 eliminates
compounding errors in long rollouts and enables state re-identification, supporting efficient search in
latent space [18]. Our work builds on this discrete-latent planning foundation but addresses robustness
to observation variations by learning a lightweight alignment network, leaving the world model and
heuristic unchanged.

Handling visual domain variation. Domain shift in observations (e.g., lighting, background,
camera pose) challenges visual planning systems. Domain randomization broadens the training
distribution in simulation so real observations appear as another randomized variant [19, 20]. In
robotics, sim-to-real pipelines augment randomization with image-to-image translation, e.g., RCAN
maps randomized renders to a canonical domain to improve transfer [21]. In RL specifically, data
augmentation improves policy robustness [22, 23]. DARLA learns disentangled representations with
beta-VAE pretraining to achieve zero-shot transfer across visual changes before learning to act [24].
Beyond training-time robustness, test-time adaptation methods update perception or policies during
deployment without labels or rewards, for example PAD for self-supervised policy adaptation [25]
and invariance through latent alignment (ILA), which aligns target-domain features to the source
distribution without paired data [26]. These approaches, however, generally target policy performance
and short-horizon control rather than long-horizon heuristic search that requires exact state re-
identification. SPAR complements these lines: we isolate perception shift by learning an alignment
network that maps varied observations into a fixed discrete latent space. This preserves the long-
horizon stability and exact state re-identification of discrete-latent planning [5] while avoiding
retraining the dynamics model or heuristic for each new visual change.

3 Preliminaries

3.1 Pathfinding

The particular kind of planning problems SPAR addresses are pathfinding problems. A pathfinding
problem can be defined as a weighted directed graph [27], where nodes represent states, edges
represent actions that transition between states, weights on the edges represent transition costs, a
given state represents the start state, and a given set of states represents the goal. The transition
function, T , defines how actions transform states, where s′ = T (s, a) for some action a, if and only
if there exists an edge connecting state s to s′. The transition-cost function, c(s, a), is the cost of
taking action a in state s. While we will use the aforementioned notation throughout the rest of
the paper, from a reinforcement learning perspective, a pathfinding problem can also be defined
as a deterministic un-discounted Markov decision process [28]. Given a pathfinding problem, the
objective is to find a sequence of actions that transforms the start state into a goal state with preference
for paths with lowest cost, where the cost of a path is the sum of transition costs. The cost-to-go is
the cost of a lowest cost path, also known as a shortest path.

3.2 DeepCubeAI

Training DeepCubeAI [5] learns a discrete world model represented as a deep neural network
(DNN) [29] that maps states to binary latent states from an offline dataset of state, action, and next
state tuples. The world model is learned using an encoder to map states to discrete latent states, a
decoder that maps discrete latent states to states, and a world model that maps discrete latent states
and actions to next states. The encoder and decoder are trained to minimize the reconstruction error
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between the input to the encoder and the output of the decoder. Simultaneously, the encoder and
world model are trained to accurately predict the next state.

After learning, the outputs of the discrete world model are rounded, which prevents model degradation
when errors are less than 0.5. Using the learned world model, DeepCubeAI then learns a heuristic
function represented as a deep Q-network (DQN) [30], using Q-learning [31] to estimate the cost-to-
go when starting from a given state and taking a given action. Training data is obtained by using the
world model to generate new experiences from the offline dataset. As a result, the heuristic function
takes latent states as input.

Solving Pathfinding Problems After training, a particular pathfinding problem is given to Deep-
CubeAI in the form of a start state image and a goal image. DeepCubeAI then encodes the start state
and goal state into the discrete latent space and uses the learned world model to perform heuristic
search in the latent space, guided by the learned heuristic function, to find a path from the latent start
state to the latent goal state. The heuristic search algorithm checks whether a latent state encountered
during search is a goal state by checking if all bits match the latent goal state. Since the world model
is represented as a DNN, using it for heuristic search can be computationally expensive. Therefore,
Q* search [18], a variant of A* search [7] that uses a DQN as the heuristic function, is used to find
paths. This is because, with respect to the size of the action space, the number of applications of the
transition function (the world model, in this case) remains constant for each iteration in the case of
Q* search as opposed to growing linearly in the case of A* search.

4 Methods

SPAR assumes a trained encoder that maps states to latent states and a trained world model that maps
latent states and actions to next latent states. Given a pretrained world model, our goal is to train
an alignment model that maps noisy states to their corresponding discrete latent states in the clean
environment. We train this model with supervised learning on a dataset of (state, latent-state) pairs
(noisy states paired with their clean discrete latent states) minimizing mean squared error (MSE)
between the model output and the target latent state. To gather training data, we reuse the dataset
originally used for the world model, applying some transformations with random intensities, that
introduces perturbations to which the world model and heuristic function should be invariant. This
transformation can be applied either to states in the offline dataset or to new states sampled from the
environment, if the original dataset is not available.

4.1 Discrete World Model

We map pixel observations into a discrete latent space and learn transitions within it. Let E be the
encoder, D the decoder, and T the transition model. Encoder outputs pass through a logistic layer and
are rounded to {0,1}, and a straight-through estimator [32] is used to enable gradient-based training.

From offline pairs (si, ai, s′i), we optimize two losses. First, a reconstruction loss to ensure meaningful
encodings and decodings, given in equation 1.

