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ABSTRACT

Machine unlearning aims to remove the effect of specific data from trained models
to ensure individuals’ privacy. However, it’s arguable how to evaluate whether the
privacy protection goal is achieved by machine unlearning. Furthermore, recent
studies show unlearning may also increase the retained samples’ privacy risks.
This paper takes a holistic approach to auditing both unlearned and retained sam-
ples’ privacy risks before and after unlearning. We derive the privacy criteria for
unlearned and retained samples, respectively, based on the perspectives of differ-
ential privacy and membership inference attacks. To make the auditing practical,
we also develop an efficient membership inference attack, A-LiRA, utilizing data
augmentation to reduce the cost of shadow model training. Our experimental
findings indicate that existing machine unlearning algorithms do not consistently
protect the privacy of unlearned samples and may inadvertently compromise the
privacy of retained samples. For reproducibility, we have pubished our code.1

1 INTRODUCTION

The “right to be forgotten” allows data contributors to request the deletion of their data from an or-
ganization’s records. Recent regulations, including the General Data Protection Regulation (GDPR)
in the European Union, the California Consumer Privacy Act (CCPA) in the U.S., and Canada’s Per-
sonal Information Protection and Electronic Documents Act (PIPEDA), have solidified this right.
For example, Google received over 3.2 million requests to remove specific URLs from search re-
sults over five years, demonstrating the importance and scale of this issue.

In the context of machine learning, exercising the right to be forgotten entails not only removing
the data itself but also ensuring models are retrained with the updated dataset. However, with the
rise of large models, frequent model retraining brings unbearable costs to model owners. Thus, the
process of efficiently adjusting models to avoid high retraining costs, known as machine unlearning,
has garnered significant attention in both academic and industrial research. Most recent machine
unlearning methods (Golatkar et al. (2020); Foster et al. (2024); Fan et al. (2024)) claim that machine
unlearning can be a promising way to protect privacy, yet the effectiveness of protection has not
been sufficiently evaluated. A popular argument is that unlearning is effective in privacy protection
as long as any impact the erased data had on the original model is removed from the unlearned
model, which is known as the completeness measure. However, Chen et al. (Chen et al. (2021))
highlight that current machine unlearning techniques may still leave residual information about the
target data. More importantly, is the completeness measure appropriate for privacy protection?

Moreover, Carlini et al. (Carlini et al. (2022b)) note that a sample’s privacy is a relative notion,
meaning that removing some samples could inadvertently increase the privacy risks of other samples
in the retained data. It’s consistent with the understanding of anonymization by blending in the
crowd — a thinning crowd leaves less protection to the crowd members. This issue is particularly
concerning when the model builder has promised to preserve the entire dataset’s privacy with a
certain guarantee level, i.e., the ε setting, in differentially private machine learning (Dwork (2006);
Abadi et al. (2016)).

1https://anonymous.4open.science/r/Auditing-machine-unlearning-CB10/
README.md
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Scope of Research. We take a holistic approach to measure the impact of a machine unlearning
algorithm on both the unlearned and retained samples. Specifically, we consider successful machine
unlearning in privacy protection should meet the following goals: (1) the privacy risk of unlearned
samples should decrease as much as possible after unlearning, and (2) the privacy risk of retained
samples should remain below the promised bound if a differentially private algorithm was applied
in modeling.

Recent studies on auditing differentially private machine learning algorithms give some ideas for
us to analyze and define the above two goals formally. The auditing mechanism uses the theorem
(Dwork et al. (2014); Tramer et al. (2022); Jagielski et al. (2020)) that if a ε-differentially-private
machine learning algorithm is correctly implemented, the worst-case membership inference (MIA)
test result on every sample must satisfy ln(TPR/FPR) < ε, where TPR and FPR are the true positive
and false positive rates of the membership inference test, respectively. To make auditing effective,
the MIA test must be effective, e.g., ln(TPR/FPR) is as close to its theoretical upper bound as
possible. So far, the LiRA method (Carlini et al. (2022a)) is considered the best MIA method that
is able to measure individual sample’s ln(TPR/FPR) more accurately than other methods (Carlini
et al. (2022b)). With a sample-level privacy risk measure, we can formally define the two privacy
protection goals for machine unlearning methods.

A major challenge in applying the LiRA method is its high computational cost. Online-LiRA re-
quires 4.8 GPU hours per sample to generate the TPR/FPR measure. While offline-LiRA is more
efficient due to its one-sided hypothesis testing, its performance is inferior to that of online-LiRA.
In this paper, we introduce a more efficient augmentation-based likelihood ratio attack (A-LiRA),
which achieves comparable performance to online-LiRA with a 88.3% reduction in time cost. A-
LiRA is inspired by Mattern et al. (2023) and leverages the central limit theorem. Instead of training
multiple shadow models as in online-LiRA, A-LiRA approximates the two probability distributions
– when the model is trained with or without the target sample – using augmented data and with the
assumption of normal distributions for in- and out-training measures, separately. This significantly
reduces the time cost while providing a good approximation of the probability distributions, making
A-LiRA both effective and efficient for estimating the privacy risk of a sample.

We have conducted extensive evaluations to demonstrate that A-LiRA provides comparable effec-
tiveness while significantly improved efficiency compared to the online-LiRA approach introduced
by Carlini et al. (2022b). We also show that most recent machine unlearning methods do not sat-
isfactorily protect the privacy of unlearned samples and, in some cases, increase the privacy risk of
retained samples. Thus, new unlearning methods are desired to meet the proposed privacy measures.
In summary, our contributions are as follows:

• We re-formulate the criteria for privacy protection of machine unlearning methods based
on the theories of differential privacy and membership inference attacks.

• We introduce a novel augmentation-based likelihood-ratio attack to estimate the privacy
risk of samples, which allows us to calculate the privacy protection criteria efficiently.

• We show that most existing machine unlearning methods do not protect privacy well for the
unlearned samples, and in some cases, they may also increase privacy risks for the retained
samples.

The remaining sections are organized as follows: Related Works (Section 2), Preliminar-
ies(Section 3), Privacy Risk Measures for Machine Unlearning (Section 4), Augmentation-Based
Likelihood Ratio Attack (Section 5), and Experiments (Section

2 RELATED WORKS

Machine unlearning enforces the “right to be forgotten” and is categorized into exact and approxi-
mate methods. Exact unlearning retrains models without the forgotten data. A notable example is
SISA by Bourtoule et al. (2021), which partitions training data into micro-shards and trains small
models on each. To unlearn data, only the relevant micro-models are retrained, improving effi-
ciency over full retraining. Approximate unlearning, on the other hand, employs techniques such
as weight manipulation and fine-tuning to make the model “forget” the data without retraining it
entirely. For instance, Golatkar et al. (2020) modifies the weights to make probing functions of the
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weights indistinguishable from those applied to a network trained without the data being forgotten.
Fan et al. (2024) introduces the concept of ’weight saliency’ for machine unlearning, drawing par-
allels with input saliency used in model explanation. This approach focuses unlearning efforts on
specific model weights, improving both efficiency and effectiveness. While machine unlearning is
touted as a means to protect privacy (Cao & Yang (2015); Nguyen et al. (2022); Xu et al. (2023)),
studies such as those by Chen et al. (2021) and Carlini et al. (2022b) indicate that unlearning may
make retained samples more susceptible to membership inference attacks. These findings highlight
the necessity for robust auditing methods and standards to ensure the privacy protection efficacy of
machine unlearning.

3 PRELIMINERIES

In this section, we introduce some preliminaries to provide the audience with a better understanding
of this paper.

3.1 NOTATIONS

We denote the training dataset as D and the subset to be unlearned as X . The retained samples are
represented by D \ X . The model trained on D using algorithm M is denoted as M = M(D),
while U = U(M(D), X) represents the unlearned model after applying the unlearning mechanism
U on X . The model retrained on the retained dataset D \ X is expressed as MR = M(D \ X).
For membership inference attacks (MIA),MIA(U,D, x) indicates an MIA applied to the unlearned
model U for a target sample x. Lastly, E(M,x) refers to the privacy risk estimator of sample x in
model M .

3.2 DIFFERENTIAL PRIVACY

Differential Privacy (DP) ensures that the inclusion or exclusion of a single data point minimally
affects the output of an algorithm, protecting individual privacy. A machine learning algorithmM
satisfies (ε, δ)-DP if, for any two neighboring datasets D and D′ that differ in at most one sample,
and any output set S:

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ
Here, ε (privacy loss) controls the strength of the guarantee, with smaller ε offering stronger privacy.
δ allows for a small probability of privacy violation, especially for extreme outputs. Lower values
of ε and δ indicate higher privacy protection.