Lr(θ) =
1

N

N∑
i=1

(
1

2

∥∥si −D
(
E(si)

)∥∥2
2
+

1

2

∥∥s′i −D
(
E(s′i)

)∥∥2
2

)
(1)

Second, a transition loss coupling encoder and transition outputs. With rounded. Denote the
rounded encoder codes by r(s̃i) = r

(
E(si)

)
and r(s̃′i) = r

(
E(s′i)

)
, and the transition prediction by

ˆ̃′si = T (s̃i, ai). We minimize the loss given in equation 2.

Lm(θ) =
1

N
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]
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4.2 Alignment Model

Given a pretrained (E, T,D) learned in a clean setting, we train an alignment network A that maps a
visually transformed input s̄ to the corresponding discrete latent of the clean observation ˆ̃s = E(s).
Training data are constructed as pairs of (variant observation, base observation) by aligning variant
frames with their corresponding base frames at the same time step within each episode. We use
supervised learning to trainA by minimizing the mean squared error between the alignment network’s
raw (unrounded) outputs and the discrete latent targets (the encoder’s rounded outputs). During the
inference we round the outputs of the alignment network A(s̄). Formally, with ˆ̃s = A(s̄) and the
target s̃ = E(s), the loss is ∥ˆ̄s− s̃∥22.

Visual variations. To probe visual robustness, we apply a series of perturbations to the images of
Rubik’s Cube and Sokoban. Forin pre-render (background), object-render (lighting, color, geometry),
and post-render stages. Additionally, we apply object-level and background transformations to
Rubik’s Cube, such as color shifts and calibrations, sticker wear, material finish, camera viewpoint
changes and zoom, and a physically-motivated directional lighting model [33, 34, 35, 36, 37].
Backgrounds used for Rubik’s Cube included images from CIFAR dataset [38], selected randomly.
These transformations were applied with parameters sampled per-frame to cover a wide range of
observation changes. The transformations are explained in Appendix B along with their example
figures. However, we use combinations of these individual transformations for Rubik’s Cube and,
both combinations and individual augmentations for Sokoban. Figure 2 is an example of the data in
our dataset.

Original (Clean) Bright Lighting Cam And Light Camera And Image Camera Bg Ambient

Camera Bg Light Camera Image Background Color Variations Indoor Glossy Light Bg Cam

Light Radial Cam Minimal Noisy Camera Occluders Outdoor Lighting

Studio Texture Poisson

Visualization of Sample 2, Step 5Action: 5

Sample 2 from dataset with 16 variations

Original (Clean) Adversarial Noise Defocus Blur Fog Haze Gaussian Blur

Gaussian Noise Hsv Shift Indoor Lighting Lighting Only Microscopy

Motion Conditions Noise And Distortion Outdoor Radial Blur Rain Effect

Random Occluders Rotate Image Surveillance Zoom Effect

Visualization of Sample 0, Step 5

Action: 3

Sample 0 from dataset with 18 variationsFigure 2: Visualization of sample data from the datasets used for training the alignment model for
Rubik’s Cube and Sokoban

5 Experiments

We evaluate SPAR, isolating the role of discrete latents and the alignment network in long-horizon
planning. Below we detail the experimental setup, models, training procedures, and evaluation frame-
work. For, world model training and heuristic learning, we use the a similar setup as DeepCubeAI
with the same underlying logic and implementation as their publicly available codebase [39].

5.1 Experimental Setup

Domain. We consider visual path-finding domains with deterministic dynamics and discrete action
spaces. Our primary domain is 3× 3× 3 Rubik’s Cube. We generate offline datasets of episodes by
random action policies constrained to valid moves. We use quarter-turn metric (QTM) to measure
solution cost, where each 90-degree face turn has unit cost. The action space has 12 actions, one for
each face and direction. States are represented as 32× 32 RGB images.

Offline datasets. For training the world model and heuristic function, we generate an offline dataset
of 10,000 episodes using action sequences of 30 steps, sampled uniformly at random from the valid
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move set. Then we use 90% of the dataset for training and 10% for validation. Start states are sampled
by applying 100–200 inverse moves from the canonical solved configuration, ensuring diverse but
reachable states. Moreover, we generate a dataset of 100 episodes and 10,000 steps for comparing
rollout stability between discrete and continuous models. For training the alignment model, we
generate a dataset of 10,000 episodes and 30 steps for per each visual variant of the environment by
applying random transformations to states in the original dataset, and we pair each transformed state
with its corresponding base state. However, it is possible to use a new dataset that includes visual
variations and clean images that are not present in the original dataset.

5.2 Model Architectures

Encoder, decoder, transition model, and heuristic model follows DeepCubeAI’s architecture. Details
of these models are given in Appendix A. For the alignment model, both for Rubik’s Cube and
Sokoban we use a convolutional residual architecture. The input is a 6-channel tensor which first
passes through a batch normalization layer, followed by two convolutional layers. The first layer maps
6→64 channels with a 5×5 kernel, stride 2, and padding 2. The second layer maps 64→36 channels
with a 3 × 3 kernel, stride 1, and padding 1. Both layers use batch normalization, and ReLU non-
linearities. The convolutional head is followed by a residual block consisting of 12 residual blocks of
38 channels, each with batch normalization and ReLU activation. The output is then flattened and
passed through a two-layer MLP of size 9216→11000→400. Batch normalization and ReLU are
applied after, and a sigmoid activation is used at the final layer to produce a 400-dimensional output
aligned to the encoder’s latent space.

5.3 Models and Training Procedures

Discrete world model. We train an encoder E, transition model T , and decoder D on base images.
For Rubik’s Cube, E and D were fully connected networks. E outputs a 400-dimensional vector, is
then passed through a logistic function and rounded to {0, 1}400. T is a four-layer MLP with 500,
500, 500, and 400 parameters respectively. Additionally, we use batch normalization and ReLU
except for the final logistic outputs. Actions are one-hot encoded and concatenated to the latent
representation. We train E and T jointly, minimizing the reconstruction and transition objectives in
Equations 1 and 2 with a scheduler that increases the transition model’s loss weight from 1× 10−3

over time until both the encoder’s loss and transition model’s loss have an equal weight of 0.5. We
use Adam optimizer [40] with learning rate 10−3, weight decay 10−5, and batch size 100. We use
the same architecture for the continuous model. However, we do not round the outputs of the encoder
and the transition model in this case.

Alignment model. Given a fixed (E, T,D) trained on base images, we train an alignment network
A to map visually varied observations s̄ to clean environment’s discrete latents s′ = E(s). For
training the alignment model, we use supervised learning on (variant, base) pairs, and mean-squared
error ∥ˆ̃s− s̃∥22. During inference we apply rounding to A(s̄) to obtain discrete latent states prior to
planning.

Heuristic learning. We train a goal-conditioned DQN over discrete latent using Q-learning with
targets defined by the world model, and assuming unit transition costs for each action taken. Training
data is synthesized by random walks in latent space via T . Actions for data generation are sampled
with a Boltzmann distribution over current Q-values. Similar to to priror work, we maintain a target
network and update it if greedy best-first rollouts evaluation of the DQN being trained, is improved.

5.4 Evaluation Framework

Rollout stability and reconstruction. To quantify stability, we follow the same procedure as
DeepCubeAI and evaluate 100 sequences of 10,000 steps each with uniformly random actions. At
every step we advanced one latent step using T and reconstruct with D, measuring: (i) reconstruction
MSE, and (ii) encoder consistency MSE (between E(s) and T (s, a)). For discrete models we also
tracked exact equality rates between predicted and target latent.

Planning performance. We assess planning by mapping start and goal observations to discrete
latents, using the alignment model. Then we run Q* search in discrete latent space with exact bitwise
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goal tests. We report the percentage of problems solved and the cost of found solutions in Table1,
and the results for each visual transformation in Table 2. We also compare the results to a greedy
policy, which uses the learned heuristic to select the action with the lowest estimated cost-to-go at
each step for 100 iteration.

Table 1: Comparison of SPAR (ours) with a greedy policy and DeepCubeAI on different variants of
the observations along the dimension of solution length, percentage of optimal solutions, number
of nodes generated, time taken to solve the problem (in seconds), number of nodes generated per
second, and percentage solved.

DOMAIN OBSERVATION SOLVER LEN NODES SECS NODES/SEC SOLVED

Rubik’s Cube

Clean
SPAR 23.61 1.91E+05 6.18 3.10E+04 100%
DeepCubeAI 23.61 1.91E+05 5.96 3.20E+04 100%
Greedy Policy − − − − 0%

Augmented
SPAR 23.64 1.91E+05 6.22 3.08E+05 89.39%
DeepCubeAI − − − − 0%
Greedy Policy − − − − 0%

Real-World
SPAR 23.61 1.90E+05 6.21 3.10E.51 50%
DeepCubeAI − − − − 0%
Greedy Policy − − − − 0%

Model Performance. To determine the performance of the alignment model, similar to Deep-
CubeAI, we evaluate both models on 100 sequences of 10,000 steps each, with actions selected
uniformly at random. For every step, we record the ground-truth image, advance one step in the latent
space, and reconstruct the observation using the decoder. We also compare against a continuous
variant that shares the same architecture and training procedure as the discrete model but omits
discretization. Results, shown in Figure 3, indicate that the continuous model accumulates substantial
error for Rubik’s Cube. Figure 4 shows the mean squared error across 17 transformations of the
environment from Rubik’s Cube domain where the continuous model exhibits degradation, whereas
the discrete model remains accurate.
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Figure 3: Reconstruction of the alignment model’s outputs starting from a noisy observation of the
environment.

Generalization to Unseen Variations and Real Images. To assess generalization, capabilities of
SPAR, we evaluate on compositions and random intensities of transformations that were not present
during alignment training. Moreover, we use the same trained alignment model to evaluate our
framework on real-world data. We use photos of a Rubik’s Cube taken in real-world in different
lighting conditions and backgrounds. We first take two photos of Rubik’s Cube in a similar orientation
to the offline data. These two photos are then resized to 32× 32 and concatenated horizontally. The
prediction of the alignment model is then passed to the pretrained decoder to get the reconstruction of
the discrete encoding (Figure 6). We compare the The discrete alignment retains strong performance
when perturbations respect structural cues (e.g., moderate color shifts and lighting changes) and
degrades gracefully when cues are heavily occluded or geometry is distorted. We have included
examples of the variants that the search component could not find a solution for them in Figure 5
and Appendix E and real-world examples. In cases where the alignment model’s output match the
outputs of the encoder applied to the corresponding state in the simulation, the Q* component finds a
path to given goal.
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Figure 4: Mean squared error for discrete vs. continuous alignment models across Rubik’s Cube
variants over 10,000 steps. The label “with latent state” refers to training the continuous alignment
model in the same way that the discrete model was trained. The label “predicting next state” refers to
the training where the given current state and action, world model predicts next state, and the objective
of alignment model is, given a visually transformed current state, to minimize the reconstruction loss
between prediction of next state and the ground truth next state observed in a clean environment.