3.3 LIKELIHOOD RATIO ATTACK

Likelihood ratio attacks (LiRA) were first introduced by Carlini et al. (2022a) for machine learning
models. Given a target sample x, the online-LiRA sets up two hypotheses:

H0 : Target model is trained on D,
H1 : Target model is trained on D \ x

It trains multiple shadow models (typically 512 in total) on D or D \ x fits the logit outputs to
Gaussian distributions. The likelihood ratio between the two distributions is used to reject one of
the hypotheses. While effective, this method is computationally expensive, taking an average of
4.8 hours per sample in CIFAR-10 on a Titan V100 GPU, making it impractical. A more efficient
variant, offline-LiRA, only estimates the distribution D(x|M(D \ x)) of the target model is not
trained on the target model and uses the likelihood of x follows the estimated distribution to reject
or acceptH1. This one-sided approach can be batched by training shadow models on random subsets
of D, but it performs worse than the online-LiRA in efficacy.

4 A HOLISTIC MEASURE FOR AUDITING MACHINE UNLEARNING

4.1 THREAT MODEL

Before introducing the measure for auditing machine unlearning, we outline the threat model for our
proposed attack.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Target Model and Sample. The target model consists of an original model, denoted as M(D),
trained on dataset D, and an unlearned model, U = U(M(D), X|X ⊂ D), where U represents
the unlearning mechanism applied to a sample set X . According to the ideal definition of machine
unlearning (Xu et al. (2023); Nguyen et al. (2022)), the unlearning method should be equivalent to
the model retrained on the retained set D \X , such that U = MR, where MR =M(D \X). The
model builder may have an agreement with data contributors that regulates the privacy risk of the
data, which data owners won’t express at a certain level.

Attacker’s Capabilities. To assess the privacy risks associated with individual samples, we consider
a worst-case adversary. The attacker has white-box access to both the original modelM(D) and the
unlearned model U(M(D), X|X ⊂ D), as well as full knowledge of the training dataset D and the
unlearned samples X . Additionally, the attacker knows the details of the unlearning mechanism U .

Attacker’s Objective. The attacker’s goal is to determine whether a given sample from D was
used to train the target models. Ideally, a successful attack would classify any sample in D as a
“member” in the original model M(D) and any retained sample (i.e., x ∈ D \ X) as a member
in the unlearned model U(M(D), X|X ⊂ D). Furthermore, for each unlearned sample x ∈ X ,
the attacker should identify it as a “non-member” in U(M(D), X|X ⊂ D). In practice, such ideal
membership inference does not exist.

Success of Defense. Thus, we define the success of the defense as the attacker’s MIA ability on the
unlearned model for any sample x ∈ D, denoted as MIA(U,D, x), should be equivalent or worse
than that on the retrained model, MIA(MR, D, x). This criterion will be carefully studied, and an
approximate version will be formally defined in later sections.

4.2 AUDITING MACHINE UNLEARNING

Interestingly, so far, all existing machine unlearning algorithms assume we only need to ensure pri-
vacy protection for the users who execute “the right to be forgotten”, and the remaining ones’ privacy
protection is fine to be omitted in unlearning. This assumption is incorrect if the original model is
differentially private, where the model builder has reached an agreement of privacy guarantee, i.e.,
the ε setting, with data contributors. Carlini et al. (2022b) have shown the “privacy onion effect”,
i.e., the removal of some samples may affect other samples’ privacy risks. Thus, we take a holis-
tic approach to measure all samples’ privacy guarantees before and after unlearning by defining
following criteria:

Criterion 1: For the unlearned samples X , will unlearned X adequately protect its privacy?
Formally, if we have an ideal estimator E to estimate privacy risk and the unlearning algorithm
works ideally, for every sample x ∈ X , we have

E(U(M(D), X), x|x ∈ X) ≈ E(M(D/X), x|x ∈ X)

This equation indicates that the privacy risk of unlearned samples on the unlearned model should
approximate the privacy risk of a retrained model. In practice, without knowing the retrained model
M(D/X), the following inequality must hold for an effective unlearning algorithm:

E(U(M(D), X), x|x ∈ X) < E(M(D), x|x ∈ X)− t1, t1 ≥ 0, (1)

where t1 is a pre-defined threshold that model builders use to achieve stricter or relaxed privacy
guarantees. When t1 = 0, the equation reflects the minimum requirement on the unlearning algo-
rithm. That is, the privacy risk of unlearned samples on unlearned models should be less than that
on the original model. Violating Equation 1 at t1 = 0 implies the unlearning algorithm does not
achieve the goal of privacy protection for certain samples.