Figure 5: An example of an augmentation that SPAR fails to accurately predict the discrete latent
code, and therefore is not solved during planning.

Original Input Resized Input Reconstructed Result

Original Input Resized Input Reconstructed Result

Figure 6: Applying SPAR to a real-world Rubik’s Cube image with differing lighting/background.
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6 Discussion

Discrete latents act as an error-correcting bottleneck for planning. Rounding removes small deviations,
enabling deep rollouts without drift and precise state matching. Decoupling the encoder from
dynamics learning yields practical benefits. When new variations are introduced to the environment,
only re-training the alignment model is enough to leverage the benefits of the discrete world model
and its quality perseverance and capabilities when used with heuristic learning and planning, while
the world model and heuristic remain intact. Empirically, this substantially reduces retraining
time, from days need to train a heuristic function down to a few minutes or hours, and preserves
planning competence under varying visual conditions. See Section 7 for a focused discussion of data
requirements and failure modes.

7 Limitations and Future Work

SPAR separates perception alignment from planning, offering a promising foundation for robust
decision making. Future work can focus on extending its adaptability to richer forms of variation,
enabling online learning, linking with foundation and symbolic models, and validating its utility in
real-world domains. We first summarize key limitations and failure modes, and then outline directions
to address them.

Reliance on paired data. A potential limitation is the reliance on paired data (i.e., a “noisy”
observation and its corresponding “clean” latent representation) for training the alignment network.
While feasible in simulation, acquiring such perfectly paired data in the real world can be challenging.
To relax this assumption, future work can explore: (i) weakly supervised or unpaired objectives. (ii)
self-training with planner consistency, where model rollouts that agree across augmentation sets
provide pseudo-labels. (iii) domain adaptation and test-time adaptation to update the alignment model
without labels. and (iv) leveraging foundation models to provide soft correspondences or invariance
hints that regularize the alignment.

Failure cases. SPAR can fail when perturbations erase task-relevant structure (e.g., severe occlusion)
or when observations fall far off the training distribution, leading to incorrect latent rounding.
Detecting and mitigating these cases is an open direction: confidence estimates over discrete latents,
agreement checks across augmentations, abstention or fallback policies, adversarially generated
augmentations, and robust objectives could reduce brittleness and improve reliability.

Beyond deterministic, fully observable settings. Our experiments consider deterministic dynamics
with fully observable states. Extending SPAR to stochastic and partially observable environments
invites several avenues: (i) replace the single next-latent with a transition distribution or an ensemble
to capture stochasticity; (ii) maintain a belief over discrete latents (e.g., via HMMs/particle filters
or recurrent state) and train the alignment network to output observation likelihoods rather than
a single code; (iii) plan in belief space using POMDP solvers or MCTS over a compact belief
parameterization; and (iv) use temporal windows and predictive state representations to disambiguate
aliased observations. These extensions would broaden applicability to real-world robotics and control.

Integration with Large-Scale Models. In the same vein, we envision using large vision-language
models (VLMs) or large language models (LLMs) to guide planning. Complementarily, SPAR’s
discrete latents can be mapped to a predicate inventory and interfaced with formal goal languages
specifying what must (or must not) hold, and a solver validates/grounds these targets before SPAR
plans [41]. For interpretability and reuse, inductive logic programming (ILP) can be used along
with SPAR’s canonical states to provide human-readable rationales [42]. Incorporating multi-modal
planning capabilities, e.g., specifying goals in natural language or using audio/visual cues in the
environment, would broaden SPAR’s applicability.

Broader Deployment Domains. Finally, applying SPAR to real-world sequential decision-making
problems is an important direction. In robotics, an agent often encounters varying lighting, back-
grounds, etc. SPAR could provide a fast way to recalibrate the robot’s perception without retraining its
policy or dynamics model each time the environment changes [43, 44]. Fast, adaptation of perception
without full retraining aligns with test-time adaptation results in robotics and perception [45, 46].
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Coupling SPAR with classic robot planning algorithms or continuous control techniques may be nec-
essary to handle continuous action spaces, but the principle of a discrete latent adapter remains useful
(for instance, an alignment network could map camera images to a canonical state representation on
which a downstream motion planner operates).

In summary, SPAR takes a significant step toward robust model-based planning by cleanly separating
the concerns of dynamics and perception. By anchoring different visual observations to a common
discrete representation, it achieves long-horizon stability with minimal retraining.

8 Conclusion

Our study across different transformation families shows that this separation is practical: an alignment
model alone suffices to recover planning performance while cutting retraining time by at least 95%
while having the same pathfinding capabilities as DeepCubeAI. Conceptually, SPAR complements
two major threads: (i) model-based RL with latent planning, where discrete latents and imagination
have driven strong performance, and (ii) robustness and sim-to-real pipelines that map diverse
observations into a canonical domain. By aligning into a discrete latent space and then planning
with exact goal tests, SPAR maintains long-horizon stability while adapting rapidly to observation
changes.
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A Model Architecture

Here, we detail the neural network architectures used for encoder, decoder, transition model, and
heuristic model.

For Rubik’s Cube, We use fully connected networks for encoder and decoder with one hidden
layer, and output a 400-dimensional vector. Similarly, decoder uses fully connected networks
with a linear (identity) function as the final activation. For the transition model, we use four fully
connected layers of size 500→ 500→ 500→ 400 with batch normalization and ReLU, except for
the last layer where we do not use batch normalization with logistic outputs. Actions are one-hot
encoded and concatenated to the input state and passed to the neural network. For heuristic function,
we use a deep Q-network (DQN) [47] with a fully connected residual network. The input is the
concatenation of the discrete latent representations of current state and goal state. A two-layer MLP
maps 800→5000→1000 with batch normalization and ReLU after each layer. This is followed by 4
residual blocks of width 1000, each block having batch normalization and ReLU activation. At the
final layer, a linear activation outputs Q-values for all actions (1000→12).

For Sokoban, we use a two-layer convolutional encoder with 2×2 kernels, stride 2, and zero paddings,
mapping channels chan_in→ 16→ 16. Batch normalization and ReLU are applied after the first
layer. The second layer uses a sigmoid activation. The resulting feature map has spatial size 10× 10
with 16 channels and is flattened to a 1600-dimensional vector (10×10×16). For transition model,
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actions are one-hot encoded as channel planes and concatenated with the current latent feature maps
along the channel dimension. The transition model is a 3-layer 3 × 3 convolutional network with
stride 1 and padding 1 (number of actions + 16)→ 32→ 32→ 16. The first two layers use
batch normalization and ReLU, and the final layer omits batch normalization and uses a sigmoid
output. The decoder mirrors the encoder with two transposed 2× 2 convolutions of stride 2, mapping
16→16→16 channels (batch norm + ReLU on the first, sigmoid on the second) to upsample back to
the original spatial resolution. A final 1× 1 convolution maps 16→chan_in with a linear (identity)
activation to reconstruct the observation. Similar to Rubik’s Cube, the DQN input is the concatenation
of the encoded current state and goal state, giving a 2× 1600 = 3200-dimensional vector. A two-
layer MLP maps 3200→5000→1000 with batch normalization and ReLU after each layer. This is
followed by 4 fully connected residual blocks of width 1000, each using batch normalization and
ReLU. A final linear head outputs Q-values for all actions (1000→number of actions).

B Appendix: Additional Rollouts and Visualizations

In this appendix we provide supplementary rollout visualizations for the discrete and continuous
alignment models for the Rubik’s Cube domain. Each figure block below shows: (a) a best-performing
episode, (b) a worst-performing episode, and (c) a representative selected episode. All images show
reconstructed frames from the alignment model’s latent predictions with inputs given in the left
panels. The output of the alignment model is then given to decoder for visualizing the reconstruction.
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Figure 7: Reconstructions of rolling out the discrete and continuous alignment model rollouts for the
Base setup. The figure shows best, worst, and representative episodes for both models in a single
composite image.
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Figure 8: Reconstructions of rolling out the discrete and continuous alignment models for the Ambient
Background + Camera perturbation.
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Figure 9: Reconstructions of rolling out the discrete and continuous alignment models for the Camera
+ Lighting perturbation.
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Figure 10: Reconstructions of rolling out the discrete and continuous alignment models for the Image
Background perturbation.
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Figure 11: Reconstructions of rolling out the discrete and continuous alignment models for the
Textured Background + Poisson Noise perturbation.
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Figure 12: Reconstructions of rolling out the discrete and continuous alignment models for the
Occlusions perturbation.

Step 0
D: 1.88×10
C: 2.60×10

Step 1000
D: 2.11×10
C: 8.50×10 ²

Step 2000
D: 1.87×10
C: 1.17×10 ¹

Step 3000
D: 2.00×10
C: 8.71×10 ²

Step 4000
D: 2.47×10
C: 9.07×10 ²

Step 5000
D: 2.15×10
C: 1.19×10 ¹

Step 6000
D: 1.99×10
C: 1.43×10 ¹

Step 7000
D: 1.88×10
C: 1.27×10 ¹

Step 8000
D: 1.91×10
C: 1.08×10 ¹

Step 9000
D: 2.30×10
C: 1.02×10 ¹

Step 10000
D: 2.28×10
C: 1.10×10 ¹Noisy starting state

D
is

cr
et

e 
R

ec
on

C
on

ti
nu

ou
s 

R
ec

on
G

ro
un

d 
Tr

ut
h

Minimal Best Reconstruction Mse (2.10×10 ) - Episode 98

Figure 13: Reconstructions of rolling out the discrete and continuous alignment models for the
Minimal Augmentations perturbation.