Criterion 2: For the retained samples D \ X , will unlearned X increase the privacy risk of the
retained data and possibly break a preset ε value in differentially private modeling? Let F (ε) be the
upper bound of the estimator determined by ε. Since the original algorithm is differentially private,
we have

E(M(D), x|x ∈ D) ≤ F (ε)

Specifically, when the risk estimator uses ln(TPR/FPR), F (ε) = ε (Tramer et al. (2022); Jagielski
et al. (2020)).

4
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With machine unlearning, ideally, we also have to meet the privacy guarantee

E(U(M(D), X), x|x ∈ D \X) ≤ F (ε).

In practice, to strictly ensure the privacy guarantee is still met and avoid deriving the form of F (ε),
we consider a reasonable machine unlearning should meet the following conditions:

E(U(M(D), X), x|x ∈ D \X) ≤ max(E(M(D), x|x ∈ D)) + t2, (2)

where t2 defines the relaxation level. At t2 = 0, if Equation 2 does not hold at certain sam-
ples, the privacy guarantee may still be satisfied unless E(U(M(D), X), x ∈ D \ X) > F (ε)
is also true. This indicates that the privacy risk of retained samples on unlearned models
should not be greater than the greatest privacy risk among every sample on the original model.

Figure 1: Acceptance
matrix

Based on these two criteria, we introduce an acceptance matrix (Figure 1)
that determines whether a machine unlearning method is applicable to
protect privacy: for a differentially private model, the method is applicable
only when it satisfies both Equation 1 and 3. For a plain model, the method
must satisfy Equation 1. The need for satisfaction of Equation 2 is decided
by the data contributors.

4.3 PRIVACY RISK ESTIMATOR E

To implement the above auditing method, we need an accurate and effi-
cient estimator E to estimate the privacy risk at the sample level. This es-
timator must be theoretically sound and computationally efficient. Dwork
et al. (2014) interpreted differential privacy from the perspective of hypothesis testing, where they
proved that if an algorithm is (ε, δ)-differentially private, then for any distinguishing attack (e.g.,
membership inference attacks), the ratio of the true positive rate (TPR) to the false positive rate
(FPR) satisfies TPR/FPR < eε. Thus, we can take the following estimator to define privacy risk:

E(M,x) = ln

(
TPR(A,M, x)

FPR(A,M, x)

)
where TPR and FPR are the corresponding MIA attack A applied to the model M targeting the
sample x.

When M = M(D) is (ε, δ)-differentially private and an unlearned model is U = U(M(D), X),
it’s straightforward to have ln (TPR/FPR) < ε. Equation 2 is simplified to

ln

(
TPR(U, x)

FPR(U, x)

)
≤ max

(
ln

(
TPR(M,x)

FPR(M,x)

))
+ t2 < ε, where x ∈ D \X. (3)

Model builders can adjust t2 within the range [0, ε−max(TPR(M,x)/FPR(M,x))) to determine
the relaxation level without violating differential privacy. When ln(TPR(U, x)/FPR(U, x)) ≥ ε
is true for some x, we can say that machine unlearning breaks differential privacy.

When the M(D) is not trained with the differential privacy, we can still detect the samples with
ln(TPR(U, x)/FPR(U, x)) > max(ln(TPR(M,x)/FPR(M,x))) for the increased privacy
risks.

5 AUGMENTATION-BASED LIKELIHOOD RATIO ATTACK (A-LIRA)

Given the estimator E(·), we need a membership inference attack A to classify whether a target
sample x was used to train a model. For an unlearned model U = U(M(D), X|X ⊂ D), A should
classify x ∈ X as a “non-member” and x ∈ D \X as a “member.”

The attackAmust be powerful to maximize the TPR/FPR ratio and maintain high TPR at low FPR,
which is critical for security analysis (Kolter & Maloof (2006); Kantchelian et al. (2015); Carlini
et al. (2022a)). LiRA (Carlini et al. (2022a)) is the most accurate MIA algorithm in the low-FPR re-
gion, but online-LiRA is costly, while offline-LiRA sacrifices accuracy. The performance bottleneck

5
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of online-LiRA stems from training many shadow models. Online-LiRA trains 2n shadow models
to fit two distributions (n = 256 typically), costing 4.8 GPU hours for CIFAR datasets. Inspired
by Mattern et al. (2023), we propose A-LiRA, an augmentation-based LiRA algorithm. Instead of
training 2n shadow models, A-LiRA only trains one in-training shadow modelM(D|x ∈ D) and
one out-training shadow model M(D \ x), applying n augmented samples to observe the output
distributions. A-LiRA is detailed in Algorithm 1 and operates in the following three phases.

Algorithm 1 Augmentation-based LiRA

Require: target model fT , example (x, y), dataset D, number of augmentations n
1: obsin ← {}
2: obsout ← {}
3: obstarget ← {}
4: fin ←M(D) . Train shadow IN model
5: fout ←M(D \ {(x, y)}) . Train shadow OUT model
6: Xaug ← Augmentation(x, n) . Augment the data
7: for xi ∈ Xaug do
8: obsin ← obsin ∪ {φ(fin(xi)y)}
9: obsout ← obsout ∪ {φ(fout(xi)y)}

10: obstarget ← obstarget ∪ {φ(fT (xi)y)}
11: end for
12: µin ← mean(obsin)
13: µout ← mean(obsout)
14: σ2

in ← var(obsin)
15: σ2

out ← var(obsout)
16: Determine τ through thresholding.
17: Λ← PDF (max(obstarget)|N (µin,σ

2
in))

PDF (max(obstarget)|N (µout,σ2
out))

18: return “member” if Λ > τ else “non-member”

Phase 1: Distribution estimation. For a target sample (x, y), we generate n augmentations Xaug
by randomly flipping, rotating, and shifting x. We then train two shadow models: an in-model
fin =M(D) (trained with x in the dataset) and an out-model fout =M(D \ x).

For each augmented sample xi ∈ Xaug, we input it into each of the two models fin and fout and
obtain the confidence vector li, which contains c elements for a c-class prediction, with

∑
c li,c = 1.

We focus on the confidence of the true label y, denoted as li,y for distribution estimation. Following
Carlini et al. (2022a), we apply a logit transformation to li,y:

φ(p) = log

(
p

1− p

)
, where p = li,y.

The transformed confidence values are assumed to follow two normal distributions
N (µin or out, σ

2
in or out), with parameters estimated from the collection of {φ(li,y)}. Typically,

fin will have a higher mean and smaller variance. The output of this phase is the two normal
distributions: N (µin, σ

2
in) and N(µout, σ

2
out).

Phase 2: Making decision. To determine whether xwas used to train the target model fT =M(D),
the augmented set Xaug is passed through the model, and the same logit transformation is applied
to the output confidence values. Intuitively, if fT was trained on x, the transformed confidence
values φ(li,y) should vary less compared to when fT was not trained on x. The maximum value of
φ(li,y) highlights the largest difference between these two cases. We then compute the likelihood of
max{φ(li,y)} follows either of the two normal distributions N (µin, σ

2
in) or N (µout, σ

2
out). As shown

by Carlini et al. (2022a), the best true positive rate (TPR) at a given false positive rate (FPR) can be
found by thresholding the likelihood ratio Λ:

Λ =
PDF (max{φ(li,y)}|N (µin, σ

2
in))

PDF (max{φ(li,y)}|N (µout, σ2
out))

.

where PDF is the probability density function. This phase outputs the computed Λ for the target
model fT and sample x. Assuming we have an ideal threshold τ , if Λ > τ , we conclude that fT was
trained on x; otherwise, it was not.

6
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Phase 3: Generating threshold τ at a specific FPR. Due to the page limit, we introduce Line 16 in
Algorithm 1 here. To determine the optimal threshold τ for the best TPR at a given FPR, we follow
the method from Carlini et al. (2022a). We train m in-models f jin = M(D) and m out-models
f jout =M(D \ x), where j = {1, . . . ,m}. Each model is treated as a target model, with in-models
labeled as “member” and out-models as “non-member.”