C Environmental Perturbation Augmentations

This appendix formalizes the augmentations used to simulate environmental perturbations in the
Rubik’s cube environment. For each augmentation, we state the governing principle, outline the
methodology of application, specify controlling parameters and their qualitative effects. We denote
an image by I : Ω ⊂ R2 → [0, 1]

3 with per-channel intensities in [0, 1]. Elementwise operations act
per pixel and per channel unless noted. clip(·) truncates to [0, 1]. Convolution is ∗. Homogeneous
image coordinates are x̃ = (x, y, 1)

⊤.

Directional Surface Lighting (Lambertian) Per-surface intensity follows a Lambertian model
augmented with ambient and back-face floor terms. Let n be the surface normal and ℓ a unit light
direction. The shading field is S = clip

(
A+ (1−A)max(0,n·ℓ) + s

)γ
, and the observed color is

clip(S ⊙ c), where A is ambient, s a subsurface/back-face term, γ > 0 a contrast control, and c the
base reflectance. Azimuth and elevation set ℓ. This augmentation represents directional illumination,
self-shadowing, and highlight contrast on faceted objects.
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Figure 14: A = 0.2, κ = 0.6, γ = 1.5, s = 0.1, azdeg = 315, altdeg = 45

Random Background Chromaticity To diversify global backgrounds across frames, the constant
color is drawn from a distribution, typically c ∼ U([0, 1]3). The rendering pipeline applies the
sampled c before foreground compositing, inducing broad variation in global tone and contrast.
Parameters are the sampling law and any constraints on hue or saturation. This models uncontrolled
ambient lighting and incidental background coloration across capture sessions.

Figure 15: c ∼ U([0, 1]3)

Procedural Background Textures A parametric texture B(x) (e.g., grids, dots, stripes, noise,
crosshatch, sinusoids) is synthesized in image coordinates and alpha-composited behind the object,
I ′ = (1− α) I + αB. The construction of B governs spatial frequency, orientation, regularity, and
contrast. Parameters include the texture family, spatial density, tint, and opacity α ∈ [0, 1]. This
augmentation reproduces structured backgrounds such as patterned walls or tabletops that introduce
periodic distractors and clutter.

Figure 16: B(x) = grid, color = gray, density = 1, α = 0.3

Hue-Saturation-Value Adjustment Chromatic attributes are modified by mapping RGB to HSV,
applying a hue rotation and multiplicative scaling of saturation and value, then mapping back.
Writing (h, s, v) 7→ (h′, s′, v′) with h′ = (h + ∆h) mod 1, s′ = clip(λss), v′ = clip(λvv) alters
perceived colorfulness and brightness while preserving relative luminance structure. The parameters
are ∆h, λs ≥ 0, and λv ≥ 0. This simulates camera white-balance shifts, colored illumination, and
post-processing tints.

Figure 17: ∆h = 0.12, λs = 1.25, λv = 1.12

Contrast and Brightness A global affine photometric transform, I ′ = clip(αI + β), adjusts
contrast via the gain α > 0 and brightness via the offset β ∈ R. The method is applied uniformly
per pixel and channel, followed by clipping. This models exposure settings and tone-curve changes
typical of automatic image pipelines.
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Figure 18: α = 1.25, β = 0.1

Exposure via Gamma Nonlinear tone mapping with gamma correction redistributes mid-tones
while preserving black/white after clipping: I ′ = clip(I1/γ). The parameter γ > 0 brightens (γ < 1)
or darkens (γ > 1) mid-range intensities. The augmentation captures low-light and short exposure
regimes.

Figure 19: γ = 1.5

Color Temperature Shift A chromatic bias along the red-blue axis emulates warm/cool illumina-
tion. In RGB, a simple model biases red and blue in opposite directions, e.g., I ′R = clip(IR + δ),
I ′B = clip(IB − δ), leaving green largely unchanged. The scalar δ controls the shift magnitude. This
represents tungsten (warm) versus daylight (cool) lighting and mixed color temperatures.

Figure 20: δ = 0.12

Ambient Color Overlay Uniform ambient illumination is modeled by alpha-blending with a
constant color: I ′ = (1− α)I + α c. The overlay color c and opacity α ∈ [0, 1] define the effective
fill light. The result approximates global tints arising from wall reflections, skylight, or translucent
enclosures.

Figure 21: α = 0.2, c = #ffd1a4

Directional Light with Optional Vignetting After gamma-based exposure adjustment, a direc-
tional lighting field modulates intensity according to a cosine-like pattern aligned with a unit vector
d at angle θ. With normalized coordinates x̂ ∈ [−1, 1]

2, the mask m(x) = clip
(
1
2 x̂·d+ 1

2

)
yields

I ′ = clip{I1/γ ⊙ (A + κm)}. A radial vignette v(r) = 1 − ηr optionally attenuates corners.
Parameters are γ > 0, direction θ, directional strength κ ≥ 0, ambient A ∈ [0, 1], and vignette
strength η ∈ [0, 1]. This emulates off-axis window light, desk lamps, and lens vignetting.
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Figure 22: γ = 1, θ = 0, κ = 1, A = 0.5, η = 0.5

In-Plane Rotation A rigid planar transform rotates the image about its center, x′ = Rθ(x−c)+c,
with resampling at inverse-warped coordinates to preserve grid spacing. The angle θ controls
orientation. The augmentation models camera roll, tripod tilt, and handheld orientation drift.