For each model, we calculate the likelihood ratio Λjin or out using the normal distributions from the
distribution estimation phase. This results in 2m likelihood ratios {Λjin or out}. A model with Λ > τ

is classified as a “member,” otherwise as a “non-member.” By testing τ values from {Λjin or out}, we
select the threshold that achieves the best TPR at the given FPR.

Time cost. In our work, we set m = 30 for both A-LiRA and online-LiRA. Thus our A-LiRA
needs to train 2 + 2m models while online-LiRA needs to train 2n+ 2m models, which shows the
improved efficiency given by augmentation. When n = 256 and m = 30, A-LiRA will reduce the
time cost by 89%, which aligns with our experimental results.

Estimation of privacy risk. We generate k unlearned models Ut = U(M(D), X|X ⊂ D), where
t = 1 · · · k and X represents the forgotten samples.

For Criterion 1, we apply A-LiRA with the corresponding distributions and threshold τ for each
target sample x ∈ X . Using each Ut as the target model, we decide if x is a “member” or “non-
member.” Comparing these results with the true status (all “non-member”), we compute the privacy
risk as ln(TPR/FPR). A higher value indicates a greater privacy risk for X .

For Criterion 2, we apply the same process using retained samples x ∈ D \X , where the true status
is “member.” In our experiments, we set k = 30 for efficiency.

6 EXPERIMENTS

This section presents extensive experiments aimed at addressing the following key questions: 1.
How does A-LiRA perform in terms of both efficacy and efficiency compared to the LiRA methods?
2. How well do the published unlearning methods meet the proposed auditing measures?

6.1 SETUP

Before exploring these questions, the experimental setup is outlined.

Datasets and models: We use CIFAR-10 and CIFAR-100 to train ResNet-18 models with FFCV
(Leclerc et al. (2023)), using a learning rate of 0.5, weight decay of 5e-4, and training for 50 epochs
with early stopping on NVIDIA Titan V-100 and Titan Xp GPUs. Each sample has 10 random
augmentations to enhance generalization. Due to computational constraints, we limit our experi-
ments to these datasets, as large-scale datasets would require training multiple models for privacy
risk estimation, which is impractical with current resources.

Membership inference attacks: We use A-LiRA as the attack method, generating 1000 augmenta-
tions per sample via random flipping, rotation, shifting, etc. One shadow in-model and one shadow
out-model are trained to estimate the distributions. We then train 30 in- and out-models to determine
the threshold. All models use the same hyperparameters and data distribution as the target model.
Results of online-LiRA and offline-LiRA (Carlini et al. (2022a)) are provided in Appendix A.

Metric. We use the Area Under the ROC Curve (AUC) score, TPR when FPR = 0.01, and GPU
time to evaluate membership inference attacks. We use the ratio of samples that failed to meet
Criterion 1&2 to evaluate the privacy protection of machine unlearning methods. Specifically, we
check the ratio of unlearned samples that do not meet Criterion 1 and the ratio of retained samples
that do not meet Criterion 2, denoted as the “Failure Rate” in the figures.

6.2 ATTACKING PERFORMANCE

We present the attack performance in Table 1. All models are trained using ResNet-18. For both
online and offline-LiRA, we totally train 512 shadow models (in and out), which is suggested by
Carlini et al. (2022a). In the offline-LiRA setting, we use a batch size of 50, meaning that 50 samples

7
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Method CIFAR-10 CIFAR-100
AUC TPR@1%FPR Time(hours) AUC TPR@1%FPR Time(hours)

Online-LiRA 0.706 9.7% 4.76 0.913 25.4% 4.84
Offline-LiRA 0.663 8.6% 0.17 0.833 19.3% 0.13
A-LiRA(Ours) 0.703 10.3% 0.53 0.917 26.8% 0.57

Table 1: Attacking models performance on CIFAR datasets. TPR@1%FPR indicates TPR when
FPR is 0.01. Time is the GPU hours to generate classificaiton for one sample, including training
shadow models and thresholding. The bolded cell is the best performance.

are explicitly used to train the out-models, and the attack is performed on those same samples. While
Carlini et al. (Carlini et al. (2022b)) demonstrated that batch strategies can be applied to both online
and offline-LiRA, and that setting the batch size to half the dataset size (i.e., half the data used to
train the shadow in-model) can be effective, we found this approach reduced attack effectiveness.

Online-LiRA performed the best in global AUC, while our A-LiRA achieved comparable AUC and
better TPR at low FPR with significantly lower time costs. On CIFAR-100, A-LiRA outperformed
in both AUC and TPR at low FPR. Although offline-LiRA yielded the lowest performance across all
experiments, it substantially reduced time costs, making it a viable alternative when time efficiency
is a priority.

6.3 DOES UNLEARNING PROTECT PRIVACY?

In this section, we investigate whether existing machine unlearning satisfactorily protects privacy
according to the proposed criteria.

6.3.1 MODEL RETRAINING

We start with how directly retained models perform on these criteria. Specifically, we first estimate
the privacy risk of each sample inD on modelM(D) with A-LiRA. Then, we remove samples with
the top-k% privacy risks, retrain a new model, and evaluate the samples’ privacy risk under the new
model.

Criterion 1. Figure 2 shows the result for retraining with top-k% samples removed. On both
datasets, retraining will protect the removed samples well when the number of removed samples is
small. However, by removing too many high-risk samples, i.e., top 20%, the risk of some samples
ever presented in the dataset can rise. This phenomenon indicates that the removed samples may
mutually affect each other’s privacy risk, and the privacy onion effect (Carlini et al. (2022b)) may
also exist within the removed samples.
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Figure 2: Criterion 1: Privacy protection under retraining.

Criterion 2. To evaluate how the privacy risks change on the retained samples, we first record the
max(ln(TPR/FPR)) over D on the original model. According to Carlini et al. (2022b), removing
high-risk samples may raise other samples’ privacy risk. We observe how retraining affects the
retained samples by removing the top-k% and the bottom-k%-risk samples, respectively.

Figure 3 shows both unlearning top-k% and bottom-k%-risk samples will raise the privacy risk
of some retained samples. However, removing low-risk samples will affect other samples less as
Figure 3b shows. This observation is consistent with the previously observed “privacy onion effect”
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(a) Unlearning top-k%-risk samples.
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(b) Unlearning bottom-k%-risk samples.

Figure 3: Criterion 2: Retraining may increase the privacy risk of some retained samples.

With these baselines for Criterion 1&2, we will study how well the three recent approximate un-
learning methods protect samples’ privacy.

6.3.2 APPROXIMATE UNLEARNING
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(a) Unlearning top-k%-risk samples. CIFAR-10.

0.05 0.1 0.15 0.2 0.25 0.3
0

0.2
0.4
0.6
0.8

1 ·10−2

top-k%

Fa
ilu

re
R

at
e

SUNSHINE SSD SalUn Retrain

(b) Unlearning top-k%-risk samples. CIFAR-100.

Figure 4: Criterion 1: Approximate unlearning delivers less privacy protection to removed samples,
compared to retraining.

We choose SUNSHINE Golatkar et al. (2020), SSD Foster et al. (2024), and SalUn Fan et al. (2024)
as the representative approximate unlearning methods as they are the latest algorithms with the best
performance reported. Similarly, we unlearn top-k% risk and bottom-k% risk samples using each of
the methods. We include the retraining result as the baseline.
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(a) Unlearning top-k%-risk samples. CIFAR-10.
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(b) Unlearning bottom-k%-risk samples. CIFAR-10.
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(c) Unlearning top-k%-risk samples. CIFAR-100.
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(d) Unlearning bottom-k%-risk samples.CIFAR-100.

Figure 5: Criterion 2: Approximate unlearning affects less retained samples than retraining.
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Criterion 1. The result with approximate machine unlearning is shown in Figure 4. The greater
failure rates at each sample level indicate that approximate unlearning methods provide significantly
less protection to unlearned samples’ privacy than retraining. These results show that these approx-
imate unlearning methods may not be satisfactory in protecting unlearned samples’ privacy.