Figure 23: θ = 15

Isotropic Zoom Uniform scaling by factor f about the image center modifies field of view: f > 1
crops the center region and upsamples. f < 1 downsamples and pads to original size. The single
parameter f > 0 governs magnification. This simulates focal changes, reframing, and subject
distance variation.

Figure 24: f=1.2

Edge Cropping with Rescaling A fraction κ of one edge is removed and the remaining content is
resized back to the original dimensions, conserving aspect ratio. Parameters are the crop fraction
κ ∈ (0, 0.5) and the selected edge. The effect models partial occlusions, misframing, and sensor
readout loss.

Figure 25: κ = 0.2

Additive Gaussian Noise Zero-mean i.i.d. noise is added per pixel, I ′ = clip(I + ε), ε ∼
N (0, σ2). The standard deviation σ > 0 controls grain strength. This simulates sensor read noise
and compression residue at moderate bitrates.

Figure 26: σ = 0.05
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Salt-and-Pepper Noise Impulsive corruption sends a proportion p of pixels to intensity extremes,
with salt ratio ρ governing the fraction set to white versus black. Parameters are the amount p ∈ (0, 1)
and salt ratio ρ ∈ [0, 1]. This reproduces stuck pixels, transmission dropouts, and packet loss artifacts.

Figure 27: p = 0.01, ρ = 0.5

Poisson (Shot) Noise Photon-counting statistics are modeled by I ′ = 1
K Poisson(KI), where K

is an exposure scale. As K decreases, variance grows relative to mean, especially in dark regions.
This augmentation captures low-light and short exposure regimes.

Figure 28: K=256

Multiplicative Speckle Noise Granular fluctuations modulate intensity multiplicatively: I ′ =
clip(I ⊙ (1 + n)) with n ∼ N (0, σ2). The variance σ2 shapes speckle contrast. The effect
characterizes coherent imaging artifacts (e.g., ultrasound, radar) and rough surface scatter.

Figure 29: n ∼ N (0, 1)

Color Quantization (Banding) Uniform scalar quantization reduces the number of displayable
intensities to L levels, QL(I) = ⌊LI⌋

L . The integer L ∈ [2, 32] sets the severity. This simulates
reduced bit-depth, posterization, and banding from aggressive compression or low-quality displays.

Figure 30: L=8

Gaussian Defocus Blur Convolution with an isotropic Gaussian kernel Gσ yields I ′ = Gσ ∗ I ,
approximating defocus from finite aperture. Separability provides efficient realization. The standard
deviation σ > 0 determines blur radius. The augmentation models out-of-focus capture and depth-of-
field limits.
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Figure 31: σ = 1.5

Horizontal Motion Blur Apparent lateral motion is approximated by 1D convolution along the
horizontal axis with a box kernel of width k, effectively averaging shifted replicas: I ′ = bk ∗x I . The
kernel size k (odd) increases streak length. This simulates camera pan or fast object motion.

Figure 32: k=9

Radial (Spin) Blur Small-angle rotations around the image center are averaged: I ′ =
1
N

∑N
i=1 Rθi(I), θi ∈ [−θmax, θmax]. Parameters are the number of rotations N and maximum

angle θmax. The augmentation represents rotational shake and platform yaw jitter.

Figure 33: N = 7, θmax = 5

Radial Lens Distortion For normalized coordinates u, a radial warp u′ = u (1 + k∥u∥2) models
first-order barrel (k < 0) or pincushion (k > 0) distortion. Inverse mapping with interpolation
produces the output grid. The distortion strength k controls severity. This reproduces wide-angle lens
distortion and optical calibration error.

Figure 34: k=0.0001

Projective (Perspective) Transform A homography H ∈ R3×3 maps homogeneous coordinates
via x̃′ ∼ Hx̃. Choosing H from perturbed corner correspondences induces keystone deformation.
Inverse warping with interpolation preserves sampling density. Parameters are corner displacements
or direct specification of H. This models oblique viewpoints and camera pose changes relative to the
image plane.

Figure 35: ∆ = 0.1
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Object Albedo Channel Offset Object face colors are shifted additively in RGB, a′ = clip(a+δ),
applied to each semantic region prior to shading. The channel-wise offsets control tint magnitude
and direction. This emulates illumination casts and sensor biases producing uniform tints on object
surfaces.

Figure 36: δ = [0.1, 0, 0]

Object Albedo Channel Scaling A diagonal color calibration D = diag(λR, λG, λB) scales
albedo channels, a′ = clip(Da). Per-channel gains λ· modulate relative color balance. The
augmentation simulates white-balance and per-channel gain mismatches across cameras.

Figure 37: λR = 1, λG = 1, λB = 1

Material Fading (Sticker Wear) Chromatic content blends toward local luminance y = 1
3 (aR +

aG+aB): a′ = (1−ρ)a+ρ y 1. The fade factor ρ ∈ [0, 1] governs desaturation. The effect captures
sun bleaching, aging, and pigment loss from surface wear.

Figure 38: ρ = 0.5

Micro-Texture Perturbations High-frequency albedo perturbations are injected as bounded noise
ϵ ∈ [−ν, ν]3 added to each surface region, followed by clipping. The amplitude ν shapes scratch
visibility. This simulates fine scratches and scuffs that locally modulate reflectance.