Criterion 2. Now we check how approximate machine unlearning affects the privacy of retained
samples. Similarly, we want to observe the impact of unlearning top-k% or bottom-k%-risk samples,
respectively, and check how many retained samples dissatisfy Criterion 2 (Equation 2) with t2 = 0.
Figure 5 shows that all three unlearning methods will increase the privacy risk of some retained
samples. Interestingly, the affected samples are all less than retraining. It seems fully eliminating
the unlearned samples’ effect on models may invertedly increase the privacy risks of retained ones.
This phenomenon is also consistent with the previously observed “privacy onion effect” (Carlini
et al. (2022b)).

Results on differentially private models. In section 4, we’ve introduced that model builder and
data contributor may have agreed on a privacy upper bound, e.g., the ε level of differential privacy
if the models are differentially private. We now study the level of privacy violations approximate
machine unlearning methods may bring to the retained samples.

We train the original modelM(D) using DP-SGD introduced by Abadi et al. (2016) with various ε
settings and keep δ = 0.0002. We unlearn top-30% risk samples in CIFAR-10 using three approxi-
mate unlearning methods and check the Failure Rate of samples for Criterion 2, i.e., Equation 3 with
ε as the bound.

Figure 6 shows that unlearning top-risk samples will cause the violation of ε agreement. The num-
bers of violated samples are significant for all ε levels and all the algorithms. Sunshine also affects
significantly more samples at a lower ε level, ε = 2. This result indicates the unlearning for differen-
tially private algorithms should be more carefully designed to consider the protection of the retained
samples.
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Figure 6: Approximate unlearning may break the ε bound for some retained samples if the models
are (ε, δ)-differentially private.

Discussion. Using A-LiRA as the estimator, we have found several interesting results. Firstly,
existing machine unlearning may not provide sufficient privacy protection for unlearned samples.
Secondly, machine unlearning may also increase the privacy risk of retained samples, which can
be critical if differentially private machine learning is applied. Thus, it’s vital to reconsider how to
design proper machine unlearning methods to comprehensively protect the privacy of all involved
data samples. Our A-LiRA estimator and acceptance matrix can be a powerful tool to help evaluate
such machine unlearning methods.

7 CONCLUSION

The privacy protection criteria for machine unlearning have not been sufficiently studied yet. We
propose two criteria to audit the privacy risks of unlearned and retained samples to fully understand
a machine unlearning algorithm’s privacy protection capacity. The core of the proposed auditing
mechanism is an efficient sample-level membership inference attack, A-LiRA. We show in experi-
ments that A-LiRA performs efficiently with comparable attacking accuracy to the original online-
LiRA algorithm, making it deployable to real applications. With the proposed criteria, we also show
that most existing machine unlearning algorithms do not satisfactorily protect samples’ privacy.
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A APPENDIX A: CHOICE OF MEMBERSHIP INFERENCE ATTACK

In this section, we analyze how the choice of attack affects the estimation of privacy risks. In-
tuitively, in a worst-case scenario, more powerful attacks provide a better estimate of a sample’s
privacy risk, as stronger attacks are more likely to detect samples that fail to meet both criteria. We
evaluate online-LiRA, offline-LiRA, and A-LiRA by generating ln (TPR/FPR) and repeating the
experiments on CIFAR-10 as described in Section 6.3.1. The results for Criterion 1 are shown in
Figure 7. Both online-LiRA and A-LiRA produce comparable estimates, while offline-LiRA detects
fewer samples that fail to meet Criterion 1.

Similar findings are shown in Figure 8, where we evaluate the Failure Rate for Criterion 2. Again,
online-LiRA and A-LiRA perform similarly, while offline-LiRA performs worse. However, as noted
in Table 1, offline-LiRA is significantly more efficient than both online-LiRA and A-LiRA, making
it a viable alternative when efficiency is the primary concern for model builders.
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(a) Unlearn top-k%-risk samples of CIFAR-10.
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(b) Unlearn bottom-k%-risk samples of CIFAR-10.

Figure 7: Criterion 1: A-LiRA and online-LiRA detect more samples that failed to meet Criterion 1.
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(a) Unlearn top-k%-risk samples of CIFAR-10.

0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

·10−2

top-k%

Fa
ilu

re
R

at
e A-LiRA Online-LiRA Offline-LiRA

(b) Unlearn bottom-k%-risk samples of CIFAR-10.

Figure 8: Criterion 2: A-LiRA and online-LiRA detect more samples that failed to meet Criterion 2.
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