Figure 39: ν = 0.05

Polygonal Imperfections in Stickers Vertices of sticker polygons receive bounded spatial jitter
∆v with ∥∆v∥ ≤ ϵ, preserving polygon closure. The piecewise-linear boundary undergoes small
shape changes. The jitter radius ϵ sets deviation magnitude.
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Figure 40: ϵ = 0.05

Camera Pose Perturbation (Yaw-Pitch-Roll) The extrinsic rotation is varied by Euler angles
(ψ, ϕ, φ), and the pinhole projection maps 3D points X̃ to pixels via x̃ ∼ K [R(ψ, ϕ, φ) | t] X̃ .
Small perturbations in the angles capture realistic viewpoint drift while maintaining object visibility.
This simulates handheld motion and mount misalignment.

Figure 41: ψ = −20, ϕ = −10, φ = −8

3D Zoom and Viewport Translation Scene geometry is uniformly scaled by s, optionally com-
bined with a small translation within the image plane. The projection window adjusts to avoid
cropping. Parameters are scale s > 0 and planar offsets. The effect simulates effective focal changes
and subject recentering without altering the background.

Figure 42: s = 1.2, offsetx = 0, offsety = 0

For Rubik’s Cube, we combine these augmentations into the following variants:

• Directional lighting with controllable ambient, shadow, gradient, and subsurface components
background image composited behind the cube, camera yaw, pitch, and roll.

• HSV hue, saturation, and value shifts and RGB channel offsets, global contrast and bright-
ness scaling, zoom-in and zoom-out, and positional offsets, camera rotation, and background
image.

• A lightweight mix for regularization involving directional lighting, zoom and vertical
offset, camera angle variation, background image, and ambient light tint to simulate global
illumination.

• Warm look with glossy material finish for the cube, slight sticker-vertex jitter, per-channel
color calibration, warm ambient light and color-temperature shift, zoom and camera jitter,
and a background image.

• Harsher directional light with optional vignette, color-temperature shifts in both directions,
Gaussian blur and exposure gamma variation, background randomization from the image
pool, camera jitter, and low to moderate additive Gaussian noise.

• High-key lighting with white ambient fill, slightly increased contrast and brightness, glossy
finish, per-channel scaling, and Gaussian noise.

• Noisy surveillance look with higher Gaussian noise, salt-and-pepper noise, reduced color
bit-depth (banding), edge cropping, conservative contrast tweaks, mixed matte or glossy
finish, and sticker jitter.

• Controlled illumination using a white ambient fill plus directional light, glossy material,
sticker jitter, low noise, slightly boosted contrast, and a background image.
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• Camera angle variation, a background image, Gaussian noise to mimic sensor grain.

• Background image, camera jitter, Gaussian blur, directional light with gamma and vignette
controls, and light Gaussian noise.

• Background image, directional light combined with a colored ambient wash, motion blur,
and Gaussian noise.

• Similar to the above but with lighter ambient, motion blur, a milder vignette, and small
Gaussian noise.

• Filled background image, Gaussian blur, radial motion blur, colored ambient light at low
opacity, small Gaussian noise, and directional light with vignette.

• Procedural background texture patterns (grid, dots, stripes, crosshatch, waves, or noise)
added in the background, Gaussian blur and radial blur, Poisson noise, and directional light
on the cube.

• Random opaque shapes placed in front of the scene to partially occlude the cube, combined
with Gaussian noise, directional light, camera jitter, zoom, and a background image.

• A simple composition of a background image, directional lighting on the cube, and camera
pose variation.

D Planning Result Tables

Table 2: SPAR performance on Rubik’s Cube across augmentation variants, showing solution length,
percentage optimal, nodes generated, time (seconds), nodes per second, and percentage solved.

DOMAIN OBSERVATION LEN NODES SECS NODES/SEC SOLVED

Rubik’s Cube

Bright Lighting 23.60 1.90E+05 0.21 8.95E+05 95.3%
Camera and Background and Ambient Light 23.66 1.91E+05 0.21 8.94E+05 77.4%
Camera and Background and Lighting 23.62 1.91E+05 0.25 7.60E+05 89%
Camera and Background Image 23.59 1.90E+05 0.21 8.95E+05 96.7%
Camera and Background Image 23.61 1.91E+05 0.27 6.94E+05 96.6%
Camera and Lighting 23.61 1.91E+05 0.20 9.44E+05 96.7%
Color Variations 23.60 1.90E+05 0.24 7.85E+05 92.6%
Indoor and Glossy 23.64 1.91E+05 0.23 8.42E+05 96.5%
Lighting and Radial Blur and Camera 23.64 1.91E+05 0.25 7.67E+05 88.9%
Lighting and Background and Camera 23.64 1.92E+05 0.23 8.37E+05 79.3%
Minimal 23.61 1.91E+05 0.28 6.91E+05 97.6%
Noisy Camera 23.61 1.91E+05 0.24 7.91E+05 89.8%
Occluders 23.74 1.93E+05 0.24 8.18E+05 78.3%
Outdoor Lighting 23.75 1.93E+05 0.27 7.17E+05 71.1%
Studio 23.58 1.91E+05 0.30 6.29E+05 75.9%
Texture and Poisson Noise 23.62 1.91E+05 0.31 6.07E+05 94.1%

E Unsolved Examples

In this section we include some examples of the test instances that were not solved during planning.
These examples show the significant changes in the observations during augmentation.
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